]> git.proxmox.com Git - mirror_qemu.git/blob - block/sheepdog.c
Merge remote-tracking branch 'remotes/amit-migration/tags/migration-for-2.6-7' into...
[mirror_qemu.git] / block / sheepdog.c
1 /*
2 * Copyright (C) 2009-2010 Nippon Telegraph and Telephone Corporation.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License version
6 * 2 as published by the Free Software Foundation.
7 *
8 * You should have received a copy of the GNU General Public License
9 * along with this program. If not, see <http://www.gnu.org/licenses/>.
10 *
11 * Contributions after 2012-01-13 are licensed under the terms of the
12 * GNU GPL, version 2 or (at your option) any later version.
13 */
14
15 #include "qemu/osdep.h"
16 #include "qemu-common.h"
17 #include "qemu/uri.h"
18 #include "qemu/error-report.h"
19 #include "qemu/sockets.h"
20 #include "block/block_int.h"
21 #include "qemu/bitops.h"
22
23 #define SD_PROTO_VER 0x01
24
25 #define SD_DEFAULT_ADDR "localhost"
26 #define SD_DEFAULT_PORT 7000
27
28 #define SD_OP_CREATE_AND_WRITE_OBJ 0x01
29 #define SD_OP_READ_OBJ 0x02
30 #define SD_OP_WRITE_OBJ 0x03
31 /* 0x04 is used internally by Sheepdog */
32
33 #define SD_OP_NEW_VDI 0x11
34 #define SD_OP_LOCK_VDI 0x12
35 #define SD_OP_RELEASE_VDI 0x13
36 #define SD_OP_GET_VDI_INFO 0x14
37 #define SD_OP_READ_VDIS 0x15
38 #define SD_OP_FLUSH_VDI 0x16
39 #define SD_OP_DEL_VDI 0x17
40 #define SD_OP_GET_CLUSTER_DEFAULT 0x18
41
42 #define SD_FLAG_CMD_WRITE 0x01
43 #define SD_FLAG_CMD_COW 0x02
44 #define SD_FLAG_CMD_CACHE 0x04 /* Writeback mode for cache */
45 #define SD_FLAG_CMD_DIRECT 0x08 /* Don't use cache */
46
47 #define SD_RES_SUCCESS 0x00 /* Success */
48 #define SD_RES_UNKNOWN 0x01 /* Unknown error */
49 #define SD_RES_NO_OBJ 0x02 /* No object found */
50 #define SD_RES_EIO 0x03 /* I/O error */
51 #define SD_RES_VDI_EXIST 0x04 /* Vdi exists already */
52 #define SD_RES_INVALID_PARMS 0x05 /* Invalid parameters */
53 #define SD_RES_SYSTEM_ERROR 0x06 /* System error */
54 #define SD_RES_VDI_LOCKED 0x07 /* Vdi is locked */
55 #define SD_RES_NO_VDI 0x08 /* No vdi found */
56 #define SD_RES_NO_BASE_VDI 0x09 /* No base vdi found */
57 #define SD_RES_VDI_READ 0x0A /* Cannot read requested vdi */
58 #define SD_RES_VDI_WRITE 0x0B /* Cannot write requested vdi */
59 #define SD_RES_BASE_VDI_READ 0x0C /* Cannot read base vdi */
60 #define SD_RES_BASE_VDI_WRITE 0x0D /* Cannot write base vdi */
61 #define SD_RES_NO_TAG 0x0E /* Requested tag is not found */
62 #define SD_RES_STARTUP 0x0F /* Sheepdog is on starting up */
63 #define SD_RES_VDI_NOT_LOCKED 0x10 /* Vdi is not locked */
64 #define SD_RES_SHUTDOWN 0x11 /* Sheepdog is shutting down */
65 #define SD_RES_NO_MEM 0x12 /* Cannot allocate memory */
66 #define SD_RES_FULL_VDI 0x13 /* we already have the maximum vdis */
67 #define SD_RES_VER_MISMATCH 0x14 /* Protocol version mismatch */
68 #define SD_RES_NO_SPACE 0x15 /* Server has no room for new objects */
69 #define SD_RES_WAIT_FOR_FORMAT 0x16 /* Waiting for a format operation */
70 #define SD_RES_WAIT_FOR_JOIN 0x17 /* Waiting for other nodes joining */
71 #define SD_RES_JOIN_FAILED 0x18 /* Target node had failed to join sheepdog */
72 #define SD_RES_HALT 0x19 /* Sheepdog is stopped serving IO request */
73 #define SD_RES_READONLY 0x1A /* Object is read-only */
74
75 /*
76 * Object ID rules
77 *
78 * 0 - 19 (20 bits): data object space
79 * 20 - 31 (12 bits): reserved data object space
80 * 32 - 55 (24 bits): vdi object space
81 * 56 - 59 ( 4 bits): reserved vdi object space
82 * 60 - 63 ( 4 bits): object type identifier space
83 */
84
85 #define VDI_SPACE_SHIFT 32
86 #define VDI_BIT (UINT64_C(1) << 63)
87 #define VMSTATE_BIT (UINT64_C(1) << 62)
88 #define MAX_DATA_OBJS (UINT64_C(1) << 20)
89 #define MAX_CHILDREN 1024
90 #define SD_MAX_VDI_LEN 256
91 #define SD_MAX_VDI_TAG_LEN 256
92 #define SD_NR_VDIS (1U << 24)
93 #define SD_DATA_OBJ_SIZE (UINT64_C(1) << 22)
94 #define SD_MAX_VDI_SIZE (SD_DATA_OBJ_SIZE * MAX_DATA_OBJS)
95 #define SD_DEFAULT_BLOCK_SIZE_SHIFT 22
96 /*
97 * For erasure coding, we use at most SD_EC_MAX_STRIP for data strips and
98 * (SD_EC_MAX_STRIP - 1) for parity strips
99 *
100 * SD_MAX_COPIES is sum of number of data strips and parity strips.
101 */
102 #define SD_EC_MAX_STRIP 16
103 #define SD_MAX_COPIES (SD_EC_MAX_STRIP * 2 - 1)
104
105 #define SD_INODE_SIZE (sizeof(SheepdogInode))
106 #define CURRENT_VDI_ID 0
107
108 #define LOCK_TYPE_NORMAL 0
109 #define LOCK_TYPE_SHARED 1 /* for iSCSI multipath */
110
111 typedef struct SheepdogReq {
112 uint8_t proto_ver;
113 uint8_t opcode;
114 uint16_t flags;
115 uint32_t epoch;
116 uint32_t id;
117 uint32_t data_length;
118 uint32_t opcode_specific[8];
119 } SheepdogReq;
120
121 typedef struct SheepdogRsp {
122 uint8_t proto_ver;
123 uint8_t opcode;
124 uint16_t flags;
125 uint32_t epoch;
126 uint32_t id;
127 uint32_t data_length;
128 uint32_t result;
129 uint32_t opcode_specific[7];
130 } SheepdogRsp;
131
132 typedef struct SheepdogObjReq {
133 uint8_t proto_ver;
134 uint8_t opcode;
135 uint16_t flags;
136 uint32_t epoch;
137 uint32_t id;
138 uint32_t data_length;
139 uint64_t oid;
140 uint64_t cow_oid;
141 uint8_t copies;
142 uint8_t copy_policy;
143 uint8_t reserved[6];
144 uint64_t offset;
145 } SheepdogObjReq;
146
147 typedef struct SheepdogObjRsp {
148 uint8_t proto_ver;
149 uint8_t opcode;
150 uint16_t flags;
151 uint32_t epoch;
152 uint32_t id;
153 uint32_t data_length;
154 uint32_t result;
155 uint8_t copies;
156 uint8_t copy_policy;
157 uint8_t reserved[2];
158 uint32_t pad[6];
159 } SheepdogObjRsp;
160
161 typedef struct SheepdogVdiReq {
162 uint8_t proto_ver;
163 uint8_t opcode;
164 uint16_t flags;
165 uint32_t epoch;
166 uint32_t id;
167 uint32_t data_length;
168 uint64_t vdi_size;
169 uint32_t base_vdi_id;
170 uint8_t copies;
171 uint8_t copy_policy;
172 uint8_t store_policy;
173 uint8_t block_size_shift;
174 uint32_t snapid;
175 uint32_t type;
176 uint32_t pad[2];
177 } SheepdogVdiReq;
178
179 typedef struct SheepdogVdiRsp {
180 uint8_t proto_ver;
181 uint8_t opcode;
182 uint16_t flags;
183 uint32_t epoch;
184 uint32_t id;
185 uint32_t data_length;
186 uint32_t result;
187 uint32_t rsvd;
188 uint32_t vdi_id;
189 uint32_t pad[5];
190 } SheepdogVdiRsp;
191
192 typedef struct SheepdogClusterRsp {
193 uint8_t proto_ver;
194 uint8_t opcode;
195 uint16_t flags;
196 uint32_t epoch;
197 uint32_t id;
198 uint32_t data_length;
199 uint32_t result;
200 uint8_t nr_copies;
201 uint8_t copy_policy;
202 uint8_t block_size_shift;
203 uint8_t __pad1;
204 uint32_t __pad2[6];
205 } SheepdogClusterRsp;
206
207 typedef struct SheepdogInode {
208 char name[SD_MAX_VDI_LEN];
209 char tag[SD_MAX_VDI_TAG_LEN];
210 uint64_t ctime;
211 uint64_t snap_ctime;
212 uint64_t vm_clock_nsec;
213 uint64_t vdi_size;
214 uint64_t vm_state_size;
215 uint16_t copy_policy;
216 uint8_t nr_copies;
217 uint8_t block_size_shift;
218 uint32_t snap_id;
219 uint32_t vdi_id;
220 uint32_t parent_vdi_id;
221 uint32_t child_vdi_id[MAX_CHILDREN];
222 uint32_t data_vdi_id[MAX_DATA_OBJS];
223 } SheepdogInode;
224
225 #define SD_INODE_HEADER_SIZE offsetof(SheepdogInode, data_vdi_id)
226
227 /*
228 * 64 bit FNV-1a non-zero initial basis
229 */
230 #define FNV1A_64_INIT ((uint64_t)0xcbf29ce484222325ULL)
231
232 /*
233 * 64 bit Fowler/Noll/Vo FNV-1a hash code
234 */
235 static inline uint64_t fnv_64a_buf(void *buf, size_t len, uint64_t hval)
236 {
237 unsigned char *bp = buf;
238 unsigned char *be = bp + len;
239 while (bp < be) {
240 hval ^= (uint64_t) *bp++;
241 hval += (hval << 1) + (hval << 4) + (hval << 5) +
242 (hval << 7) + (hval << 8) + (hval << 40);
243 }
244 return hval;
245 }
246
247 static inline bool is_data_obj_writable(SheepdogInode *inode, unsigned int idx)
248 {
249 return inode->vdi_id == inode->data_vdi_id[idx];
250 }
251
252 static inline bool is_data_obj(uint64_t oid)
253 {
254 return !(VDI_BIT & oid);
255 }
256
257 static inline uint64_t data_oid_to_idx(uint64_t oid)
258 {
259 return oid & (MAX_DATA_OBJS - 1);
260 }
261
262 static inline uint32_t oid_to_vid(uint64_t oid)
263 {
264 return (oid & ~VDI_BIT) >> VDI_SPACE_SHIFT;
265 }
266
267 static inline uint64_t vid_to_vdi_oid(uint32_t vid)
268 {
269 return VDI_BIT | ((uint64_t)vid << VDI_SPACE_SHIFT);
270 }
271
272 static inline uint64_t vid_to_vmstate_oid(uint32_t vid, uint32_t idx)
273 {
274 return VMSTATE_BIT | ((uint64_t)vid << VDI_SPACE_SHIFT) | idx;
275 }
276
277 static inline uint64_t vid_to_data_oid(uint32_t vid, uint32_t idx)
278 {
279 return ((uint64_t)vid << VDI_SPACE_SHIFT) | idx;
280 }
281
282 static inline bool is_snapshot(struct SheepdogInode *inode)
283 {
284 return !!inode->snap_ctime;
285 }
286
287 static inline size_t count_data_objs(const struct SheepdogInode *inode)
288 {
289 return DIV_ROUND_UP(inode->vdi_size,
290 (1UL << inode->block_size_shift));
291 }
292
293 #undef DPRINTF
294 #ifdef DEBUG_SDOG
295 #define DPRINTF(fmt, args...) \
296 do { \
297 fprintf(stdout, "%s %d: " fmt, __func__, __LINE__, ##args); \
298 } while (0)
299 #else
300 #define DPRINTF(fmt, args...)
301 #endif
302
303 typedef struct SheepdogAIOCB SheepdogAIOCB;
304
305 typedef struct AIOReq {
306 SheepdogAIOCB *aiocb;
307 unsigned int iov_offset;
308
309 uint64_t oid;
310 uint64_t base_oid;
311 uint64_t offset;
312 unsigned int data_len;
313 uint8_t flags;
314 uint32_t id;
315 bool create;
316
317 QLIST_ENTRY(AIOReq) aio_siblings;
318 } AIOReq;
319
320 enum AIOCBState {
321 AIOCB_WRITE_UDATA,
322 AIOCB_READ_UDATA,
323 AIOCB_FLUSH_CACHE,
324 AIOCB_DISCARD_OBJ,
325 };
326
327 #define AIOCBOverlapping(x, y) \
328 (!(x->max_affect_data_idx < y->min_affect_data_idx \
329 || y->max_affect_data_idx < x->min_affect_data_idx))
330
331 struct SheepdogAIOCB {
332 BlockAIOCB common;
333
334 QEMUIOVector *qiov;
335
336 int64_t sector_num;
337 int nb_sectors;
338
339 int ret;
340 enum AIOCBState aiocb_type;
341
342 Coroutine *coroutine;
343 void (*aio_done_func)(SheepdogAIOCB *);
344
345 bool cancelable;
346 int nr_pending;
347
348 uint32_t min_affect_data_idx;
349 uint32_t max_affect_data_idx;
350
351 /*
352 * The difference between affect_data_idx and dirty_data_idx:
353 * affect_data_idx represents range of index of all request types.
