]> git.proxmox.com Git - mirror_qemu.git/blob - block.c
iostatus: reorganize io error code
[mirror_qemu.git] / block.c
1 /*
2 * QEMU System Emulator block driver
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "config-host.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "monitor.h"
28 #include "block_int.h"
29 #include "blockjob.h"
30 #include "module.h"
31 #include "qjson.h"
32 #include "sysemu.h"
33 #include "qemu-coroutine.h"
34 #include "qmp-commands.h"
35 #include "qemu-timer.h"
36
37 #ifdef CONFIG_BSD
38 #include <sys/types.h>
39 #include <sys/stat.h>
40 #include <sys/ioctl.h>
41 #include <sys/queue.h>
42 #ifndef __DragonFly__
43 #include <sys/disk.h>
44 #endif
45 #endif
46
47 #ifdef _WIN32
48 #include <windows.h>
49 #endif
50
51 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
52
53 typedef enum {
54 BDRV_REQ_COPY_ON_READ = 0x1,
55 BDRV_REQ_ZERO_WRITE = 0x2,
56 } BdrvRequestFlags;
57
58 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
59 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
60 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
61 BlockDriverCompletionFunc *cb, void *opaque);
62 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
63 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
64 BlockDriverCompletionFunc *cb, void *opaque);
65 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
66 int64_t sector_num, int nb_sectors,
67 QEMUIOVector *iov);
68 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
69 int64_t sector_num, int nb_sectors,
70 QEMUIOVector *iov);
71 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
72 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
73 BdrvRequestFlags flags);
74 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
75 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
76 BdrvRequestFlags flags);
77 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
78 int64_t sector_num,
79 QEMUIOVector *qiov,
80 int nb_sectors,
81 BlockDriverCompletionFunc *cb,
82 void *opaque,
83 bool is_write);
84 static void coroutine_fn bdrv_co_do_rw(void *opaque);
85 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
86 int64_t sector_num, int nb_sectors);
87
88 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
89 bool is_write, double elapsed_time, uint64_t *wait);
90 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
91 double elapsed_time, uint64_t *wait);
92 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
93 bool is_write, int64_t *wait);
94
95 static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
96 QTAILQ_HEAD_INITIALIZER(bdrv_states);
97
98 static QLIST_HEAD(, BlockDriver) bdrv_drivers =
99 QLIST_HEAD_INITIALIZER(bdrv_drivers);
100
101 /* The device to use for VM snapshots */
102 static BlockDriverState *bs_snapshots;
103
104 /* If non-zero, use only whitelisted block drivers */
105 static int use_bdrv_whitelist;
106
107 #ifdef _WIN32
108 static int is_windows_drive_prefix(const char *filename)
109 {
110 return (((filename[0] >= 'a' && filename[0] <= 'z') ||
111 (filename[0] >= 'A' && filename[0] <= 'Z')) &&
112 filename[1] == ':');
113 }
114
115 int is_windows_drive(const char *filename)
116 {
117 if (is_windows_drive_prefix(filename) &&
118 filename[2] == '\0')
119 return 1;
120 if (strstart(filename, "\\\\.\\", NULL) ||
121 strstart(filename, "//./", NULL))
122 return 1;
123 return 0;
124 }
125 #endif
126
127 /* throttling disk I/O limits */
128 void bdrv_io_limits_disable(BlockDriverState *bs)
129 {
130 bs->io_limits_enabled = false;
131
132 while (qemu_co_queue_next(&bs->throttled_reqs));
133
134 if (bs->block_timer) {
135 qemu_del_timer(bs->block_timer);
136 qemu_free_timer(bs->block_timer);
137 bs->block_timer = NULL;
138 }
139
140 bs->slice_start = 0;
141 bs->slice_end = 0;
142 bs->slice_time = 0;
143 memset(&bs->io_base, 0, sizeof(bs->io_base));
144 }
145
146 static void bdrv_block_timer(void *opaque)
147 {
148 BlockDriverState *bs = opaque;
149
150 qemu_co_queue_next(&bs->throttled_reqs);
151 }
152
153 void bdrv_io_limits_enable(BlockDriverState *bs)
154 {
155 qemu_co_queue_init(&bs->throttled_reqs);
156 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
157 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
158 bs->slice_start = qemu_get_clock_ns(vm_clock);
159 bs->slice_end = bs->slice_start + bs->slice_time;
160 memset(&bs->io_base, 0, sizeof(bs->io_base));
161 bs->io_limits_enabled = true;
162 }
163
164 bool bdrv_io_limits_enabled(BlockDriverState *bs)
165 {
166 BlockIOLimit *io_limits = &bs->io_limits;
167 return io_limits->bps[BLOCK_IO_LIMIT_READ]
168 || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
169 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
170 || io_limits->iops[BLOCK_IO_LIMIT_READ]
171 || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
172 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
173 }
174
175 static void bdrv_io_limits_intercept(BlockDriverState *bs,
176 bool is_write, int nb_sectors)
177 {
178 int64_t wait_time = -1;
179
180 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
181 qemu_co_queue_wait(&bs->throttled_reqs);
182 }
183
184 /* In fact, we hope to keep each request's timing, in FIFO mode. The next
185 * throttled requests will not be dequeued until the current request is
186 * allowed to be serviced. So if the current request still exceeds the
187 * limits, it will be inserted to the head. All requests followed it will
188 * be still in throttled_reqs queue.
