]> git.proxmox.com Git - mirror_qemu.git/blob - block/vpc.c
vpc: use current_size field for XenServer VHD images
[mirror_qemu.git] / block / vpc.c
1 /*
2 * Block driver for Connectix / Microsoft Virtual PC images
3 *
4 * Copyright (c) 2005 Alex Beregszaszi
5 * Copyright (c) 2009 Kevin Wolf <kwolf@suse.de>
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "sysemu/block-backend.h"
30 #include "qemu/module.h"
31 #include "migration/migration.h"
32 #if defined(CONFIG_UUID)
33 #include <uuid/uuid.h>
34 #endif
35
36 /**************************************************************/
37
38 #define HEADER_SIZE 512
39
40 //#define CACHE
41
42 enum vhd_type {
43 VHD_FIXED = 2,
44 VHD_DYNAMIC = 3,
45 VHD_DIFFERENCING = 4,
46 };
47
48 // Seconds since Jan 1, 2000 0:00:00 (UTC)
49 #define VHD_TIMESTAMP_BASE 946684800
50
51 #define VHD_CHS_MAX_C 65535LL
52 #define VHD_CHS_MAX_H 16
53 #define VHD_CHS_MAX_S 255
54
55 #define VHD_MAX_SECTORS (65535LL * 255 * 255)
56 #define VHD_MAX_GEOMETRY (VHD_CHS_MAX_C * VHD_CHS_MAX_H * VHD_CHS_MAX_S)
57
58 #define VPC_OPT_FORCE_SIZE "force_size"
59
60 // always big-endian
61 typedef struct vhd_footer {
62 char creator[8]; // "conectix"
63 uint32_t features;
64 uint32_t version;
65
66 // Offset of next header structure, 0xFFFFFFFF if none
67 uint64_t data_offset;
68
69 // Seconds since Jan 1, 2000 0:00:00 (UTC)
70 uint32_t timestamp;
71
72 char creator_app[4]; // "vpc "
73 uint16_t major;
74 uint16_t minor;
75 char creator_os[4]; // "Wi2k"
76
77 uint64_t orig_size;
78 uint64_t current_size;
79
80 uint16_t cyls;
81 uint8_t heads;
82 uint8_t secs_per_cyl;
83
84 uint32_t type;
85
86 // Checksum of the Hard Disk Footer ("one's complement of the sum of all
87 // the bytes in the footer without the checksum field")
88 uint32_t checksum;
89
90 // UUID used to identify a parent hard disk (backing file)
91 uint8_t uuid[16];
92
93 uint8_t in_saved_state;
94 } QEMU_PACKED VHDFooter;
95
96 typedef struct vhd_dyndisk_header {
97 char magic[8]; // "cxsparse"
98
99 // Offset of next header structure, 0xFFFFFFFF if none
100 uint64_t data_offset;
101
102 // Offset of the Block Allocation Table (BAT)
103 uint64_t table_offset;
104
105 uint32_t version;
106 uint32_t max_table_entries; // 32bit/entry
107
108 // 2 MB by default, must be a power of two
109 uint32_t block_size;
110
111 uint32_t checksum;
112 uint8_t parent_uuid[16];
113 uint32_t parent_timestamp;
114 uint32_t reserved;
115
116 // Backing file name (in UTF-16)
117 uint8_t parent_name[512];
118
119 struct {
120 uint32_t platform;
121 uint32_t data_space;
122 uint32_t data_length;
123 uint32_t reserved;
124 uint64_t data_offset;
125 } parent_locator[8];
126 } QEMU_PACKED VHDDynDiskHeader;
127
128 typedef struct BDRVVPCState {
129 CoMutex lock;
130 uint8_t footer_buf[HEADER_SIZE];
131 uint64_t free_data_block_offset;
132 int max_table_entries;
133 uint32_t *pagetable;
134 uint64_t bat_offset;
135 uint64_t last_bitmap_offset;
136
137 uint32_t block_size;
138 uint32_t bitmap_size;
139 bool force_use_chs;
140 bool force_use_sz;
141
142 #ifdef CACHE
143 uint8_t *pageentry_u8;
144 uint32_t *pageentry_u32;
145 uint16_t *pageentry_u16;
146
147 uint64_t last_bitmap;
148 #endif
149
150 Error *migration_blocker;
151 } BDRVVPCState;
152
153 #define VPC_OPT_SIZE_CALC "force_size_calc"
154 static QemuOptsList vpc_runtime_opts = {
155 .name = "vpc-runtime-opts",
156 .head = QTAILQ_HEAD_INITIALIZER(vpc_runtime_opts.head),
157 .desc = {
158 {
159 .name = VPC_OPT_SIZE_CALC,
160 .type = QEMU_OPT_STRING,
161 .help = "Force disk size calculation to use either CHS geometry, "
162 "or use the disk current_size specified in the VHD footer. "
