]> git.proxmox.com Git - mirror_qemu.git/blob - block/sheepdog.c
a48f58cfe88375fb8041d28922b4a0ec474b1d16
[mirror_qemu.git] / block / sheepdog.c
1 /*
2 * Copyright (C) 2009-2010 Nippon Telegraph and Telephone Corporation.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License version
6 * 2 as published by the Free Software Foundation.
7 *
8 * You should have received a copy of the GNU General Public License
9 * along with this program. If not, see <http://www.gnu.org/licenses/>.
10 *
11 * Contributions after 2012-01-13 are licensed under the terms of the
12 * GNU GPL, version 2 or (at your option) any later version.
13 */
14
15 #include "qemu-common.h"
16 #include "qemu-error.h"
17 #include "qemu_socket.h"
18 #include "block_int.h"
19 #include "bitops.h"
20
21 #define SD_PROTO_VER 0x01
22
23 #define SD_DEFAULT_ADDR "localhost"
24 #define SD_DEFAULT_PORT "7000"
25
26 #define SD_OP_CREATE_AND_WRITE_OBJ 0x01
27 #define SD_OP_READ_OBJ 0x02
28 #define SD_OP_WRITE_OBJ 0x03
29
30 #define SD_OP_NEW_VDI 0x11
31 #define SD_OP_LOCK_VDI 0x12
32 #define SD_OP_RELEASE_VDI 0x13
33 #define SD_OP_GET_VDI_INFO 0x14
34 #define SD_OP_READ_VDIS 0x15
35 #define SD_OP_FLUSH_VDI 0x16
36
37 #define SD_FLAG_CMD_WRITE 0x01
38 #define SD_FLAG_CMD_COW 0x02
39 #define SD_FLAG_CMD_CACHE 0x04
40
41 #define SD_RES_SUCCESS 0x00 /* Success */
42 #define SD_RES_UNKNOWN 0x01 /* Unknown error */
43 #define SD_RES_NO_OBJ 0x02 /* No object found */
44 #define SD_RES_EIO 0x03 /* I/O error */
45 #define SD_RES_VDI_EXIST 0x04 /* Vdi exists already */
46 #define SD_RES_INVALID_PARMS 0x05 /* Invalid parameters */
47 #define SD_RES_SYSTEM_ERROR 0x06 /* System error */
48 #define SD_RES_VDI_LOCKED 0x07 /* Vdi is locked */
49 #define SD_RES_NO_VDI 0x08 /* No vdi found */
50 #define SD_RES_NO_BASE_VDI 0x09 /* No base vdi found */
51 #define SD_RES_VDI_READ 0x0A /* Cannot read requested vdi */
52 #define SD_RES_VDI_WRITE 0x0B /* Cannot write requested vdi */
53 #define SD_RES_BASE_VDI_READ 0x0C /* Cannot read base vdi */
54 #define SD_RES_BASE_VDI_WRITE 0x0D /* Cannot write base vdi */
55 #define SD_RES_NO_TAG 0x0E /* Requested tag is not found */
56 #define SD_RES_STARTUP 0x0F /* Sheepdog is on starting up */
57 #define SD_RES_VDI_NOT_LOCKED 0x10 /* Vdi is not locked */
58 #define SD_RES_SHUTDOWN 0x11 /* Sheepdog is shutting down */
59 #define SD_RES_NO_MEM 0x12 /* Cannot allocate memory */
60 #define SD_RES_FULL_VDI 0x13 /* we already have the maximum vdis */
61 #define SD_RES_VER_MISMATCH 0x14 /* Protocol version mismatch */
62 #define SD_RES_NO_SPACE 0x15 /* Server has no room for new objects */
63 #define SD_RES_WAIT_FOR_FORMAT 0x16 /* Waiting for a format operation */
64 #define SD_RES_WAIT_FOR_JOIN 0x17 /* Waiting for other nodes joining */
65 #define SD_RES_JOIN_FAILED 0x18 /* Target node had failed to join sheepdog */
66
67 /*
68 * Object ID rules
69 *
70 * 0 - 19 (20 bits): data object space
71 * 20 - 31 (12 bits): reserved data object space
72 * 32 - 55 (24 bits): vdi object space
73 * 56 - 59 ( 4 bits): reserved vdi object space
74 * 60 - 63 ( 4 bits): object type identifier space
75 */
76
77 #define VDI_SPACE_SHIFT 32
78 #define VDI_BIT (UINT64_C(1) << 63)
79 #define VMSTATE_BIT (UINT64_C(1) << 62)
80 #define MAX_DATA_OBJS (UINT64_C(1) << 20)
81 #define MAX_CHILDREN 1024
82 #define SD_MAX_VDI_LEN 256
83 #define SD_MAX_VDI_TAG_LEN 256
84 #define SD_NR_VDIS (1U << 24)
85 #define SD_DATA_OBJ_SIZE (UINT64_C(1) << 22)
86 #define SD_MAX_VDI_SIZE (SD_DATA_OBJ_SIZE * MAX_DATA_OBJS)
87 #define SECTOR_SIZE 512
88
89 #define SD_INODE_SIZE (sizeof(SheepdogInode))
90 #define CURRENT_VDI_ID 0
91
92 typedef struct SheepdogReq {
93 uint8_t proto_ver;
94 uint8_t opcode;
95 uint16_t flags;
96 uint32_t epoch;
97 uint32_t id;
98 uint32_t data_length;
99 uint32_t opcode_specific[8];
100 } SheepdogReq;
101
102 typedef struct SheepdogRsp {
103 uint8_t proto_ver;
104 uint8_t opcode;
105 uint16_t flags;
106 uint32_t epoch;
107 uint32_t id;
108 uint32_t data_length;
109 uint32_t result;
110 uint32_t opcode_specific[7];
111 } SheepdogRsp;
112
113 typedef struct SheepdogObjReq {
114 uint8_t proto_ver;
115 uint8_t opcode;
116 uint16_t flags;
117 uint32_t epoch;
118 uint32_t id;
119 uint32_t data_length;
120 uint64_t oid;
121 uint64_t cow_oid;
122 uint32_t copies;
123 uint32_t rsvd;
124 uint64_t offset;
125 } SheepdogObjReq;
126
127 typedef struct SheepdogObjRsp {
128 uint8_t proto_ver;
129 uint8_t opcode;
130 uint16_t flags;
131 uint32_t epoch;
132 uint32_t id;
133 uint32_t data_length;
134 uint32_t result;
135 uint32_t copies;
136 uint32_t pad[6];
137 } SheepdogObjRsp;
138
139 typedef struct SheepdogVdiReq {
140 uint8_t proto_ver;
141 uint8_t opcode;
142 uint16_t flags;
143 uint32_t epoch;
144 uint32_t id;
145 uint32_t data_length;
146 uint64_t vdi_size;
147 uint32_t base_vdi_id;
148 uint32_t copies;
149 uint32_t snapid;
150 uint32_t pad[3];
151 } SheepdogVdiReq;
152
153 typedef struct SheepdogVdiRsp {
154 uint8_t proto_ver;
155 uint8_t opcode;
156 uint16_t flags;
157 uint32_t epoch;
158 uint32_t id;
159 uint32_t data_length;
160 uint32_t result;
161 uint32_t rsvd;
162 uint32_t vdi_id;
163 uint32_t pad[5];
164 } SheepdogVdiRsp;
165
166 typedef struct SheepdogInode {
167 char name[SD_MAX_VDI_LEN];
168 char tag[SD_MAX_VDI_TAG_LEN];
169 uint64_t ctime;
170 uint64_t snap_ctime;
171 uint64_t vm_clock_nsec;
172 uint64_t vdi_size;
173 uint64_t vm_state_size;
174 uint16_t copy_policy;
175 uint8_t nr_copies;
176 uint8_t block_size_shift;
177 uint32_t snap_id;
178 uint32_t vdi_id;
179 uint32_t parent_vdi_id;
180 uint32_t child_vdi_id[MAX_CHILDREN];
181 uint32_t data_vdi_id[MAX_DATA_OBJS];
182 } SheepdogInode;
183
184 /*
185 * 64 bit FNV-1a non-zero initial basis
186 */
187 #define FNV1A_64_INIT ((uint64_t)0xcbf29ce484222325ULL)
188
189 /*
190 * 64 bit Fowler/Noll/Vo FNV-1a hash code
191 */
192 static inline uint64_t fnv_64a_buf(void *buf, size_t len, uint64_t hval)
193 {
194 unsigned char *bp = buf;
195 unsigned char *be = bp + len;
196 while (bp < be) {
197 hval ^= (uint64_t) *bp++;
198 hval += (hval << 1) + (hval << 4) + (hval << 5) +
199 (hval << 7) + (hval << 8) + (hval << 40);
200 }
201 return hval;
202 }
203
204 static inline bool is_data_obj_writable(SheepdogInode *inode, unsigned int idx)
205 {
206 return inode->vdi_id == inode->data_vdi_id[idx];
207 }
208
209 static inline bool is_data_obj(uint64_t oid)
210 {
211 return !(VDI_BIT & oid);
212 }
213
214 static inline uint64_t data_oid_to_idx(uint64_t oid)
215 {
216 return oid & (MAX_DATA_OBJS - 1);
217 }
218
219 static inline uint64_t vid_to_vdi_oid(uint32_t vid)
220 {
221 return VDI_BIT | ((uint64_t)vid << VDI_SPACE_SHIFT);
222 }
223
224 static inline uint64_t vid_to_vmstate_oid(uint32_t vid, uint32_t idx)
225 {
226 return VMSTATE_BIT | ((uint64_t)vid << VDI_SPACE_SHIFT) | idx;
227 }
228
229 static inline uint64_t vid_to_data_oid(uint32_t vid, uint32_t idx)
230 {
231 return ((uint64_t)vid << VDI_SPACE_SHIFT) | idx;
232 }
233
234 static inline bool is_snapshot(struct SheepdogInode *inode)
235 {
236 return !!inode->snap_ctime;
237 }
238
239 #undef dprintf
240 #ifdef DEBUG_SDOG
241 #define dprintf(fmt, args...) \
242 do { \
243 fprintf(stdout, "%s %d: " fmt, __func__, __LINE__, ##args); \
244 } while (0)
245 #else
246 #define dprintf(fmt, args...)