189 */
190
191 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
192 qemu_mod_timer(bs->block_timer,
193 wait_time + qemu_get_clock_ns(vm_clock));
194 qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
195 }
196
197 qemu_co_queue_next(&bs->throttled_reqs);
198 }
199
200 /* check if the path starts with "<protocol>:" */
201 static int path_has_protocol(const char *path)
202 {
203 const char *p;
204
205 #ifdef _WIN32
206 if (is_windows_drive(path) ||
207 is_windows_drive_prefix(path)) {
208 return 0;
209 }
210 p = path + strcspn(path, ":/\\");
211 #else
212 p = path + strcspn(path, ":/");
213 #endif
214
215 return *p == ':';
216 }
217
218 int path_is_absolute(const char *path)
219 {
220 #ifdef _WIN32
221 /* specific case for names like: "\\.\d:" */
222 if (is_windows_drive(path) || is_windows_drive_prefix(path)) {
223 return 1;
224 }
225 return (*path == '/' || *path == '\\');
226 #else
227 return (*path == '/');
228 #endif
229 }
230
231 /* if filename is absolute, just copy it to dest. Otherwise, build a
232 path to it by considering it is relative to base_path. URL are
233 supported. */
234 void path_combine(char *dest, int dest_size,
235 const char *base_path,
236 const char *filename)
237 {
238 const char *p, *p1;
239 int len;
240
241 if (dest_size <= 0)
242 return;
243 if (path_is_absolute(filename)) {
244 pstrcpy(dest, dest_size, filename);
245 } else {
246 p = strchr(base_path, ':');
247 if (p)
248 p++;
249 else
250 p = base_path;
251 p1 = strrchr(base_path, '/');
252 #ifdef _WIN32
253 {
254 const char *p2;
255 p2 = strrchr(base_path, '\\');
256 if (!p1 || p2 > p1)
257 p1 = p2;
258 }
259 #endif
260 if (p1)
261 p1++;
262 else
263 p1 = base_path;
264 if (p1 > p)
265 p = p1;
266 len = p - base_path;
267 if (len > dest_size - 1)
268 len = dest_size - 1;
269 memcpy(dest, base_path, len);
270 dest[len] = '\0';
271 pstrcat(dest, dest_size, filename);
272 }
273 }
274
275 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz)
276 {
277 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) {
278 pstrcpy(dest, sz, bs->backing_file);
279 } else {
280 path_combine(dest, sz, bs->filename, bs->backing_file);
281 }
282 }
283
284 void bdrv_register(BlockDriver *bdrv)
285 {
286 /* Block drivers without coroutine functions need emulation */
287 if (!bdrv->bdrv_co_readv) {
288 bdrv->bdrv_co_readv = bdrv_co_readv_em;
289 bdrv->bdrv_co_writev = bdrv_co_writev_em;
290
291 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
292 * the block driver lacks aio we need to emulate that too.
293 */
294 if (!bdrv->bdrv_aio_readv) {
295 /* add AIO emulation layer */
296 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
297 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
298 }
299 }
300
301 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
302 }
303
304 /* create a new block device (by default it is empty) */
305 BlockDriverState *bdrv_new(const char *device_name)
306 {
307 BlockDriverState *bs;
308
309 bs = g_malloc0(sizeof(BlockDriverState));
310 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
311 if (device_name[0] != '\0') {
312 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
313 }
314 bdrv_iostatus_disable(bs);
315 return bs;
316 }
317
318 BlockDriver *bdrv_find_format(const char *format_name)
319 {
320 BlockDriver *drv1;
321 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
322 if (!strcmp(drv1->format_name, format_name)) {
323 return drv1;
324 }
325 }
326 return NULL;
327 }
328
329 static int bdrv_is_whitelisted(BlockDriver *drv)
330 {
331 static const char *whitelist[] = {
332 CONFIG_BDRV_WHITELIST
333 };