163 "{chs, current_size}"
164 },
165 { /* end of list */ }
166 }
167 };
168
169 static uint32_t vpc_checksum(uint8_t* buf, size_t size)
170 {
171 uint32_t res = 0;
172 int i;
173
174 for (i = 0; i < size; i++)
175 res += buf[i];
176
177 return ~res;
178 }
179
180
181 static int vpc_probe(const uint8_t *buf, int buf_size, const char *filename)
182 {
183 if (buf_size >= 8 && !strncmp((char *)buf, "conectix", 8))
184 return 100;
185 return 0;
186 }
187
188 static void vpc_parse_options(BlockDriverState *bs, QemuOpts *opts,
189 Error **errp)
190 {
191 BDRVVPCState *s = bs->opaque;
192 const char *size_calc;
193
194 size_calc = qemu_opt_get(opts, VPC_OPT_SIZE_CALC);
195
196 if (!size_calc) {
197 /* no override, use autodetect only */
198 } else if (!strcmp(size_calc, "current_size")) {
199 s->force_use_sz = true;
200 } else if (!strcmp(size_calc, "chs")) {
201 s->force_use_chs = true;
202 } else {
203 error_setg(errp, "Invalid size calculation mode: '%s'", size_calc);
204 }
205 }
206
207 static int vpc_open(BlockDriverState *bs, QDict *options, int flags,
208 Error **errp)
209 {
210 BDRVVPCState *s = bs->opaque;
211 int i;
212 VHDFooter *footer;
213 VHDDynDiskHeader *dyndisk_header;
214 QemuOpts *opts = NULL;
215 Error *local_err = NULL;
216 bool use_chs;
217 uint8_t buf[HEADER_SIZE];
218 uint32_t checksum;
219 uint64_t computed_size;
220 uint64_t pagetable_size;
221 int disk_type = VHD_DYNAMIC;
222 int ret;
223
224 opts = qemu_opts_create(&vpc_runtime_opts, NULL, 0, &error_abort);
225 qemu_opts_absorb_qdict(opts, options, &local_err);
226 if (local_err) {
227 error_propagate(errp, local_err);
228 ret = -EINVAL;
229 goto fail;
230 }
231
232 vpc_parse_options(bs, opts, &local_err);
233 if (local_err) {
234 error_propagate(errp, local_err);
235 ret = -EINVAL;
236 goto fail;
237 }
238
239 ret = bdrv_pread(bs->file->bs, 0, s->footer_buf, HEADER_SIZE);
240 if (ret < 0) {
241 goto fail;
242 }
243
244 footer = (VHDFooter *) s->footer_buf;
245 if (strncmp(footer->creator, "conectix", 8)) {
246 int64_t offset = bdrv_getlength(bs->file->bs);
247 if (offset < 0) {
248 ret = offset;
249 goto fail;
250 } else if (offset < HEADER_SIZE) {
251 ret = -EINVAL;
252 goto fail;
253 }
254
255 /* If a fixed disk, the footer is found only at the end of the file */
256 ret = bdrv_pread(bs->file->bs, offset-HEADER_SIZE, s->footer_buf,
257 HEADER_SIZE);
258 if (ret < 0) {
259 goto fail;
260 }
261 if (strncmp(footer->creator, "conectix", 8)) {
262 error_setg(errp, "invalid VPC image");
263 ret = -EINVAL;
264 goto fail;
265 }
266 disk_type = VHD_FIXED;
267 }
268
269 checksum = be32_to_cpu(footer->checksum);
270 footer->checksum = 0;
271 if (vpc_checksum(s->footer_buf, HEADER_SIZE) != checksum)
272 fprintf(stderr, "block-vpc: The header checksum of '%s' is "
273 "incorrect.\n", bs->filename);
274
275 /* Write 'checksum' back to footer, or else will leave it with zero. */
276 footer->checksum = cpu_to_be32(checksum);
277
278 // The visible size of a image in Virtual PC depends on the geometry
279 // rather than on the size stored in the footer (the size in the footer
280 // is too large usually)
281 bs->total_sectors = (int64_t)
282 be16_to_cpu(footer->cyls) * footer->heads * footer->secs_per_cyl;
283
284 /* Microsoft Virtual PC and Microsoft Hyper-V produce and read
285 * VHD image sizes differently. VPC will rely on CHS geometry,
286 * while Hyper-V and disk2vhd use the size specified in the footer.
287 *
288 * We use a couple of approaches to try and determine the correct method:
289 * look at the Creator App field, and look for images that have CHS
290 * geometry that is the maximum value.