247 #endif
248
249 typedef struct SheepdogAIOCB SheepdogAIOCB;
250
251 typedef struct AIOReq {
252 SheepdogAIOCB *aiocb;
253 unsigned int iov_offset;
254
255 uint64_t oid;
256 uint64_t base_oid;
257 uint64_t offset;
258 unsigned int data_len;
259 uint8_t flags;
260 uint32_t id;
261
262 QLIST_ENTRY(AIOReq) aio_siblings;
263 } AIOReq;
264
265 enum AIOCBState {
266 AIOCB_WRITE_UDATA,
267 AIOCB_READ_UDATA,
268 };
269
270 struct SheepdogAIOCB {
271 BlockDriverAIOCB common;
272
273 QEMUIOVector *qiov;
274
275 int64_t sector_num;
276 int nb_sectors;
277
278 int ret;
279 enum AIOCBState aiocb_type;
280
281 Coroutine *coroutine;
282 void (*aio_done_func)(SheepdogAIOCB *);
283
284 bool canceled;
285 int nr_pending;
286 };
287
288 typedef struct BDRVSheepdogState {
289 SheepdogInode inode;
290
291 uint32_t min_dirty_data_idx;
292 uint32_t max_dirty_data_idx;
293
294 char name[SD_MAX_VDI_LEN];
295 bool is_snapshot;
296 bool cache_enabled;
297
298 char *addr;
299 char *port;
300 int fd;
301 int flush_fd;
302
303 CoMutex lock;
304 Coroutine *co_send;
305 Coroutine *co_recv;
306
307 uint32_t aioreq_seq_num;
308 QLIST_HEAD(inflight_aio_head, AIOReq) inflight_aio_head;
309 QLIST_HEAD(pending_aio_head, AIOReq) pending_aio_head;
310 } BDRVSheepdogState;
311
312 static const char * sd_strerror(int err)
313 {
314 int i;
315
316 static const struct {
317 int err;
318 const char *desc;
319 } errors[] = {
320 {SD_RES_SUCCESS, "Success"},
321 {SD_RES_UNKNOWN, "Unknown error"},
322 {SD_RES_NO_OBJ, "No object found"},
323 {SD_RES_EIO, "I/O error"},
324 {SD_RES_VDI_EXIST, "VDI exists already"},
325 {SD_RES_INVALID_PARMS, "Invalid parameters"},
326 {SD_RES_SYSTEM_ERROR, "System error"},
327 {SD_RES_VDI_LOCKED, "VDI is already locked"},
328 {SD_RES_NO_VDI, "No vdi found"},
329 {SD_RES_NO_BASE_VDI, "No base VDI found"},
330 {SD_RES_VDI_READ, "Failed read the requested VDI"},
331 {SD_RES_VDI_WRITE, "Failed to write the requested VDI"},
332 {SD_RES_BASE_VDI_READ, "Failed to read the base VDI"},
333 {SD_RES_BASE_VDI_WRITE, "Failed to write the base VDI"},
334 {SD_RES_NO_TAG, "Failed to find the requested tag"},
335 {SD_RES_STARTUP, "The system is still booting"},
336 {SD_RES_VDI_NOT_LOCKED, "VDI isn't locked"},
337 {SD_RES_SHUTDOWN, "The system is shutting down"},
338 {SD_RES_NO_MEM, "Out of memory on the server"},
339 {SD_RES_FULL_VDI, "We already have the maximum vdis"},
340 {SD_RES_VER_MISMATCH, "Protocol version mismatch"},
341 {SD_RES_NO_SPACE, "Server has no space for new objects"},
342 {SD_RES_WAIT_FOR_FORMAT, "Sheepdog is waiting for a format operation"},
343 {SD_RES_WAIT_FOR_JOIN, "Sheepdog is waiting for other nodes joining"},
344 {SD_RES_JOIN_FAILED, "Target node had failed to join sheepdog"},
345 };
346
347 for (i = 0; i < ARRAY_SIZE(errors); ++i) {
348 if (errors[i].err == err) {
349 return errors[i].desc;
350 }
351 }
352
353 return "Invalid error code";
354 }
355
356 /*
357 * Sheepdog I/O handling:
358 *
359 * 1. In sd_co_rw_vector, we send the I/O requests to the server and
360 * link the requests to the inflight_list in the
361 * BDRVSheepdogState. The function exits without waiting for
362 * receiving the response.
363 *
364 * 2. We receive the response in aio_read_response, the fd handler to
365 * the sheepdog connection. If metadata update is needed, we send
366 * the write request to the vdi object in sd_write_done, the write
367 * completion function. We switch back to sd_co_readv/writev after
368 * all the requests belonging to the AIOCB are finished.
369 */
370
371 static inline AIOReq *alloc_aio_req(BDRVSheepdogState *s, SheepdogAIOCB *acb,
372 uint64_t oid, unsigned int data_len,
373 uint64_t offset, uint8_t flags,
374 uint64_t base_oid, unsigned int iov_offset)
375 {
376 AIOReq *aio_req;
377
378 aio_req = g_malloc(sizeof(*aio_req));
379 aio_req->aiocb = acb;
380 aio_req->iov_offset = iov_offset;
381 aio_req->oid = oid;
382 aio_req->base_oid = base_oid;
383 aio_req->offset = offset;
384 aio_req->data_len = data_len;
385 aio_req->flags = flags;
386 aio_req->id = s->aioreq_seq_num++;
387
388 acb->nr_pending++;
389 return aio_req;
390 }
391
392 static inline void free_aio_req(BDRVSheepdogState *s, AIOReq *aio_req)
393 {
394 SheepdogAIOCB *acb = aio_req->aiocb;
395
396 QLIST_REMOVE(aio_req, aio_siblings);
397 g_free(aio_req);
398
399 acb->nr_pending--;
400 }
401
402 static void coroutine_fn sd_finish_aiocb(SheepdogAIOCB *acb)
403 {
404 if (!acb->canceled) {
405 qemu_coroutine_enter(acb->coroutine, NULL);
406 }
407 qemu_aio_release(acb);
408 }
409
410 static void sd_aio_cancel(BlockDriverAIOCB *blockacb)
411 {
412 SheepdogAIOCB *acb = (SheepdogAIOCB *)blockacb;
413
414 /*
415 * Sheepdog cannot cancel the requests which are already sent to
416 * the servers, so we just complete the request with -EIO here.
