]> git.proxmox.com Git - mirror_qemu.git/blob - block/qed.c
Merge remote-tracking branch 'remotes/riku/tags/pull-linux-user-20171018' into staging
[mirror_qemu.git] / block / qed.c
1 /*
2 * QEMU Enhanced Disk Format
3 *
4 * Copyright IBM, Corp. 2010
5 *
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
12 *
13 */
14
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include "qemu/timer.h"
18 #include "qemu/bswap.h"
19 #include "trace.h"
20 #include "qed.h"
21 #include "qapi/qmp/qerror.h"
22 #include "sysemu/block-backend.h"
23
24 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
25 const char *filename)
26 {
27 const QEDHeader *header = (const QEDHeader *)buf;
28
29 if (buf_size < sizeof(*header)) {
30 return 0;
31 }
32 if (le32_to_cpu(header->magic) != QED_MAGIC) {
33 return 0;
34 }
35 return 100;
36 }
37
38 /**
39 * Check whether an image format is raw
40 *
41 * @fmt: Backing file format, may be NULL
42 */
43 static bool qed_fmt_is_raw(const char *fmt)
44 {
45 return fmt && strcmp(fmt, "raw") == 0;
46 }
47
48 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
49 {
50 cpu->magic = le32_to_cpu(le->magic);
51 cpu->cluster_size = le32_to_cpu(le->cluster_size);
52 cpu->table_size = le32_to_cpu(le->table_size);
53 cpu->header_size = le32_to_cpu(le->header_size);
54 cpu->features = le64_to_cpu(le->features);
55 cpu->compat_features = le64_to_cpu(le->compat_features);
56 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
57 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
58 cpu->image_size = le64_to_cpu(le->image_size);
59 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
60 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
61 }
62
63 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
64 {
65 le->magic = cpu_to_le32(cpu->magic);
66 le->cluster_size = cpu_to_le32(cpu->cluster_size);
67 le->table_size = cpu_to_le32(cpu->table_size);
68 le->header_size = cpu_to_le32(cpu->header_size);
69 le->features = cpu_to_le64(cpu->features);
70 le->compat_features = cpu_to_le64(cpu->compat_features);
71 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
72 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
73 le->image_size = cpu_to_le64(cpu->image_size);
74 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
75 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
76 }
77
78 int qed_write_header_sync(BDRVQEDState *s)
79 {
80 QEDHeader le;
81 int ret;
82
83 qed_header_cpu_to_le(&s->header, &le);
84 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
85 if (ret != sizeof(le)) {
86 return ret;
87 }
88 return 0;
89 }
90
91 /**
92 * Update header in-place (does not rewrite backing filename or other strings)
93 *
94 * This function only updates known header fields in-place and does not affect
95 * extra data after the QED header.
96 *
97 * No new allocating reqs can start while this function runs.
98 */
99 static int coroutine_fn qed_write_header(BDRVQEDState *s)
100 {
101 /* We must write full sectors for O_DIRECT but cannot necessarily generate
102 * the data following the header if an unrecognized compat feature is
103 * active. Therefore, first read the sectors containing the header, update
104 * them, and write back.
105 */
106
107 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
108 size_t len = nsectors * BDRV_SECTOR_SIZE;
109 uint8_t *buf;
110 struct iovec iov;
111 QEMUIOVector qiov;
112 int ret;
113
114 assert(s->allocating_acb || s->allocating_write_reqs_plugged);
115
116 buf = qemu_blockalign(s->bs, len);
117 iov = (struct iovec) {
118 .iov_base = buf,
119 .iov_len = len,
120 };
121 qemu_iovec_init_external(&qiov, &iov, 1);
122
123 ret = bdrv_co_preadv(s->bs->file, 0, qiov.size, &qiov, 0);
124 if (ret < 0) {
125 goto out;
126 }
127
128 /* Update header */
129 qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
130
131 ret = bdrv_co_pwritev(s->bs->file, 0, qiov.size, &qiov, 0);
132 if (ret < 0) {
133 goto out;
134 }
135
136 ret = 0;
137 out:
138 qemu_vfree(buf);
139 return ret;
140 }
141
142 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
143 {
144 uint64_t table_entries;
145 uint64_t l2_size;
146
147 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
148 l2_size = table_entries * cluster_size;
149
150 return l2_size * table_entries;
151 }
152
153 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
154 {
155 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
156 cluster_size > QED_MAX_CLUSTER_SIZE) {
157 return false;
158 }
159 if (cluster_size & (cluster_size - 1)) {
160 return false; /* not power of 2 */
161 }
162 return true;
163 }
164
165 static bool qed_is_table_size_valid(uint32_t table_size)
166 {
167 if (table_size < QED_MIN_TABLE_SIZE ||
168 table_size > QED_MAX_TABLE_SIZE) {
169 return false;
170 }
171 if (table_size & (table_size - 1)) {
172 return false; /* not power of 2 */
173 }
174 return true;
175 }
176
177 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
178 uint32_t table_size)
179 {
180 if (image_size % BDRV_SECTOR_SIZE != 0) {
181 return false; /* not multiple of sector size */
182 }
183 if (image_size > qed_max_image_size(cluster_size, table_size)) {
184 return false; /* image is too large */
185 }
186 return true;
187 }
188
189 /**
190 * Read a string of known length from the image file
191 *
192 * @file: Image file
193 * @offset: File offset to start of string, in bytes
194 * @n: String length in bytes
195 * @buf: Destination buffer
196 * @buflen: Destination buffer length in bytes
197 * @ret: 0 on success, -errno on failure
198 *
199 * The string is NUL-terminated.
200 */
201 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
202 char *buf, size_t buflen)
203 {
204 int ret;
205 if (n >= buflen) {
206 return -EINVAL;
207 }
208 ret = bdrv_pread(file, offset, buf, n);
209 if (ret < 0) {
210 return ret;
211 }
212 buf[n] = '\0';
213 return 0;
214 }
215
216 /**
217 * Allocate new clusters
218 *
219 * @s: QED state
220 * @n: Number of contiguous clusters to allocate
221 * @ret: Offset of first allocated cluster
222 *
223 * This function only produces the offset where the new clusters should be
224 * written. It updates BDRVQEDState but does not make any changes to the image
225 * file.