291 *
292 * If the CHS geometry is the maximum CHS geometry, then we assume that
293 * the size is the footer->current_size to avoid truncation. Otherwise,
294 * we follow the table based on footer->creator_app:
295 *
296 * Known creator apps:
297 * 'vpc ' : CHS Virtual PC (uses disk geometry)
298 * 'qemu' : CHS QEMU (uses disk geometry)
299 * 'qem2' : current_size QEMU (uses current_size)
300 * 'win ' : current_size Hyper-V
301 * 'd2v ' : current_size Disk2vhd
302 * 'tap\0' : current_size XenServer
303 *
304 * The user can override the table values via drive options, however
305 * even with an override we will still use current_size for images
306 * that have CHS geometry of the maximum size.
307 */
308 use_chs = (!!strncmp(footer->creator_app, "win ", 4) &&
309 !!strncmp(footer->creator_app, "qem2", 4) &&
310 !!strncmp(footer->creator_app, "d2v ", 4) &&
311 !!memcmp(footer->creator_app, "tap", 4)) || s->force_use_chs;
312
313 if (!use_chs || bs->total_sectors == VHD_MAX_GEOMETRY || s->force_use_sz) {
314 bs->total_sectors = be64_to_cpu(footer->current_size) /
315 BDRV_SECTOR_SIZE;
316 }
317
318 /* Allow a maximum disk size of approximately 2 TB */
319 if (bs->total_sectors >= VHD_MAX_SECTORS) {
320 ret = -EFBIG;
321 goto fail;
322 }
323
324 if (disk_type == VHD_DYNAMIC) {
325 ret = bdrv_pread(bs->file->bs, be64_to_cpu(footer->data_offset), buf,
326 HEADER_SIZE);
327 if (ret < 0) {
328 goto fail;
329 }
330
331 dyndisk_header = (VHDDynDiskHeader *) buf;
332
333 if (strncmp(dyndisk_header->magic, "cxsparse", 8)) {
334 ret = -EINVAL;
335 goto fail;
336 }
337
338 s->block_size = be32_to_cpu(dyndisk_header->block_size);
339 if (!is_power_of_2(s->block_size) || s->block_size < BDRV_SECTOR_SIZE) {
340 error_setg(errp, "Invalid block size %" PRIu32, s->block_size);
341 ret = -EINVAL;
342 goto fail;
343 }
344 s->bitmap_size = ((s->block_size / (8 * 512)) + 511) & ~511;
345
346 s->max_table_entries = be32_to_cpu(dyndisk_header->max_table_entries);
347
348 if ((bs->total_sectors * 512) / s->block_size > 0xffffffffU) {
349 ret = -EINVAL;
350 goto fail;
351 }
352 if (s->max_table_entries > (VHD_MAX_SECTORS * 512) / s->block_size) {
353 ret = -EINVAL;
354 goto fail;
355 }
356
357 computed_size = (uint64_t) s->max_table_entries * s->block_size;
358 if (computed_size < bs->total_sectors * 512) {
359 ret = -EINVAL;
360 goto fail;
361 }
362
363 if (s->max_table_entries > SIZE_MAX / 4 ||
364 s->max_table_entries > (int) INT_MAX / 4) {
365 error_setg(errp, "Max Table Entries too large (%" PRId32 ")",
366 s->max_table_entries);
367 ret = -EINVAL;
368 goto fail;
369 }
370
371 pagetable_size = (uint64_t) s->max_table_entries * 4;
372
373 s->pagetable = qemu_try_blockalign(bs->file->bs, pagetable_size);
374 if (s->pagetable == NULL) {
375 ret = -ENOMEM;
376 goto fail;
377 }
378
379 s->bat_offset = be64_to_cpu(dyndisk_header->table_offset);
380
381 ret = bdrv_pread(bs->file->bs, s->bat_offset, s->pagetable,
382 pagetable_size);
383 if (ret < 0) {
384 goto fail;
385 }
386
387 s->free_data_block_offset =
388 ROUND_UP(s->bat_offset + pagetable_size, 512);
389
390 for (i = 0; i < s->max_table_entries; i++) {
391 be32_to_cpus(&s->pagetable[i]);
392 if (s->pagetable[i] != 0xFFFFFFFF) {
393 int64_t next = (512 * (int64_t) s->pagetable[i]) +
394 s->bitmap_size + s->block_size;
395
396 if (next > s->free_data_block_offset) {
397 s->free_data_block_offset = next;
398 }
399 }
400 }
401
402 if (s->free_data_block_offset > bdrv_getlength(bs->file->bs)) {
403 error_setg(errp, "block-vpc: free_data_block_offset points after "
404 "the end of file. The image has been truncated.");
405 ret = -EINVAL;
406 goto fail;
407 }
408
409 s->last_bitmap_offset = (int64_t) -1;
410
411 #ifdef CACHE
412 s->pageentry_u8 = g_malloc(512);
413 s->pageentry_u32 = s->pageentry_u8;
414 s->pageentry_u16 = s->pageentry_u8;
415 s->last_pagetable = -1;
416 #endif
417 }
418
419 qemu_co_mutex_init(&s->lock);
420
421 /* Disable migration when VHD images are used */
422 error_setg(&s->migration_blocker, "The vpc format used by node '%s' "
423 "does not support live migration",
424 bdrv_get_device_or_node_name(bs));
425 migrate_add_blocker(s->migration_blocker);
426
427 return 0;
428
429 fail:
430 qemu_vfree(s->pagetable);
431 #ifdef CACHE
432 g_free(s->pageentry_u8);
433 #endif
434 return ret;
435 }
436
437 static int vpc_reopen_prepare(BDRVReopenState *state,
438 BlockReopenQueue *queue, Error **errp)
439 {
440 return 0;
441 }
442
443 /*
444 * Returns the absolute byte offset of the given sector in the image file.