354 * dirty_data_idx represents range of index updated by COW requests.
355 * dirty_data_idx is used for updating an inode object.
356 */
357 uint32_t min_dirty_data_idx;
358 uint32_t max_dirty_data_idx;
359
360 QLIST_ENTRY(SheepdogAIOCB) aiocb_siblings;
361 };
362
363 typedef struct BDRVSheepdogState {
364 BlockDriverState *bs;
365 AioContext *aio_context;
366
367 SheepdogInode inode;
368
369 char name[SD_MAX_VDI_LEN];
370 bool is_snapshot;
371 uint32_t cache_flags;
372 bool discard_supported;
373
374 char *host_spec;
375 bool is_unix;
376 int fd;
377
378 CoMutex lock;
379 Coroutine *co_send;
380 Coroutine *co_recv;
381
382 uint32_t aioreq_seq_num;
383
384 /* Every aio request must be linked to either of these queues. */
385 QLIST_HEAD(inflight_aio_head, AIOReq) inflight_aio_head;
386 QLIST_HEAD(failed_aio_head, AIOReq) failed_aio_head;
387
388 CoQueue overlapping_queue;
389 QLIST_HEAD(inflight_aiocb_head, SheepdogAIOCB) inflight_aiocb_head;
390 } BDRVSheepdogState;
391
392 typedef struct BDRVSheepdogReopenState {
393 int fd;
394 int cache_flags;
395 } BDRVSheepdogReopenState;
396
397 static const char * sd_strerror(int err)
398 {
399 int i;
400
401 static const struct {
402 int err;
403 const char *desc;
404 } errors[] = {
405 {SD_RES_SUCCESS, "Success"},
406 {SD_RES_UNKNOWN, "Unknown error"},
407 {SD_RES_NO_OBJ, "No object found"},
408 {SD_RES_EIO, "I/O error"},
409 {SD_RES_VDI_EXIST, "VDI exists already"},
410 {SD_RES_INVALID_PARMS, "Invalid parameters"},
411 {SD_RES_SYSTEM_ERROR, "System error"},
412 {SD_RES_VDI_LOCKED, "VDI is already locked"},
413 {SD_RES_NO_VDI, "No vdi found"},
414 {SD_RES_NO_BASE_VDI, "No base VDI found"},
415 {SD_RES_VDI_READ, "Failed read the requested VDI"},
416 {SD_RES_VDI_WRITE, "Failed to write the requested VDI"},
417 {SD_RES_BASE_VDI_READ, "Failed to read the base VDI"},
418 {SD_RES_BASE_VDI_WRITE, "Failed to write the base VDI"},
419 {SD_RES_NO_TAG, "Failed to find the requested tag"},
420 {SD_RES_STARTUP, "The system is still booting"},
421 {SD_RES_VDI_NOT_LOCKED, "VDI isn't locked"},
422 {SD_RES_SHUTDOWN, "The system is shutting down"},
423 {SD_RES_NO_MEM, "Out of memory on the server"},
424 {SD_RES_FULL_VDI, "We already have the maximum vdis"},
425 {SD_RES_VER_MISMATCH, "Protocol version mismatch"},
426 {SD_RES_NO_SPACE, "Server has no space for new objects"},
427 {SD_RES_WAIT_FOR_FORMAT, "Sheepdog is waiting for a format operation"},
428 {SD_RES_WAIT_FOR_JOIN, "Sheepdog is waiting for other nodes joining"},
429 {SD_RES_JOIN_FAILED, "Target node had failed to join sheepdog"},
430 {SD_RES_HALT, "Sheepdog is stopped serving IO request"},
431 {SD_RES_READONLY, "Object is read-only"},
432 };
433
434 for (i = 0; i < ARRAY_SIZE(errors); ++i) {
435 if (errors[i].err == err) {
436 return errors[i].desc;
437 }
438 }
439
440 return "Invalid error code";
441 }
442
443 /*
444 * Sheepdog I/O handling:
445 *
446 * 1. In sd_co_rw_vector, we send the I/O requests to the server and
447 * link the requests to the inflight_list in the
448 * BDRVSheepdogState. The function exits without waiting for
449 * receiving the response.
450 *
451 * 2. We receive the response in aio_read_response, the fd handler to
452 * the sheepdog connection. If metadata update is needed, we send
453 * the write request to the vdi object in sd_write_done, the write
454 * completion function. We switch back to sd_co_readv/writev after
455 * all the requests belonging to the AIOCB are finished.
456 */
457
458 static inline AIOReq *alloc_aio_req(BDRVSheepdogState *s, SheepdogAIOCB *acb,
459 uint64_t oid, unsigned int data_len,
460 uint64_t offset, uint8_t flags, bool create,
461 uint64_t base_oid, unsigned int iov_offset)
462 {
463 AIOReq *aio_req;
464
465 aio_req = g_malloc(sizeof(*aio_req));
466 aio_req->aiocb = acb;
467 aio_req->iov_offset = iov_offset;
468 aio_req->oid = oid;
469 aio_req->base_oid = base_oid;
470 aio_req->offset = offset;
471 aio_req->data_len = data_len;
472 aio_req->flags = flags;
473 aio_req->id = s->aioreq_seq_num++;
474 aio_req->create = create;
475
476 acb->nr_pending++;
477 return aio_req;
478 }
479
480 static inline void free_aio_req(BDRVSheepdogState *s, AIOReq *aio_req)
481 {
482 SheepdogAIOCB *acb = aio_req->aiocb;
483
484 acb->cancelable = false;
485 QLIST_REMOVE(aio_req, aio_siblings);
486 g_free(aio_req);
487
488 acb->nr_pending--;
489 }
490
491 static void coroutine_fn sd_finish_aiocb(SheepdogAIOCB *acb)
492 {
493 qemu_coroutine_enter(acb->coroutine, NULL);
494 qemu_aio_unref(acb);
495 }
496
497 /*
498 * Check whether the specified acb can be canceled
499 *
500 * We can cancel aio when any request belonging to the acb is:
501 * - Not processed by the sheepdog server.
502 * - Not linked to the inflight queue.
503 */
504 static bool sd_acb_cancelable(const SheepdogAIOCB *acb)
505 {
506 BDRVSheepdogState *s = acb->common.bs->opaque;
507 AIOReq *aioreq;
508
509 if (!acb->cancelable) {
510 return false;
511 }
512
513 QLIST_FOREACH(aioreq, &s->inflight_aio_head, aio_siblings) {
514 if (aioreq->aiocb == acb) {
515 return false;
516 }
517 }
518
519 return true;
520 }
521
522 static void sd_aio_cancel(BlockAIOCB *blockacb)
523 {
524 SheepdogAIOCB *acb = (SheepdogAIOCB *)blockacb;
525 BDRVSheepdogState *s = acb->common.bs->opaque;
526 AIOReq *aioreq, *next;
527
528 if (sd_acb_cancelable(acb)) {
529 /* Remove outstanding requests from failed queue. */
530 QLIST_FOREACH_SAFE(aioreq, &s->failed_aio_head, aio_siblings,
531 next) {
532 if (aioreq->aiocb == acb) {
533 free_aio_req(s, aioreq);
534 }
535 }
536
537 assert(acb->nr_pending == 0);
538 if (acb->common.cb) {
539 acb->common.cb(acb->common.opaque, -ECANCELED);
540 }
541 sd_finish_aiocb(acb);
542 }
543 }
544
545 static const AIOCBInfo sd_aiocb_info = {
546 .aiocb_size = sizeof(SheepdogAIOCB),
547 .cancel_async = sd_aio_cancel,
548 };
549
550 static SheepdogAIOCB *sd_aio_setup(BlockDriverState *bs, QEMUIOVector *qiov,
551 int64_t sector_num, int nb_sectors)
552 {
553 SheepdogAIOCB *acb;
554 uint32_t object_size;
555 BDRVSheepdogState *s = bs->opaque;
556
557 object_size = (UINT32_C(1) << s->inode.block_size_shift);
558
559 acb = qemu_aio_get(&sd_aiocb_info, bs, NULL, NULL);
560
561 acb->qiov = qiov;
562
563 acb->sector_num = sector_num;
564 acb->nb_sectors = nb_sectors;
565
566 acb->aio_done_func = NULL;
567 acb->cancelable = true;
568 acb->coroutine = qemu_coroutine_self();
569 acb->ret = 0;
570 acb->nr_pending = 0;
571
572 acb->min_affect_data_idx = acb->sector_num * BDRV_SECTOR_SIZE / object_size;
573 acb->max_affect_data_idx = (acb->sector_num * BDRV_SECTOR_SIZE +
574 acb->nb_sectors * BDRV_SECTOR_SIZE) / object_size;
575
576 acb->min_dirty_data_idx = UINT32_MAX;
577 acb->max_dirty_data_idx = 0;
578
579 return acb;
580 }
581
582 /* Return -EIO in case of error, file descriptor on success */
583 static int connect_to_sdog(BDRVSheepdogState *s, Error **errp)
584 {
585 int fd;
586
587 if (s->is_unix) {
588 fd = unix_connect(s->host_spec, errp);
589 } else {
590 fd = inet_connect(s->host_spec, errp);
591
592 if (fd >= 0) {
593 int ret = socket_set_nodelay(fd);
594 if (ret < 0) {
595 error_report("%s", strerror(errno));
596 }
597 }
598 }
599
600 if (fd >= 0) {
601 qemu_set_nonblock(fd);
602 } else {
603 fd = -EIO;
604 }
605
606 return fd;
607 }
608
609 /* Return 0 on success and -errno in case of error */
610 static coroutine_fn int send_co_req(int sockfd, SheepdogReq *hdr, void *data,
611 unsigned int *wlen)
612 {
613 int ret;
614
615 ret = qemu_co_send(sockfd, hdr, sizeof(*hdr));
616 if (ret != sizeof(*hdr)) {
617 error_report("failed to send a req, %s", strerror(errno));
618 return -errno;
619 }
620
621 ret = qemu_co_send(sockfd, data, *wlen);
622 if (ret != *wlen) {
623 error_report("failed to send a req, %s", strerror(errno));
624 return -errno;
625 }
626
627 return ret;
628 }
629
630 static void restart_co_req(void *opaque)
631 {
632 Coroutine *co = opaque;
633
634 qemu_coroutine_enter(co, NULL);
635 }
636
637 typedef struct SheepdogReqCo {
638 int sockfd;
639 AioContext *aio_context;
640 SheepdogReq *hdr;
641 void *data;
642 unsigned int *wlen;
643 unsigned int *rlen;
644 int ret;
645 bool finished;
646 } SheepdogReqCo;
647
648 static coroutine_fn void do_co_req(void *opaque)
649 {
650 int ret;
651 Coroutine *co;
652 SheepdogReqCo *srco = opaque;
653 int sockfd = srco->sockfd;
654 SheepdogReq *hdr = srco->hdr;
655 void *data = srco->data;
656 unsigned int *wlen = srco->wlen;
657 unsigned int *rlen = srco->rlen;
658
659 co = qemu_coroutine_self();
660 aio_set_fd_handler(srco->aio_context, sockfd, false,
661 NULL, restart_co_req, co);
662
663 ret = send_co_req(sockfd, hdr, data, wlen);
664 if (ret < 0) {
665 goto out;
666 }
667
668 aio_set_fd_handler(srco->aio_context, sockfd, false,
669 restart_co_req, NULL, co);
670
671 ret = qemu_co_recv(sockfd, hdr, sizeof(*hdr));
672 if (ret != sizeof(*hdr)) {
673 error_report("failed to get a rsp, %s", strerror(errno));
674 ret = -errno;
675 goto out;
676 }
677
678 if (*rlen > hdr->data_length) {
679 *rlen = hdr->data_length;
680 }
681
682 if (*rlen) {
683 ret = qemu_co_recv(sockfd, data, *rlen);
684 if (ret != *rlen) {
685 error_report("failed to get the data, %s", strerror(errno));
686 ret = -errno;
687 goto out;
688 }
689 }
690 ret = 0;
691 out:
692 /* there is at most one request for this sockfd, so it is safe to
693 * set each handler to NULL. */
694 aio_set_fd_handler(srco->aio_context, sockfd, false,
695 NULL, NULL, NULL);
696
697 srco->ret = ret;
698 srco->finished = true;
699 }
700
701 /*
702 * Send the request to the sheep in a synchronous manner.
703 *
704 * Return 0 on success, -errno in case of error.
705 */
706 static int do_req(int sockfd, AioContext *aio_context, SheepdogReq *hdr,
707 void *data, unsigned int *wlen, unsigned int *rlen)
708 {
709 Coroutine *co;
710 SheepdogReqCo srco = {
711 .sockfd = sockfd,
712 .aio_context = aio_context,
713 .hdr = hdr,
714 .data = data,
715 .wlen = wlen,
716 .rlen = rlen,
717 .ret = 0,
718 .finished = false,
719 };
720
721 if (qemu_in_coroutine()) {
722 do_co_req(&srco);
723 } else {
724 co = qemu_coroutine_create(do_co_req);
725 qemu_coroutine_enter(co, &srco);
726 while (!srco.finished) {
727 aio_poll(aio_context, true);
728 }
729 }
730
731 return srco.ret;
732 }
733
734 static void coroutine_fn add_aio_request(BDRVSheepdogState *s, AIOReq *aio_req,
735 struct iovec *iov, int niov,
736 enum AIOCBState aiocb_type);
737 static void coroutine_fn resend_aioreq(BDRVSheepdogState *s, AIOReq *aio_req);
738 static int reload_inode(BDRVSheepdogState *s, uint32_t snapid, const char *tag);
739 static int get_sheep_fd(BDRVSheepdogState *s, Error **errp);
740 static void co_write_request(void *opaque);
741
742 static coroutine_fn void reconnect_to_sdog(void *opaque)
743 {
744 BDRVSheepdogState *s = opaque;
745 AIOReq *aio_req, *next;
746
747 aio_set_fd_handler(s->aio_context, s->fd, false, NULL,
748 NULL, NULL);
749 close(s->fd);
750 s->fd = -1;
751
752 /* Wait for outstanding write requests to be completed. */
753 while (s->co_send != NULL) {
754 co_write_request(opaque);
755 }
756
757 /* Try to reconnect the sheepdog server every one second. */
758 while (s->fd < 0) {
759 Error *local_err = NULL;
760 s->fd = get_sheep_fd(s, &local_err);
761 if (s->fd < 0) {
762 DPRINTF("Wait for connection to be established\n");
763 error_report_err(local_err);
764 co_aio_sleep_ns(bdrv_get_aio_context(s->bs), QEMU_CLOCK_REALTIME,
765 1000000000ULL);
766 }
767 };
768
769 /*
770 * Now we have to resend all the request in the inflight queue. However,
771 * resend_aioreq() can yield and newly created requests can be added to the
772 * inflight queue before the coroutine is resumed. To avoid mixing them, we
773 * have to move all the inflight requests to the failed queue before
774 * resend_aioreq() is called.