226 *
227 * Called with table_lock held.
228 */
229 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
230 {
231 uint64_t offset = s->file_size;
232 s->file_size += n * s->header.cluster_size;
233 return offset;
234 }
235
236 QEDTable *qed_alloc_table(BDRVQEDState *s)
237 {
238 /* Honor O_DIRECT memory alignment requirements */
239 return qemu_blockalign(s->bs,
240 s->header.cluster_size * s->header.table_size);
241 }
242
243 /**
244 * Allocate a new zeroed L2 table
245 *
246 * Called with table_lock held.
247 */
248 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
249 {
250 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
251
252 l2_table->table = qed_alloc_table(s);
253 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
254
255 memset(l2_table->table->offsets, 0,
256 s->header.cluster_size * s->header.table_size);
257 return l2_table;
258 }
259
260 static bool qed_plug_allocating_write_reqs(BDRVQEDState *s)
261 {
262 qemu_co_mutex_lock(&s->table_lock);
263
264 /* No reentrancy is allowed. */
265 assert(!s->allocating_write_reqs_plugged);
266 if (s->allocating_acb != NULL) {
267 /* Another allocating write came concurrently. This cannot happen
268 * from bdrv_qed_co_drain_begin, but it can happen when the timer runs.
269 */
270 qemu_co_mutex_unlock(&s->table_lock);
271 return false;
272 }
273
274 s->allocating_write_reqs_plugged = true;
275 qemu_co_mutex_unlock(&s->table_lock);
276 return true;
277 }
278
279 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
280 {
281 qemu_co_mutex_lock(&s->table_lock);
282 assert(s->allocating_write_reqs_plugged);
283 s->allocating_write_reqs_plugged = false;
284 qemu_co_queue_next(&s->allocating_write_reqs);
285 qemu_co_mutex_unlock(&s->table_lock);
286 }
287
288 static void coroutine_fn qed_need_check_timer_entry(void *opaque)
289 {
290 BDRVQEDState *s = opaque;
291 int ret;
292
293 trace_qed_need_check_timer_cb(s);
294
295 if (!qed_plug_allocating_write_reqs(s)) {
296 return;
297 }
298
299 /* Ensure writes are on disk before clearing flag */
300 ret = bdrv_co_flush(s->bs->file->bs);
301 if (ret < 0) {
302 qed_unplug_allocating_write_reqs(s);
303 return;
304 }
305
306 s->header.features &= ~QED_F_NEED_CHECK;
307 ret = qed_write_header(s);
308 (void) ret;
309
310 qed_unplug_allocating_write_reqs(s);
311
312 ret = bdrv_co_flush(s->bs);
313 (void) ret;
314 }
315
316 static void qed_need_check_timer_cb(void *opaque)
317 {
318 Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
319 qemu_coroutine_enter(co);
320 }
321
322 static void qed_start_need_check_timer(BDRVQEDState *s)
323 {
324 trace_qed_start_need_check_timer(s);
325
326 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
327 * migration.
328 */
329 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
330 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
331 }
332
333 /* It's okay to call this multiple times or when no timer is started */
334 static void qed_cancel_need_check_timer(BDRVQEDState *s)
335 {
336 trace_qed_cancel_need_check_timer(s);
337 timer_del(s->need_check_timer);
338 }
339
340 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
341 {
342 BDRVQEDState *s = bs->opaque;
343
344 qed_cancel_need_check_timer(s);
345 timer_free(s->need_check_timer);
346 }
347
348 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
349 AioContext *new_context)
350 {
351 BDRVQEDState *s = bs->opaque;
352
353 s->need_check_timer = aio_timer_new(new_context,
354 QEMU_CLOCK_VIRTUAL, SCALE_NS,
355 qed_need_check_timer_cb, s);
356 if (s->header.features & QED_F_NEED_CHECK) {
357 qed_start_need_check_timer(s);
358 }
359 }
360
361 static void coroutine_fn bdrv_qed_co_drain_begin(BlockDriverState *bs)
362 {
363 BDRVQEDState *s = bs->opaque;
364
365 /* Fire the timer immediately in order to start doing I/O as soon as the
366 * header is flushed.
367 */
368 if (s->need_check_timer && timer_pending(s->need_check_timer)) {
369 qed_cancel_need_check_timer(s);
370 qed_need_check_timer_entry(s);
371 }
372 }
373
374 static void bdrv_qed_init_state(BlockDriverState *bs)
375 {
376 BDRVQEDState *s = bs->opaque;
377
378 memset(s, 0, sizeof(BDRVQEDState));
379 s->bs = bs;
380 qemu_co_mutex_init(&s->table_lock);
381 qemu_co_queue_init(&s->allocating_write_reqs);
382 }
383
384 static int bdrv_qed_do_open(BlockDriverState *bs, QDict *options, int flags,
385 Error **errp)
386 {
387 BDRVQEDState *s = bs->opaque;
388 QEDHeader le_header;
389 int64_t file_size;
390 int ret;
391
392 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
393 if (ret < 0) {
394 return ret;
395 }
396 qed_header_le_to_cpu(&le_header, &s->header);
397
398 if (s->header.magic != QED_MAGIC) {
399 error_setg(errp, "Image not in QED format");
400 return -EINVAL;
401 }
402 if (s->header.features & ~QED_FEATURE_MASK) {
403 /* image uses unsupported feature bits */
404 error_setg(errp, "Unsupported QED features: %" PRIx64,
405 s->header.features & ~QED_FEATURE_MASK);
406 return -ENOTSUP;
407 }
408 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
409 return -EINVAL;
410 }
411
412 /* Round down file size to the last cluster */
413 file_size = bdrv_getlength(bs->file->bs);
414 if (file_size < 0) {
415 return file_size;
416 }
417 s->file_size = qed_start_of_cluster(s, file_size);
418
419 if (!qed_is_table_size_valid(s->header.table_size)) {
420 return -EINVAL;
421 }
422 if (!qed_is_image_size_valid(s->header.image_size,
423 s->header.cluster_size,
424 s->header.table_size)) {
425 return -EINVAL;
426 }
427 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
428 return -EINVAL;
429 }
430
431 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
432 sizeof(uint64_t);
433 s->l2_shift = ctz32(s->header.cluster_size);
434 s->l2_mask = s->table_nelems - 1;
435 s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
436
437 /* Header size calculation must not overflow uint32_t */
438 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
439 return -EINVAL;
440 }
441
442 if ((s->header.features & QED_F_BACKING_FILE)) {
443 if ((uint64_t)s->header.backing_filename_offset +
444 s->header.backing_filename_size >
445 s->header.cluster_size * s->header.header_size) {
446 return -EINVAL;
447 }
448
449 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
450 s->header.backing_filename_size, bs->backing_file,
451 sizeof(bs->backing_file));
452 if (ret < 0) {
453 return ret;
454 }
455
456 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
457 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
458 }
459 }
460
461 /* Reset unknown autoclear feature bits. This is a backwards
462 * compatibility mechanism that allows images to be opened by older
463 * programs, which "knock out" unknown feature bits. When an image is
464 * opened by a newer program again it can detect that the autoclear
465 * feature is no longer valid.