445 * If the sector is not allocated, -1 is returned instead.
446 *
447 * The parameter write must be 1 if the offset will be used for a write
448 * operation (the block bitmaps is updated then), 0 otherwise.
449 */
450 static inline int64_t get_sector_offset(BlockDriverState *bs,
451 int64_t sector_num, int write)
452 {
453 BDRVVPCState *s = bs->opaque;
454 uint64_t offset = sector_num * 512;
455 uint64_t bitmap_offset, block_offset;
456 uint32_t pagetable_index, pageentry_index;
457
458 pagetable_index = offset / s->block_size;
459 pageentry_index = (offset % s->block_size) / 512;
460
461 if (pagetable_index >= s->max_table_entries || s->pagetable[pagetable_index] == 0xffffffff)
462 return -1; // not allocated
463
464 bitmap_offset = 512 * (uint64_t) s->pagetable[pagetable_index];
465 block_offset = bitmap_offset + s->bitmap_size + (512 * pageentry_index);
466
467 // We must ensure that we don't write to any sectors which are marked as
468 // unused in the bitmap. We get away with setting all bits in the block
469 // bitmap each time we write to a new block. This might cause Virtual PC to
470 // miss sparse read optimization, but it's not a problem in terms of
471 // correctness.
472 if (write && (s->last_bitmap_offset != bitmap_offset)) {
473 uint8_t bitmap[s->bitmap_size];
474
475 s->last_bitmap_offset = bitmap_offset;
476 memset(bitmap, 0xff, s->bitmap_size);
477 bdrv_pwrite_sync(bs->file->bs, bitmap_offset, bitmap, s->bitmap_size);
478 }
479
480 return block_offset;
481 }
482
483 /*
484 * Writes the footer to the end of the image file. This is needed when the
485 * file grows as it overwrites the old footer
486 *
487 * Returns 0 on success and < 0 on error
488 */
489 static int rewrite_footer(BlockDriverState* bs)
490 {
491 int ret;
492 BDRVVPCState *s = bs->opaque;
493 int64_t offset = s->free_data_block_offset;
494
495 ret = bdrv_pwrite_sync(bs->file->bs, offset, s->footer_buf, HEADER_SIZE);
496 if (ret < 0)
497 return ret;
498
499 return 0;
500 }
501
502 /*
503 * Allocates a new block. This involves writing a new footer and updating
504 * the Block Allocation Table to use the space at the old end of the image
505 * file (overwriting the old footer)
506 *
507 * Returns the sectors' offset in the image file on success and < 0 on error
508 */
509 static int64_t alloc_block(BlockDriverState* bs, int64_t sector_num)
510 {
511 BDRVVPCState *s = bs->opaque;
512 int64_t bat_offset;
513 uint32_t index, bat_value;
514 int ret;
515 uint8_t bitmap[s->bitmap_size];
516
517 // Check if sector_num is valid
518 if ((sector_num < 0) || (sector_num > bs->total_sectors))
519 return -1;
520
521 // Write entry into in-memory BAT
522 index = (sector_num * 512) / s->block_size;
523 if (s->pagetable[index] != 0xFFFFFFFF)
524 return -1;
525
526 s->pagetable[index] = s->free_data_block_offset / 512;
527
528 // Initialize the block's bitmap
529 memset(bitmap, 0xff, s->bitmap_size);
530 ret = bdrv_pwrite_sync(bs->file->bs, s->free_data_block_offset, bitmap,
531 s->bitmap_size);
532 if (ret < 0) {
533 return ret;
534 }
535
536 // Write new footer (the old one will be overwritten)
537 s->free_data_block_offset += s->block_size + s->bitmap_size;
538 ret = rewrite_footer(bs);
539 if (ret < 0)
540 goto fail;
541
542 // Write BAT entry to disk
543 bat_offset = s->bat_offset + (4 * index);
544 bat_value = cpu_to_be32(s->pagetable[index]);
545 ret = bdrv_pwrite_sync(bs->file->bs, bat_offset, &bat_value, 4);
546 if (ret < 0)
547 goto fail;
548
549 return get_sector_offset(bs, sector_num, 0);
550
551 fail:
552 s->free_data_block_offset -= (s->block_size + s->bitmap_size);
553 return -1;
554 }
555
556 static int vpc_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
557 {
558 BDRVVPCState *s = (BDRVVPCState *)bs->opaque;
559 VHDFooter *footer = (VHDFooter *) s->footer_buf;
560
561 if (be32_to_cpu(footer->type) != VHD_FIXED) {
562 bdi->cluster_size = s->block_size;
563 }
564
565 bdi->unallocated_blocks_are_zero = true;
566 return 0;
567 }
568
569 static int vpc_read(BlockDriverState *bs, int64_t sector_num,
570 uint8_t *buf, int nb_sectors)
571 {
572 BDRVVPCState *s = bs->opaque;