334 const char **p;
335
336 if (!whitelist[0])
337 return 1; /* no whitelist, anything goes */
338
339 for (p = whitelist; *p; p++) {
340 if (!strcmp(drv->format_name, *p)) {
341 return 1;
342 }
343 }
344 return 0;
345 }
346
347 BlockDriver *bdrv_find_whitelisted_format(const char *format_name)
348 {
349 BlockDriver *drv = bdrv_find_format(format_name);
350 return drv && bdrv_is_whitelisted(drv) ? drv : NULL;
351 }
352
353 typedef struct CreateCo {
354 BlockDriver *drv;
355 char *filename;
356 QEMUOptionParameter *options;
357 int ret;
358 } CreateCo;
359
360 static void coroutine_fn bdrv_create_co_entry(void *opaque)
361 {
362 CreateCo *cco = opaque;
363 assert(cco->drv);
364
365 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options);
366 }
367
368 int bdrv_create(BlockDriver *drv, const char* filename,
369 QEMUOptionParameter *options)
370 {
371 int ret;
372
373 Coroutine *co;
374 CreateCo cco = {
375 .drv = drv,
376 .filename = g_strdup(filename),
377 .options = options,
378 .ret = NOT_DONE,
379 };
380
381 if (!drv->bdrv_create) {
382 return -ENOTSUP;
383 }
384
385 if (qemu_in_coroutine()) {
386 /* Fast-path if already in coroutine context */
387 bdrv_create_co_entry(&cco);
388 } else {
389 co = qemu_coroutine_create(bdrv_create_co_entry);
390 qemu_coroutine_enter(co, &cco);
391 while (cco.ret == NOT_DONE) {
392 qemu_aio_wait();
393 }
394 }
395
396 ret = cco.ret;
397 g_free(cco.filename);
398
399 return ret;
400 }
401
402 int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
403 {
404 BlockDriver *drv;
405
406 drv = bdrv_find_protocol(filename);
407 if (drv == NULL) {
408 return -ENOENT;
409 }
410
411 return bdrv_create(drv, filename, options);
412 }
413
414 /*
415 * Create a uniquely-named empty temporary file.
416 * Return 0 upon success, otherwise a negative errno value.
417 */
418 int get_tmp_filename(char *filename, int size)
419 {
420 #ifdef _WIN32
421 char temp_dir[MAX_PATH];
422 /* GetTempFileName requires that its output buffer (4th param)
423 have length MAX_PATH or greater. */
424 assert(size >= MAX_PATH);
425 return (GetTempPath(MAX_PATH, temp_dir)
426 && GetTempFileName(temp_dir, "qem", 0, filename)
427 ? 0 : -GetLastError());
428 #else
429 int fd;
430 const char *tmpdir;
431 tmpdir = getenv("TMPDIR");
432 if (!tmpdir)
433 tmpdir = "/tmp";
434 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) {
435 return -EOVERFLOW;
436 }
437 fd = mkstemp(filename);
438 if (fd < 0) {
439 return -errno;
440 }
441 if (close(fd) != 0) {
442 unlink(filename);
443 return -errno;
444 }
445 return 0;
446 #endif
447 }
448
449 /*
450 * Detect host devices. By convention, /dev/cdrom[N] is always
451 * recognized as a host CDROM.
452 */
453 static BlockDriver *find_hdev_driver(const char *filename)
454 {
455 int score_max = 0, score;
456 BlockDriver *drv = NULL, *d;
457
458 QLIST_FOREACH(d, &bdrv_drivers, list) {
459 if (d->bdrv_probe_device) {
460 score = d->bdrv_probe_device(filename);
461 if (score > score_max) {
462 score_max = score;
463 drv = d;
464 }
465 }
466 }
467
468 return drv;
469 }
470
471 BlockDriver *bdrv_find_protocol(const char *filename)
472 {
473 BlockDriver *drv1;
474 char protocol[128];
475 int len;
476 const char *p;
477
478 /* TODO Drivers without bdrv_file_open must be specified explicitly */
479
480 /*
481 * XXX(hch): we really should not let host device detection
482 * override an explicit protocol specification, but moving this
483 * later breaks access to device names with colons in them.
484 * Thanks to the brain-dead persistent naming schemes on udev-
485 * based Linux systems those actually are quite common.