775 */
776 QLIST_FOREACH_SAFE(aio_req, &s->inflight_aio_head, aio_siblings, next) {
777 QLIST_REMOVE(aio_req, aio_siblings);
778 QLIST_INSERT_HEAD(&s->failed_aio_head, aio_req, aio_siblings);
779 }
780
781 /* Resend all the failed aio requests. */
782 while (!QLIST_EMPTY(&s->failed_aio_head)) {
783 aio_req = QLIST_FIRST(&s->failed_aio_head);
784 QLIST_REMOVE(aio_req, aio_siblings);
785 QLIST_INSERT_HEAD(&s->inflight_aio_head, aio_req, aio_siblings);
786 resend_aioreq(s, aio_req);
787 }
788 }
789
790 /*
791 * Receive responses of the I/O requests.
792 *
793 * This function is registered as a fd handler, and called from the
794 * main loop when s->fd is ready for reading responses.
795 */
796 static void coroutine_fn aio_read_response(void *opaque)
797 {
798 SheepdogObjRsp rsp;
799 BDRVSheepdogState *s = opaque;
800 int fd = s->fd;
801 int ret;
802 AIOReq *aio_req = NULL;
803 SheepdogAIOCB *acb;
804 uint64_t idx;
805
806 /* read a header */
807 ret = qemu_co_recv(fd, &rsp, sizeof(rsp));
808 if (ret != sizeof(rsp)) {
809 error_report("failed to get the header, %s", strerror(errno));
810 goto err;
811 }
812
813 /* find the right aio_req from the inflight aio list */
814 QLIST_FOREACH(aio_req, &s->inflight_aio_head, aio_siblings) {
815 if (aio_req->id == rsp.id) {
816 break;
817 }
818 }
819 if (!aio_req) {
820 error_report("cannot find aio_req %x", rsp.id);
821 goto err;
822 }
823
824 acb = aio_req->aiocb;
825
826 switch (acb->aiocb_type) {
827 case AIOCB_WRITE_UDATA:
828 /* this coroutine context is no longer suitable for co_recv
829 * because we may send data to update vdi objects */
830 s->co_recv = NULL;
831 if (!is_data_obj(aio_req->oid)) {
832 break;
833 }
834 idx = data_oid_to_idx(aio_req->oid);
835
836 if (aio_req->create) {
837 /*
838 * If the object is newly created one, we need to update
839 * the vdi object (metadata object). min_dirty_data_idx
840 * and max_dirty_data_idx are changed to include updated
841 * index between them.
842 */
843 if (rsp.result == SD_RES_SUCCESS) {
844 s->inode.data_vdi_id[idx] = s->inode.vdi_id;
845 acb->max_dirty_data_idx = MAX(idx, acb->max_dirty_data_idx);
846 acb->min_dirty_data_idx = MIN(idx, acb->min_dirty_data_idx);
847 }
848 }
849 break;
850 case AIOCB_READ_UDATA:
851 ret = qemu_co_recvv(fd, acb->qiov->iov, acb->qiov->niov,
852 aio_req->iov_offset, rsp.data_length);
853 if (ret != rsp.data_length) {
854 error_report("failed to get the data, %s", strerror(errno));
855 goto err;
856 }
857 break;
858 case AIOCB_FLUSH_CACHE:
859 if (rsp.result == SD_RES_INVALID_PARMS) {
860 DPRINTF("disable cache since the server doesn't support it\n");
861 s->cache_flags = SD_FLAG_CMD_DIRECT;
862 rsp.result = SD_RES_SUCCESS;
863 }
864 break;
865 case AIOCB_DISCARD_OBJ:
866 switch (rsp.result) {
867 case SD_RES_INVALID_PARMS:
868 error_report("sheep(%s) doesn't support discard command",
869 s->host_spec);
870 rsp.result = SD_RES_SUCCESS;
871 s->discard_supported = false;
872 break;
873 default:
874 break;
875 }
876 }
877
878 switch (rsp.result) {
879 case SD_RES_SUCCESS:
880 break;
881 case SD_RES_READONLY:
882 if (s->inode.vdi_id == oid_to_vid(aio_req->oid)) {
883 ret = reload_inode(s, 0, "");
884 if (ret < 0) {
885 goto err;
886 }
887 }
888 if (is_data_obj(aio_req->oid)) {
889 aio_req->oid = vid_to_data_oid(s->inode.vdi_id,
890 data_oid_to_idx(aio_req->oid));
891 } else {
892 aio_req->oid = vid_to_vdi_oid(s->inode.vdi_id);
893 }
894 resend_aioreq(s, aio_req);
895 goto out;
896 default:
897 acb->ret = -EIO;
898 error_report("%s", sd_strerror(rsp.result));
899 break;
900 }
901
902 free_aio_req(s, aio_req);
903 if (!acb->nr_pending) {
904 /*
905 * We've finished all requests which belong to the AIOCB, so
906 * we can switch back to sd_co_readv/writev now.
907 */
908 acb->aio_done_func(acb);
909 }
910 out:
911 s->co_recv = NULL;
912 return;
913 err:
914 s->co_recv = NULL;
915 reconnect_to_sdog(opaque);
916 }
917
918 static void co_read_response(void *opaque)
919 {
920 BDRVSheepdogState *s = opaque;
921
922 if (!s->co_recv) {
923 s->co_recv = qemu_coroutine_create(aio_read_response);
924 }
925
926 qemu_coroutine_enter(s->co_recv, opaque);
927 }
928
929 static void co_write_request(void *opaque)
930 {
931 BDRVSheepdogState *s = opaque;
932
933 qemu_coroutine_enter(s->co_send, NULL);
934 }
935
936 /*
937 * Return a socket descriptor to read/write objects.
938 *
939 * We cannot use this descriptor for other operations because
940 * the block driver may be on waiting response from the server.
941 */
942 static int get_sheep_fd(BDRVSheepdogState *s, Error **errp)
943 {
944 int fd;
945
946 fd = connect_to_sdog(s, errp);
947 if (fd < 0) {
948 return fd;
949 }
950
951 aio_set_fd_handler(s->aio_context, fd, false,
952 co_read_response, NULL, s);
953 return fd;
954 }
955
956 static int sd_parse_uri(BDRVSheepdogState *s, const char *filename,
957 char *vdi, uint32_t *snapid, char *tag)
958 {
959 URI *uri;
960 QueryParams *qp = NULL;
961 int ret = 0;
962
963 uri = uri_parse(filename);
964 if (!uri) {
965 return -EINVAL;
966 }
967
968 /* transport */
969 if (!strcmp(uri->scheme, "sheepdog")) {
970 s->is_unix = false;
971 } else if (!strcmp(uri->scheme, "sheepdog+tcp")) {
972 s->is_unix = false;
973 } else if (!strcmp(uri->scheme, "sheepdog+unix")) {
974 s->is_unix = true;
975 } else {
976 ret = -EINVAL;
977 goto out;
978 }
979
980 if (uri->path == NULL || !strcmp(uri->path, "/")) {
981 ret = -EINVAL;
982 goto out;
983 }
984 pstrcpy(vdi, SD_MAX_VDI_LEN, uri->path + 1);
985
986 qp = query_params_parse(uri->query);
987 if (qp->n > 1 || (s->is_unix && !qp->n) || (!s->is_unix && qp->n)) {
988 ret = -EINVAL;
989 goto out;
990 }
991
992 if (s->is_unix) {
993 /* sheepdog+unix:///vdiname?socket=path */
994 if (uri->server || uri->port || strcmp(qp->p[0].name, "socket")) {
995 ret = -EINVAL;
996 goto out;
997 }
998 s->host_spec = g_strdup(qp->p[0].value);
999 } else {
1000 /* sheepdog[+tcp]://[host:port]/vdiname */
1001 s->host_spec = g_strdup_printf("%s:%d", uri->server ?: SD_DEFAULT_ADDR,
1002 uri->port ?: SD_DEFAULT_PORT);
1003 }
1004
1005 /* snapshot tag */
1006 if (uri->fragment) {
1007 *snapid = strtoul(uri->fragment, NULL, 10);
1008 if (*snapid == 0) {
1009 pstrcpy(tag, SD_MAX_VDI_TAG_LEN, uri->fragment);
1010 }
1011 } else {
1012 *snapid = CURRENT_VDI_ID; /* search current vdi */
1013 }
1014
1015 out:
1016 if (qp) {
1017 query_params_free(qp);
1018 }
1019 uri_free(uri);
1020 return ret;
1021 }
1022
1023 /*
1024 * Parse a filename (old syntax)
1025 *
1026 * filename must be one of the following formats:
1027 * 1. [vdiname]
1028 * 2. [vdiname]:[snapid]
1029 * 3. [vdiname]:[tag]
1030 * 4. [hostname]:[port]:[vdiname]
1031 * 5. [hostname]:[port]:[vdiname]:[snapid]
1032 * 6. [hostname]:[port]:[vdiname]:[tag]
1033 *
1034 * You can boot from the snapshot images by specifying `snapid` or
1035 * `tag'.
1036 *
1037 * You can run VMs outside the Sheepdog cluster by specifying
1038 * `hostname' and `port' (experimental).
1039 */
1040 static int parse_vdiname(BDRVSheepdogState *s, const char *filename,
1041 char *vdi, uint32_t *snapid, char *tag)
1042 {
1043 char *p, *q, *uri;
1044 const char *host_spec, *vdi_spec;
1045 int nr_sep, ret;
1046
1047 strstart(filename, "sheepdog:", (const char **)&filename);
1048 p = q = g_strdup(filename);
1049
1050 /* count the number of separators */
1051 nr_sep = 0;
1052 while (*p) {
1053 if (*p == ':') {
1054 nr_sep++;
1055 }
1056 p++;
1057 }
1058 p = q;
1059
1060 /* use the first two tokens as host_spec. */
1061 if (nr_sep >= 2) {
1062 host_spec = p;
1063 p = strchr(p, ':');
1064 p++;
1065 p = strchr(p, ':');
1066 *p++ = '\0';
1067 } else {
1068 host_spec = "";
1069 }
1070
1071 vdi_spec = p;
1072
1073 p = strchr(vdi_spec, ':');
1074 if (p) {
1075 *p++ = '#';
1076 }
1077
1078 uri = g_strdup_printf("sheepdog://%s/%s", host_spec, vdi_spec);
1079
1080 ret = sd_parse_uri(s, uri, vdi, snapid, tag);
1081
1082 g_free(q);
1083 g_free(uri);
1084
1085 return ret;
1086 }
1087
1088 static int find_vdi_name(BDRVSheepdogState *s, const char *filename,
1089 uint32_t snapid, const char *tag, uint32_t *vid,
1090 bool lock, Error **errp)
1091 {
1092 int ret, fd;
1093 SheepdogVdiReq hdr;
1094 SheepdogVdiRsp *rsp = (SheepdogVdiRsp *)&hdr;
1095 unsigned int wlen, rlen = 0;
1096 char buf[SD_MAX_VDI_LEN + SD_MAX_VDI_TAG_LEN];
1097
1098 fd = connect_to_sdog(s, errp);
1099 if (fd < 0) {
1100 return fd;
1101 }
1102
1103 /* This pair of strncpy calls ensures that the buffer is zero-filled,
1104 * which is desirable since we'll soon be sending those bytes, and
1105 * don't want the send_req to read uninitialized data.