466 */
467 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
468 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
469 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
470
471 ret = qed_write_header_sync(s);
472 if (ret) {
473 return ret;
474 }
475
476 /* From here on only known autoclear feature bits are valid */
477 bdrv_flush(bs->file->bs);
478 }
479
480 s->l1_table = qed_alloc_table(s);
481 qed_init_l2_cache(&s->l2_cache);
482
483 ret = qed_read_l1_table_sync(s);
484 if (ret) {
485 goto out;
486 }
487
488 /* If image was not closed cleanly, check consistency */
489 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
490 /* Read-only images cannot be fixed. There is no risk of corruption
491 * since write operations are not possible. Therefore, allow
492 * potentially inconsistent images to be opened read-only. This can
493 * aid data recovery from an otherwise inconsistent image.
494 */
495 if (!bdrv_is_read_only(bs->file->bs) &&
496 !(flags & BDRV_O_INACTIVE)) {
497 BdrvCheckResult result = {0};
498
499 ret = qed_check(s, &result, true);
500 if (ret) {
501 goto out;
502 }
503 }
504 }
505
506 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
507
508 out:
509 if (ret) {
510 qed_free_l2_cache(&s->l2_cache);
511 qemu_vfree(s->l1_table);
512 }
513 return ret;
514 }
515
516 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
517 Error **errp)
518 {
519 bs->file = bdrv_open_child(NULL, options, "file", bs, &child_file,
520 false, errp);
521 if (!bs->file) {
522 return -EINVAL;
523 }
524
525 bdrv_qed_init_state(bs);
526 return bdrv_qed_do_open(bs, options, flags, errp);
527 }
528
529 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
530 {
531 BDRVQEDState *s = bs->opaque;
532
533 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
534 }
535
536 /* We have nothing to do for QED reopen, stubs just return
537 * success */
538 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
539 BlockReopenQueue *queue, Error **errp)
540 {
541 return 0;
542 }
543
544 static void bdrv_qed_close(BlockDriverState *bs)
545 {
546 BDRVQEDState *s = bs->opaque;
547
548 bdrv_qed_detach_aio_context(bs);
549
550 /* Ensure writes reach stable storage */
551 bdrv_flush(bs->file->bs);
552
553 /* Clean shutdown, no check required on next open */
554 if (s->header.features & QED_F_NEED_CHECK) {
555 s->header.features &= ~QED_F_NEED_CHECK;
556 qed_write_header_sync(s);
557 }
558
559 qed_free_l2_cache(&s->l2_cache);
560 qemu_vfree(s->l1_table);
561 }
562
563 static int qed_create(const char *filename, uint32_t cluster_size,
564 uint64_t image_size, uint32_t table_size,
565 const char *backing_file, const char *backing_fmt,
566 QemuOpts *opts, Error **errp)
567 {
568 QEDHeader header = {
569 .magic = QED_MAGIC,
570 .cluster_size = cluster_size,
571 .table_size = table_size,
572 .header_size = 1,
573 .features = 0,
574 .compat_features = 0,
575 .l1_table_offset = cluster_size,
576 .image_size = image_size,
577 };
578 QEDHeader le_header;
579 uint8_t *l1_table = NULL;
580 size_t l1_size = header.cluster_size * header.table_size;
581 Error *local_err = NULL;
582 int ret = 0;
583 BlockBackend *blk;
584
585 ret = bdrv_create_file(filename, opts, &local_err);
586 if (ret < 0) {
587 error_propagate(errp, local_err);
588 return ret;
589 }
590
591 blk = blk_new_open(filename, NULL, NULL,
592 BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL,
593 &local_err);
594 if (blk == NULL) {
595 error_propagate(errp, local_err);
596 return -EIO;
597 }
598
599 blk_set_allow_write_beyond_eof(blk, true);
600
601 /* File must start empty and grow, check truncate is supported */
602 ret = blk_truncate(blk, 0, PREALLOC_MODE_OFF, errp);
603 if (ret < 0) {
604 goto out;
605 }
606
607 if (backing_file) {
608 header.features |= QED_F_BACKING_FILE;
609 header.backing_filename_offset = sizeof(le_header);
610 header.backing_filename_size = strlen(backing_file);
611
612 if (qed_fmt_is_raw(backing_fmt)) {
613 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
614 }
615 }
616
617 qed_header_cpu_to_le(&header, &le_header);
618 ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0);
619 if (ret < 0) {
620 goto out;
621 }
622 ret = blk_pwrite(blk, sizeof(le_header), backing_file,
623 header.backing_filename_size, 0);
624 if (ret < 0) {
625 goto out;
626 }
627
628 l1_table = g_malloc0(l1_size);
629 ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0);
630 if (ret < 0) {
631 goto out;
632 }
633
634 ret = 0; /* success */
635 out:
636 g_free(l1_table);