417 */
418 acb->ret = -EIO;
419 qemu_coroutine_enter(acb->coroutine, NULL);
420 acb->canceled = true;
421 }
422
423 static const AIOCBInfo sd_aiocb_info = {
424 .aiocb_size = sizeof(SheepdogAIOCB),
425 .cancel = sd_aio_cancel,
426 };
427
428 static SheepdogAIOCB *sd_aio_setup(BlockDriverState *bs, QEMUIOVector *qiov,
429 int64_t sector_num, int nb_sectors,
430 BlockDriverCompletionFunc *cb, void *opaque)
431 {
432 SheepdogAIOCB *acb;
433
434 acb = qemu_aio_get(&sd_aiocb_info, bs, cb, opaque);
435
436 acb->qiov = qiov;
437
438 acb->sector_num = sector_num;
439 acb->nb_sectors = nb_sectors;
440
441 acb->aio_done_func = NULL;
442 acb->canceled = false;
443 acb->coroutine = qemu_coroutine_self();
444 acb->ret = 0;
445 acb->nr_pending = 0;
446 return acb;
447 }
448
449 static int connect_to_sdog(const char *addr, const char *port)
450 {
451 char hbuf[NI_MAXHOST], sbuf[NI_MAXSERV];
452 int fd, ret;
453 struct addrinfo hints, *res, *res0;
454
455 if (!addr) {
456 addr = SD_DEFAULT_ADDR;
457 port = SD_DEFAULT_PORT;
458 }
459
460 memset(&hints, 0, sizeof(hints));
461 hints.ai_socktype = SOCK_STREAM;
462
463 ret = getaddrinfo(addr, port, &hints, &res0);
464 if (ret) {
465 error_report("unable to get address info %s, %s",
466 addr, strerror(errno));
467 return -errno;
468 }
469
470 for (res = res0; res; res = res->ai_next) {
471 ret = getnameinfo(res->ai_addr, res->ai_addrlen, hbuf, sizeof(hbuf),
472 sbuf, sizeof(sbuf), NI_NUMERICHOST | NI_NUMERICSERV);
473 if (ret) {
474 continue;
475 }
476
477 fd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
478 if (fd < 0) {
479 continue;
480 }
481
482 reconnect:
483 ret = connect(fd, res->ai_addr, res->ai_addrlen);
484 if (ret < 0) {
485 if (errno == EINTR) {
486 goto reconnect;
487 }
488 close(fd);
489 break;
490 }
491
492 dprintf("connected to %s:%s\n", addr, port);
493 goto success;
494 }
495 fd = -errno;
496 error_report("failed connect to %s:%s", addr, port);
497 success:
498 freeaddrinfo(res0);
499 return fd;
500 }
501
502 static coroutine_fn int send_co_req(int sockfd, SheepdogReq *hdr, void *data,
503 unsigned int *wlen)
504 {
505 int ret;
506
507 ret = qemu_co_send(sockfd, hdr, sizeof(*hdr));
508 if (ret < sizeof(*hdr)) {
509 error_report("failed to send a req, %s", strerror(errno));
510 return ret;
511 }
512
513 ret = qemu_co_send(sockfd, data, *wlen);
514 if (ret < *wlen) {
515 error_report("failed to send a req, %s", strerror(errno));
516 }
517
518 return ret;
519 }
520
521 static void restart_co_req(void *opaque)
522 {
523 Coroutine *co = opaque;
524
525 qemu_coroutine_enter(co, NULL);
526 }
527
528 typedef struct SheepdogReqCo {
529 int sockfd;
530 SheepdogReq *hdr;
531 void *data;
532 unsigned int *wlen;
533 unsigned int *rlen;
534 int ret;
535 bool finished;
536 } SheepdogReqCo;
537
538 static coroutine_fn void do_co_req(void *opaque)
539 {
540 int ret;
541 Coroutine *co;
542 SheepdogReqCo *srco = opaque;
543 int sockfd = srco->sockfd;
544 SheepdogReq *hdr = srco->hdr;
545 void *data = srco->data;
546 unsigned int *wlen = srco->wlen;
547 unsigned int *rlen = srco->rlen;
548
549 co = qemu_coroutine_self();
550 qemu_aio_set_fd_handler(sockfd, NULL, restart_co_req, NULL, co);
551
552 socket_set_block(sockfd);
553 ret = send_co_req(sockfd, hdr, data, wlen);
554 if (ret < 0) {
555 goto out;
556 }
557
558 qemu_aio_set_fd_handler(sockfd, restart_co_req, NULL, NULL, co);
559
560 ret = qemu_co_recv(sockfd, hdr, sizeof(*hdr));
561 if (ret < sizeof(*hdr)) {
562 error_report("failed to get a rsp, %s", strerror(errno));
563 ret = -errno;
564 goto out;
565 }
566
567 if (*rlen > hdr->data_length) {
568 *rlen = hdr->data_length;
569 }
570
571 if (*rlen) {
572 ret = qemu_co_recv(sockfd, data, *rlen);
573 if (ret < *rlen) {
574 error_report("failed to get the data, %s", strerror(errno));
575 ret = -errno;
576 goto out;
577 }
578 }
579 ret = 0;
580 out:
581 qemu_aio_set_fd_handler(sockfd, NULL, NULL, NULL, NULL);
582 socket_set_nonblock(sockfd);
583
584 srco->ret = ret;
585 srco->finished = true;
586 }
587
588 static int do_req(int sockfd, SheepdogReq *hdr, void *data,
589 unsigned int *wlen, unsigned int *rlen)
590 {
591 Coroutine *co;
592 SheepdogReqCo srco = {
593 .sockfd = sockfd,
594 .hdr = hdr,
595 .data = data,
596 .wlen = wlen,
597 .rlen = rlen,
598 .ret = 0,
599 .finished = false,
600 };
601
602 if (qemu_in_coroutine()) {
603 do_co_req(&srco);
604 } else {
605 co = qemu_coroutine_create(do_co_req);
606 qemu_coroutine_enter(co, &srco);
607 while (!srco.finished) {
608 qemu_aio_wait();
609 }
610 }
611
612 return srco.ret;
613 }
614
615 static int coroutine_fn add_aio_request(BDRVSheepdogState *s, AIOReq *aio_req,
616 struct iovec *iov, int niov, bool create,
617 enum AIOCBState aiocb_type);
618
619
620 static AIOReq *find_pending_req(BDRVSheepdogState *s, uint64_t oid)
621 {
622 AIOReq *aio_req;
623
624 QLIST_FOREACH(aio_req, &s->pending_aio_head, aio_siblings) {
625 if (aio_req->oid == oid) {
626 return aio_req;
627 }
628 }
629
630 return NULL;
631 }
632
633 /*
634 * This function searchs pending requests to the object `oid', and
635 * sends them.
636 */
637 static void coroutine_fn send_pending_req(BDRVSheepdogState *s, uint64_t oid)
638 {
639 AIOReq *aio_req;
640 SheepdogAIOCB *acb;
641 int ret;
642
643 while ((aio_req = find_pending_req(s, oid)) != NULL) {
644 acb = aio_req->aiocb;
645 /* move aio_req from pending list to inflight one */
646 QLIST_REMOVE(aio_req, aio_siblings);
647 QLIST_INSERT_HEAD(&s->inflight_aio_head, aio_req, aio_siblings);
648 ret = add_aio_request(s, aio_req, acb->qiov->iov,
649 acb->qiov->niov, false, acb->aiocb_type);
650 if (ret < 0) {
651 error_report("add_aio_request is failed");
652 free_aio_req(s, aio_req);
653 if (!acb->nr_pending) {
654 sd_finish_aiocb(acb);
655 }
656 }
657 }
658 }
659
660 /*
661 * Receive responses of the I/O requests.
662 *
663 * This function is registered as a fd handler, and called from the
664 * main loop when s->fd is ready for reading responses.
665 */
666 static void coroutine_fn aio_read_response(void *opaque)
667 {
668 SheepdogObjRsp rsp;
669 BDRVSheepdogState *s = opaque;
670 int fd = s->fd;
671 int ret;
672 AIOReq *aio_req = NULL;
673 SheepdogAIOCB *acb;
674 unsigned long idx;
675
676 if (QLIST_EMPTY(&s->inflight_aio_head)) {
677 goto out;
678 }
679
680 /* read a header */
681 ret = qemu_co_recv(fd, &rsp, sizeof(rsp));
682 if (ret < 0) {
683 error_report("failed to get the header, %s", strerror(errno));
684 goto out;
685 }
686
687 /* find the right aio_req from the inflight aio list */
688 QLIST_FOREACH(aio_req, &s->inflight_aio_head, aio_siblings) {
689 if (aio_req->id == rsp.id) {
690 break;
691 }
692 }
693 if (!aio_req) {
694 error_report("cannot find aio_req %x", rsp.id);
695 goto out;
696 }
697
698 acb = aio_req->aiocb;
699
700 switch (acb->aiocb_type) {
701 case AIOCB_WRITE_UDATA:
702 /* this coroutine context is no longer suitable for co_recv
703 * because we may send data to update vdi objects */
704 s->co_recv = NULL;
705 if (!is_data_obj(aio_req->oid)) {
706 break;
707 }
708 idx = data_oid_to_idx(aio_req->oid);
709
710 if (s->inode.data_vdi_id[idx] != s->inode.vdi_id) {
711 /*
712 * If the object is newly created one, we need to update
713 * the vdi object (metadata object). min_dirty_data_idx
714 * and max_dirty_data_idx are changed to include updated
715 * index between them.
716 */
717 s->inode.data_vdi_id[idx] = s->inode.vdi_id;
718 s->max_dirty_data_idx = MAX(idx, s->max_dirty_data_idx);
719 s->min_dirty_data_idx = MIN(idx, s->min_dirty_data_idx);
720
721 /*
722 * Some requests may be blocked because simultaneous
723 * create requests are not allowed, so we search the
724 * pending requests here.
725 */
726 send_pending_req(s, vid_to_data_oid(s->inode.vdi_id, idx));
727 }
728 break;
729 case AIOCB_READ_UDATA:
730 ret = qemu_co_recvv(fd, acb->qiov->iov, acb->qiov->niov,
731 aio_req->iov_offset, rsp.data_length);
732 if (ret < 0) {
733 error_report("failed to get the data, %s", strerror(errno));
734 goto out;
735 }
736 break;
737 }
738
739 if (rsp.result != SD_RES_SUCCESS) {
740 acb->ret = -EIO;
741 error_report("%s", sd_strerror(rsp.result));
742 }
743
744 free_aio_req(s, aio_req);
745 if (!acb->nr_pending) {
746 /*
747 * We've finished all requests which belong to the AIOCB, so
748 * we can switch back to sd_co_readv/writev now.
749 */
750 acb->aio_done_func(acb);
751 }
752 out:
753 s->co_recv = NULL;
754 }
755
756 static void co_read_response(void *opaque)
757 {
758 BDRVSheepdogState *s = opaque;
759
760 if (!s->co_recv) {
761 s->co_recv = qemu_coroutine_create(aio_read_response);
762 }
763
764 qemu_coroutine_enter(s->co_recv, opaque);
765 }
766
767 static void co_write_request(void *opaque)
768 {
769 BDRVSheepdogState *s = opaque;
770
771 qemu_coroutine_enter(s->co_send, NULL);
772 }
773
774 static int aio_flush_request(void *opaque)
775 {
776 BDRVSheepdogState *s = opaque;
777
778 return !QLIST_EMPTY(&s->inflight_aio_head) ||
779 !QLIST_EMPTY(&s->pending_aio_head);
780 }
781
782 static int set_nodelay(int fd)
783 {
784 int ret, opt;
785
786 opt = 1;
787 ret = setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&opt, sizeof(opt));
788 return ret;
789 }
790
791 /*
792 * Return a socket discriptor to read/write objects.