573 int ret;
574 int64_t offset;
575 int64_t sectors, sectors_per_block;
576 VHDFooter *footer = (VHDFooter *) s->footer_buf;
577
578 if (be32_to_cpu(footer->type) == VHD_FIXED) {
579 return bdrv_read(bs->file->bs, sector_num, buf, nb_sectors);
580 }
581 while (nb_sectors > 0) {
582 offset = get_sector_offset(bs, sector_num, 0);
583
584 sectors_per_block = s->block_size >> BDRV_SECTOR_BITS;
585 sectors = sectors_per_block - (sector_num % sectors_per_block);
586 if (sectors > nb_sectors) {
587 sectors = nb_sectors;
588 }
589
590 if (offset == -1) {
591 memset(buf, 0, sectors * BDRV_SECTOR_SIZE);
592 } else {
593 ret = bdrv_pread(bs->file->bs, offset, buf,
594 sectors * BDRV_SECTOR_SIZE);
595 if (ret != sectors * BDRV_SECTOR_SIZE) {
596 return -1;
597 }
598 }
599
600 nb_sectors -= sectors;
601 sector_num += sectors;
602 buf += sectors * BDRV_SECTOR_SIZE;
603 }
604 return 0;
605 }
606
607 static coroutine_fn int vpc_co_read(BlockDriverState *bs, int64_t sector_num,
608 uint8_t *buf, int nb_sectors)
609 {
610 int ret;
611 BDRVVPCState *s = bs->opaque;
612 qemu_co_mutex_lock(&s->lock);
613 ret = vpc_read(bs, sector_num, buf, nb_sectors);
614 qemu_co_mutex_unlock(&s->lock);
615 return ret;
616 }
617
618 static int vpc_write(BlockDriverState *bs, int64_t sector_num,
619 const uint8_t *buf, int nb_sectors)
620 {
621 BDRVVPCState *s = bs->opaque;
622 int64_t offset;
623 int64_t sectors, sectors_per_block;
624 int ret;
625 VHDFooter *footer = (VHDFooter *) s->footer_buf;
626
627 if (be32_to_cpu(footer->type) == VHD_FIXED) {
628 return bdrv_write(bs->file->bs, sector_num, buf, nb_sectors);
629 }
630 while (nb_sectors > 0) {
631 offset = get_sector_offset(bs, sector_num, 1);
632
633 sectors_per_block = s->block_size >> BDRV_SECTOR_BITS;
634 sectors = sectors_per_block - (sector_num % sectors_per_block);
635 if (sectors > nb_sectors) {
636 sectors = nb_sectors;
637 }
638
639 if (offset == -1) {
640 offset = alloc_block(bs, sector_num);
641 if (offset < 0)
642 return -1;
643 }
644
645 ret = bdrv_pwrite(bs->file->bs, offset, buf,
646 sectors * BDRV_SECTOR_SIZE);
647 if (ret != sectors * BDRV_SECTOR_SIZE) {
648 return -1;
649 }
650
651 nb_sectors -= sectors;
652 sector_num += sectors;
653 buf += sectors * BDRV_SECTOR_SIZE;
654 }
655
656 return 0;
657 }
658
659 static coroutine_fn int vpc_co_write(BlockDriverState *bs, int64_t sector_num,
660 const uint8_t *buf, int nb_sectors)
661 {
662 int ret;
663 BDRVVPCState *s = bs->opaque;
664 qemu_co_mutex_lock(&s->lock);
665 ret = vpc_write(bs, sector_num, buf, nb_sectors);
666 qemu_co_mutex_unlock(&s->lock);
667 return ret;
668 }
669
670 static int64_t coroutine_fn vpc_co_get_block_status(BlockDriverState *bs,
671 int64_t sector_num, int nb_sectors, int *pnum, BlockDriverState **file)
672 {
673 BDRVVPCState *s = bs->opaque;
674 VHDFooter *footer = (VHDFooter*) s->footer_buf;
675 int64_t start, offset;
676 bool allocated;
677 int n;
678
679 if (be32_to_cpu(footer->type) == VHD_FIXED) {
680 *pnum = nb_sectors;
681 *file = bs->file->bs;
682 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID | BDRV_BLOCK_DATA |
683 (sector_num << BDRV_SECTOR_BITS);
684 }
685
686 offset = get_sector_offset(bs, sector_num, 0);
687 start = offset;
688 allocated = (offset != -1);
689 *pnum = 0;
690
691 do {
692 /* All sectors in a block are contiguous (without using the bitmap) */
693 n = ROUND_UP(sector_num + 1, s->block_size / BDRV_SECTOR_SIZE)
694 - sector_num;
695 n = MIN(n, nb_sectors);
696
697 *pnum += n;
698 sector_num += n;
699 nb_sectors -= n;
700 /* *pnum can't be greater than one block for allocated
701 * sectors since there is always a bitmap in between. */
702 if (allocated) {
703 *file = bs->file->bs;
704 return BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | start;
705 }
706 if (nb_sectors == 0) {
707 break;
708 }
709 offset = get_sector_offset(bs, sector_num, 0);
710 } while (offset == -1);
711
712 return 0;
713 }
714
715 /*
716 * Calculates the number of cylinders, heads and sectors per cylinder
717 * based on a given number of sectors. This is the algorithm described
718 * in the VHD specification.