637 blk_unref(blk);
638 return ret;
639 }
640
641 static int bdrv_qed_create(const char *filename, QemuOpts *opts, Error **errp)
642 {
643 uint64_t image_size = 0;
644 uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
645 uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
646 char *backing_file = NULL;
647 char *backing_fmt = NULL;
648 int ret;
649
650 image_size = ROUND_UP(qemu_opt_get_size_del(opts, BLOCK_OPT_SIZE, 0),
651 BDRV_SECTOR_SIZE);
652 backing_file = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FILE);
653 backing_fmt = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FMT);
654 cluster_size = qemu_opt_get_size_del(opts,
655 BLOCK_OPT_CLUSTER_SIZE,
656 QED_DEFAULT_CLUSTER_SIZE);
657 table_size = qemu_opt_get_size_del(opts, BLOCK_OPT_TABLE_SIZE,
658 QED_DEFAULT_TABLE_SIZE);
659
660 if (!qed_is_cluster_size_valid(cluster_size)) {
661 error_setg(errp, "QED cluster size must be within range [%u, %u] "
662 "and power of 2",
663 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
664 ret = -EINVAL;
665 goto finish;
666 }
667 if (!qed_is_table_size_valid(table_size)) {
668 error_setg(errp, "QED table size must be within range [%u, %u] "
669 "and power of 2",
670 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
671 ret = -EINVAL;
672 goto finish;
673 }
674 if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
675 error_setg(errp, "QED image size must be a non-zero multiple of "
676 "cluster size and less than %" PRIu64 " bytes",
677 qed_max_image_size(cluster_size, table_size));
678 ret = -EINVAL;
679 goto finish;
680 }
681
682 ret = qed_create(filename, cluster_size, image_size, table_size,
683 backing_file, backing_fmt, opts, errp);
684
685 finish:
686 g_free(backing_file);
687 g_free(backing_fmt);
688 return ret;
689 }
690
691 typedef struct {
692 BlockDriverState *bs;
693 Coroutine *co;
694 uint64_t pos;
695 int64_t status;
696 int *pnum;
697 BlockDriverState **file;
698 } QEDIsAllocatedCB;
699
700 /* Called with table_lock held. */
701 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
702 {
703 QEDIsAllocatedCB *cb = opaque;
704 BDRVQEDState *s = cb->bs->opaque;
705 *cb->pnum = len / BDRV_SECTOR_SIZE;
706 switch (ret) {
707 case QED_CLUSTER_FOUND:
708 offset |= qed_offset_into_cluster(s, cb->pos);
709 cb->status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | offset;
710 *cb->file = cb->bs->file->bs;
711 break;
712 case QED_CLUSTER_ZERO:
713 cb->status = BDRV_BLOCK_ZERO;
714 break;
715 case QED_CLUSTER_L2:
716 case QED_CLUSTER_L1:
717 cb->status = 0;
718 break;
719 default:
720 assert(ret < 0);
721 cb->status = ret;
722 break;
723 }
724
725 if (cb->co) {
726 aio_co_wake(cb->co);
727 }
728 }
729
730 static int64_t coroutine_fn bdrv_qed_co_get_block_status(BlockDriverState *bs,
731 int64_t sector_num,
732 int nb_sectors, int *pnum,
733 BlockDriverState **file)
734 {
735 BDRVQEDState *s = bs->opaque;
736 size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
737 QEDIsAllocatedCB cb = {
738 .bs = bs,
739 .pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE,
740 .status = BDRV_BLOCK_OFFSET_MASK,
741 .pnum = pnum,
742 .file = file,
743 };
744 QEDRequest request = { .l2_table = NULL };
745 uint64_t offset;
746 int ret;
747
748 qemu_co_mutex_lock(&s->table_lock);
749 ret = qed_find_cluster(s, &request, cb.pos, &len, &offset);
750 qed_is_allocated_cb(&cb, ret, offset, len);
751
752 /* The callback was invoked immediately */
753 assert(cb.status != BDRV_BLOCK_OFFSET_MASK);
754
755 qed_unref_l2_cache_entry(request.l2_table);
756 qemu_co_mutex_unlock(&s->table_lock);
757
758 return cb.status;
759 }
760
761 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
762 {
763 return acb->bs->opaque;
764 }
765
766 /**
767 * Read from the backing file or zero-fill if no backing file
768 *
769 * @s: QED state
770 * @pos: Byte position in device
771 * @qiov: Destination I/O vector
772 * @backing_qiov: Possibly shortened copy of qiov, to be allocated here
773 * @cb: Completion function
774 * @opaque: User data for completion function
775 *
776 * This function reads qiov->size bytes starting at pos from the backing file.
777 * If there is no backing file then zeroes are read.
778 */
779 static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
780 QEMUIOVector *qiov,
781 QEMUIOVector **backing_qiov)
782 {
783 uint64_t backing_length = 0;
784 size_t size;
785 int ret;
786
787 /* If there is a backing file, get its length. Treat the absence of a
788 * backing file like a zero length backing file.