793 *
794 * We cannot use this discriptor for other operations because
795 * the block driver may be on waiting response from the server.
796 */
797 static int get_sheep_fd(BDRVSheepdogState *s)
798 {
799 int ret, fd;
800
801 fd = connect_to_sdog(s->addr, s->port);
802 if (fd < 0) {
803 error_report("%s", strerror(errno));
804 return fd;
805 }
806
807 socket_set_nonblock(fd);
808
809 ret = set_nodelay(fd);
810 if (ret) {
811 error_report("%s", strerror(errno));
812 closesocket(fd);
813 return -errno;
814 }
815
816 qemu_aio_set_fd_handler(fd, co_read_response, NULL, aio_flush_request, s);
817 return fd;
818 }
819
820 /*
821 * Parse a filename
822 *
823 * filename must be one of the following formats:
824 * 1. [vdiname]
825 * 2. [vdiname]:[snapid]
826 * 3. [vdiname]:[tag]
827 * 4. [hostname]:[port]:[vdiname]
828 * 5. [hostname]:[port]:[vdiname]:[snapid]
829 * 6. [hostname]:[port]:[vdiname]:[tag]
830 *
831 * You can boot from the snapshot images by specifying `snapid` or
832 * `tag'.
833 *
834 * You can run VMs outside the Sheepdog cluster by specifying
835 * `hostname' and `port' (experimental).
836 */
837 static int parse_vdiname(BDRVSheepdogState *s, const char *filename,
838 char *vdi, uint32_t *snapid, char *tag)
839 {
840 char *p, *q;
841 int nr_sep;
842
843 p = q = g_strdup(filename);
844
845 /* count the number of separators */
846 nr_sep = 0;
847 while (*p) {
848 if (*p == ':') {
849 nr_sep++;
850 }
851 p++;
852 }
853 p = q;
854
855 /* use the first two tokens as hostname and port number. */
856 if (nr_sep >= 2) {
857 s->addr = p;
858 p = strchr(p, ':');
859 *p++ = '\0';
860
861 s->port = p;
862 p = strchr(p, ':');
863 *p++ = '\0';
864 } else {
865 s->addr = NULL;
866 s->port = 0;
867 }
868
869 pstrcpy(vdi, SD_MAX_VDI_LEN, p);
870
871 p = strchr(vdi, ':');
872 if (p) {
873 *p++ = '\0';
874 *snapid = strtoul(p, NULL, 10);
875 if (*snapid == 0) {
876 pstrcpy(tag, SD_MAX_VDI_TAG_LEN, p);
877 }
878 } else {
879 *snapid = CURRENT_VDI_ID; /* search current vdi */
880 }
881
882 if (s->addr == NULL) {
883 g_free(q);
884 }
885
886 return 0;
887 }
888
889 static int find_vdi_name(BDRVSheepdogState *s, char *filename, uint32_t snapid,
890 char *tag, uint32_t *vid, int for_snapshot)
891 {
892 int ret, fd;
893 SheepdogVdiReq hdr;
894 SheepdogVdiRsp *rsp = (SheepdogVdiRsp *)&hdr;
895 unsigned int wlen, rlen = 0;
896 char buf[SD_MAX_VDI_LEN + SD_MAX_VDI_TAG_LEN];
897
898 fd = connect_to_sdog(s->addr, s->port);
899 if (fd < 0) {
900 return fd;
901 }
902
903 /* This pair of strncpy calls ensures that the buffer is zero-filled,
904 * which is desirable since we'll soon be sending those bytes, and
905 * don't want the send_req to read uninitialized data.
906 */
907 strncpy(buf, filename, SD_MAX_VDI_LEN);
908 strncpy(buf + SD_MAX_VDI_LEN, tag, SD_MAX_VDI_TAG_LEN);
909
910 memset(&hdr, 0, sizeof(hdr));
911 if (for_snapshot) {
912 hdr.opcode = SD_OP_GET_VDI_INFO;
913 } else {
914 hdr.opcode = SD_OP_LOCK_VDI;
915 }
916 wlen = SD_MAX_VDI_LEN + SD_MAX_VDI_TAG_LEN;
917 hdr.proto_ver = SD_PROTO_VER;
918 hdr.data_length = wlen;
919 hdr.snapid = snapid;
920 hdr.flags = SD_FLAG_CMD_WRITE;
921
922 ret = do_req(fd, (SheepdogReq *)&hdr, buf, &wlen, &rlen);
923 if (ret) {
924 goto out;
925 }
926
927 if (rsp->result != SD_RES_SUCCESS) {
928 error_report("cannot get vdi info, %s, %s %d %s",
929 sd_strerror(rsp->result), filename, snapid, tag);
930 if (rsp->result == SD_RES_NO_VDI) {
931 ret = -ENOENT;
932 } else {
933 ret = -EIO;
934 }
935 goto out;
936 }
937 *vid = rsp->vdi_id;
938
939 ret = 0;
940 out:
941 closesocket(fd);
942 return ret;
943 }
944
945 static int coroutine_fn add_aio_request(BDRVSheepdogState *s, AIOReq *aio_req,
946 struct iovec *iov, int niov, bool create,
947 enum AIOCBState aiocb_type)
948 {
949 int nr_copies = s->inode.nr_copies;
950 SheepdogObjReq hdr;
951 unsigned int wlen;
952 int ret;
953 uint64_t oid = aio_req->oid;
954 unsigned int datalen = aio_req->data_len;
955 uint64_t offset = aio_req->offset;
956 uint8_t flags = aio_req->flags;
957 uint64_t old_oid = aio_req->base_oid;
958
959 if (!nr_copies) {
960 error_report("bug");
961 }
962
963 memset(&hdr, 0, sizeof(hdr));
964
965 if (aiocb_type == AIOCB_READ_UDATA) {
966 wlen = 0;
967 hdr.opcode = SD_OP_READ_OBJ;
968 hdr.flags = flags;
969 } else if (create) {
970 wlen = datalen;
971 hdr.opcode = SD_OP_CREATE_AND_WRITE_OBJ;
972 hdr.flags = SD_FLAG_CMD_WRITE | flags;
973 } else {
974 wlen = datalen;
975 hdr.opcode = SD_OP_WRITE_OBJ;
976 hdr.flags = SD_FLAG_CMD_WRITE | flags;
977 }
978
979 if (s->cache_enabled) {
980 hdr.flags |= SD_FLAG_CMD_CACHE;
981 }
982
983 hdr.oid = oid;
984 hdr.cow_oid = old_oid;
985 hdr.copies = s->inode.nr_copies;
986
987 hdr.data_length = datalen;
988 hdr.offset = offset;
989
990 hdr.id = aio_req->id;
991
992 qemu_co_mutex_lock(&s->lock);
993 s->co_send = qemu_coroutine_self();
994 qemu_aio_set_fd_handler(s->fd, co_read_response, co_write_request,
995 aio_flush_request, s);
996 socket_set_cork(s->fd, 1);
997
998 /* send a header */
999 ret = qemu_co_send(s->fd, &hdr, sizeof(hdr));
1000 if (ret < 0) {
1001 qemu_co_mutex_unlock(&s->lock);
1002 error_report("failed to send a req, %s", strerror(errno));
1003 return -errno;
1004 }
1005
1006 if (wlen) {
1007 ret = qemu_co_sendv(s->fd, iov, niov, aio_req->iov_offset, wlen);
1008 if (ret < 0) {
1009 qemu_co_mutex_unlock(&s->lock);
1010 error_report("failed to send a data, %s", strerror(errno));
1011 return -errno;
1012 }
1013 }
1014
1015 socket_set_cork(s->fd, 0);
1016 qemu_aio_set_fd_handler(s->fd, co_read_response, NULL,
1017 aio_flush_request, s);
1018 qemu_co_mutex_unlock(&s->lock);