719 *
720 * Note that the geometry doesn't always exactly match total_sectors but
721 * may round it down.
722 *
723 * Returns 0 on success, -EFBIG if the size is larger than ~2 TB. Override
724 * the hardware EIDE and ATA-2 limit of 16 heads (max disk size of 127 GB)
725 * and instead allow up to 255 heads.
726 */
727 static int calculate_geometry(int64_t total_sectors, uint16_t* cyls,
728 uint8_t* heads, uint8_t* secs_per_cyl)
729 {
730 uint32_t cyls_times_heads;
731
732 total_sectors = MIN(total_sectors, VHD_MAX_GEOMETRY);
733
734 if (total_sectors >= 65535LL * 16 * 63) {
735 *secs_per_cyl = 255;
736 *heads = 16;
737 cyls_times_heads = total_sectors / *secs_per_cyl;
738 } else {
739 *secs_per_cyl = 17;
740 cyls_times_heads = total_sectors / *secs_per_cyl;
741 *heads = (cyls_times_heads + 1023) / 1024;
742
743 if (*heads < 4) {
744 *heads = 4;
745 }
746
747 if (cyls_times_heads >= (*heads * 1024) || *heads > 16) {
748 *secs_per_cyl = 31;
749 *heads = 16;
750 cyls_times_heads = total_sectors / *secs_per_cyl;
751 }
752
753 if (cyls_times_heads >= (*heads * 1024)) {
754 *secs_per_cyl = 63;
755 *heads = 16;
756 cyls_times_heads = total_sectors / *secs_per_cyl;
757 }
758 }
759
760 *cyls = cyls_times_heads / *heads;
761
762 return 0;
763 }
764
765 static int create_dynamic_disk(BlockBackend *blk, uint8_t *buf,
766 int64_t total_sectors)
767 {
768 VHDDynDiskHeader *dyndisk_header =
769 (VHDDynDiskHeader *) buf;
770 size_t block_size, num_bat_entries;
771 int i;
772 int ret;
773 int64_t offset = 0;
774
775 // Write the footer (twice: at the beginning and at the end)
776 block_size = 0x200000;
777 num_bat_entries = (total_sectors + block_size / 512) / (block_size / 512);
778
779 ret = blk_pwrite(blk, offset, buf, HEADER_SIZE);
780 if (ret < 0) {
781 goto fail;
782 }
783
784 offset = 1536 + ((num_bat_entries * 4 + 511) & ~511);
785 ret = blk_pwrite(blk, offset, buf, HEADER_SIZE);
786 if (ret < 0) {
787 goto fail;
788 }
789
790 // Write the initial BAT
791 offset = 3 * 512;
792
793 memset(buf, 0xFF, 512);
794 for (i = 0; i < (num_bat_entries * 4 + 511) / 512; i++) {
795 ret = blk_pwrite(blk, offset, buf, 512);
796 if (ret < 0) {
797 goto fail;
798 }
799 offset += 512;
800 }
801
802 // Prepare the Dynamic Disk Header
803 memset(buf, 0, 1024);
804
805 memcpy(dyndisk_header->magic, "cxsparse", 8);
806
807 /*
808 * Note: The spec is actually wrong here for data_offset, it says
809 * 0xFFFFFFFF, but MS tools expect all 64 bits to be set.