486 */
487 drv1 = find_hdev_driver(filename);
488 if (drv1) {
489 return drv1;
490 }
491
492 if (!path_has_protocol(filename)) {
493 return bdrv_find_format("file");
494 }
495 p = strchr(filename, ':');
496 assert(p != NULL);
497 len = p - filename;
498 if (len > sizeof(protocol) - 1)
499 len = sizeof(protocol) - 1;
500 memcpy(protocol, filename, len);
501 protocol[len] = '\0';
502 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
503 if (drv1->protocol_name &&
504 !strcmp(drv1->protocol_name, protocol)) {
505 return drv1;
506 }
507 }
508 return NULL;
509 }
510
511 static int find_image_format(const char *filename, BlockDriver **pdrv)
512 {
513 int ret, score, score_max;
514 BlockDriver *drv1, *drv;
515 uint8_t buf[2048];
516 BlockDriverState *bs;
517
518 ret = bdrv_file_open(&bs, filename, 0);
519 if (ret < 0) {
520 *pdrv = NULL;
521 return ret;
522 }
523
524 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
525 if (bs->sg || !bdrv_is_inserted(bs)) {
526 bdrv_delete(bs);
527 drv = bdrv_find_format("raw");
528 if (!drv) {
529 ret = -ENOENT;
530 }
531 *pdrv = drv;
532 return ret;
533 }
534
535 ret = bdrv_pread(bs, 0, buf, sizeof(buf));
536 bdrv_delete(bs);
537 if (ret < 0) {
538 *pdrv = NULL;
539 return ret;
540 }
541
542 score_max = 0;
543 drv = NULL;
544 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
545 if (drv1->bdrv_probe) {
546 score = drv1->bdrv_probe(buf, ret, filename);
547 if (score > score_max) {
548 score_max = score;
549 drv = drv1;
550 }
551 }
552 }
553 if (!drv) {
554 ret = -ENOENT;
555 }
556 *pdrv = drv;
557 return ret;
558 }
559
560 /**
561 * Set the current 'total_sectors' value
562 */
563 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
564 {
565 BlockDriver *drv = bs->drv;
566
567 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
568 if (bs->sg)
569 return 0;
570
571 /* query actual device if possible, otherwise just trust the hint */
572 if (drv->bdrv_getlength) {
573 int64_t length = drv->bdrv_getlength(bs);
574 if (length < 0) {
575 return length;
576 }
577 hint = length >> BDRV_SECTOR_BITS;
578 }
579
580 bs->total_sectors = hint;
581 return 0;
582 }
583
584 /**
585 * Set open flags for a given cache mode
586 *
587 * Return 0 on success, -1 if the cache mode was invalid.
588 */
589 int bdrv_parse_cache_flags(const char *mode, int *flags)
590 {
591 *flags &= ~BDRV_O_CACHE_MASK;
592
593 if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
594 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
595 } else if (!strcmp(mode, "directsync")) {
596 *flags |= BDRV_O_NOCACHE;
597 } else if (!strcmp(mode, "writeback")) {
598 *flags |= BDRV_O_CACHE_WB;
599 } else if (!strcmp(mode, "unsafe")) {
600 *flags |= BDRV_O_CACHE_WB;
601 *flags |= BDRV_O_NO_FLUSH;
602 } else if (!strcmp(mode, "writethrough")) {
603 /* this is the default */
604 } else {
605 return -1;
606 }
607
608 return 0;
609 }
610
611 /**
612 * The copy-on-read flag is actually a reference count so multiple users may
613 * use the feature without worrying about clobbering its previous state.
614 * Copy-on-read stays enabled until all users have called to disable it.
615 */
616 void bdrv_enable_copy_on_read(BlockDriverState *bs)
617 {
618 bs->copy_on_read++;
619 }
620
621 void bdrv_disable_copy_on_read(BlockDriverState *bs)
622 {
623 assert(bs->copy_on_read > 0);
624 bs->copy_on_read--;
625 }
626
627 /*
628 * Common part for opening disk images and files
629 */
630 static int bdrv_open_common(BlockDriverState *bs, const char *filename,
631 int flags, BlockDriver *drv)
632 {
633 int ret, open_flags;
634
635 assert(drv != NULL);
636 assert(bs->file == NULL);
637
638 trace_bdrv_open_common(bs, filename, flags, drv->format_name);
639
640 bs->open_flags = flags;
641 bs->buffer_alignment = 512;
642
643 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
644 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) {
645 bdrv_enable_copy_on_read(bs);
646 }
647
648 pstrcpy(bs->filename, sizeof(bs->filename), filename);
649
650 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) {
651 return -ENOTSUP;
652 }
653
654 bs->drv = drv;
655 bs->opaque = g_malloc0(drv->instance_size);
656
657 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
658 open_flags = flags | BDRV_O_CACHE_WB;
659
660 /*
661 * Clear flags that are internal to the block layer before opening the
662 * image.
663 */
664 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
665
666 /*
667 * Snapshots should be writable.
668 */
669 if (bs->is_temporary) {
670 open_flags |= BDRV_O_RDWR;
671 }
672
673 bs->read_only = !(open_flags & BDRV_O_RDWR);
674
675 /* Open the image, either directly or using a protocol */
676 if (drv->bdrv_file_open) {
677 ret = drv->bdrv_file_open(bs, filename, open_flags);
678 } else {
679 ret = bdrv_file_open(&bs->file, filename, open_flags);
680 if (ret >= 0) {
681 ret = drv->bdrv_open(bs, open_flags);
682 }
683 }
684
685 if (ret < 0) {
686 goto free_and_fail;
687 }
688
689 ret = refresh_total_sectors(bs, bs->total_sectors);
690 if (ret < 0) {
691 goto free_and_fail;
692 }
693
694 #ifndef _WIN32
695 if (bs->is_temporary) {
696 unlink(filename);
697 }
698 #endif
699 return 0;
700
701 free_and_fail:
702 if (bs->file) {
703 bdrv_delete(bs->file);
704 bs->file = NULL;
705 }
706 g_free(bs->opaque);
707 bs->opaque = NULL;
708 bs->drv = NULL;
709 return ret;
710 }
711
712 /*
713 * Opens a file using a protocol (file, host_device, nbd, ...)