1019
1020 return 0;
1021 }
1022
1023 static int read_write_object(int fd, char *buf, uint64_t oid, int copies,
1024 unsigned int datalen, uint64_t offset,
1025 bool write, bool create, bool cache)
1026 {
1027 SheepdogObjReq hdr;
1028 SheepdogObjRsp *rsp = (SheepdogObjRsp *)&hdr;
1029 unsigned int wlen, rlen;
1030 int ret;
1031
1032 memset(&hdr, 0, sizeof(hdr));
1033
1034 if (write) {
1035 wlen = datalen;
1036 rlen = 0;
1037 hdr.flags = SD_FLAG_CMD_WRITE;
1038 if (create) {
1039 hdr.opcode = SD_OP_CREATE_AND_WRITE_OBJ;
1040 } else {
1041 hdr.opcode = SD_OP_WRITE_OBJ;
1042 }
1043 } else {
1044 wlen = 0;
1045 rlen = datalen;
1046 hdr.opcode = SD_OP_READ_OBJ;
1047 }
1048
1049 if (cache) {
1050 hdr.flags |= SD_FLAG_CMD_CACHE;
1051 }
1052
1053 hdr.oid = oid;
1054 hdr.data_length = datalen;
1055 hdr.offset = offset;
1056 hdr.copies = copies;
1057
1058 ret = do_req(fd, (SheepdogReq *)&hdr, buf, &wlen, &rlen);
1059 if (ret) {
1060 error_report("failed to send a request to the sheep");
1061 return ret;
1062 }
1063
1064 switch (rsp->result) {
1065 case SD_RES_SUCCESS:
1066 return 0;
1067 default:
1068 error_report("%s", sd_strerror(rsp->result));
1069 return -EIO;
1070 }
1071 }
1072
1073 static int read_object(int fd, char *buf, uint64_t oid, int copies,
1074 unsigned int datalen, uint64_t offset, bool cache)
1075 {
1076 return read_write_object(fd, buf, oid, copies, datalen, offset, false,
1077 false, cache);
1078 }
1079
1080 static int write_object(int fd, char *buf, uint64_t oid, int copies,
1081 unsigned int datalen, uint64_t offset, bool create,
1082 bool cache)
1083 {
1084 return read_write_object(fd, buf, oid, copies, datalen, offset, true,
1085 create, cache);
1086 }
1087
1088 static int sd_open(BlockDriverState *bs, const char *filename, int flags)
1089 {
1090 int ret, fd;
1091 uint32_t vid = 0;
1092 BDRVSheepdogState *s = bs->opaque;
1093 char vdi[SD_MAX_VDI_LEN], tag[SD_MAX_VDI_TAG_LEN];
1094 uint32_t snapid;
1095 char *buf = NULL;
1096
1097 strstart(filename, "sheepdog:", (const char **)&filename);
1098
1099 QLIST_INIT(&s->inflight_aio_head);
1100 QLIST_INIT(&s->pending_aio_head);
1101 s->fd = -1;
1102
1103 memset(vdi, 0, sizeof(vdi));
1104 memset(tag, 0, sizeof(tag));
1105 if (parse_vdiname(s, filename, vdi, &snapid, tag) < 0) {
1106 ret = -EINVAL;
1107 goto out;
1108 }
1109 s->fd = get_sheep_fd(s);
1110 if (s->fd < 0) {
1111 ret = s->fd;
1112 goto out;
1113 }
1114
1115 ret = find_vdi_name(s, vdi, snapid, tag, &vid, 0);
1116 if (ret) {
1117 goto out;
1118 }
1119
1120 s->cache_enabled = true;
1121 s->flush_fd = connect_to_sdog(s->addr, s->port);
1122 if (s->flush_fd < 0) {
1123 error_report("failed to connect");
1124 ret = s->flush_fd;
1125 goto out;
1126 }
1127
1128 if (snapid || tag[0] != '\0') {
1129 dprintf("%" PRIx32 " snapshot inode was open.\n", vid);
1130 s->is_snapshot = true;
1131 }
1132
1133 fd = connect_to_sdog(s->addr, s->port);
1134 if (fd < 0) {
1135 error_report("failed to connect");
1136 ret = fd;
1137 goto out;
1138 }
1139
1140 buf = g_malloc(SD_INODE_SIZE);
1141 ret = read_object(fd, buf, vid_to_vdi_oid(vid), 0, SD_INODE_SIZE, 0,
1142 s->cache_enabled);
1143
1144 closesocket(fd);
1145
1146 if (ret) {
1147 goto out;
1148 }
1149
1150 memcpy(&s->inode, buf, sizeof(s->inode));
1151 s->min_dirty_data_idx = UINT32_MAX;
1152 s->max_dirty_data_idx = 0;
1153
1154 bs->total_sectors = s->inode.vdi_size / SECTOR_SIZE;
1155 pstrcpy(s->name, sizeof(s->name), vdi);
1156 qemu_co_mutex_init(&s->lock);
1157 g_free(buf);
1158 return 0;
1159 out:
1160 qemu_aio_set_fd_handler(s->fd, NULL, NULL, NULL, NULL);
1161 if (s->fd >= 0) {
1162 closesocket(s->fd);
1163 }
1164 g_free(buf);
1165 return ret;
1166 }
1167
1168 static int do_sd_create(char *filename, int64_t vdi_size,
1169 uint32_t base_vid, uint32_t *vdi_id, int snapshot,
1170 const char *addr, const char *port)
1171 {
1172 SheepdogVdiReq hdr;
1173 SheepdogVdiRsp *rsp = (SheepdogVdiRsp *)&hdr;
1174 int fd, ret;
1175 unsigned int wlen, rlen = 0;
1176 char buf[SD_MAX_VDI_LEN];
1177
1178 fd = connect_to_sdog(addr, port);
1179 if (fd < 0) {
1180 return fd;
1181 }
1182
1183 /* FIXME: would it be better to fail (e.g., return -EIO) when filename
1184 * does not fit in buf? For now, just truncate and avoid buffer overrun.
1185 */
1186 memset(buf, 0, sizeof(buf));
1187 pstrcpy(buf, sizeof(buf), filename);
1188
1189 memset(&hdr, 0, sizeof(hdr));
1190 hdr.opcode = SD_OP_NEW_VDI;
1191 hdr.base_vdi_id = base_vid;
1192
1193 wlen = SD_MAX_VDI_LEN;
1194
1195 hdr.flags = SD_FLAG_CMD_WRITE;
1196 hdr.snapid = snapshot;
1197
1198 hdr.data_length = wlen;
1199 hdr.vdi_size = vdi_size;
1200
1201 ret = do_req(fd, (SheepdogReq *)&hdr, buf, &wlen, &rlen);
1202
1203 closesocket(fd);
1204
1205 if (ret) {
1206 return ret;
1207 }
1208
1209 if (rsp->result != SD_RES_SUCCESS) {
1210 error_report("%s, %s", sd_strerror(rsp->result), filename);
1211 return -EIO;
1212 }
1213
1214 if (vdi_id) {
1215 *vdi_id = rsp->vdi_id;
1216 }
1217
1218 return 0;
1219 }
1220
1221 static int sd_prealloc(const char *filename)
1222 {
1223 BlockDriverState *bs = NULL;
1224 uint32_t idx, max_idx;
1225 int64_t vdi_size;
1226 void *buf = g_malloc0(SD_DATA_OBJ_SIZE);
1227 int ret;
1228
1229 ret = bdrv_file_open(&bs, filename, BDRV_O_RDWR);
1230 if (ret < 0) {
1231 goto out;
1232 }
1233
1234 vdi_size = bdrv_getlength(bs);
1235 if (vdi_size < 0) {
1236 ret = vdi_size;
1237 goto out;
1238 }
1239 max_idx = DIV_ROUND_UP(vdi_size, SD_DATA_OBJ_SIZE);
1240
1241 for (idx = 0; idx < max_idx; idx++) {
1242 /*
1243 * The created image can be a cloned image, so we need to read
1244 * a data from the source image.