810 */
811 dyndisk_header->data_offset = cpu_to_be64(0xFFFFFFFFFFFFFFFFULL);
812 dyndisk_header->table_offset = cpu_to_be64(3 * 512);
813 dyndisk_header->version = cpu_to_be32(0x00010000);
814 dyndisk_header->block_size = cpu_to_be32(block_size);
815 dyndisk_header->max_table_entries = cpu_to_be32(num_bat_entries);
816
817 dyndisk_header->checksum = cpu_to_be32(vpc_checksum(buf, 1024));
818
819 // Write the header
820 offset = 512;
821
822 ret = blk_pwrite(blk, offset, buf, 1024);
823 if (ret < 0) {
824 goto fail;
825 }
826
827 fail:
828 return ret;
829 }
830
831 static int create_fixed_disk(BlockBackend *blk, uint8_t *buf,
832 int64_t total_size)
833 {
834 int ret;
835
836 /* Add footer to total size */
837 total_size += HEADER_SIZE;
838
839 ret = blk_truncate(blk, total_size);
840 if (ret < 0) {
841 return ret;
842 }
843
844 ret = blk_pwrite(blk, total_size - HEADER_SIZE, buf, HEADER_SIZE);
845 if (ret < 0) {
846 return ret;
847 }
848
849 return ret;
850 }
851
852 static int vpc_create(const char *filename, QemuOpts *opts, Error **errp)
853 {
854 uint8_t buf[1024];
855 VHDFooter *footer = (VHDFooter *) buf;
856 char *disk_type_param;
857 int i;
858 uint16_t cyls = 0;
859 uint8_t heads = 0;
860 uint8_t secs_per_cyl = 0;
861 int64_t total_sectors;
862 int64_t total_size;
863 int disk_type;
864 int ret = -EIO;
865 bool force_size;
866 Error *local_err = NULL;
867 BlockBackend *blk = NULL;
868
869 /* Read out options */
870 total_size = ROUND_UP(qemu_opt_get_size_del(opts, BLOCK_OPT_SIZE, 0),
871 BDRV_SECTOR_SIZE);
872 disk_type_param = qemu_opt_get_del(opts, BLOCK_OPT_SUBFMT);
873 if (disk_type_param) {
874 if (!strcmp(disk_type_param, "dynamic")) {
875 disk_type = VHD_DYNAMIC;
876 } else if (!strcmp(disk_type_param, "fixed")) {
877 disk_type = VHD_FIXED;
878 } else {
879 error_setg(errp, "Invalid disk type, %s", disk_type_param);
880 ret = -EINVAL;
881 goto out;
882 }
883 } else {
884 disk_type = VHD_DYNAMIC;
885 }
886
887 force_size = qemu_opt_get_bool_del(opts, VPC_OPT_FORCE_SIZE, false);
888
889 ret = bdrv_create_file(filename, opts, &local_err);
890 if (ret < 0) {
891 error_propagate(errp, local_err);
892 goto out;
893 }
894
895 blk = blk_new_open(filename, NULL, NULL,
896 BDRV_O_RDWR | BDRV_O_PROTOCOL, &local_err);
897 if (blk == NULL) {
898 error_propagate(errp, local_err);
899 ret = -EIO;
900 goto out;
901 }
902
903 blk_set_allow_write_beyond_eof(blk, true);
904
905 /*
906 * Calculate matching total_size and geometry. Increase the number of
907 * sectors requested until we get enough (or fail). This ensures that
908 * qemu-img convert doesn't truncate images, but rather rounds up.
909 *
910 * If the image size can't be represented by a spec conformant CHS geometry,
911 * we set the geometry to 65535 x 16 x 255 (CxHxS) sectors and use
912 * the image size from the VHD footer to calculate total_sectors.