1106 */
1107 strncpy(buf, filename, SD_MAX_VDI_LEN);
1108 strncpy(buf + SD_MAX_VDI_LEN, tag, SD_MAX_VDI_TAG_LEN);
1109
1110 memset(&hdr, 0, sizeof(hdr));
1111 if (lock) {
1112 hdr.opcode = SD_OP_LOCK_VDI;
1113 hdr.type = LOCK_TYPE_NORMAL;
1114 } else {
1115 hdr.opcode = SD_OP_GET_VDI_INFO;
1116 }
1117 wlen = SD_MAX_VDI_LEN + SD_MAX_VDI_TAG_LEN;
1118 hdr.proto_ver = SD_PROTO_VER;
1119 hdr.data_length = wlen;
1120 hdr.snapid = snapid;
1121 hdr.flags = SD_FLAG_CMD_WRITE;
1122
1123 ret = do_req(fd, s->aio_context, (SheepdogReq *)&hdr, buf, &wlen, &rlen);
1124 if (ret) {
1125 error_setg_errno(errp, -ret, "cannot get vdi info");
1126 goto out;
1127 }
1128
1129 if (rsp->result != SD_RES_SUCCESS) {
1130 error_setg(errp, "cannot get vdi info, %s, %s %" PRIu32 " %s",
1131 sd_strerror(rsp->result), filename, snapid, tag);
1132 if (rsp->result == SD_RES_NO_VDI) {
1133 ret = -ENOENT;
1134 } else if (rsp->result == SD_RES_VDI_LOCKED) {
1135 ret = -EBUSY;
1136 } else {
1137 ret = -EIO;
1138 }
1139 goto out;
1140 }
1141 *vid = rsp->vdi_id;
1142
1143 ret = 0;
1144 out:
1145 closesocket(fd);
1146 return ret;
1147 }
1148
1149 static void coroutine_fn add_aio_request(BDRVSheepdogState *s, AIOReq *aio_req,
1150 struct iovec *iov, int niov,
1151 enum AIOCBState aiocb_type)
1152 {
1153 int nr_copies = s->inode.nr_copies;
1154 SheepdogObjReq hdr;
1155 unsigned int wlen = 0;
1156 int ret;
1157 uint64_t oid = aio_req->oid;
1158 unsigned int datalen = aio_req->data_len;
1159 uint64_t offset = aio_req->offset;
1160 uint8_t flags = aio_req->flags;
1161 uint64_t old_oid = aio_req->base_oid;
1162 bool create = aio_req->create;
1163
1164 if (!nr_copies) {
1165 error_report("bug");
1166 }
1167
1168 memset(&hdr, 0, sizeof(hdr));
1169
1170 switch (aiocb_type) {
1171 case AIOCB_FLUSH_CACHE:
1172 hdr.opcode = SD_OP_FLUSH_VDI;
1173 break;
1174 case AIOCB_READ_UDATA:
1175 hdr.opcode = SD_OP_READ_OBJ;
1176 hdr.flags = flags;
1177 break;
1178 case AIOCB_WRITE_UDATA:
1179 if (create) {
1180 hdr.opcode = SD_OP_CREATE_AND_WRITE_OBJ;
1181 } else {
1182 hdr.opcode = SD_OP_WRITE_OBJ;
1183 }
1184 wlen = datalen;
1185 hdr.flags = SD_FLAG_CMD_WRITE | flags;
1186 break;
1187 case AIOCB_DISCARD_OBJ:
1188 hdr.opcode = SD_OP_WRITE_OBJ;
1189 hdr.flags = SD_FLAG_CMD_WRITE | flags;
1190 s->inode.data_vdi_id[data_oid_to_idx(oid)] = 0;
1191 offset = offsetof(SheepdogInode,
1192 data_vdi_id[data_oid_to_idx(oid)]);
1193 oid = vid_to_vdi_oid(s->inode.vdi_id);
1194 wlen = datalen = sizeof(uint32_t);
1195 break;
1196 }
1197
1198 if (s->cache_flags) {
1199 hdr.flags |= s->cache_flags;
1200 }
1201
1202 hdr.oid = oid;
1203 hdr.cow_oid = old_oid;
1204 hdr.copies = s->inode.nr_copies;
1205
1206 hdr.data_length = datalen;
1207 hdr.offset = offset;
1208
1209 hdr.id = aio_req->id;
1210
1211 qemu_co_mutex_lock(&s->lock);
1212 s->co_send = qemu_coroutine_self();
1213 aio_set_fd_handler(s->aio_context, s->fd, false,
1214 co_read_response, co_write_request, s);
1215 socket_set_cork(s->fd, 1);
1216
1217 /* send a header */
1218 ret = qemu_co_send(s->fd, &hdr, sizeof(hdr));
1219 if (ret != sizeof(hdr)) {
1220 error_report("failed to send a req, %s", strerror(errno));
1221 goto out;
1222 }
1223
1224 if (wlen) {
1225 ret = qemu_co_sendv(s->fd, iov, niov, aio_req->iov_offset, wlen);
1226 if (ret != wlen) {
1227 error_report("failed to send a data, %s", strerror(errno));
1228 }
1229 }
1230 out:
1231 socket_set_cork(s->fd, 0);
1232 aio_set_fd_handler(s->aio_context, s->fd, false,
1233 co_read_response, NULL, s);
1234 s->co_send = NULL;
1235 qemu_co_mutex_unlock(&s->lock);
1236 }
1237
1238 static int read_write_object(int fd, AioContext *aio_context, char *buf,
1239 uint64_t oid, uint8_t copies,
1240 unsigned int datalen, uint64_t offset,
1241 bool write, bool create, uint32_t cache_flags)
1242 {
1243 SheepdogObjReq hdr;
1244 SheepdogObjRsp *rsp = (SheepdogObjRsp *)&hdr;
1245 unsigned int wlen, rlen;
1246 int ret;
1247
1248 memset(&hdr, 0, sizeof(hdr));
1249
1250 if (write) {
1251 wlen = datalen;
1252 rlen = 0;
1253 hdr.flags = SD_FLAG_CMD_WRITE;
1254 if (create) {
1255 hdr.opcode = SD_OP_CREATE_AND_WRITE_OBJ;
1256 } else {
1257 hdr.opcode = SD_OP_WRITE_OBJ;
1258 }
1259 } else {
1260 wlen = 0;
1261 rlen = datalen;
1262 hdr.opcode = SD_OP_READ_OBJ;
1263 }
1264
1265 hdr.flags |= cache_flags;
1266
1267 hdr.oid = oid;
1268 hdr.data_length = datalen;
1269 hdr.offset = offset;
1270 hdr.copies = copies;
1271
1272 ret = do_req(fd, aio_context, (SheepdogReq *)&hdr, buf, &wlen, &rlen);
1273 if (ret) {
1274 error_report("failed to send a request to the sheep");
1275 return ret;
1276 }
1277
1278 switch (rsp->result) {
1279 case SD_RES_SUCCESS:
1280 return 0;
1281 default:
1282 error_report("%s", sd_strerror(rsp->result));
1283 return -EIO;
1284 }
1285 }
1286
1287 static int read_object(int fd, AioContext *aio_context, char *buf,
1288 uint64_t oid, uint8_t copies,
1289 unsigned int datalen, uint64_t offset,
1290 uint32_t cache_flags)
1291 {
1292 return read_write_object(fd, aio_context, buf, oid, copies,
1293 datalen, offset, false,
1294 false, cache_flags);
1295 }
1296
1297 static int write_object(int fd, AioContext *aio_context, char *buf,
1298 uint64_t oid, uint8_t copies,
1299 unsigned int datalen, uint64_t offset, bool create,
1300 uint32_t cache_flags)
1301 {
1302 return read_write_object(fd, aio_context, buf, oid, copies,
1303 datalen, offset, true,
1304 create, cache_flags);
1305 }
1306
1307 /* update inode with the latest state */
1308 static int reload_inode(BDRVSheepdogState *s, uint32_t snapid, const char *tag)
1309 {
1310 Error *local_err = NULL;
1311 SheepdogInode *inode;
1312 int ret = 0, fd;
1313 uint32_t vid = 0;
1314
1315 fd = connect_to_sdog(s, &local_err);
1316 if (fd < 0) {
1317 error_report_err(local_err);
1318 return -EIO;
1319 }
1320
1321 inode = g_malloc(SD_INODE_HEADER_SIZE);
1322
1323 ret = find_vdi_name(s, s->name, snapid, tag, &vid, false, &local_err);
1324 if (ret) {
1325 error_report_err(local_err);
1326 goto out;
1327 }
1328
1329 ret = read_object(fd, s->aio_context, (char *)inode, vid_to_vdi_oid(vid),
1330 s->inode.nr_copies, SD_INODE_HEADER_SIZE, 0,
1331 s->cache_flags);
1332 if (ret < 0) {
1333 goto out;
1334 }
1335
1336 if (inode->vdi_id != s->inode.vdi_id) {
1337 memcpy(&s->inode, inode, SD_INODE_HEADER_SIZE);
1338 }
1339
1340 out:
1341 g_free(inode);
1342 closesocket(fd);
1343
1344 return ret;
1345 }
1346
1347 static void coroutine_fn resend_aioreq(BDRVSheepdogState *s, AIOReq *aio_req)
1348 {
1349 SheepdogAIOCB *acb = aio_req->aiocb;
1350
1351 aio_req->create = false;
1352
1353 /* check whether this request becomes a CoW one */
1354 if (acb->aiocb_type == AIOCB_WRITE_UDATA && is_data_obj(aio_req->oid)) {
1355 int idx = data_oid_to_idx(aio_req->oid);
1356
1357 if (is_data_obj_writable(&s->inode, idx)) {
1358 goto out;
1359 }
1360
1361 if (s->inode.data_vdi_id[idx]) {
1362 aio_req->base_oid = vid_to_data_oid(s->inode.data_vdi_id[idx], idx);
1363 aio_req->flags |= SD_FLAG_CMD_COW;
1364 }
1365 aio_req->create = true;
1366 }
1367 out:
1368 if (is_data_obj(aio_req->oid)) {
1369 add_aio_request(s, aio_req, acb->qiov->iov, acb->qiov->niov,
1370 acb->aiocb_type);
1371 } else {
1372 struct iovec iov;
1373 iov.iov_base = &s->inode;
1374 iov.iov_len = sizeof(s->inode);
1375 add_aio_request(s, aio_req, &iov, 1, AIOCB_WRITE_UDATA);
1376 }
1377 }
1378
1379 static void sd_detach_aio_context(BlockDriverState *bs)
1380 {
1381 BDRVSheepdogState *s = bs->opaque;
1382
1383 aio_set_fd_handler(s->aio_context, s->fd, false, NULL,
1384 NULL, NULL);
1385 }
1386
1387 static void sd_attach_aio_context(BlockDriverState *bs,
1388 AioContext *new_context)
1389 {
1390 BDRVSheepdogState *s = bs->opaque;
1391
1392 s->aio_context = new_context;
1393 aio_set_fd_handler(new_context, s->fd, false,
1394 co_read_response, NULL, s);
1395 }
1396
1397 /* TODO Convert to fine grained options */
1398 static QemuOptsList runtime_opts = {
1399 .name = "sheepdog",
1400 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
1401 .desc = {
1402 {
1403 .name = "filename",
1404 .type = QEMU_OPT_STRING,
1405 .help = "URL to the sheepdog image",
1406 },
1407 { /* end of list */ }
1408 },
1409 };
1410
1411 static int sd_open(BlockDriverState *bs, QDict *options, int flags,
1412 Error **errp)
1413 {
1414 int ret, fd;
1415 uint32_t vid = 0;
1416 BDRVSheepdogState *s = bs->opaque;
1417 char vdi[SD_MAX_VDI_LEN], tag[SD_MAX_VDI_TAG_LEN];
1418 uint32_t snapid;
1419 char *buf = NULL;
1420 QemuOpts *opts;
1421 Error *local_err = NULL;
1422 const char *filename;
1423
1424 s->bs = bs;
1425 s->aio_context = bdrv_get_aio_context(bs);
1426
1427 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
1428 qemu_opts_absorb_qdict(opts, options, &local_err);
1429 if (local_err) {
1430 error_propagate(errp, local_err);
1431 ret = -EINVAL;
1432 goto out;
1433 }
1434
1435 filename = qemu_opt_get(opts, "filename");
1436
1437 QLIST_INIT(&s->inflight_aio_head);
1438 QLIST_INIT(&s->failed_aio_head);
1439 QLIST_INIT(&s->inflight_aiocb_head);
1440 s->fd = -1;
1441
1442 memset(vdi, 0, sizeof(vdi));
1443 memset(tag, 0, sizeof(tag));
1444
1445 if (strstr(filename, "://")) {
1446 ret = sd_parse_uri(s, filename, vdi, &snapid, tag);
1447 } else {
1448 ret = parse_vdiname(s, filename, vdi, &snapid, tag);
1449 }
1450 if (ret < 0) {
1451 error_setg(errp, "Can't parse filename");
1452 goto out;
1453 }
1454 s->fd = get_sheep_fd(s, errp);
1455 if (s->fd < 0) {
1456 ret = s->fd;
1457 goto out;
1458 }
1459
1460 ret = find_vdi_name(s, vdi, snapid, tag, &vid, true, errp);
1461 if (ret) {
1462 goto out;
1463 }
1464
1465 /*
1466 * QEMU block layer emulates writethrough cache as 'writeback + flush', so
1467 * we always set SD_FLAG_CMD_CACHE (writeback cache) as default.
1468 */
1469 s->cache_flags = SD_FLAG_CMD_CACHE;
1470 if (flags & BDRV_O_NOCACHE) {
1471 s->cache_flags = SD_FLAG_CMD_DIRECT;
1472 }
1473 s->discard_supported = true;
1474
1475 if (snapid || tag[0] != '\0') {
1476 DPRINTF("%" PRIx32 " snapshot inode was open.\n", vid);
1477 s->is_snapshot = true;
1478 }
1479
1480 fd = connect_to_sdog(s, errp);
1481 if (fd < 0) {
1482 ret = fd;
1483 goto out;
1484 }
1485
1486 buf = g_malloc(SD_INODE_SIZE);
1487 ret = read_object(fd, s->aio_context, buf, vid_to_vdi_oid(vid),
1488 0, SD_INODE_SIZE, 0, s->cache_flags);
1489
1490 closesocket(fd);
1491
1492 if (ret) {
1493 error_setg(errp, "Can't read snapshot inode");
1494 goto out;
1495 }
1496
1497 memcpy(&s->inode, buf, sizeof(s->inode));
1498
1499 bs->total_sectors = s->inode.vdi_size / BDRV_SECTOR_SIZE;
1500 pstrcpy(s->name, sizeof(s->name), vdi);
1501 qemu_co_mutex_init(&s->lock);
1502 qemu_co_queue_init(&s->overlapping_queue);
1503 qemu_opts_del(opts);
1504 g_free(buf);
1505 return 0;
1506 out:
1507 aio_set_fd_handler(bdrv_get_aio_context(bs), s->fd,
1508 false, NULL, NULL, NULL);
1509 if (s->fd >= 0) {
1510 closesocket(s->fd);
1511 }
1512 qemu_opts_del(opts);
1513 g_free(buf);
1514 return ret;
1515 }
1516
1517 static int sd_reopen_prepare(BDRVReopenState *state, BlockReopenQueue *queue,
1518 Error **errp)
1519 {
1520 BDRVSheepdogState *s = state->bs->opaque;
1521 BDRVSheepdogReopenState *re_s;
1522 int ret = 0;
1523
1524 re_s = state->opaque = g_new0(BDRVSheepdogReopenState, 1);
1525
1526 re_s->cache_flags = SD_FLAG_CMD_CACHE;
1527 if (state->flags & BDRV_O_NOCACHE) {
1528 re_s->cache_flags = SD_FLAG_CMD_DIRECT;
1529 }
1530
1531 re_s->fd = get_sheep_fd(s, errp);
1532 if (re_s->fd < 0) {
1533 ret = re_s->fd;
1534 return ret;
1535 }
1536
1537 return ret;
1538 }
1539
1540 static void sd_reopen_commit(BDRVReopenState *state)
1541 {
1542 BDRVSheepdogReopenState *re_s = state->opaque;
1543 BDRVSheepdogState *s = state->bs->opaque;
1544
1545 if (s->fd) {
1546 aio_set_fd_handler(s->aio_context, s->fd, false,
1547 NULL, NULL, NULL);
1548 closesocket(s->fd);
1549 }
1550
1551 s->fd = re_s->fd;
1552 s->cache_flags = re_s->cache_flags;
1553
1554 g_free(state->opaque);
1555 state->opaque = NULL;
1556
1557 return;
1558 }
1559
1560 static void sd_reopen_abort(BDRVReopenState *state)
1561 {
1562 BDRVSheepdogReopenState *re_s = state->opaque;
1563 BDRVSheepdogState *s = state->bs->opaque;
1564
1565 if (re_s == NULL) {
1566 return;
1567 }
1568
1569 if (re_s->fd) {
1570 aio_set_fd_handler(s->aio_context, re_s->fd, false,
1571 NULL, NULL, NULL);
1572 closesocket(re_s->fd);
1573 }
1574
1575 g_free(state->opaque);
1576 state->opaque = NULL;
1577
1578 return;
1579 }
1580
1581 static int do_sd_create(BDRVSheepdogState *s, uint32_t *vdi_id, int snapshot,
1582 Error **errp)
1583 {
1584 SheepdogVdiReq hdr;
1585 SheepdogVdiRsp *rsp = (SheepdogVdiRsp *)&hdr;
1586 int fd, ret;
1587 unsigned int wlen, rlen = 0;
1588 char buf[SD_MAX_VDI_LEN];
1589
1590 fd = connect_to_sdog(s, errp);
1591 if (fd < 0) {
1592 return fd;
1593 }
1594
1595 /* FIXME: would it be better to fail (e.g., return -EIO) when filename
1596 * does not fit in buf? For now, just truncate and avoid buffer overrun.