789 */
790 if (s->bs->backing) {
791 int64_t l = bdrv_getlength(s->bs->backing->bs);
792 if (l < 0) {
793 return l;
794 }
795 backing_length = l;
796 }
797
798 /* Zero all sectors if reading beyond the end of the backing file */
799 if (pos >= backing_length ||
800 pos + qiov->size > backing_length) {
801 qemu_iovec_memset(qiov, 0, 0, qiov->size);
802 }
803
804 /* Complete now if there are no backing file sectors to read */
805 if (pos >= backing_length) {
806 return 0;
807 }
808
809 /* If the read straddles the end of the backing file, shorten it */
810 size = MIN((uint64_t)backing_length - pos, qiov->size);
811
812 assert(*backing_qiov == NULL);
813 *backing_qiov = g_new(QEMUIOVector, 1);
814 qemu_iovec_init(*backing_qiov, qiov->niov);
815 qemu_iovec_concat(*backing_qiov, qiov, 0, size);
816
817 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
818 ret = bdrv_co_preadv(s->bs->backing, pos, size, *backing_qiov, 0);
819 if (ret < 0) {
820 return ret;
821 }
822 return 0;
823 }
824
825 /**
826 * Copy data from backing file into the image
827 *
828 * @s: QED state
829 * @pos: Byte position in device
830 * @len: Number of bytes
831 * @offset: Byte offset in image file
832 */
833 static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s,
834 uint64_t pos, uint64_t len,
835 uint64_t offset)
836 {
837 QEMUIOVector qiov;
838 QEMUIOVector *backing_qiov = NULL;
839 struct iovec iov;
840 int ret;
841
842 /* Skip copy entirely if there is no work to do */
843 if (len == 0) {
844 return 0;
845 }
846
847 iov = (struct iovec) {
848 .iov_base = qemu_blockalign(s->bs, len),
849 .iov_len = len,
850 };
851 qemu_iovec_init_external(&qiov, &iov, 1);
852
853 ret = qed_read_backing_file(s, pos, &qiov, &backing_qiov);
854
855 if (backing_qiov) {
856 qemu_iovec_destroy(backing_qiov);
857 g_free(backing_qiov);
858 backing_qiov = NULL;
859 }
860
861 if (ret) {
862 goto out;
863 }
864
865 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
866 ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
867 if (ret < 0) {
868 goto out;
869 }
870 ret = 0;
871 out:
872 qemu_vfree(iov.iov_base);
873 return ret;
874 }
875
876 /**
877 * Link one or more contiguous clusters into a table
878 *
879 * @s: QED state
880 * @table: L2 table
881 * @index: First cluster index
882 * @n: Number of contiguous clusters
883 * @cluster: First cluster offset
884 *
885 * The cluster offset may be an allocated byte offset in the image file, the
886 * zero cluster marker, or the unallocated cluster marker.
887 *
888 * Called with table_lock held.
889 */
890 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
891 int index, unsigned int n,
892 uint64_t cluster)
893 {
894 int i;
895 for (i = index; i < index + n; i++) {
896 table->offsets[i] = cluster;
897 if (!qed_offset_is_unalloc_cluster(cluster) &&
898 !qed_offset_is_zero_cluster(cluster)) {
899 cluster += s->header.cluster_size;
900 }
901 }
902 }
903
904 /* Called with table_lock held. */
905 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
906 {
907 BDRVQEDState *s = acb_to_s(acb);
908
909 /* Free resources */
910 qemu_iovec_destroy(&acb->cur_qiov);
911 qed_unref_l2_cache_entry(acb->request.l2_table);
912
913 /* Free the buffer we may have allocated for zero writes */
914 if (acb->flags & QED_AIOCB_ZERO) {
915 qemu_vfree(acb->qiov->iov[0].iov_base);
916 acb->qiov->iov[0].iov_base = NULL;
917 }
918
919 /* Start next allocating write request waiting behind this one. Note that
920 * requests enqueue themselves when they first hit an unallocated cluster
921 * but they wait until the entire request is finished before waking up the
922 * next request in the queue. This ensures that we don't cycle through
923 * requests multiple times but rather finish one at a time completely.
924 */
925 if (acb == s->allocating_acb) {
926 s->allocating_acb = NULL;
927 if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
928 qemu_co_queue_next(&s->allocating_write_reqs);
929 } else if (s->header.features & QED_F_NEED_CHECK) {
930 qed_start_need_check_timer(s);
931 }
932 }
933 }
934
935 /**
936 * Update L1 table with new L2 table offset and write it out
937 *
938 * Called with table_lock held.
939 */
940 static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb)
941 {
942 BDRVQEDState *s = acb_to_s(acb);
943 CachedL2Table *l2_table = acb->request.l2_table;
944 uint64_t l2_offset = l2_table->offset;
945 int index, ret;
946
947 index = qed_l1_index(s, acb->cur_pos);
948 s->l1_table->offsets[index] = l2_table->offset;
949
950 ret = qed_write_l1_table(s, index, 1);
951
952 /* Commit the current L2 table to the cache */
953 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
954
955 /* This is guaranteed to succeed because we just committed the entry to the
956 * cache.
957 */
958 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
959 assert(acb->request.l2_table != NULL);
960
961 return ret;
962 }
963
964
965 /**
966 * Update L2 table with new cluster offsets and write them out
967 *
968 * Called with table_lock held.
969 */
970 static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
971 {
972 BDRVQEDState *s = acb_to_s(acb);
973 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
974 int index, ret;
975
976 if (need_alloc) {
977 qed_unref_l2_cache_entry(acb->request.l2_table);
978 acb->request.l2_table = qed_new_l2_table(s);
979 }
980
981 index = qed_l2_index(s, acb->cur_pos);
982 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
983 offset);
984
985 if (need_alloc) {
986 /* Write out the whole new L2 table */
987 ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
988 if (ret) {
989 return ret;
990 }
991 return qed_aio_write_l1_update(acb);
992 } else {
993 /* Write out only the updated part of the L2 table */
994 ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
995 false);
996 if (ret) {
997 return ret;
998 }
999 }
1000 return 0;
1001 }
1002
1003 /**
1004 * Write data to the image file
1005 *
1006 * Called with table_lock *not* held.
1007 */
1008 static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb)
1009 {
1010 BDRVQEDState *s = acb_to_s(acb);
1011 uint64_t offset = acb->cur_cluster +
1012 qed_offset_into_cluster(s, acb->cur_pos);
1013
1014 trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1015
1016 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1017 return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1018 &acb->cur_qiov, 0);
1019 }
1020
1021 /**
1022 * Populate untouched regions of new data cluster
1023 *
1024 * Called with table_lock held.