714 */
715 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags)
716 {
717 BlockDriverState *bs;
718 BlockDriver *drv;
719 int ret;
720
721 drv = bdrv_find_protocol(filename);
722 if (!drv) {
723 return -ENOENT;
724 }
725
726 bs = bdrv_new("");
727 ret = bdrv_open_common(bs, filename, flags, drv);
728 if (ret < 0) {
729 bdrv_delete(bs);
730 return ret;
731 }
732 bs->growable = 1;
733 *pbs = bs;
734 return 0;
735 }
736
737 /*
738 * Opens a disk image (raw, qcow2, vmdk, ...)
739 */
740 int bdrv_open(BlockDriverState *bs, const char *filename, int flags,
741 BlockDriver *drv)
742 {
743 int ret;
744 char tmp_filename[PATH_MAX];
745
746 if (flags & BDRV_O_SNAPSHOT) {
747 BlockDriverState *bs1;
748 int64_t total_size;
749 int is_protocol = 0;
750 BlockDriver *bdrv_qcow2;
751 QEMUOptionParameter *options;
752 char backing_filename[PATH_MAX];
753
754 /* if snapshot, we create a temporary backing file and open it
755 instead of opening 'filename' directly */
756
757 /* if there is a backing file, use it */
758 bs1 = bdrv_new("");
759 ret = bdrv_open(bs1, filename, 0, drv);
760 if (ret < 0) {
761 bdrv_delete(bs1);
762 return ret;
763 }
764 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
765
766 if (bs1->drv && bs1->drv->protocol_name)
767 is_protocol = 1;
768
769 bdrv_delete(bs1);
770
771 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename));
772 if (ret < 0) {
773 return ret;
774 }
775
776 /* Real path is meaningless for protocols */
777 if (is_protocol)
778 snprintf(backing_filename, sizeof(backing_filename),
779 "%s", filename);
780 else if (!realpath(filename, backing_filename))
781 return -errno;
782
783 bdrv_qcow2 = bdrv_find_format("qcow2");
784 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL);
785
786 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size);
787 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename);
788 if (drv) {
789 set_option_parameter(options, BLOCK_OPT_BACKING_FMT,
790 drv->format_name);
791 }
792
793 ret = bdrv_create(bdrv_qcow2, tmp_filename, options);
794 free_option_parameters(options);
795 if (ret < 0) {
796 return ret;
797 }
798
799 filename = tmp_filename;
800 drv = bdrv_qcow2;
801 bs->is_temporary = 1;
802 }
803
804 /* Find the right image format driver */
805 if (!drv) {
806 ret = find_image_format(filename, &drv);
807 }
808
809 if (!drv) {
810 goto unlink_and_fail;
811 }
812
813 if (flags & BDRV_O_RDWR) {
814 flags |= BDRV_O_ALLOW_RDWR;
815 }
816
817 /* Open the image */
818 ret = bdrv_open_common(bs, filename, flags, drv);
819 if (ret < 0) {
820 goto unlink_and_fail;
821 }
822
823 /* If there is a backing file, use it */
824 if ((flags & BDRV_O_NO_BACKING) == 0 && bs->backing_file[0] != '\0') {
825 char backing_filename[PATH_MAX];
826 int back_flags;
827 BlockDriver *back_drv = NULL;
828
829 bs->backing_hd = bdrv_new("");
830 bdrv_get_full_backing_filename(bs, backing_filename,
831 sizeof(backing_filename));
832
833 if (bs->backing_format[0] != '\0') {
834 back_drv = bdrv_find_format(bs->backing_format);
835 }
836
837 /* backing files always opened read-only */
838 back_flags =
839 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
840
841 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv);
842 if (ret < 0) {
843 bdrv_close(bs);
844 return ret;
845 }
846 }
847
848 if (!bdrv_key_required(bs)) {
849 bdrv_dev_change_media_cb(bs, true);
850 }
851
852 /* throttling disk I/O limits */
853 if (bs->io_limits_enabled) {
854 bdrv_io_limits_enable(bs);
855 }
856
857 return 0;
858
859 unlink_and_fail:
860 if (bs->is_temporary) {
861 unlink(filename);
862 }
863 return ret;
864 }
865
866 typedef struct BlockReopenQueueEntry {
867 bool prepared;
868 BDRVReopenState state;
869 QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry;
870 } BlockReopenQueueEntry;
871
872 /*
873 * Adds a BlockDriverState to a simple queue for an atomic, transactional
874 * reopen of multiple devices.
875 *
876 * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT
877 * already performed, or alternatively may be NULL a new BlockReopenQueue will
878 * be created and initialized. This newly created BlockReopenQueue should be
879 * passed back in for subsequent calls that are intended to be of the same
880 * atomic 'set'.
881 *
882 * bs is the BlockDriverState to add to the reopen queue.
883 *
884 * flags contains the open flags for the associated bs
885 *
886 * returns a pointer to bs_queue, which is either the newly allocated
887 * bs_queue, or the existing bs_queue being used.