1597 */
1598 memset(buf, 0, sizeof(buf));
1599 pstrcpy(buf, sizeof(buf), s->name);
1600
1601 memset(&hdr, 0, sizeof(hdr));
1602 hdr.opcode = SD_OP_NEW_VDI;
1603 hdr.base_vdi_id = s->inode.vdi_id;
1604
1605 wlen = SD_MAX_VDI_LEN;
1606
1607 hdr.flags = SD_FLAG_CMD_WRITE;
1608 hdr.snapid = snapshot;
1609
1610 hdr.data_length = wlen;
1611 hdr.vdi_size = s->inode.vdi_size;
1612 hdr.copy_policy = s->inode.copy_policy;
1613 hdr.copies = s->inode.nr_copies;
1614 hdr.block_size_shift = s->inode.block_size_shift;
1615
1616 ret = do_req(fd, s->aio_context, (SheepdogReq *)&hdr, buf, &wlen, &rlen);
1617
1618 closesocket(fd);
1619
1620 if (ret) {
1621 error_setg_errno(errp, -ret, "create failed");
1622 return ret;
1623 }
1624
1625 if (rsp->result != SD_RES_SUCCESS) {
1626 error_setg(errp, "%s, %s", sd_strerror(rsp->result), s->inode.name);
1627 return -EIO;
1628 }
1629
1630 if (vdi_id) {
1631 *vdi_id = rsp->vdi_id;
1632 }
1633
1634 return 0;
1635 }
1636
1637 static int sd_prealloc(const char *filename, Error **errp)
1638 {
1639 BlockDriverState *bs = NULL;
1640 BDRVSheepdogState *base = NULL;
1641 unsigned long buf_size;
1642 uint32_t idx, max_idx;
1643 uint32_t object_size;
1644 int64_t vdi_size;
1645 void *buf = NULL;
1646 int ret;
1647
1648 ret = bdrv_open(&bs, filename, NULL, NULL, BDRV_O_RDWR | BDRV_O_PROTOCOL,
1649 errp);
1650 if (ret < 0) {
1651 goto out_with_err_set;
1652 }
1653
1654 vdi_size = bdrv_getlength(bs);
1655 if (vdi_size < 0) {
1656 ret = vdi_size;
1657 goto out;
1658 }
1659
1660 base = bs->opaque;
1661 object_size = (UINT32_C(1) << base->inode.block_size_shift);
1662 buf_size = MIN(object_size, SD_DATA_OBJ_SIZE);
1663 buf = g_malloc0(buf_size);
1664
1665 max_idx = DIV_ROUND_UP(vdi_size, buf_size);
1666
1667 for (idx = 0; idx < max_idx; idx++) {
1668 /*
1669 * The created image can be a cloned image, so we need to read
1670 * a data from the source image.
1671 */
1672 ret = bdrv_pread(bs, idx * buf_size, buf, buf_size);
1673 if (ret < 0) {
1674 goto out;
1675 }
1676 ret = bdrv_pwrite(bs, idx * buf_size, buf, buf_size);
1677 if (ret < 0) {
1678 goto out;
1679 }
1680 }
1681
1682 out:
1683 if (ret < 0) {
1684 error_setg_errno(errp, -ret, "Can't pre-allocate");
1685 }
1686 out_with_err_set:
1687 if (bs) {
1688 bdrv_unref(bs);
1689 }
1690 g_free(buf);
1691
1692 return ret;
1693 }
1694
1695 /*
1696 * Sheepdog support two kinds of redundancy, full replication and erasure
1697 * coding.
1698 *
1699 * # create a fully replicated vdi with x copies
1700 * -o redundancy=x (1 <= x <= SD_MAX_COPIES)
1701 *
1702 * # create a erasure coded vdi with x data strips and y parity strips
1703 * -o redundancy=x:y (x must be one of {2,4,8,16} and 1 <= y < SD_EC_MAX_STRIP)
1704 */
1705 static int parse_redundancy(BDRVSheepdogState *s, const char *opt)
1706 {
1707 struct SheepdogInode *inode = &s->inode;
1708 const char *n1, *n2;
1709 long copy, parity;
1710 char p[10];
1711
1712 pstrcpy(p, sizeof(p), opt);
1713 n1 = strtok(p, ":");
1714 n2 = strtok(NULL, ":");
1715
1716 if (!n1) {
1717 return -EINVAL;
1718 }
1719
1720 copy = strtol(n1, NULL, 10);
1721 if (copy > SD_MAX_COPIES || copy < 1) {
1722 return -EINVAL;
1723 }
1724 if (!n2) {
1725 inode->copy_policy = 0;
1726 inode->nr_copies = copy;
1727 return 0;
1728 }
1729
1730 if (copy != 2 && copy != 4 && copy != 8 && copy != 16) {
1731 return -EINVAL;
1732 }
1733
1734 parity = strtol(n2, NULL, 10);
1735 if (parity >= SD_EC_MAX_STRIP || parity < 1) {
1736 return -EINVAL;
1737 }
1738
1739 /*
1740 * 4 bits for parity and 4 bits for data.
1741 * We have to compress upper data bits because it can't represent 16
1742 */
1743 inode->copy_policy = ((copy / 2) << 4) + parity;
1744 inode->nr_copies = copy + parity;
1745
1746 return 0;
1747 }
1748
1749 static int parse_block_size_shift(BDRVSheepdogState *s, QemuOpts *opt)
1750 {
1751 struct SheepdogInode *inode = &s->inode;
1752 uint64_t object_size;
1753 int obj_order;
1754
1755 object_size = qemu_opt_get_size_del(opt, BLOCK_OPT_OBJECT_SIZE, 0);
1756 if (object_size) {
1757 if ((object_size - 1) & object_size) { /* not a power of 2? */
1758 return -EINVAL;
1759 }
1760 obj_order = ctz32(object_size);
1761 if (obj_order < 20 || obj_order > 31) {
1762 return -EINVAL;
1763 }
1764 inode->block_size_shift = (uint8_t)obj_order;
1765 }
1766
1767 return 0;
1768 }
1769
1770 static int sd_create(const char *filename, QemuOpts *opts,
1771 Error **errp)
1772 {
1773 int ret = 0;
1774 uint32_t vid = 0;
1775 char *backing_file = NULL;
1776 char *buf = NULL;
1777 BDRVSheepdogState *s;
1778 char tag[SD_MAX_VDI_TAG_LEN];
1779 uint32_t snapid;
1780 uint64_t max_vdi_size;
1781 bool prealloc = false;
1782
1783 s = g_new0(BDRVSheepdogState, 1);
1784
1785 memset(tag, 0, sizeof(tag));
1786 if (strstr(filename, "://")) {
1787 ret = sd_parse_uri(s, filename, s->name, &snapid, tag);
1788 } else {
1789 ret = parse_vdiname(s, filename, s->name, &snapid, tag);
1790 }
1791 if (ret < 0) {
1792 error_setg(errp, "Can't parse filename");
1793 goto out;
1794 }
1795
1796 s->inode.vdi_size = ROUND_UP(qemu_opt_get_size_del(opts, BLOCK_OPT_SIZE, 0),
1797 BDRV_SECTOR_SIZE);
1798 backing_file = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FILE);
1799 buf = qemu_opt_get_del(opts, BLOCK_OPT_PREALLOC);
1800 if (!buf || !strcmp(buf, "off")) {
1801 prealloc = false;
1802 } else if (!strcmp(buf, "full")) {
1803 prealloc = true;
1804 } else {
1805 error_setg(errp, "Invalid preallocation mode: '%s'", buf);
1806 ret = -EINVAL;
1807 goto out;
1808 }
1809
1810 g_free(buf);
1811 buf = qemu_opt_get_del(opts, BLOCK_OPT_REDUNDANCY);
1812 if (buf) {
1813 ret = parse_redundancy(s, buf);
1814 if (ret < 0) {
1815 error_setg(errp, "Invalid redundancy mode: '%s'", buf);
1816 goto out;
1817 }
1818 }
1819 ret = parse_block_size_shift(s, opts);
1820 if (ret < 0) {
1821 error_setg(errp, "Invalid object_size."
1822 " obect_size needs to be power of 2"
1823 " and be limited from 2^20 to 2^31");
1824 goto out;
1825 }
1826
1827 if (backing_file) {
1828 BlockDriverState *bs;
1829 BDRVSheepdogState *base;
1830 BlockDriver *drv;
1831
1832 /* Currently, only Sheepdog backing image is supported. */
1833 drv = bdrv_find_protocol(backing_file, true, NULL);
1834 if (!drv || strcmp(drv->protocol_name, "sheepdog") != 0) {
1835 error_setg(errp, "backing_file must be a sheepdog image");
1836 ret = -EINVAL;
1837 goto out;
1838 }
1839
1840 bs = NULL;
1841 ret = bdrv_open(&bs, backing_file, NULL, NULL, BDRV_O_PROTOCOL, errp);
1842 if (ret < 0) {
1843 goto out;
1844 }
1845
1846 base = bs->opaque;
1847
1848 if (!is_snapshot(&base->inode)) {
1849 error_setg(errp, "cannot clone from a non snapshot vdi");
1850 bdrv_unref(bs);
1851 ret = -EINVAL;
1852 goto out;
1853 }
1854 s->inode.vdi_id = base->inode.vdi_id;
1855 bdrv_unref(bs);
1856 }
1857
1858 s->aio_context = qemu_get_aio_context();
1859
1860 /* if block_size_shift is not specified, get cluster default value */
1861 if (s->inode.block_size_shift == 0) {
1862 SheepdogVdiReq hdr;
1863 SheepdogClusterRsp *rsp = (SheepdogClusterRsp *)&hdr;
1864 Error *local_err = NULL;
1865 int fd;
1866 unsigned int wlen = 0, rlen = 0;
1867
1868 fd = connect_to_sdog(s, &local_err);
1869 if (fd < 0) {
1870 error_report_err(local_err);
1871 ret = -EIO;
1872 goto out;
1873 }
1874
1875 memset(&hdr, 0, sizeof(hdr));
1876 hdr.opcode = SD_OP_GET_CLUSTER_DEFAULT;
1877 hdr.proto_ver = SD_PROTO_VER;
1878
1879 ret = do_req(fd, s->aio_context, (SheepdogReq *)&hdr,
1880 NULL, &wlen, &rlen);
1881 closesocket(fd);
1882 if (ret) {
1883 error_setg_errno(errp, -ret, "failed to get cluster default");
1884 goto out;
1885 }
1886 if (rsp->result == SD_RES_SUCCESS) {
1887 s->inode.block_size_shift = rsp->block_size_shift;
1888 } else {
1889 s->inode.block_size_shift = SD_DEFAULT_BLOCK_SIZE_SHIFT;
1890 }
1891 }
1892
1893 max_vdi_size = (UINT64_C(1) << s->inode.block_size_shift) * MAX_DATA_OBJS;
1894
1895 if (s->inode.vdi_size > max_vdi_size) {
1896 error_setg(errp, "An image is too large."