1245 */
1246 ret = bdrv_pread(bs, idx * SD_DATA_OBJ_SIZE, buf, SD_DATA_OBJ_SIZE);
1247 if (ret < 0) {
1248 goto out;
1249 }
1250 ret = bdrv_pwrite(bs, idx * SD_DATA_OBJ_SIZE, buf, SD_DATA_OBJ_SIZE);
1251 if (ret < 0) {
1252 goto out;
1253 }
1254 }
1255 out:
1256 if (bs) {
1257 bdrv_delete(bs);
1258 }
1259 g_free(buf);
1260
1261 return ret;
1262 }
1263
1264 static int sd_create(const char *filename, QEMUOptionParameter *options)
1265 {
1266 int ret = 0;
1267 uint32_t vid = 0, base_vid = 0;
1268 int64_t vdi_size = 0;
1269 char *backing_file = NULL;
1270 BDRVSheepdogState *s;
1271 char vdi[SD_MAX_VDI_LEN], tag[SD_MAX_VDI_TAG_LEN];
1272 uint32_t snapid;
1273 bool prealloc = false;
1274 const char *vdiname;
1275
1276 s = g_malloc0(sizeof(BDRVSheepdogState));
1277
1278 strstart(filename, "sheepdog:", &vdiname);
1279
1280 memset(vdi, 0, sizeof(vdi));
1281 memset(tag, 0, sizeof(tag));
1282 if (parse_vdiname(s, vdiname, vdi, &snapid, tag) < 0) {
1283 error_report("invalid filename");
1284 ret = -EINVAL;
1285 goto out;
1286 }
1287
1288 while (options && options->name) {
1289 if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
1290 vdi_size = options->value.n;
1291 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
1292 backing_file = options->value.s;
1293 } else if (!strcmp(options->name, BLOCK_OPT_PREALLOC)) {
1294 if (!options->value.s || !strcmp(options->value.s, "off")) {
1295 prealloc = false;
1296 } else if (!strcmp(options->value.s, "full")) {
1297 prealloc = true;
1298 } else {
1299 error_report("Invalid preallocation mode: '%s'",
1300 options->value.s);
1301 ret = -EINVAL;
1302 goto out;
1303 }
1304 }
1305 options++;
1306 }
1307
1308 if (vdi_size > SD_MAX_VDI_SIZE) {
1309 error_report("too big image size");
1310 ret = -EINVAL;
1311 goto out;
1312 }
1313
1314 if (backing_file) {
1315 BlockDriverState *bs;
1316 BDRVSheepdogState *s;
1317 BlockDriver *drv;
1318
1319 /* Currently, only Sheepdog backing image is supported. */
1320 drv = bdrv_find_protocol(backing_file);
1321 if (!drv || strcmp(drv->protocol_name, "sheepdog") != 0) {
1322 error_report("backing_file must be a sheepdog image");
1323 ret = -EINVAL;
1324 goto out;
1325 }
1326
1327 ret = bdrv_file_open(&bs, backing_file, 0);
1328 if (ret < 0) {
1329 goto out;
1330 }
1331
1332 s = bs->opaque;
1333
1334 if (!is_snapshot(&s->inode)) {
1335 error_report("cannot clone from a non snapshot vdi");
1336 bdrv_delete(bs);
1337 ret = -EINVAL;
1338 goto out;
1339 }
1340
1341 base_vid = s->inode.vdi_id;
1342 bdrv_delete(bs);
1343 }
1344
1345 ret = do_sd_create(vdi, vdi_size, base_vid, &vid, 0, s->addr, s->port);
1346 if (!prealloc || ret) {
1347 goto out;
1348 }
1349
1350 ret = sd_prealloc(filename);
1351 out:
1352 g_free(s);
1353 return ret;
1354 }
1355
1356 static void sd_close(BlockDriverState *bs)
1357 {
1358 BDRVSheepdogState *s = bs->opaque;
1359 SheepdogVdiReq hdr;
1360 SheepdogVdiRsp *rsp = (SheepdogVdiRsp *)&hdr;
1361 unsigned int wlen, rlen = 0;
1362 int fd, ret;
1363
1364 dprintf("%s\n", s->name);
1365
1366 fd = connect_to_sdog(s->addr, s->port);
1367 if (fd < 0) {
1368 return;
1369 }
1370
1371 memset(&hdr, 0, sizeof(hdr));
1372
1373 hdr.opcode = SD_OP_RELEASE_VDI;
1374 wlen = strlen(s->name) + 1;
1375 hdr.data_length = wlen;
1376 hdr.flags = SD_FLAG_CMD_WRITE;
1377
1378 ret = do_req(fd, (SheepdogReq *)&hdr, s->name, &wlen, &rlen);
1379
1380 closesocket(fd);
1381
1382 if (!ret && rsp->result != SD_RES_SUCCESS &&
1383 rsp->result != SD_RES_VDI_NOT_LOCKED) {
1384 error_report("%s, %s", sd_strerror(rsp->result), s->name);
1385 }
1386
1387 qemu_aio_set_fd_handler(s->fd, NULL, NULL, NULL, NULL);
1388 closesocket(s->fd);
1389 if (s->cache_enabled) {
1390 closesocket(s->flush_fd);
1391 }
1392 g_free(s->addr);
1393 }
1394
1395 static int64_t sd_getlength(BlockDriverState *bs)
1396 {
1397 BDRVSheepdogState *s = bs->opaque;
1398
1399 return s->inode.vdi_size;
1400 }
1401
1402 static int sd_truncate(BlockDriverState *bs, int64_t offset)
1403 {
1404 BDRVSheepdogState *s = bs->opaque;
1405 int ret, fd;
1406 unsigned int datalen;
1407
1408 if (offset < s->inode.vdi_size) {
1409 error_report("shrinking is not supported");
1410 return -EINVAL;
1411 } else if (offset > SD_MAX_VDI_SIZE) {
1412 error_report("too big image size");
1413 return -EINVAL;
1414 }
1415
1416 fd = connect_to_sdog(s->addr, s->port);
1417 if (fd < 0) {
1418 return fd;
1419 }
1420
1421 /* we don't need to update entire object */
1422 datalen = SD_INODE_SIZE - sizeof(s->inode.data_vdi_id);
1423 s->inode.vdi_size = offset;
1424 ret = write_object(fd, (char *)&s->inode, vid_to_vdi_oid(s->inode.vdi_id),
1425 s->inode.nr_copies, datalen, 0, false, s->cache_enabled);
1426 close(fd);
1427
1428 if (ret < 0) {
1429 error_report("failed to update an inode.");
1430 }
1431
1432 return ret;
1433 }
1434
1435 /*
1436 * This function is called after writing data objects. If we need to
1437 * update metadata, this sends a write request to the vdi object.
1438 * Otherwise, this switches back to sd_co_readv/writev.
1439 */
1440 static void coroutine_fn sd_write_done(SheepdogAIOCB *acb)
1441 {
1442 int ret;
1443 BDRVSheepdogState *s = acb->common.bs->opaque;
1444 struct iovec iov;
1445 AIOReq *aio_req;
1446 uint32_t offset, data_len, mn, mx;
1447
1448 mn = s->min_dirty_data_idx;
1449 mx = s->max_dirty_data_idx;
1450 if (mn <= mx) {
1451 /* we need to update the vdi object. */
1452 offset = sizeof(s->inode) - sizeof(s->inode.data_vdi_id) +
1453 mn * sizeof(s->inode.data_vdi_id[0]);
1454 data_len = (mx - mn + 1) * sizeof(s->inode.data_vdi_id[0]);
1455
1456 s->min_dirty_data_idx = UINT32_MAX;
1457 s->max_dirty_data_idx = 0;
1458
1459 iov.iov_base = &s->inode;
1460 iov.iov_len = sizeof(s->inode);
1461 aio_req = alloc_aio_req(s, acb, vid_to_vdi_oid(s->inode.vdi_id),
1462 data_len, offset, 0, 0, offset);
1463 QLIST_INSERT_HEAD(&s->inflight_aio_head, aio_req, aio_siblings);
1464 ret = add_aio_request(s, aio_req, &iov, 1, false, AIOCB_WRITE_UDATA);
1465 if (ret) {
1466 free_aio_req(s, aio_req);
1467 acb->ret = -EIO;
1468 goto out;
1469 }
1470
1471 acb->aio_done_func = sd_finish_aiocb;
1472 acb->aiocb_type = AIOCB_WRITE_UDATA;
1473 return;
1474 }
1475 out:
1476 sd_finish_aiocb(acb);
1477 }
1478
1479 /*
1480 * Create a writable VDI from a snapshot
1481 */
1482 static int sd_create_branch(BDRVSheepdogState *s)
1483 {
1484 int ret, fd;
1485 uint32_t vid;
1486 char *buf;
1487
1488 dprintf("%" PRIx32 " is snapshot.\n", s->inode.vdi_id);
1489
1490 buf = g_malloc(SD_INODE_SIZE);
1491
1492 ret = do_sd_create(s->name, s->inode.vdi_size, s->inode.vdi_id, &vid, 1,
1493 s->addr, s->port);
1494 if (ret) {
1495 goto out;
1496 }
1497
1498 dprintf("%" PRIx32 " is created.\n", vid);
1499
1500 fd = connect_to_sdog(s->addr, s->port);
1501 if (fd < 0) {
1502 error_report("failed to connect");
1503 ret = fd;
1504 goto out;
1505 }
1506
1507 ret = read_object(fd, buf, vid_to_vdi_oid(vid), s->inode.nr_copies,
1508 SD_INODE_SIZE, 0, s->cache_enabled);
1509
1510 closesocket(fd);
1511
1512 if (ret < 0) {
1513 goto out;
1514 }
1515
1516 memcpy(&s->inode, buf, sizeof(s->inode));
1517
1518 s->is_snapshot = false;
1519 ret = 0;
1520 dprintf("%" PRIx32 " was newly created.\n", s->inode.vdi_id);
1521
1522 out:
1523 g_free(buf);
1524
1525 return ret;
1526 }
1527
1528 /*
1529 * Send I/O requests to the server.
1530 *
1531 * This function sends requests to the server, links the requests to
1532 * the inflight_list in BDRVSheepdogState, and exits without
1533 * waiting the response. The responses are received in the
1534 * `aio_read_response' function which is called from the main loop as
1535 * a fd handler.
1536 *
1537 * Returns 1 when we need to wait a response, 0 when there is no sent
1538 * request and -errno in error cases.
1539 */
1540 static int coroutine_fn sd_co_rw_vector(void *p)
1541 {
1542 SheepdogAIOCB *acb = p;
1543 int ret = 0;
1544 unsigned long len, done = 0, total = acb->nb_sectors * SECTOR_SIZE;
1545 unsigned long idx = acb->sector_num * SECTOR_SIZE / SD_DATA_OBJ_SIZE;
1546 uint64_t oid;
1547 uint64_t offset = (acb->sector_num * SECTOR_SIZE) % SD_DATA_OBJ_SIZE;
1548 BDRVSheepdogState *s = acb->common.bs->opaque;
1549 SheepdogInode *inode = &s->inode;
1550 AIOReq *aio_req;
1551
1552 if (acb->aiocb_type == AIOCB_WRITE_UDATA && s->is_snapshot) {
1553 /*
1554 * In the case we open the snapshot VDI, Sheepdog creates the
1555 * writable VDI when we do a write operation first.
1556 */
1557 ret = sd_create_branch(s);
1558 if (ret) {
1559 acb->ret = -EIO;
1560 goto out;
1561 }
1562 }
1563
1564 /*
1565 * Make sure we don't free the aiocb before we are done with all requests.
1566 * This additional reference is dropped at the end of this function.