888 *
889 */
890 BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue,
891 BlockDriverState *bs, int flags)
892 {
893 assert(bs != NULL);
894
895 BlockReopenQueueEntry *bs_entry;
896 if (bs_queue == NULL) {
897 bs_queue = g_new0(BlockReopenQueue, 1);
898 QSIMPLEQ_INIT(bs_queue);
899 }
900
901 if (bs->file) {
902 bdrv_reopen_queue(bs_queue, bs->file, flags);
903 }
904
905 bs_entry = g_new0(BlockReopenQueueEntry, 1);
906 QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry);
907
908 bs_entry->state.bs = bs;
909 bs_entry->state.flags = flags;
910
911 return bs_queue;
912 }
913
914 /*
915 * Reopen multiple BlockDriverStates atomically & transactionally.
916 *
917 * The queue passed in (bs_queue) must have been built up previous
918 * via bdrv_reopen_queue().
919 *
920 * Reopens all BDS specified in the queue, with the appropriate
921 * flags. All devices are prepared for reopen, and failure of any
922 * device will cause all device changes to be abandonded, and intermediate
923 * data cleaned up.
924 *
925 * If all devices prepare successfully, then the changes are committed
926 * to all devices.
927 *
928 */
929 int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp)
930 {
931 int ret = -1;
932 BlockReopenQueueEntry *bs_entry, *next;
933 Error *local_err = NULL;
934
935 assert(bs_queue != NULL);
936
937 bdrv_drain_all();
938
939 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
940 if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) {
941 error_propagate(errp, local_err);
942 goto cleanup;
943 }
944 bs_entry->prepared = true;
945 }
946
947 /* If we reach this point, we have success and just need to apply the
948 * changes
949 */
950 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
951 bdrv_reopen_commit(&bs_entry->state);
952 }
953
954 ret = 0;
955
956 cleanup:
957 QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) {
958 if (ret && bs_entry->prepared) {
959 bdrv_reopen_abort(&bs_entry->state);
960 }
961 g_free(bs_entry);
962 }
963 g_free(bs_queue);
964 return ret;
965 }
966
967
968 /* Reopen a single BlockDriverState with the specified flags. */
969 int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp)
970 {
971 int ret = -1;
972 Error *local_err = NULL;
973 BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags);
974
975 ret = bdrv_reopen_multiple(queue, &local_err);
976 if (local_err != NULL) {
977 error_propagate(errp, local_err);
978 }
979 return ret;
980 }
981
982
983 /*
984 * Prepares a BlockDriverState for reopen. All changes are staged in the
985 * 'opaque' field of the BDRVReopenState, which is used and allocated by
986 * the block driver layer .bdrv_reopen_prepare()
987 *
988 * bs is the BlockDriverState to reopen
989 * flags are the new open flags
990 * queue is the reopen queue
991 *
992 * Returns 0 on success, non-zero on error. On error errp will be set
993 * as well.
994 *
995 * On failure, bdrv_reopen_abort() will be called to clean up any data.
996 * It is the responsibility of the caller to then call the abort() or
997 * commit() for any other BDS that have been left in a prepare() state
998 *
999 */
1000 int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue,
1001 Error **errp)
1002 {
1003 int ret = -1;
1004 Error *local_err = NULL;
1005 BlockDriver *drv;
1006
1007 assert(reopen_state != NULL);
1008 assert(reopen_state->bs->drv != NULL);
1009 drv = reopen_state->bs->drv;
1010
1011 /* if we are to stay read-only, do not allow permission change
1012 * to r/w */
1013 if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) &&
1014 reopen_state->flags & BDRV_O_RDWR) {
1015 error_set(errp, QERR_DEVICE_IS_READ_ONLY,
1016 reopen_state->bs->device_name);
1017 goto error;
1018 }
1019
1020
1021 ret = bdrv_flush(reopen_state->bs);
1022 if (ret) {
1023 error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive",
1024 strerror(-ret));
1025 goto error;
1026 }
1027
1028 if (drv->bdrv_reopen_prepare) {
1029 ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err);
1030 if (ret) {
1031 if (local_err != NULL) {
1032 error_propagate(errp, local_err);
1033 } else {
1034 error_set(errp, QERR_OPEN_FILE_FAILED,
1035 reopen_state->bs->filename);
1036 }
1037 goto error;
1038 }
1039 } else {
1040 /* It is currently mandatory to have a bdrv_reopen_prepare()
1041 * handler for each supported drv. */
1042 error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED,
1043 drv->format_name, reopen_state->bs->device_name,
1044 "reopening of file");
1045 ret = -1;
1046 goto error;
1047 }
1048
1049 ret = 0;
1050
1051 error:
1052 return ret;
1053 }
1054
1055 /*
1056 * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and
1057 * makes them final by swapping the staging BlockDriverState contents into
1058 * the active BlockDriverState contents.