1897 " The maximum image size is %"PRIu64 "GB",
1898 max_vdi_size / 1024 / 1024 / 1024);
1899 ret = -EINVAL;
1900 goto out;
1901 }
1902
1903 ret = do_sd_create(s, &vid, 0, errp);
1904 if (ret) {
1905 goto out;
1906 }
1907
1908 if (prealloc) {
1909 ret = sd_prealloc(filename, errp);
1910 }
1911 out:
1912 g_free(backing_file);
1913 g_free(buf);
1914 g_free(s);
1915 return ret;
1916 }
1917
1918 static void sd_close(BlockDriverState *bs)
1919 {
1920 Error *local_err = NULL;
1921 BDRVSheepdogState *s = bs->opaque;
1922 SheepdogVdiReq hdr;
1923 SheepdogVdiRsp *rsp = (SheepdogVdiRsp *)&hdr;
1924 unsigned int wlen, rlen = 0;
1925 int fd, ret;
1926
1927 DPRINTF("%s\n", s->name);
1928
1929 fd = connect_to_sdog(s, &local_err);
1930 if (fd < 0) {
1931 error_report_err(local_err);
1932 return;
1933 }
1934
1935 memset(&hdr, 0, sizeof(hdr));
1936
1937 hdr.opcode = SD_OP_RELEASE_VDI;
1938 hdr.type = LOCK_TYPE_NORMAL;
1939 hdr.base_vdi_id = s->inode.vdi_id;
1940 wlen = strlen(s->name) + 1;
1941 hdr.data_length = wlen;
1942 hdr.flags = SD_FLAG_CMD_WRITE;
1943
1944 ret = do_req(fd, s->aio_context, (SheepdogReq *)&hdr,
1945 s->name, &wlen, &rlen);
1946
1947 closesocket(fd);
1948
1949 if (!ret && rsp->result != SD_RES_SUCCESS &&
1950 rsp->result != SD_RES_VDI_NOT_LOCKED) {
1951 error_report("%s, %s", sd_strerror(rsp->result), s->name);
1952 }
1953
1954 aio_set_fd_handler(bdrv_get_aio_context(bs), s->fd,
1955 false, NULL, NULL, NULL);
1956 closesocket(s->fd);
1957 g_free(s->host_spec);
1958 }
1959
1960 static int64_t sd_getlength(BlockDriverState *bs)
1961 {
1962 BDRVSheepdogState *s = bs->opaque;
1963
1964 return s->inode.vdi_size;
1965 }
1966
1967 static int sd_truncate(BlockDriverState *bs, int64_t offset)
1968 {
1969 Error *local_err = NULL;
1970 BDRVSheepdogState *s = bs->opaque;
1971 int ret, fd;
1972 unsigned int datalen;
1973 uint64_t max_vdi_size;
1974
1975 max_vdi_size = (UINT64_C(1) << s->inode.block_size_shift) * MAX_DATA_OBJS;
1976 if (offset < s->inode.vdi_size) {
1977 error_report("shrinking is not supported");
1978 return -EINVAL;
1979 } else if (offset > max_vdi_size) {
1980 error_report("too big image size");
1981 return -EINVAL;
1982 }
1983
1984 fd = connect_to_sdog(s, &local_err);
1985 if (fd < 0) {
1986 error_report_err(local_err);
1987 return fd;
1988 }
1989
1990 /* we don't need to update entire object */
1991 datalen = SD_INODE_SIZE - sizeof(s->inode.data_vdi_id);
1992 s->inode.vdi_size = offset;
1993 ret = write_object(fd, s->aio_context, (char *)&s->inode,
1994 vid_to_vdi_oid(s->inode.vdi_id), s->inode.nr_copies,
1995 datalen, 0, false, s->cache_flags);
1996 close(fd);
1997
1998 if (ret < 0) {
1999 error_report("failed to update an inode.");
2000 }
2001
2002 return ret;
2003 }
2004
2005 /*
2006 * This function is called after writing data objects. If we need to
2007 * update metadata, this sends a write request to the vdi object.
2008 * Otherwise, this switches back to sd_co_readv/writev.
2009 */
2010 static void coroutine_fn sd_write_done(SheepdogAIOCB *acb)
2011 {
2012 BDRVSheepdogState *s = acb->common.bs->opaque;
2013 struct iovec iov;
2014 AIOReq *aio_req;
2015 uint32_t offset, data_len, mn, mx;
2016
2017 mn = acb->min_dirty_data_idx;
2018 mx = acb->max_dirty_data_idx;
2019 if (mn <= mx) {
2020 /* we need to update the vdi object. */
2021 offset = sizeof(s->inode) - sizeof(s->inode.data_vdi_id) +
2022 mn * sizeof(s->inode.data_vdi_id[0]);
2023 data_len = (mx - mn + 1) * sizeof(s->inode.data_vdi_id[0]);
2024
2025 acb->min_dirty_data_idx = UINT32_MAX;
2026 acb->max_dirty_data_idx = 0;
2027
2028 iov.iov_base = &s->inode;
2029 iov.iov_len = sizeof(s->inode);
2030 aio_req = alloc_aio_req(s, acb, vid_to_vdi_oid(s->inode.vdi_id),
2031 data_len, offset, 0, false, 0, offset);
2032 QLIST_INSERT_HEAD(&s->inflight_aio_head, aio_req, aio_siblings);
2033 add_aio_request(s, aio_req, &iov, 1, AIOCB_WRITE_UDATA);
2034
2035 acb->aio_done_func = sd_finish_aiocb;
2036 acb->aiocb_type = AIOCB_WRITE_UDATA;
2037 return;
2038 }
2039
2040 sd_finish_aiocb(acb);
2041 }
2042
2043 /* Delete current working VDI on the snapshot chain */
2044 static bool sd_delete(BDRVSheepdogState *s)
2045 {
2046 Error *local_err = NULL;
2047 unsigned int wlen = SD_MAX_VDI_LEN, rlen = 0;
2048 SheepdogVdiReq hdr = {
2049 .opcode = SD_OP_DEL_VDI,
2050 .base_vdi_id = s->inode.vdi_id,
2051 .data_length = wlen,
2052 .flags = SD_FLAG_CMD_WRITE,
2053 };
2054 SheepdogVdiRsp *rsp = (SheepdogVdiRsp *)&hdr;
2055 int fd, ret;
2056
2057 fd = connect_to_sdog(s, &local_err);
2058 if (fd < 0) {
2059 error_report_err(local_err);
2060 return false;
2061 }
2062
2063 ret = do_req(fd, s->aio_context, (SheepdogReq *)&hdr,
2064 s->name, &wlen, &rlen);
2065 closesocket(fd);
2066 if (ret) {
2067 return false;
2068 }
2069 switch (rsp->result) {
2070 case SD_RES_NO_VDI:
2071 error_report("%s was already deleted", s->name);
2072 /* fall through */
2073 case SD_RES_SUCCESS:
2074 break;
2075 default:
2076 error_report("%s, %s", sd_strerror(rsp->result), s->name);
2077 return false;
2078 }
2079
2080 return true;
2081 }
2082
2083 /*
2084 * Create a writable VDI from a snapshot
2085 */
2086 static int sd_create_branch(BDRVSheepdogState *s)
2087 {
2088 Error *local_err = NULL;
2089 int ret, fd;
2090 uint32_t vid;
2091 char *buf;
2092 bool deleted;
2093
2094 DPRINTF("%" PRIx32 " is snapshot.\n", s->inode.vdi_id);
2095
2096 buf = g_malloc(SD_INODE_SIZE);
2097
2098 /*
2099 * Even If deletion fails, we will just create extra snapshot based on
2100 * the working VDI which was supposed to be deleted. So no need to
2101 * false bail out.
2102 */
2103 deleted = sd_delete(s);
2104 ret = do_sd_create(s, &vid, !deleted, &local_err);
2105 if (ret) {
2106 error_report_err(local_err);
2107 goto out;
2108 }
2109
2110 DPRINTF("%" PRIx32 " is created.\n", vid);
2111
2112 fd = connect_to_sdog(s, &local_err);
2113 if (fd < 0) {
2114 error_report_err(local_err);
2115 ret = fd;
2116 goto out;
2117 }
2118
2119 ret = read_object(fd, s->aio_context, buf, vid_to_vdi_oid(vid),
2120 s->inode.nr_copies, SD_INODE_SIZE, 0, s->cache_flags);
2121
2122 closesocket(fd);
2123
2124 if (ret < 0) {
2125 goto out;
2126 }
2127
2128 memcpy(&s->inode, buf, sizeof(s->inode));
2129
2130 s->is_snapshot = false;
2131 ret = 0;
2132 DPRINTF("%" PRIx32 " was newly created.\n", s->inode.vdi_id);
2133
2134 out:
2135 g_free(buf);
2136
2137 return ret;
2138 }
2139
2140 /*
2141 * Send I/O requests to the server.
2142 *
2143 * This function sends requests to the server, links the requests to
2144 * the inflight_list in BDRVSheepdogState, and exits without
2145 * waiting the response. The responses are received in the
2146 * `aio_read_response' function which is called from the main loop as
2147 * a fd handler.
2148 *
2149 * Returns 1 when we need to wait a response, 0 when there is no sent
2150 * request and -errno in error cases.
2151 */
2152 static int coroutine_fn sd_co_rw_vector(void *p)
2153 {
2154 SheepdogAIOCB *acb = p;
2155 int ret = 0;
2156 unsigned long len, done = 0, total = acb->nb_sectors * BDRV_SECTOR_SIZE;
2157 unsigned long idx;
2158 uint32_t object_size;
2159 uint64_t oid;
2160 uint64_t offset;
2161 BDRVSheepdogState *s = acb->common.bs->opaque;
2162 SheepdogInode *inode = &s->inode;
2163 AIOReq *aio_req;
2164
2165 if (acb->aiocb_type == AIOCB_WRITE_UDATA && s->is_snapshot) {
2166 /*
2167 * In the case we open the snapshot VDI, Sheepdog creates the
2168 * writable VDI when we do a write operation first.
2169 */
2170 ret = sd_create_branch(s);
2171 if (ret) {
2172 acb->ret = -EIO;
2173 goto out;
2174 }
2175 }
2176
2177 object_size = (UINT32_C(1) << inode->block_size_shift);
2178 idx = acb->sector_num * BDRV_SECTOR_SIZE / object_size;
2179 offset = (acb->sector_num * BDRV_SECTOR_SIZE) % object_size;
2180
2181 /*
2182 * Make sure we don't free the aiocb before we are done with all requests.
2183 * This additional reference is dropped at the end of this function.
2184 */
2185 acb->nr_pending++;
2186
2187 while (done != total) {
2188 uint8_t flags = 0;
2189 uint64_t old_oid = 0;
2190 bool create = false;
2191
2192 oid = vid_to_data_oid(inode->data_vdi_id[idx], idx);
2193
2194 len = MIN(total - done, object_size - offset);
2195
2196 switch (acb->aiocb_type) {
2197 case AIOCB_READ_UDATA:
2198 if (!inode->data_vdi_id[idx]) {
2199 qemu_iovec_memset(acb->qiov, done, 0, len);
2200 goto done;
2201 }
2202 break;
2203 case AIOCB_WRITE_UDATA:
2204 if (!inode->data_vdi_id[idx]) {
2205 create = true;
2206 } else if (!is_data_obj_writable(inode, idx)) {
2207 /* Copy-On-Write */
2208 create = true;
2209 old_oid = oid;
2210 flags = SD_FLAG_CMD_COW;
2211 }
2212 break;
2213 case AIOCB_DISCARD_OBJ:
2214 /*
2215 * We discard the object only when the whole object is
2216 * 1) allocated 2) trimmed. Otherwise, simply skip it.
2217 */
2218 if (len != object_size || inode->data_vdi_id[idx] == 0) {
2219 goto done;
2220 }
2221 break;
2222 default:
2223 break;
2224 }
2225
2226 if (create) {
2227 DPRINTF("update ino (%" PRIu32 ") %" PRIu64 " %" PRIu64 " %ld\n",
2228 inode->vdi_id, oid,
2229 vid_to_data_oid(inode->data_vdi_id[idx], idx), idx);
2230 oid = vid_to_data_oid(inode->vdi_id, idx);
2231 DPRINTF("new oid %" PRIx64 "\n", oid);
2232 }
2233
2234 aio_req = alloc_aio_req(s, acb, oid, len, offset, flags, create,
2235 old_oid,
2236 acb->aiocb_type == AIOCB_DISCARD_OBJ ?