1025 */
1026 static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb)
1027 {
1028 BDRVQEDState *s = acb_to_s(acb);
1029 uint64_t start, len, offset;
1030 int ret;
1031
1032 qemu_co_mutex_unlock(&s->table_lock);
1033
1034 /* Populate front untouched region of new data cluster */
1035 start = qed_start_of_cluster(s, acb->cur_pos);
1036 len = qed_offset_into_cluster(s, acb->cur_pos);
1037
1038 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1039 ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1040 if (ret < 0) {
1041 goto out;
1042 }
1043
1044 /* Populate back untouched region of new data cluster */
1045 start = acb->cur_pos + acb->cur_qiov.size;
1046 len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1047 offset = acb->cur_cluster +
1048 qed_offset_into_cluster(s, acb->cur_pos) +
1049 acb->cur_qiov.size;
1050
1051 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1052 ret = qed_copy_from_backing_file(s, start, len, offset);
1053 if (ret < 0) {
1054 goto out;
1055 }
1056
1057 ret = qed_aio_write_main(acb);
1058 if (ret < 0) {
1059 goto out;
1060 }
1061
1062 if (s->bs->backing) {
1063 /*
1064 * Flush new data clusters before updating the L2 table
1065 *
1066 * This flush is necessary when a backing file is in use. A crash
1067 * during an allocating write could result in empty clusters in the
1068 * image. If the write only touched a subregion of the cluster,
1069 * then backing image sectors have been lost in the untouched
1070 * region. The solution is to flush after writing a new data
1071 * cluster and before updating the L2 table.
1072 */
1073 ret = bdrv_co_flush(s->bs->file->bs);
1074 }
1075
1076 out:
1077 qemu_co_mutex_lock(&s->table_lock);
1078 return ret;
1079 }
1080
1081 /**
1082 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1083 */
1084 static bool qed_should_set_need_check(BDRVQEDState *s)
1085 {
1086 /* The flush before L2 update path ensures consistency */
1087 if (s->bs->backing) {
1088 return false;
1089 }
1090
1091 return !(s->header.features & QED_F_NEED_CHECK);
1092 }
1093
1094 /**
1095 * Write new data cluster
1096 *
1097 * @acb: Write request
1098 * @len: Length in bytes
1099 *
1100 * This path is taken when writing to previously unallocated clusters.
1101 *
1102 * Called with table_lock held.
1103 */
1104 static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1105 {
1106 BDRVQEDState *s = acb_to_s(acb);
1107 int ret;
1108
1109 /* Cancel timer when the first allocating request comes in */
1110 if (s->allocating_acb == NULL) {
1111 qed_cancel_need_check_timer(s);
1112 }
1113
1114 /* Freeze this request if another allocating write is in progress */
1115 if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1116 if (s->allocating_acb != NULL) {
1117 qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1118 assert(s->allocating_acb == NULL);
1119 }
1120 s->allocating_acb = acb;
1121 return -EAGAIN; /* start over with looking up table entries */
1122 }
1123
1124 acb->cur_nclusters = qed_bytes_to_clusters(s,
1125 qed_offset_into_cluster(s, acb->cur_pos) + len);
1126 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1127
1128 if (acb->flags & QED_AIOCB_ZERO) {
1129 /* Skip ahead if the clusters are already zero */
1130 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1131 return 0;
1132 }
1133 acb->cur_cluster = 1;
1134 } else {
1135 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1136 }
1137
1138 if (qed_should_set_need_check(s)) {
1139 s->header.features |= QED_F_NEED_CHECK;
1140 ret = qed_write_header(s);
1141 if (ret < 0) {
1142 return ret;
1143 }
1144 }
1145
1146 if (!(acb->flags & QED_AIOCB_ZERO)) {
1147 ret = qed_aio_write_cow(acb);
1148 if (ret < 0) {
1149 return ret;
1150 }
1151 }
1152
1153 return qed_aio_write_l2_update(acb, acb->cur_cluster);
1154 }
1155
1156 /**
1157 * Write data cluster in place
1158 *
1159 * @acb: Write request
1160 * @offset: Cluster offset in bytes
1161 * @len: Length in bytes
1162 *
1163 * This path is taken when writing to already allocated clusters.
1164 *
1165 * Called with table_lock held.
1166 */
1167 static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset,
1168 size_t len)
1169 {
1170 BDRVQEDState *s = acb_to_s(acb);
1171 int r;
1172
1173 qemu_co_mutex_unlock(&s->table_lock);
1174
1175 /* Allocate buffer for zero writes */
1176 if (acb->flags & QED_AIOCB_ZERO) {
1177 struct iovec *iov = acb->qiov->iov;
1178
1179 if (!iov->iov_base) {
1180 iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1181 if (iov->iov_base == NULL) {
1182 r = -ENOMEM;
1183 goto out;
1184 }
1185 memset(iov->iov_base, 0, iov->iov_len);
1186 }
1187 }
1188
1189 /* Calculate the I/O vector */
1190 acb->cur_cluster = offset;
1191 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1192
1193 /* Do the actual write. */
1194 r = qed_aio_write_main(acb);
1195 out:
1196 qemu_co_mutex_lock(&s->table_lock);
1197 return r;
1198 }
1199
1200 /**
1201 * Write data cluster
1202 *
1203 * @opaque: Write request
1204 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1205 * @offset: Cluster offset in bytes
1206 * @len: Length in bytes
1207 *
1208 * Called with table_lock held.
1209 */
1210 static int coroutine_fn qed_aio_write_data(void *opaque, int ret,
1211 uint64_t offset, size_t len)
1212 {
1213 QEDAIOCB *acb = opaque;
1214
1215 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1216
1217 acb->find_cluster_ret = ret;
1218
1219 switch (ret) {
1220 case QED_CLUSTER_FOUND:
1221 return qed_aio_write_inplace(acb, offset, len);
1222
1223 case QED_CLUSTER_L2:
1224 case QED_CLUSTER_L1:
1225 case QED_CLUSTER_ZERO:
1226 return qed_aio_write_alloc(acb, len);
1227
1228 default:
1229 g_assert_not_reached();
1230 }
1231 }
1232
1233 /**
1234 * Read data cluster
1235 *
1236 * @opaque: Read request
1237 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1238 * @offset: Cluster offset in bytes
1239 * @len: Length in bytes
1240 *
1241 * Called with table_lock held.