913 */
914 if (force_size) {
915 /* This will force the use of total_size for sector count, below */
916 cyls = VHD_CHS_MAX_C;
917 heads = VHD_CHS_MAX_H;
918 secs_per_cyl = VHD_CHS_MAX_S;
919 } else {
920 total_sectors = MIN(VHD_MAX_GEOMETRY, total_size / BDRV_SECTOR_SIZE);
921 for (i = 0; total_sectors > (int64_t)cyls * heads * secs_per_cyl; i++) {
922 calculate_geometry(total_sectors + i, &cyls, &heads, &secs_per_cyl);
923 }
924 }
925
926 if ((int64_t)cyls * heads * secs_per_cyl == VHD_MAX_GEOMETRY) {
927 total_sectors = total_size / BDRV_SECTOR_SIZE;
928 /* Allow a maximum disk size of approximately 2 TB */
929 if (total_sectors > VHD_MAX_SECTORS) {
930 error_setg(errp, "Disk size is too large, max size is 2040 GiB");
931 ret = -EFBIG;
932 goto out;
933 }
934 } else {
935 total_sectors = (int64_t)cyls * heads * secs_per_cyl;
936 total_size = total_sectors * BDRV_SECTOR_SIZE;
937 }
938
939 /* Prepare the Hard Disk Footer */
940 memset(buf, 0, 1024);
941
942 memcpy(footer->creator, "conectix", 8);
943 if (force_size) {
944 memcpy(footer->creator_app, "qem2", 4);
945 } else {
946 memcpy(footer->creator_app, "qemu", 4);
947 }
948 memcpy(footer->creator_os, "Wi2k", 4);
949
950 footer->features = cpu_to_be32(0x02);
951 footer->version = cpu_to_be32(0x00010000);
952 if (disk_type == VHD_DYNAMIC) {
953 footer->data_offset = cpu_to_be64(HEADER_SIZE);
954 } else {
955 footer->data_offset = cpu_to_be64(0xFFFFFFFFFFFFFFFFULL);
956 }
957 footer->timestamp = cpu_to_be32(time(NULL) - VHD_TIMESTAMP_BASE);
958
959 /* Version of Virtual PC 2007 */
960 footer->major = cpu_to_be16(0x0005);
961 footer->minor = cpu_to_be16(0x0003);
962 footer->orig_size = cpu_to_be64(total_size);
963 footer->current_size = cpu_to_be64(total_size);
964 footer->cyls = cpu_to_be16(cyls);
965 footer->heads = heads;
966 footer->secs_per_cyl = secs_per_cyl;
967
968 footer->type = cpu_to_be32(disk_type);
969
970 #if defined(CONFIG_UUID)
971 uuid_generate(footer->uuid);
972 #endif
973
974 footer->checksum = cpu_to_be32(vpc_checksum(buf, HEADER_SIZE));
975
976 if (disk_type == VHD_DYNAMIC) {
977 ret = create_dynamic_disk(blk, buf, total_sectors);
978 } else {
979 ret = create_fixed_disk(blk, buf, total_size);
980 }
981 if (ret < 0) {
982 error_setg(errp, "Unable to create or write VHD header");
983 }
984
985 out:
986 blk_unref(blk);
987 g_free(disk_type_param);
988 return ret;
989 }
990
991 static int vpc_has_zero_init(BlockDriverState *bs)
992 {
993 BDRVVPCState *s = bs->opaque;
994 VHDFooter *footer = (VHDFooter *) s->footer_buf;
995
996 if (be32_to_cpu(footer->type) == VHD_FIXED) {
997 return bdrv_has_zero_init(bs->file->bs);
998 } else {
999 return 1;
1000 }
1001 }
1002
1003 static void vpc_close(BlockDriverState *bs)
1004 {
1005 BDRVVPCState *s = bs->opaque;
1006 qemu_vfree(s->pagetable);
1007 #ifdef CACHE
1008 g_free(s->pageentry_u8);
1009 #endif
1010
1011 migrate_del_blocker(s->migration_blocker);
1012 error_free(s->migration_blocker);
1013 }
1014
1015 static QemuOptsList vpc_create_opts = {
1016 .name = "vpc-create-opts",
1017 .head = QTAILQ_HEAD_INITIALIZER(vpc_create_opts.head),
1018 .desc = {
1019 {
1020 .name = BLOCK_OPT_SIZE,
1021 .type = QEMU_OPT_SIZE,
1022 .help = "Virtual disk size"
1023 },
1024 {
1025 .name = BLOCK_OPT_SUBFMT,
1026 .type = QEMU_OPT_STRING,
1027 .help =
1028 "Type of virtual hard disk format. Supported formats are "
1029 "{dynamic (default) | fixed} "
1030 },
1031 {
1032 .name = VPC_OPT_FORCE_SIZE,
1033 .type = QEMU_OPT_BOOL,
1034 .help = "Force disk size calculation to use the actual size "
1035 "specified, rather than using the nearest CHS-based "
1036 "calculation"
1037 },
1038 { /* end of list */ }
1039 }
1040 };
1041
1042 static BlockDriver bdrv_vpc = {
1043 .format_name = "vpc",
1044 .instance_size = sizeof(BDRVVPCState),
1045
1046 .bdrv_probe = vpc_probe,
1047 .bdrv_open = vpc_open,
1048 .bdrv_close = vpc_close,
1049 .bdrv_reopen_prepare = vpc_reopen_prepare,
1050 .bdrv_create = vpc_create,
1051
1052 .bdrv_read = vpc_co_read,
1053 .bdrv_write = vpc_co_write,
1054 .bdrv_co_get_block_status = vpc_co_get_block_status,
1055
1056 .bdrv_get_info = vpc_get_info,
1057
1058 .create_opts = &vpc_create_opts,
1059 .bdrv_has_zero_init = vpc_has_zero_init,
1060 };
1061
1062 static void bdrv_vpc_init(void)
1063 {
1064 bdrv_register(&bdrv_vpc);
1065 }
1066
1067 block_init(bdrv_vpc_init);