2237 0 : done);
2238 QLIST_INSERT_HEAD(&s->inflight_aio_head, aio_req, aio_siblings);
2239
2240 add_aio_request(s, aio_req, acb->qiov->iov, acb->qiov->niov,
2241 acb->aiocb_type);
2242 done:
2243 offset = 0;
2244 idx++;
2245 done += len;
2246 }
2247 out:
2248 if (!--acb->nr_pending) {
2249 return acb->ret;
2250 }
2251 return 1;
2252 }
2253
2254 static bool check_overlapping_aiocb(BDRVSheepdogState *s, SheepdogAIOCB *aiocb)
2255 {
2256 SheepdogAIOCB *cb;
2257
2258 QLIST_FOREACH(cb, &s->inflight_aiocb_head, aiocb_siblings) {
2259 if (AIOCBOverlapping(aiocb, cb)) {
2260 return true;
2261 }
2262 }
2263
2264 QLIST_INSERT_HEAD(&s->inflight_aiocb_head, aiocb, aiocb_siblings);
2265 return false;
2266 }
2267
2268 static coroutine_fn int sd_co_writev(BlockDriverState *bs, int64_t sector_num,
2269 int nb_sectors, QEMUIOVector *qiov)
2270 {
2271 SheepdogAIOCB *acb;
2272 int ret;
2273 int64_t offset = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE;
2274 BDRVSheepdogState *s = bs->opaque;
2275
2276 if (offset > s->inode.vdi_size) {
2277 ret = sd_truncate(bs, offset);
2278 if (ret < 0) {
2279 return ret;
2280 }
2281 }
2282
2283 acb = sd_aio_setup(bs, qiov, sector_num, nb_sectors);
2284 acb->aio_done_func = sd_write_done;
2285 acb->aiocb_type = AIOCB_WRITE_UDATA;
2286
2287 retry:
2288 if (check_overlapping_aiocb(s, acb)) {
2289 qemu_co_queue_wait(&s->overlapping_queue);
2290 goto retry;
2291 }
2292
2293 ret = sd_co_rw_vector(acb);
2294 if (ret <= 0) {
2295 QLIST_REMOVE(acb, aiocb_siblings);
2296 qemu_co_queue_restart_all(&s->overlapping_queue);
2297 qemu_aio_unref(acb);
2298 return ret;
2299 }
2300
2301 qemu_coroutine_yield();
2302
2303 QLIST_REMOVE(acb, aiocb_siblings);
2304 qemu_co_queue_restart_all(&s->overlapping_queue);
2305
2306 return acb->ret;
2307 }
2308
2309 static coroutine_fn int sd_co_readv(BlockDriverState *bs, int64_t sector_num,
2310 int nb_sectors, QEMUIOVector *qiov)
2311 {
2312 SheepdogAIOCB *acb;
2313 int ret;
2314 BDRVSheepdogState *s = bs->opaque;
2315
2316 acb = sd_aio_setup(bs, qiov, sector_num, nb_sectors);
2317 acb->aiocb_type = AIOCB_READ_UDATA;
2318 acb->aio_done_func = sd_finish_aiocb;
2319
2320 retry:
2321 if (check_overlapping_aiocb(s, acb)) {
2322 qemu_co_queue_wait(&s->overlapping_queue);
2323 goto retry;
2324 }
2325
2326 ret = sd_co_rw_vector(acb);
2327 if (ret <= 0) {
2328 QLIST_REMOVE(acb, aiocb_siblings);
2329 qemu_co_queue_restart_all(&s->overlapping_queue);
2330 qemu_aio_unref(acb);
2331 return ret;
2332 }
2333
2334 qemu_coroutine_yield();
2335
2336 QLIST_REMOVE(acb, aiocb_siblings);
2337 qemu_co_queue_restart_all(&s->overlapping_queue);
2338 return acb->ret;
2339 }
2340
2341 static int coroutine_fn sd_co_flush_to_disk(BlockDriverState *bs)
2342 {
2343 BDRVSheepdogState *s = bs->opaque;
2344 SheepdogAIOCB *acb;
2345 AIOReq *aio_req;
2346
2347 if (s->cache_flags != SD_FLAG_CMD_CACHE) {
2348 return 0;
2349 }
2350
2351 acb = sd_aio_setup(bs, NULL, 0, 0);
2352 acb->aiocb_type = AIOCB_FLUSH_CACHE;
2353 acb->aio_done_func = sd_finish_aiocb;
2354
2355 aio_req = alloc_aio_req(s, acb, vid_to_vdi_oid(s->inode.vdi_id),
2356 0, 0, 0, false, 0, 0);
2357 QLIST_INSERT_HEAD(&s->inflight_aio_head, aio_req, aio_siblings);
2358 add_aio_request(s, aio_req, NULL, 0, acb->aiocb_type);
2359
2360 qemu_coroutine_yield();
2361 return acb->ret;
2362 }
2363
2364 static int sd_snapshot_create(BlockDriverState *bs, QEMUSnapshotInfo *sn_info)
2365 {
2366 Error *local_err = NULL;
2367 BDRVSheepdogState *s = bs->opaque;
2368 int ret, fd;
2369 uint32_t new_vid;
2370 SheepdogInode *inode;
2371 unsigned int datalen;
2372
2373 DPRINTF("sn_info: name %s id_str %s s: name %s vm_state_size %" PRId64 " "
2374 "is_snapshot %d\n", sn_info->name, sn_info->id_str,
2375 s->name, sn_info->vm_state_size, s->is_snapshot);
2376
2377 if (s->is_snapshot) {
2378 error_report("You can't create a snapshot of a snapshot VDI, "
2379 "%s (%" PRIu32 ").", s->name, s->inode.vdi_id);
2380
2381 return -EINVAL;
2382 }
2383
2384 DPRINTF("%s %s\n", sn_info->name, sn_info->id_str);
2385
2386 s->inode.vm_state_size = sn_info->vm_state_size;
2387 s->inode.vm_clock_nsec = sn_info->vm_clock_nsec;
2388 /* It appears that inode.tag does not require a NUL terminator,
2389 * which means this use of strncpy is ok.
2390 */
2391 strncpy(s->inode.tag, sn_info->name, sizeof(s->inode.tag));
2392 /* we don't need to update entire object */
2393 datalen = SD_INODE_SIZE - sizeof(s->inode.data_vdi_id);
2394 inode = g_malloc(datalen);
2395
2396 /* refresh inode. */
2397 fd = connect_to_sdog(s, &local_err);
2398 if (fd < 0) {
2399 error_report_err(local_err);
2400 ret = fd;
2401 goto cleanup;
2402 }
2403
2404 ret = write_object(fd, s->aio_context, (char *)&s->inode,
2405 vid_to_vdi_oid(s->inode.vdi_id), s->inode.nr_copies,
2406 datalen, 0, false, s->cache_flags);
2407 if (ret < 0) {
2408 error_report("failed to write snapshot's inode.");
2409 goto cleanup;
2410 }
2411
2412 ret = do_sd_create(s, &new_vid, 1, &local_err);
2413 if (ret < 0) {
2414 error_reportf_err(local_err,
2415 "failed to create inode for snapshot: ");
2416 goto cleanup;
2417 }
2418
2419 ret = read_object(fd, s->aio_context, (char *)inode,
2420 vid_to_vdi_oid(new_vid), s->inode.nr_copies, datalen, 0,
2421 s->cache_flags);
2422
2423 if (ret < 0) {
2424 error_report("failed to read new inode info. %s", strerror(errno));
2425 goto cleanup;
2426 }
2427
2428 memcpy(&s->inode, inode, datalen);
2429 DPRINTF("s->inode: name %s snap_id %x oid %x\n",
2430 s->inode.name, s->inode.snap_id, s->inode.vdi_id);
2431
2432 cleanup:
2433 g_free(inode);
2434 closesocket(fd);
2435 return ret;
2436 }
2437
2438 /*
2439 * We implement rollback(loadvm) operation to the specified snapshot by
2440 * 1) switch to the snapshot
2441 * 2) rely on sd_create_branch to delete working VDI and
2442 * 3) create a new working VDI based on the specified snapshot
2443 */
2444 static int sd_snapshot_goto(BlockDriverState *bs, const char *snapshot_id)
2445 {
2446 BDRVSheepdogState *s = bs->opaque;
2447 BDRVSheepdogState *old_s;
2448 char tag[SD_MAX_VDI_TAG_LEN];
2449 uint32_t snapid = 0;
2450 int ret = 0;
2451
2452 old_s = g_new(BDRVSheepdogState, 1);
2453
2454 memcpy(old_s, s, sizeof(BDRVSheepdogState));
2455
2456 snapid = strtoul(snapshot_id, NULL, 10);
2457 if (snapid) {
2458 tag[0] = 0;
2459 } else {
2460 pstrcpy(tag, sizeof(tag), snapshot_id);
2461 }
2462
2463 ret = reload_inode(s, snapid, tag);
2464 if (ret) {
2465 goto out;
2466 }
2467
2468 ret = sd_create_branch(s);
2469 if (ret) {
2470 goto out;
2471 }
2472
2473 g_free(old_s);
2474
2475 return 0;
2476 out:
2477 /* recover bdrv_sd_state */
2478 memcpy(s, old_s, sizeof(BDRVSheepdogState));
2479 g_free(old_s);
2480
2481 error_report("failed to open. recover old bdrv_sd_state.");
2482
2483 return ret;
2484 }
2485
2486 #define NR_BATCHED_DISCARD 128
2487
2488 static bool remove_objects(BDRVSheepdogState *s)
2489 {
2490 int fd, i = 0, nr_objs = 0;
2491 Error *local_err = NULL;
2492 int ret = 0;
2493 bool result = true;
2494 SheepdogInode *inode = &s->inode;
2495
2496 fd = connect_to_sdog(s, &local_err);
2497 if (fd < 0) {
2498 error_report_err(local_err);
2499 return false;
2500 }
2501
2502 nr_objs = count_data_objs(inode);
2503 while (i < nr_objs) {
2504 int start_idx, nr_filled_idx;
2505
2506 while (i < nr_objs && !inode->data_vdi_id[i]) {
2507 i++;
2508 }
2509 start_idx = i;
2510
2511 nr_filled_idx = 0;
2512 while (i < nr_objs && nr_filled_idx < NR_BATCHED_DISCARD) {
2513 if (inode->data_vdi_id[i]) {
2514 inode->data_vdi_id[i] = 0;
2515 nr_filled_idx++;
2516 }
2517
2518 i++;
2519 }
2520
2521 ret = write_object(fd, s->aio_context,
2522 (char *)&inode->data_vdi_id[start_idx],
2523 vid_to_vdi_oid(s->inode.vdi_id), inode->nr_copies,
2524 (i - start_idx) * sizeof(uint32_t),
2525 offsetof(struct SheepdogInode,
2526 data_vdi_id[start_idx]),
2527 false, s->cache_flags);
2528 if (ret < 0) {
2529 error_report("failed to discard snapshot inode.");
2530 result = false;
2531 goto out;
2532 }
2533 }
2534
2535 out:
2536 closesocket(fd);
2537 return result;
2538 }
2539
2540 static int sd_snapshot_delete(BlockDriverState *bs,
2541 const char *snapshot_id,
2542 const char *name,
2543 Error **errp)
2544 {
2545 uint32_t snap_id = 0;
2546 char snap_tag[SD_MAX_VDI_TAG_LEN];
2547 Error *local_err = NULL;
2548 int fd, ret;
2549 char buf[SD_MAX_VDI_LEN + SD_MAX_VDI_TAG_LEN];
2550 BDRVSheepdogState *s = bs->opaque;
2551 unsigned int wlen = SD_MAX_VDI_LEN + SD_MAX_VDI_TAG_LEN, rlen = 0;
2552 uint32_t vid;
2553 SheepdogVdiReq hdr = {
2554 .opcode = SD_OP_DEL_VDI,
2555 .data_length = wlen,
2556 .flags = SD_FLAG_CMD_WRITE,
2557 };
2558 SheepdogVdiRsp *rsp = (SheepdogVdiRsp *)&hdr;
2559
2560 if (!remove_objects(s)) {
2561 return -1;
2562 }
2563
2564 memset(buf, 0, sizeof(buf));
2565 memset(snap_tag, 0, sizeof(snap_tag));
2566 pstrcpy(buf, SD_MAX_VDI_LEN, s->name);
2567 if (qemu_strtoul(snapshot_id, NULL, 10, (unsigned long *)&snap_id)) {
2568 return -1;
2569 }
2570
2571 if (snap_id) {
2572 hdr.snapid = snap_id;
2573 } else {
2574 pstrcpy(snap_tag, sizeof(snap_tag), snapshot_id);
2575 pstrcpy(buf + SD_MAX_VDI_LEN, SD_MAX_VDI_TAG_LEN, snap_tag);
2576 }
2577
2578 ret = find_vdi_name(s, s->name, snap_id, snap_tag, &vid, true,
2579 &local_err);
2580 if (ret) {
2581 return ret;
2582 }
2583
2584 fd = connect_to_sdog(s, &local_err);
2585 if (fd < 0) {
2586 error_report_err(local_err);
2587 return -1;
2588 }
2589
2590 ret = do_req(fd, s->aio_context, (SheepdogReq *)&hdr,
2591 buf, &wlen, &rlen);
2592 closesocket(fd);
2593 if (ret) {
2594 return ret;
2595 }
2596
2597 switch (rsp->result) {
2598 case SD_RES_NO_VDI:
2599 error_report("%s was already deleted", s->name);
2600 case SD_RES_SUCCESS:
2601 break;
2602 default:
2603 error_report("%s, %s", sd_strerror(rsp->result), s->name);
2604 return -1;
2605 }
2606
2607 return ret;
2608 }
2609
2610 static int sd_snapshot_list(BlockDriverState *bs, QEMUSnapshotInfo **psn_tab)
2611 {
2612 Error *local_err = NULL;
2613 BDRVSheepdogState *s = bs->opaque;
2614 SheepdogReq req;
2615 int fd, nr = 1024, ret, max = BITS_TO_LONGS(SD_NR_VDIS) * sizeof(long);
2616 QEMUSnapshotInfo *sn_tab = NULL;
2617 unsigned wlen, rlen;
2618 int found = 0;
2619 static SheepdogInode inode;
2620 unsigned long *vdi_inuse;
2621 unsigned int start_nr;
2622 uint64_t hval;
2623 uint32_t vid;
2624
2625 vdi_inuse = g_malloc(max);
2626
2627 fd = connect_to_sdog(s, &local_err);
2628 if (fd < 0) {
2629 error_report_err(local_err);
2630 ret = fd;
2631 goto out;
2632 }
2633
2634 rlen = max;
2635 wlen = 0;
2636
2637 memset(&req, 0, sizeof(req));
2638
2639 req.opcode = SD_OP_READ_VDIS;
2640 req.data_length = max;
2641
2642 ret = do_req(fd, s->aio_context, (SheepdogReq *)&req,
2643 vdi_inuse, &wlen, &rlen);
2644
2645 closesocket(fd);
2646 if (ret) {
2647 goto out;
2648 }
2649
2650 sn_tab = g_new0(QEMUSnapshotInfo, nr);
2651
2652 /* calculate a vdi id with hash function */
2653 hval = fnv_64a_buf(s->name, strlen(s->name), FNV1A_64_INIT);
2654 start_nr = hval & (SD_NR_VDIS - 1);
2655