1242 */
1243 static int coroutine_fn qed_aio_read_data(void *opaque, int ret,
1244 uint64_t offset, size_t len)
1245 {
1246 QEDAIOCB *acb = opaque;
1247 BDRVQEDState *s = acb_to_s(acb);
1248 BlockDriverState *bs = acb->bs;
1249 int r;
1250
1251 qemu_co_mutex_unlock(&s->table_lock);
1252
1253 /* Adjust offset into cluster */
1254 offset += qed_offset_into_cluster(s, acb->cur_pos);
1255
1256 trace_qed_aio_read_data(s, acb, ret, offset, len);
1257
1258 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1259
1260 /* Handle zero cluster and backing file reads, otherwise read
1261 * data cluster directly.
1262 */
1263 if (ret == QED_CLUSTER_ZERO) {
1264 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1265 r = 0;
1266 } else if (ret != QED_CLUSTER_FOUND) {
1267 r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1268 &acb->backing_qiov);
1269 } else {
1270 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1271 r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1272 &acb->cur_qiov, 0);
1273 }
1274
1275 qemu_co_mutex_lock(&s->table_lock);
1276 return r;
1277 }
1278
1279 /**
1280 * Begin next I/O or complete the request
1281 */
1282 static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb)
1283 {
1284 BDRVQEDState *s = acb_to_s(acb);
1285 uint64_t offset;
1286 size_t len;
1287 int ret;
1288
1289 qemu_co_mutex_lock(&s->table_lock);
1290 while (1) {
1291 trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1292
1293 if (acb->backing_qiov) {
1294 qemu_iovec_destroy(acb->backing_qiov);
1295 g_free(acb->backing_qiov);
1296 acb->backing_qiov = NULL;
1297 }
1298
1299 acb->qiov_offset += acb->cur_qiov.size;
1300 acb->cur_pos += acb->cur_qiov.size;
1301 qemu_iovec_reset(&acb->cur_qiov);
1302
1303 /* Complete request */
1304 if (acb->cur_pos >= acb->end_pos) {
1305 ret = 0;
1306 break;
1307 }
1308
1309 /* Find next cluster and start I/O */
1310 len = acb->end_pos - acb->cur_pos;
1311 ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1312 if (ret < 0) {
1313 break;
1314 }
1315
1316 if (acb->flags & QED_AIOCB_WRITE) {
1317 ret = qed_aio_write_data(acb, ret, offset, len);
1318 } else {
1319 ret = qed_aio_read_data(acb, ret, offset, len);
1320 }
1321
1322 if (ret < 0 && ret != -EAGAIN) {
1323 break;
1324 }
1325 }
1326
1327 trace_qed_aio_complete(s, acb, ret);
1328 qed_aio_complete(acb);
1329 qemu_co_mutex_unlock(&s->table_lock);
1330 return ret;
1331 }
1332
1333 static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num,
1334 QEMUIOVector *qiov, int nb_sectors,
1335 int flags)
1336 {
1337 QEDAIOCB acb = {
1338 .bs = bs,
1339 .cur_pos = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1340 .end_pos = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1341 .qiov = qiov,
1342 .flags = flags,
1343 };
1344 qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1345
1346 trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1347
1348 /* Start request */
1349 return qed_aio_next_io(&acb);
1350 }
1351
1352 static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs,
1353 int64_t sector_num, int nb_sectors,
1354 QEMUIOVector *qiov)
1355 {
1356 return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1357 }
1358
1359 static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs,
1360 int64_t sector_num, int nb_sectors,
1361 QEMUIOVector *qiov)
1362 {
1363 return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1364 }
1365
1366 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1367 int64_t offset,
1368 int bytes,
1369 BdrvRequestFlags flags)
1370 {
1371 BDRVQEDState *s = bs->opaque;
1372 QEMUIOVector qiov;
1373 struct iovec iov;
1374
1375 /* Fall back if the request is not aligned */
1376 if (qed_offset_into_cluster(s, offset) ||
1377 qed_offset_into_cluster(s, bytes)) {
1378 return -ENOTSUP;
1379 }
1380
1381 /* Zero writes start without an I/O buffer. If a buffer becomes necessary
1382 * then it will be allocated during request processing.
1383 */
1384 iov.iov_base = NULL;
1385 iov.iov_len = bytes;
1386
1387 qemu_iovec_init_external(&qiov, &iov, 1);
1388 return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1389 bytes >> BDRV_SECTOR_BITS,
1390 QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1391 }
1392
1393 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset,
1394 PreallocMode prealloc, Error **errp)
1395 {
1396 BDRVQEDState *s = bs->opaque;
1397 uint64_t old_image_size;
1398 int ret;
1399
1400 if (prealloc != PREALLOC_MODE_OFF) {
1401 error_setg(errp, "Unsupported preallocation mode '%s'",
1402 PreallocMode_str(prealloc));
1403 return -ENOTSUP;
1404 }
1405
1406 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1407 s->header.table_size)) {
1408 error_setg(errp, "Invalid image size specified");
1409 return -EINVAL;
1410 }
1411
1412 if ((uint64_t)offset < s->header.image_size) {
1413 error_setg(errp, "Shrinking images is currently not supported");
1414 return -ENOTSUP;
1415 }
1416
1417 old_image_size = s->header.image_size;
1418 s->header.image_size = offset;
1419 ret = qed_write_header_sync(s);
1420 if (ret < 0) {
1421 s->header.image_size = old_image_size;
1422 error_setg_errno(errp, -ret, "Failed to update the image size");
1423 }
1424 return ret;
1425 }
1426
1427 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1428 {
1429 BDRVQEDState *s = bs->opaque;
1430 return s->header.image_size;
1431 }
1432
1433 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1434 {
1435 BDRVQEDState *s = bs->opaque;
1436
1437 memset(bdi, 0, sizeof(*bdi));
1438 bdi->cluster_size = s->header.cluster_size;
1439 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1440 bdi->unallocated_blocks_are_zero = true;
1441 bdi->can_write_zeroes_with_unmap = true;
1442 return 0;
1443 }
1444
1445 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1446 const char *backing_file,
1447 const char *backing_fmt)
1448 {
1449 BDRVQEDState *s = bs->opaque;
1450 QEDHeader new_header, le_header;
1451 void *buffer;
1452 size_t buffer_len, backing_file_len;
1453 int ret;
1454
1455 /* Refuse to set backing filename if unknown compat feature bits are
1456 * active. If the image uses an unknown compat feature then we may not
1457 * know the layout of data following the header structure and cannot safely
1458 * add a new string.