1567 */
1568 acb->nr_pending++;
1569
1570 while (done != total) {
1571 uint8_t flags = 0;
1572 uint64_t old_oid = 0;
1573 bool create = false;
1574
1575 oid = vid_to_data_oid(inode->data_vdi_id[idx], idx);
1576
1577 len = MIN(total - done, SD_DATA_OBJ_SIZE - offset);
1578
1579 switch (acb->aiocb_type) {
1580 case AIOCB_READ_UDATA:
1581 if (!inode->data_vdi_id[idx]) {
1582 qemu_iovec_memset(acb->qiov, done, 0, len);
1583 goto done;
1584 }
1585 break;
1586 case AIOCB_WRITE_UDATA:
1587 if (!inode->data_vdi_id[idx]) {
1588 create = true;
1589 } else if (!is_data_obj_writable(inode, idx)) {
1590 /* Copy-On-Write */
1591 create = true;
1592 old_oid = oid;
1593 flags = SD_FLAG_CMD_COW;
1594 }
1595 break;
1596 default:
1597 break;
1598 }
1599
1600 if (create) {
1601 dprintf("update ino (%" PRIu32 ") %" PRIu64 " %" PRIu64 " %ld\n",
1602 inode->vdi_id, oid,
1603 vid_to_data_oid(inode->data_vdi_id[idx], idx), idx);
1604 oid = vid_to_data_oid(inode->vdi_id, idx);
1605 dprintf("new oid %" PRIx64 "\n", oid);
1606 }
1607
1608 aio_req = alloc_aio_req(s, acb, oid, len, offset, flags, old_oid, done);
1609
1610 if (create) {
1611 AIOReq *areq;
1612 QLIST_FOREACH(areq, &s->inflight_aio_head, aio_siblings) {
1613 if (areq->oid == oid) {
1614 /*
1615 * Sheepdog cannot handle simultaneous create
1616 * requests to the same object. So we cannot send
1617 * the request until the previous request
1618 * finishes.
1619 */
1620 aio_req->flags = 0;
1621 aio_req->base_oid = 0;
1622 QLIST_INSERT_HEAD(&s->pending_aio_head, aio_req,
1623 aio_siblings);
1624 goto done;
1625 }
1626 }
1627 }
1628
1629 QLIST_INSERT_HEAD(&s->inflight_aio_head, aio_req, aio_siblings);
1630 ret = add_aio_request(s, aio_req, acb->qiov->iov, acb->qiov->niov,
1631 create, acb->aiocb_type);
1632 if (ret < 0) {
1633 error_report("add_aio_request is failed");
1634 free_aio_req(s, aio_req);
1635 acb->ret = -EIO;
1636 goto out;
1637 }
1638 done:
1639 offset = 0;
1640 idx++;
1641 done += len;
1642 }
1643 out:
1644 if (!--acb->nr_pending) {
1645 return acb->ret;
1646 }
1647 return 1;
1648 }
1649
1650 static coroutine_fn int sd_co_writev(BlockDriverState *bs, int64_t sector_num,
1651 int nb_sectors, QEMUIOVector *qiov)
1652 {
1653 SheepdogAIOCB *acb;
1654 int ret;
1655
1656 if (bs->growable && sector_num + nb_sectors > bs->total_sectors) {
1657 ret = sd_truncate(bs, (sector_num + nb_sectors) * SECTOR_SIZE);
1658 if (ret < 0) {
1659 return ret;
1660 }
1661 bs->total_sectors = sector_num + nb_sectors;
1662 }
1663
1664 acb = sd_aio_setup(bs, qiov, sector_num, nb_sectors, NULL, NULL);
1665 acb->aio_done_func = sd_write_done;
1666 acb->aiocb_type = AIOCB_WRITE_UDATA;
1667
1668 ret = sd_co_rw_vector(acb);
1669 if (ret <= 0) {
1670 qemu_aio_release(acb);
1671 return ret;
1672 }
1673
1674 qemu_coroutine_yield();
1675
1676 return acb->ret;
1677 }
1678
1679 static coroutine_fn int sd_co_readv(BlockDriverState *bs, int64_t sector_num,
1680 int nb_sectors, QEMUIOVector *qiov)
1681 {
1682 SheepdogAIOCB *acb;
1683 int ret;
1684
1685 acb = sd_aio_setup(bs, qiov, sector_num, nb_sectors, NULL, NULL);
1686 acb->aiocb_type = AIOCB_READ_UDATA;
1687 acb->aio_done_func = sd_finish_aiocb;
1688
1689 ret = sd_co_rw_vector(acb);
1690 if (ret <= 0) {
1691 qemu_aio_release(acb);
1692 return ret;
1693 }
1694
1695 qemu_coroutine_yield();
1696
1697 return acb->ret;
1698 }
1699
1700 static int coroutine_fn sd_co_flush_to_disk(BlockDriverState *bs)
1701 {
1702 BDRVSheepdogState *s = bs->opaque;
1703 SheepdogObjReq hdr = { 0 };
1704 SheepdogObjRsp *rsp = (SheepdogObjRsp *)&hdr;
1705 SheepdogInode *inode = &s->inode;
1706 int ret;
1707 unsigned int wlen = 0, rlen = 0;
1708
1709 if (!s->cache_enabled) {
1710 return 0;
1711 }
1712
1713 hdr.opcode = SD_OP_FLUSH_VDI;
1714 hdr.oid = vid_to_vdi_oid(inode->vdi_id);
1715
1716 ret = do_req(s->flush_fd, (SheepdogReq *)&hdr, NULL, &wlen, &rlen);
1717 if (ret) {
1718 error_report("failed to send a request to the sheep");
1719 return ret;
1720 }
1721
1722 if (rsp->result == SD_RES_INVALID_PARMS) {
1723 dprintf("disable write cache since the server doesn't support it\n");
1724
1725 s->cache_enabled = false;
1726 closesocket(s->flush_fd);
1727 return 0;
1728 }
1729
1730 if (rsp->result != SD_RES_SUCCESS) {
1731 error_report("%s", sd_strerror(rsp->result));
1732 return -EIO;
1733 }
1734
1735 return 0;
1736 }
1737
1738 static int sd_snapshot_create(BlockDriverState *bs, QEMUSnapshotInfo *sn_info)
1739 {
1740 BDRVSheepdogState *s = bs->opaque;
1741 int ret, fd;
1742 uint32_t new_vid;
1743 SheepdogInode *inode;
1744 unsigned int datalen;
1745
1746 dprintf("sn_info: name %s id_str %s s: name %s vm_state_size %" PRId64 " "
1747 "is_snapshot %d\n", sn_info->name, sn_info->id_str,
1748 s->name, sn_info->vm_state_size, s->is_snapshot);
1749
1750 if (s->is_snapshot) {
1751 error_report("You can't create a snapshot of a snapshot VDI, "
1752 "%s (%" PRIu32 ").", s->name, s->inode.vdi_id);
1753
1754 return -EINVAL;
1755 }
1756
1757 dprintf("%s %s\n", sn_info->name, sn_info->id_str);
1758
1759 s->inode.vm_state_size = sn_info->vm_state_size;
1760 s->inode.vm_clock_nsec = sn_info->vm_clock_nsec;
1761 /* It appears that inode.tag does not require a NUL terminator,
1762 * which means this use of strncpy is ok.