1059 */
1060 void bdrv_reopen_commit(BDRVReopenState *reopen_state)
1061 {
1062 BlockDriver *drv;
1063
1064 assert(reopen_state != NULL);
1065 drv = reopen_state->bs->drv;
1066 assert(drv != NULL);
1067
1068 /* If there are any driver level actions to take */
1069 if (drv->bdrv_reopen_commit) {
1070 drv->bdrv_reopen_commit(reopen_state);
1071 }
1072
1073 /* set BDS specific flags now */
1074 reopen_state->bs->open_flags = reopen_state->flags;
1075 reopen_state->bs->enable_write_cache = !!(reopen_state->flags &
1076 BDRV_O_CACHE_WB);
1077 reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR);
1078 }
1079
1080 /*
1081 * Abort the reopen, and delete and free the staged changes in
1082 * reopen_state
1083 */
1084 void bdrv_reopen_abort(BDRVReopenState *reopen_state)
1085 {
1086 BlockDriver *drv;
1087
1088 assert(reopen_state != NULL);
1089 drv = reopen_state->bs->drv;
1090 assert(drv != NULL);
1091
1092 if (drv->bdrv_reopen_abort) {
1093 drv->bdrv_reopen_abort(reopen_state);
1094 }
1095 }
1096
1097
1098 void bdrv_close(BlockDriverState *bs)
1099 {
1100 bdrv_flush(bs);
1101 if (bs->drv) {
1102 if (bs->job) {
1103 block_job_cancel_sync(bs->job);
1104 }
1105 bdrv_drain_all();
1106
1107 if (bs == bs_snapshots) {
1108 bs_snapshots = NULL;
1109 }
1110 if (bs->backing_hd) {
1111 bdrv_delete(bs->backing_hd);
1112 bs->backing_hd = NULL;
1113 }
1114 bs->drv->bdrv_close(bs);
1115 g_free(bs->opaque);
1116 #ifdef _WIN32
1117 if (bs->is_temporary) {
1118 unlink(bs->filename);
1119 }
1120 #endif
1121 bs->opaque = NULL;
1122 bs->drv = NULL;
1123 bs->copy_on_read = 0;
1124 bs->backing_file[0] = '\0';
1125 bs->backing_format[0] = '\0';
1126 bs->total_sectors = 0;
1127 bs->encrypted = 0;
1128 bs->valid_key = 0;
1129 bs->sg = 0;
1130 bs->growable = 0;
1131
1132 if (bs->file != NULL) {
1133 bdrv_delete(bs->file);
1134 bs->file = NULL;
1135 }
1136 }
1137
1138 bdrv_dev_change_media_cb(bs, false);
1139
1140 /*throttling disk I/O limits*/
1141 if (bs->io_limits_enabled) {
1142 bdrv_io_limits_disable(bs);
1143 }
1144 }
1145
1146 void bdrv_close_all(void)
1147 {
1148 BlockDriverState *bs;
1149
1150 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1151 bdrv_close(bs);
1152 }
1153 }
1154
1155 /*
1156 * Wait for pending requests to complete across all BlockDriverStates
1157 *
1158 * This function does not flush data to disk, use bdrv_flush_all() for that
1159 * after calling this function.
1160 *
1161 * Note that completion of an asynchronous I/O operation can trigger any
1162 * number of other I/O operations on other devices---for example a coroutine
1163 * can be arbitrarily complex and a constant flow of I/O can come until the
1164 * coroutine is complete. Because of this, it is not possible to have a
1165 * function to drain a single device's I/O queue.
1166 */
1167 void bdrv_drain_all(void)
1168 {
1169 BlockDriverState *bs;
1170 bool busy;
1171
1172 do {
1173 busy = qemu_aio_wait();
1174
1175 /* FIXME: We do not have timer support here, so this is effectively
1176 * a busy wait.
1177 */
1178 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1179 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
1180 qemu_co_queue_restart_all(&bs->throttled_reqs);
1181 busy = true;
1182 }
1183 }
1184 } while (busy);
1185
1186 /* If requests are still pending there is a bug somewhere */
1187 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1188 assert(QLIST_EMPTY(&bs->tracked_requests));
1189 assert(qemu_co_queue_empty(&bs->throttled_reqs));
1190 }
1191 }
1192
1193 /* make a BlockDriverState anonymous by removing from bdrv_state list.