1459 */
1460 if (backing_file && (s->header.compat_features &
1461 ~QED_COMPAT_FEATURE_MASK)) {
1462 return -ENOTSUP;
1463 }
1464
1465 memcpy(&new_header, &s->header, sizeof(new_header));
1466
1467 new_header.features &= ~(QED_F_BACKING_FILE |
1468 QED_F_BACKING_FORMAT_NO_PROBE);
1469
1470 /* Adjust feature flags */
1471 if (backing_file) {
1472 new_header.features |= QED_F_BACKING_FILE;
1473
1474 if (qed_fmt_is_raw(backing_fmt)) {
1475 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1476 }
1477 }
1478
1479 /* Calculate new header size */
1480 backing_file_len = 0;
1481
1482 if (backing_file) {
1483 backing_file_len = strlen(backing_file);
1484 }
1485
1486 buffer_len = sizeof(new_header);
1487 new_header.backing_filename_offset = buffer_len;
1488 new_header.backing_filename_size = backing_file_len;
1489 buffer_len += backing_file_len;
1490
1491 /* Make sure we can rewrite header without failing */
1492 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1493 return -ENOSPC;
1494 }
1495
1496 /* Prepare new header */
1497 buffer = g_malloc(buffer_len);
1498
1499 qed_header_cpu_to_le(&new_header, &le_header);
1500 memcpy(buffer, &le_header, sizeof(le_header));
1501 buffer_len = sizeof(le_header);
1502
1503 if (backing_file) {
1504 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1505 buffer_len += backing_file_len;
1506 }
1507
1508 /* Write new header */
1509 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1510 g_free(buffer);
1511 if (ret == 0) {
1512 memcpy(&s->header, &new_header, sizeof(new_header));
1513 }
1514 return ret;
1515 }
1516
1517 static void bdrv_qed_invalidate_cache(BlockDriverState *bs, Error **errp)
1518 {
1519 BDRVQEDState *s = bs->opaque;
1520 Error *local_err = NULL;
1521 int ret;
1522
1523 bdrv_qed_close(bs);
1524
1525 bdrv_qed_init_state(bs);
1526 if (qemu_in_coroutine()) {
1527 qemu_co_mutex_lock(&s->table_lock);
1528 }
1529 ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, &local_err);
1530 if (qemu_in_coroutine()) {
1531 qemu_co_mutex_unlock(&s->table_lock);
1532 }
1533 if (local_err) {
1534 error_propagate(errp, local_err);
1535 error_prepend(errp, "Could not reopen qed layer: ");
1536 return;
1537 } else if (ret < 0) {
1538 error_setg_errno(errp, -ret, "Could not reopen qed layer");
1539 return;
1540 }
1541 }
1542
1543 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result,
1544 BdrvCheckMode fix)
1545 {
1546 BDRVQEDState *s = bs->opaque;
1547
1548 return qed_check(s, result, !!fix);
1549 }
1550
1551 static QemuOptsList qed_create_opts = {
1552 .name = "qed-create-opts",
1553 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1554 .desc = {
1555 {
1556 .name = BLOCK_OPT_SIZE,
1557 .type = QEMU_OPT_SIZE,
1558 .help = "Virtual disk size"
1559 },
1560 {
1561 .name = BLOCK_OPT_BACKING_FILE,
1562 .type = QEMU_OPT_STRING,
1563 .help = "File name of a base image"
1564 },
1565 {
1566 .name = BLOCK_OPT_BACKING_FMT,
1567 .type = QEMU_OPT_STRING,
1568 .help = "Image format of the base image"
1569 },
1570 {
1571 .name = BLOCK_OPT_CLUSTER_SIZE,
1572 .type = QEMU_OPT_SIZE,
1573 .help = "Cluster size (in bytes)",
1574 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1575 },
1576 {
1577 .name = BLOCK_OPT_TABLE_SIZE,
1578 .type = QEMU_OPT_SIZE,
1579 .help = "L1/L2 table size (in clusters)"
1580 },
1581 { /* end of list */ }
1582 }
1583 };
1584
1585 static BlockDriver bdrv_qed = {
1586 .format_name = "qed",
1587 .instance_size = sizeof(BDRVQEDState),
1588 .create_opts = &qed_create_opts,
1589 .supports_backing = true,
1590
1591 .bdrv_probe = bdrv_qed_probe,
1592 .bdrv_open = bdrv_qed_open,
1593 .bdrv_close = bdrv_qed_close,
1594 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare,
1595 .bdrv_child_perm = bdrv_format_default_perms,
1596 .bdrv_create = bdrv_qed_create,
1597 .bdrv_has_zero_init = bdrv_has_zero_init_1,
1598 .bdrv_co_get_block_status = bdrv_qed_co_get_block_status,
1599 .bdrv_co_readv = bdrv_qed_co_readv,
1600 .bdrv_co_writev = bdrv_qed_co_writev,
1601 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes,
1602 .bdrv_truncate = bdrv_qed_truncate,
1603 .bdrv_getlength = bdrv_qed_getlength,
1604 .bdrv_get_info = bdrv_qed_get_info,
1605 .bdrv_refresh_limits = bdrv_qed_refresh_limits,
1606 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1607 .bdrv_invalidate_cache = bdrv_qed_invalidate_cache,
1608 .bdrv_check = bdrv_qed_check,
1609 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context,
1610 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context,
1611 .bdrv_co_drain_begin = bdrv_qed_co_drain_begin,
1612 };
1613
1614 static void bdrv_qed_init(void)
1615 {
1616 bdrv_register(&bdrv_qed);
1617 }
1618
1619 block_init(bdrv_qed_init);