1763 */
1764 strncpy(s->inode.tag, sn_info->name, sizeof(s->inode.tag));
1765 /* we don't need to update entire object */
1766 datalen = SD_INODE_SIZE - sizeof(s->inode.data_vdi_id);
1767
1768 /* refresh inode. */
1769 fd = connect_to_sdog(s->addr, s->port);
1770 if (fd < 0) {
1771 ret = fd;
1772 goto cleanup;
1773 }
1774
1775 ret = write_object(fd, (char *)&s->inode, vid_to_vdi_oid(s->inode.vdi_id),
1776 s->inode.nr_copies, datalen, 0, false, s->cache_enabled);
1777 if (ret < 0) {
1778 error_report("failed to write snapshot's inode.");
1779 goto cleanup;
1780 }
1781
1782 ret = do_sd_create(s->name, s->inode.vdi_size, s->inode.vdi_id, &new_vid, 1,
1783 s->addr, s->port);
1784 if (ret < 0) {
1785 error_report("failed to create inode for snapshot. %s",
1786 strerror(errno));
1787 goto cleanup;
1788 }
1789
1790 inode = (SheepdogInode *)g_malloc(datalen);
1791
1792 ret = read_object(fd, (char *)inode, vid_to_vdi_oid(new_vid),
1793 s->inode.nr_copies, datalen, 0, s->cache_enabled);
1794
1795 if (ret < 0) {
1796 error_report("failed to read new inode info. %s", strerror(errno));
1797 goto cleanup;
1798 }
1799
1800 memcpy(&s->inode, inode, datalen);
1801 dprintf("s->inode: name %s snap_id %x oid %x\n",
1802 s->inode.name, s->inode.snap_id, s->inode.vdi_id);
1803
1804 cleanup:
1805 closesocket(fd);
1806 return ret;
1807 }
1808
1809 static int sd_snapshot_goto(BlockDriverState *bs, const char *snapshot_id)
1810 {
1811 BDRVSheepdogState *s = bs->opaque;
1812 BDRVSheepdogState *old_s;
1813 char vdi[SD_MAX_VDI_LEN], tag[SD_MAX_VDI_TAG_LEN];
1814 char *buf = NULL;
1815 uint32_t vid;
1816 uint32_t snapid = 0;
1817 int ret = 0, fd;
1818
1819 old_s = g_malloc(sizeof(BDRVSheepdogState));
1820
1821 memcpy(old_s, s, sizeof(BDRVSheepdogState));
1822
1823 pstrcpy(vdi, sizeof(vdi), s->name);
1824
1825 snapid = strtoul(snapshot_id, NULL, 10);
1826 if (snapid) {
1827 tag[0] = 0;
1828 } else {
1829 pstrcpy(tag, sizeof(tag), s->name);
1830 }
1831
1832 ret = find_vdi_name(s, vdi, snapid, tag, &vid, 1);
1833 if (ret) {
1834 error_report("Failed to find_vdi_name");
1835 goto out;
1836 }
1837
1838 fd = connect_to_sdog(s->addr, s->port);
1839 if (fd < 0) {
1840 error_report("failed to connect");
1841 ret = fd;
1842 goto out;
1843 }
1844
1845 buf = g_malloc(SD_INODE_SIZE);
1846 ret = read_object(fd, buf, vid_to_vdi_oid(vid), s->inode.nr_copies,
1847 SD_INODE_SIZE, 0, s->cache_enabled);
1848
1849 closesocket(fd);
1850
1851 if (ret) {
1852 goto out;
1853 }
1854
1855 memcpy(&s->inode, buf, sizeof(s->inode));
1856
1857 if (!s->inode.vm_state_size) {
1858 error_report("Invalid snapshot");
1859 ret = -ENOENT;
1860 goto out;
1861 }
1862
1863 s->is_snapshot = true;
1864
1865 g_free(buf);
1866 g_free(old_s);
1867
1868 return 0;
1869 out:
1870 /* recover bdrv_sd_state */
1871 memcpy(s, old_s, sizeof(BDRVSheepdogState));
1872 g_free(buf);
1873 g_free(old_s);
1874
1875 error_report("failed to open. recover old bdrv_sd_state.");
1876
1877 return ret;
1878 }
1879
1880 static int sd_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
1881 {
1882 /* FIXME: Delete specified snapshot id. */
1883 return 0;
1884 }
1885
1886 static int sd_snapshot_list(BlockDriverState *bs, QEMUSnapshotInfo **psn_tab)
1887 {
1888 BDRVSheepdogState *s = bs->opaque;
1889 SheepdogReq req;
1890 int fd, nr = 1024, ret, max = BITS_TO_LONGS(SD_NR_VDIS) * sizeof(long);
1891 QEMUSnapshotInfo *sn_tab = NULL;
1892 unsigned wlen, rlen;
1893 int found = 0;
1894 static SheepdogInode inode;
1895 unsigned long *vdi_inuse;
1896 unsigned int start_nr;
1897 uint64_t hval;
1898 uint32_t vid;
1899
1900 vdi_inuse = g_malloc(max);
1901
1902 fd = connect_to_sdog(s->addr, s->port);
1903 if (fd < 0) {
1904 ret = fd;
1905 goto out;
1906 }
1907
1908 rlen = max;
1909 wlen = 0;
1910
1911 memset(&req, 0, sizeof(req));
1912
1913 req.opcode = SD_OP_READ_VDIS;
1914 req.data_length = max;
1915
1916 ret = do_req(fd, (SheepdogReq *)&req, vdi_inuse, &wlen, &rlen);
1917
1918 closesocket(fd);
1919 if (ret) {
1920 goto out;
1921 }
1922
1923 sn_tab = g_malloc0(nr * sizeof(*sn_tab));
1924
1925 /* calculate a vdi id with hash function */
1926 hval = fnv_64a_buf(s->name, strlen(s->name), FNV1A_64_INIT);
1927 start_nr = hval & (SD_NR_VDIS - 1);
1928
1929 fd = connect_to_sdog(s->addr, s->port);
1930 if (fd < 0) {
1931 error_report("failed to connect");
1932 ret = fd;
1933 goto out;
1934 }
1935
1936 for (vid = start_nr; found < nr; vid = (vid + 1) % SD_NR_VDIS) {
1937 if (!test_bit(vid, vdi_inuse)) {
1938 break;
1939 }
1940
1941 /* we don't need to read entire object */
1942 ret = read_object(fd, (char *)&inode, vid_to_vdi_oid(vid),
1943 0, SD_INODE_SIZE - sizeof(inode.data_vdi_id), 0,
1944 s->cache_enabled);
1945
1946 if (ret) {
1947 continue;
1948 }
1949
1950 if (!strcmp(inode.name, s->name) && is_snapshot(&inode)) {
1951 sn_tab[found].date_sec = inode.snap_ctime >> 32;
1952 sn_tab[found].date_nsec = inode.snap_ctime & 0xffffffff;
1953 sn_tab[found].vm_state_size = inode.vm_state_size;
1954 sn_tab[found].vm_clock_nsec = inode.vm_clock_nsec;
1955
1956 snprintf(sn_tab[found].id_str, sizeof(sn_tab[found].id_str), "%u",
1957 inode.snap_id);
1958 pstrcpy(sn_tab[found].name,
1959 MIN(sizeof(sn_tab[found].name), sizeof(inode.tag)),
1960 inode.tag);
1961 found++;
1962 }
1963 }
1964
1965 closesocket(fd);
1966 out:
1967 *psn_tab = sn_tab;
1968
1969 g_free(vdi_inuse);
1970
1971 if (ret < 0) {
1972 return ret;
1973 }
1974
1975 return found;
1976 }
1977
1978 static int do_load_save_vmstate(BDRVSheepdogState *s, uint8_t *data,
1979 int64_t pos, int size, int load)
1980 {
1981 bool create;
1982 int fd, ret = 0, remaining = size;
1983 unsigned int data_len;
1984 uint64_t vmstate_oid;
1985 uint32_t vdi_index;
1986 uint64_t offset;
1987
1988 fd = connect_to_sdog(s->addr, s->port);
1989 if (fd < 0) {
1990 return fd;
1991 }
1992
1993 while (remaining) {
1994 vdi_index = pos / SD_DATA_OBJ_SIZE;
1995 offset = pos % SD_DATA_OBJ_SIZE;
1996
1997 data_len = MIN(remaining, SD_DATA_OBJ_SIZE - offset);
1998
1999 vmstate_oid = vid_to_vmstate_oid(s->inode.vdi_id, vdi_index);
2000
2001 create = (offset == 0);
2002 if (load) {
2003 ret = read_object(fd, (char *)data, vmstate_oid,
2004 s->inode.nr_copies, data_len, offset,
2005 s->cache_enabled);
2006 } else {
2007 ret = write_object(fd, (char *)data, vmstate_oid,
2008 s->inode.nr_copies, data_len, offset, create,
2009 s->cache_enabled);
2010 }
2011
2012 if (ret < 0) {
2013 error_report("failed to save vmstate %s", strerror(errno));
2014 goto cleanup;
2015 }
2016
2017 pos += data_len;
2018 data += data_len;
2019 remaining -= data_len;
2020 }
2021 ret = size;
2022 cleanup:
2023 closesocket(fd);
2024 return ret;
2025 }
2026
2027 static int sd_save_vmstate(BlockDriverState *bs, const uint8_t *data,
2028 int64_t pos, int size)
2029 {
2030 BDRVSheepdogState *s = bs->opaque;
2031
2032 return do_load_save_vmstate(s, (uint8_t *)data, pos, size, 0);
2033 }
2034
2035 static int sd_load_vmstate(BlockDriverState *bs, uint8_t *data,
2036 int64_t pos, int size)
2037 {
2038 BDRVSheepdogState *s = bs->opaque;
2039
2040 return do_load_save_vmstate(s, data, pos, size, 1);
2041 }
2042
2043
2044 static QEMUOptionParameter sd_create_options[] = {
2045 {
2046 .name = BLOCK_OPT_SIZE,
2047 .type = OPT_SIZE,
2048 .help = "Virtual disk size"
2049 },
2050 {
2051 .name = BLOCK_OPT_BACKING_FILE,
2052 .type = OPT_STRING,
2053 .help = "File name of a base image"
2054 },
2055 {
2056 .name = BLOCK_OPT_PREALLOC,
2057 .type = OPT_STRING,
2058 .help = "Preallocation mode (allowed values: off, full)"
2059 },
2060 { NULL }
2061 };
2062
2063 BlockDriver bdrv_sheepdog = {
2064 .format_name = "sheepdog",
2065 .protocol_name = "sheepdog",
2066 .instance_size = sizeof(BDRVSheepdogState),
2067 .bdrv_file_open = sd_open,
2068 .bdrv_close = sd_close,
2069 .bdrv_create = sd_create,
2070 .bdrv_getlength = sd_getlength,
2071 .bdrv_truncate = sd_truncate,
2072
2073 .bdrv_co_readv = sd_co_readv,
2074 .bdrv_co_writev = sd_co_writev,
2075 .bdrv_co_flush_to_disk = sd_co_flush_to_disk,
2076
2077 .bdrv_snapshot_create = sd_snapshot_create,
2078 .bdrv_snapshot_goto = sd_snapshot_goto,
2079 .bdrv_snapshot_delete = sd_snapshot_delete,
2080 .bdrv_snapshot_list = sd_snapshot_list,
2081
2082 .bdrv_save_vmstate = sd_save_vmstate,
2083 .bdrv_load_vmstate = sd_load_vmstate,
2084
2085 .create_options = sd_create_options,
2086 };
2087
2088 static void bdrv_sheepdog_init(void)
2089 {
2090 bdrv_register(&bdrv_sheepdog);
2091 }
2092 block_init(bdrv_sheepdog_init);