2656 fd = connect_to_sdog(s, &local_err);
2657 if (fd < 0) {
2658 error_report_err(local_err);
2659 ret = fd;
2660 goto out;
2661 }
2662
2663 for (vid = start_nr; found < nr; vid = (vid + 1) % SD_NR_VDIS) {
2664 if (!test_bit(vid, vdi_inuse)) {
2665 break;
2666 }
2667
2668 /* we don't need to read entire object */
2669 ret = read_object(fd, s->aio_context, (char *)&inode,
2670 vid_to_vdi_oid(vid),
2671 0, SD_INODE_SIZE - sizeof(inode.data_vdi_id), 0,
2672 s->cache_flags);
2673
2674 if (ret) {
2675 continue;
2676 }
2677
2678 if (!strcmp(inode.name, s->name) && is_snapshot(&inode)) {
2679 sn_tab[found].date_sec = inode.snap_ctime >> 32;
2680 sn_tab[found].date_nsec = inode.snap_ctime & 0xffffffff;
2681 sn_tab[found].vm_state_size = inode.vm_state_size;
2682 sn_tab[found].vm_clock_nsec = inode.vm_clock_nsec;
2683
2684 snprintf(sn_tab[found].id_str, sizeof(sn_tab[found].id_str),
2685 "%" PRIu32, inode.snap_id);
2686 pstrcpy(sn_tab[found].name,
2687 MIN(sizeof(sn_tab[found].name), sizeof(inode.tag)),
2688 inode.tag);
2689 found++;
2690 }
2691 }
2692
2693 closesocket(fd);
2694 out:
2695 *psn_tab = sn_tab;
2696
2697 g_free(vdi_inuse);
2698
2699 if (ret < 0) {
2700 return ret;
2701 }
2702
2703 return found;
2704 }
2705
2706 static int do_load_save_vmstate(BDRVSheepdogState *s, uint8_t *data,
2707 int64_t pos, int size, int load)
2708 {
2709 Error *local_err = NULL;
2710 bool create;
2711 int fd, ret = 0, remaining = size;
2712 unsigned int data_len;
2713 uint64_t vmstate_oid;
2714 uint64_t offset;
2715 uint32_t vdi_index;
2716 uint32_t vdi_id = load ? s->inode.parent_vdi_id : s->inode.vdi_id;
2717 uint32_t object_size = (UINT32_C(1) << s->inode.block_size_shift);
2718
2719 fd = connect_to_sdog(s, &local_err);
2720 if (fd < 0) {
2721 error_report_err(local_err);
2722 return fd;
2723 }
2724
2725 while (remaining) {
2726 vdi_index = pos / object_size;
2727 offset = pos % object_size;
2728
2729 data_len = MIN(remaining, object_size - offset);
2730
2731 vmstate_oid = vid_to_vmstate_oid(vdi_id, vdi_index);
2732
2733 create = (offset == 0);
2734 if (load) {
2735 ret = read_object(fd, s->aio_context, (char *)data, vmstate_oid,
2736 s->inode.nr_copies, data_len, offset,
2737 s->cache_flags);
2738 } else {
2739 ret = write_object(fd, s->aio_context, (char *)data, vmstate_oid,
2740 s->inode.nr_copies, data_len, offset, create,
2741 s->cache_flags);
2742 }
2743
2744 if (ret < 0) {
2745 error_report("failed to save vmstate %s", strerror(errno));
2746 goto cleanup;
2747 }
2748
2749 pos += data_len;
2750 data += data_len;
2751 remaining -= data_len;
2752 }
2753 ret = size;
2754 cleanup:
2755 closesocket(fd);
2756 return ret;
2757 }
2758
2759 static int sd_save_vmstate(BlockDriverState *bs, QEMUIOVector *qiov,
2760 int64_t pos)
2761 {
2762 BDRVSheepdogState *s = bs->opaque;
2763 void *buf;
2764 int ret;
2765
2766 buf = qemu_blockalign(bs, qiov->size);
2767 qemu_iovec_to_buf(qiov, 0, buf, qiov->size);
2768 ret = do_load_save_vmstate(s, (uint8_t *) buf, pos, qiov->size, 0);
2769 qemu_vfree(buf);
2770
2771 return ret;
2772 }
2773
2774 static int sd_load_vmstate(BlockDriverState *bs, uint8_t *data,
2775 int64_t pos, int size)
2776 {
2777 BDRVSheepdogState *s = bs->opaque;
2778
2779 return do_load_save_vmstate(s, data, pos, size, 1);
2780 }
2781
2782
2783 static coroutine_fn int sd_co_discard(BlockDriverState *bs, int64_t sector_num,
2784 int nb_sectors)
2785 {
2786 SheepdogAIOCB *acb;
2787 BDRVSheepdogState *s = bs->opaque;
2788 int ret;
2789 QEMUIOVector discard_iov;
2790 struct iovec iov;
2791 uint32_t zero = 0;
2792
2793 if (!s->discard_supported) {
2794 return 0;
2795 }
2796
2797 memset(&discard_iov, 0, sizeof(discard_iov));
2798 memset(&iov, 0, sizeof(iov));
2799 iov.iov_base = &zero;
2800 iov.iov_len = sizeof(zero);
2801 discard_iov.iov = &iov;
2802 discard_iov.niov = 1;
2803 acb = sd_aio_setup(bs, &discard_iov, sector_num, nb_sectors);
2804 acb->aiocb_type = AIOCB_DISCARD_OBJ;
2805 acb->aio_done_func = sd_finish_aiocb;
2806
2807 retry:
2808 if (check_overlapping_aiocb(s, acb)) {
2809 qemu_co_queue_wait(&s->overlapping_queue);
2810 goto retry;
2811 }
2812
2813 ret = sd_co_rw_vector(acb);
2814 if (ret <= 0) {
2815 QLIST_REMOVE(acb, aiocb_siblings);
2816 qemu_co_queue_restart_all(&s->overlapping_queue);
2817 qemu_aio_unref(acb);
2818 return ret;
2819 }
2820
2821 qemu_coroutine_yield();
2822
2823 QLIST_REMOVE(acb, aiocb_siblings);
2824 qemu_co_queue_restart_all(&s->overlapping_queue);
2825
2826 return acb->ret;
2827 }
2828
2829 static coroutine_fn int64_t
2830 sd_co_get_block_status(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2831 int *pnum, BlockDriverState **file)
2832 {
2833 BDRVSheepdogState *s = bs->opaque;
2834 SheepdogInode *inode = &s->inode;
2835 uint32_t object_size = (UINT32_C(1) << inode->block_size_shift);
2836 uint64_t offset = sector_num * BDRV_SECTOR_SIZE;
2837 unsigned long start = offset / object_size,
2838 end = DIV_ROUND_UP((sector_num + nb_sectors) *
2839 BDRV_SECTOR_SIZE, object_size);
2840 unsigned long idx;
2841 int64_t ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | offset;
2842
2843 for (idx = start; idx < end; idx++) {
2844 if (inode->data_vdi_id[idx] == 0) {
2845 break;
2846 }
2847 }
2848 if (idx == start) {
2849 /* Get the longest length of unallocated sectors */
2850 ret = 0;
2851 for (idx = start + 1; idx < end; idx++) {
2852 if (inode->data_vdi_id[idx] != 0) {
2853 break;
2854 }
2855 }
2856 }
2857
2858 *pnum = (idx - start) * object_size / BDRV_SECTOR_SIZE;
2859 if (*pnum > nb_sectors) {
2860 *pnum = nb_sectors;
2861 }
2862 if (ret > 0 && ret & BDRV_BLOCK_OFFSET_VALID) {
2863 *file = bs;
2864 }
2865 return ret;
2866 }
2867
2868 static int64_t sd_get_allocated_file_size(BlockDriverState *bs)
2869 {
2870 BDRVSheepdogState *s = bs->opaque;
2871 SheepdogInode *inode = &s->inode;
2872 uint32_t object_size = (UINT32_C(1) << inode->block_size_shift);
2873 unsigned long i, last = DIV_ROUND_UP(inode->vdi_size, object_size);
2874 uint64_t size = 0;
2875
2876 for (i = 0; i < last; i++) {
2877 if (inode->data_vdi_id[i] == 0) {
2878 continue;
2879 }
2880 size += object_size;
2881 }
2882 return size;
2883 }
2884
2885 static QemuOptsList sd_create_opts = {
2886 .name = "sheepdog-create-opts",
2887 .head = QTAILQ_HEAD_INITIALIZER(sd_create_opts.head),
2888 .desc = {
2889 {
2890 .name = BLOCK_OPT_SIZE,
2891 .type = QEMU_OPT_SIZE,
2892 .help = "Virtual disk size"
2893 },
2894 {
2895 .name = BLOCK_OPT_BACKING_FILE,
2896 .type = QEMU_OPT_STRING,
2897 .help = "File name of a base image"
2898 },
2899 {
2900 .name = BLOCK_OPT_PREALLOC,
2901 .type = QEMU_OPT_STRING,
2902 .help = "Preallocation mode (allowed values: off, full)"
2903 },
2904 {
2905 .name = BLOCK_OPT_REDUNDANCY,
2906 .type = QEMU_OPT_STRING,
2907 .help = "Redundancy of the image"
2908 },
2909 {
2910 .name = BLOCK_OPT_OBJECT_SIZE,
2911 .type = QEMU_OPT_SIZE,
2912 .help = "Object size of the image"
2913 },
2914 { /* end of list */ }
2915 }
2916 };
2917
2918 static BlockDriver bdrv_sheepdog = {
2919 .format_name = "sheepdog",
2920 .protocol_name = "sheepdog",
2921 .instance_size = sizeof(BDRVSheepdogState),
2922 .bdrv_needs_filename = true,
2923 .bdrv_file_open = sd_open,
2924 .bdrv_reopen_prepare = sd_reopen_prepare,
2925 .bdrv_reopen_commit = sd_reopen_commit,
2926 .bdrv_reopen_abort = sd_reopen_abort,
2927 .bdrv_close = sd_close,
2928 .bdrv_create = sd_create,
2929 .bdrv_has_zero_init = bdrv_has_zero_init_1,
2930 .bdrv_getlength = sd_getlength,
2931 .bdrv_get_allocated_file_size = sd_get_allocated_file_size,
2932 .bdrv_truncate = sd_truncate,
2933
2934 .bdrv_co_readv = sd_co_readv,
2935 .bdrv_co_writev = sd_co_writev,
2936 .bdrv_co_flush_to_disk = sd_co_flush_to_disk,
2937 .bdrv_co_discard = sd_co_discard,
2938 .bdrv_co_get_block_status = sd_co_get_block_status,
2939
2940 .bdrv_snapshot_create = sd_snapshot_create,
2941 .bdrv_snapshot_goto = sd_snapshot_goto,
2942 .bdrv_snapshot_delete = sd_snapshot_delete,
2943 .bdrv_snapshot_list = sd_snapshot_list,
2944
2945 .bdrv_save_vmstate = sd_save_vmstate,
2946 .bdrv_load_vmstate = sd_load_vmstate,
2947
2948 .bdrv_detach_aio_context = sd_detach_aio_context,
2949 .bdrv_attach_aio_context = sd_attach_aio_context,
2950
2951 .create_opts = &sd_create_opts,
2952 };
2953
2954 static BlockDriver bdrv_sheepdog_tcp = {
2955 .format_name = "sheepdog",
2956 .protocol_name = "sheepdog+tcp",
2957 .instance_size = sizeof(BDRVSheepdogState),
2958 .bdrv_needs_filename = true,
2959 .bdrv_file_open = sd_open,
2960 .bdrv_reopen_prepare = sd_reopen_prepare,
2961 .bdrv_reopen_commit = sd_reopen_commit,
2962 .bdrv_reopen_abort = sd_reopen_abort,
2963 .bdrv_close = sd_close,
2964 .bdrv_create = sd_create,
2965 .bdrv_has_zero_init = bdrv_has_zero_init_1,
2966 .bdrv_getlength = sd_getlength,
2967 .bdrv_get_allocated_file_size = sd_get_allocated_file_size,
2968 .bdrv_truncate = sd_truncate,
2969
2970 .bdrv_co_readv = sd_co_readv,
2971 .bdrv_co_writev = sd_co_writev,
2972 .bdrv_co_flush_to_disk = sd_co_flush_to_disk,
2973 .bdrv_co_discard = sd_co_discard,
2974 .bdrv_co_get_block_status = sd_co_get_block_status,
2975
2976 .bdrv_snapshot_create = sd_snapshot_create,
2977 .bdrv_snapshot_goto = sd_snapshot_goto,
2978 .bdrv_snapshot_delete = sd_snapshot_delete,
2979 .bdrv_snapshot_list = sd_snapshot_list,
2980
2981 .bdrv_save_vmstate = sd_save_vmstate,
2982 .bdrv_load_vmstate = sd_load_vmstate,
2983
2984 .bdrv_detach_aio_context = sd_detach_aio_context,
2985 .bdrv_attach_aio_context = sd_attach_aio_context,
2986
2987 .create_opts = &sd_create_opts,
2988 };
2989
2990 static BlockDriver bdrv_sheepdog_unix = {
2991 .format_name = "sheepdog",
2992 .protocol_name = "sheepdog+unix",
2993 .instance_size = sizeof(BDRVSheepdogState),
2994 .bdrv_needs_filename = true,
2995 .bdrv_file_open = sd_open,
2996 .bdrv_reopen_prepare = sd_reopen_prepare,
2997 .bdrv_reopen_commit = sd_reopen_commit,
2998 .bdrv_reopen_abort = sd_reopen_abort,
2999 .bdrv_close = sd_close,
3000 .bdrv_create = sd_create,
3001 .bdrv_has_zero_init = bdrv_has_zero_init_1,
3002 .bdrv_getlength = sd_getlength,
3003 .bdrv_get_allocated_file_size = sd_get_allocated_file_size,
3004 .bdrv_truncate = sd_truncate,
3005
3006 .bdrv_co_readv = sd_co_readv,
3007 .bdrv_co_writev = sd_co_writev,
3008 .bdrv_co_flush_to_disk = sd_co_flush_to_disk,
3009 .bdrv_co_discard = sd_co_discard,
3010 .bdrv_co_get_block_status = sd_co_get_block_status,
3011
3012 .bdrv_snapshot_create = sd_snapshot_create,
3013 .bdrv_snapshot_goto = sd_snapshot_goto,
3014 .bdrv_snapshot_delete = sd_snapshot_delete,
3015 .bdrv_snapshot_list = sd_snapshot_list,
3016
3017 .bdrv_save_vmstate = sd_save_vmstate,
3018 .bdrv_load_vmstate = sd_load_vmstate,
3019
3020 .bdrv_detach_aio_context = sd_detach_aio_context,
3021 .bdrv_attach_aio_context = sd_attach_aio_context,
3022
3023 .create_opts = &sd_create_opts,
3024 };
3025
3026 static void bdrv_sheepdog_init(void)
3027 {
3028 bdrv_register(&bdrv_sheepdog);
3029 bdrv_register(&bdrv_sheepdog_tcp);
3030 bdrv_register(&bdrv_sheepdog_unix);
3031 }
3032 block_init(bdrv_sheepdog_init);