1194 Also, NULL terminate the device_name to prevent double remove */
1195 void bdrv_make_anon(BlockDriverState *bs)
1196 {
1197 if (bs->device_name[0] != '\0') {
1198 QTAILQ_REMOVE(&bdrv_states, bs, list);
1199 }
1200 bs->device_name[0] = '\0';
1201 }
1202
1203 static void bdrv_rebind(BlockDriverState *bs)
1204 {
1205 if (bs->drv && bs->drv->bdrv_rebind) {
1206 bs->drv->bdrv_rebind(bs);
1207 }
1208 }
1209
1210 static void bdrv_move_feature_fields(BlockDriverState *bs_dest,
1211 BlockDriverState *bs_src)
1212 {
1213 /* move some fields that need to stay attached to the device */
1214 bs_dest->open_flags = bs_src->open_flags;
1215
1216 /* dev info */
1217 bs_dest->dev_ops = bs_src->dev_ops;
1218 bs_dest->dev_opaque = bs_src->dev_opaque;
1219 bs_dest->dev = bs_src->dev;
1220 bs_dest->buffer_alignment = bs_src->buffer_alignment;
1221 bs_dest->copy_on_read = bs_src->copy_on_read;
1222
1223 bs_dest->enable_write_cache = bs_src->enable_write_cache;
1224
1225 /* i/o timing parameters */
1226 bs_dest->slice_time = bs_src->slice_time;
1227 bs_dest->slice_start = bs_src->slice_start;
1228 bs_dest->slice_end = bs_src->slice_end;
1229 bs_dest->io_limits = bs_src->io_limits;
1230 bs_dest->io_base = bs_src->io_base;
1231 bs_dest->throttled_reqs = bs_src->throttled_reqs;
1232 bs_dest->block_timer = bs_src->block_timer;
1233 bs_dest->io_limits_enabled = bs_src->io_limits_enabled;
1234
1235 /* r/w error */
1236 bs_dest->on_read_error = bs_src->on_read_error;
1237 bs_dest->on_write_error = bs_src->on_write_error;
1238
1239 /* i/o status */
1240 bs_dest->iostatus_enabled = bs_src->iostatus_enabled;
1241 bs_dest->iostatus = bs_src->iostatus;
1242
1243 /* dirty bitmap */
1244 bs_dest->dirty_count = bs_src->dirty_count;
1245 bs_dest->dirty_bitmap = bs_src->dirty_bitmap;
1246
1247 /* job */
1248 bs_dest->in_use = bs_src->in_use;
1249 bs_dest->job = bs_src->job;
1250
1251 /* keep the same entry in bdrv_states */
1252 pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name),
1253 bs_src->device_name);
1254 bs_dest->list = bs_src->list;
1255 }
1256
1257 /*
1258 * Swap bs contents for two image chains while they are live,
1259 * while keeping required fields on the BlockDriverState that is
1260 * actually attached to a device.
1261 *
1262 * This will modify the BlockDriverState fields, and swap contents
1263 * between bs_new and bs_old. Both bs_new and bs_old are modified.
1264 *
1265 * bs_new is required to be anonymous.
1266 *
1267 * This function does not create any image files.
1268 */
1269 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old)
1270 {
1271 BlockDriverState tmp;
1272
1273 /* bs_new must be anonymous and shouldn't have anything fancy enabled */
1274 assert(bs_new->device_name[0] == '\0');
1275 assert(bs_new->dirty_bitmap == NULL);
1276 assert(bs_new->job == NULL);
1277 assert(bs_new->dev == NULL);
1278 assert(bs_new->in_use == 0);
1279 assert(bs_new->io_limits_enabled == false);
1280 assert(bs_new->block_timer == NULL);
1281
1282 tmp = *bs_new;
1283 *bs_new = *bs_old;
1284 *bs_old = tmp;
1285
1286 /* there are some fields that should not be swapped, move them back */
1287 bdrv_move_feature_fields(&tmp, bs_old);
1288 bdrv_move_feature_fields(bs_old, bs_new);
1289 bdrv_move_feature_fields(bs_new, &tmp);
1290
1291 /* bs_new shouldn't be in bdrv_states even after the swap! */
1292 assert(bs_new->device_name[0] == '\0');
1293
1294 /* Check a few fields that should remain attached to the device */
1295 assert(bs_new->dev == NULL);
1296 assert(bs_new->job == NULL);
1297 assert(bs_new->in_use == 0);
1298 assert(bs_new->io_limits_enabled == false);
1299 assert(bs_new->block_timer == NULL);
1300
1301 bdrv_rebind(bs_new);
1302 bdrv_rebind(bs_old);
1303 }
1304
1305 /*
1306 * Add new bs contents at the top of an image chain while the chain is
1307 * live, while keeping required fields on the top layer.
1308 *
1309 * This will modify the BlockDriverState fields, and swap contents
1310 * between bs_new and bs_top. Both bs_new and bs_top are modified.
1311 *
1312 * bs_new is required to be anonymous.
1313 *
1314 * This function does not create any image files.
1315 */
1316 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top)
1317 {
1318 bdrv_swap(bs_new, bs_top);
1319
1320 /* The contents of 'tmp' will become bs_top, as we are
1321 * swapping bs_new and bs_top contents. */
1322 bs_top->backing_hd = bs_new;
1323 bs_top->open_flags &= ~BDRV_O_NO_BACKING;
1324 pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file),
1325 bs_new->filename);
1326 pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format),
1327 bs_new->drv ? bs_new->drv->format_name : "");
1328 }
1329
1330 void bdrv_delete(BlockDriverState *bs)
1331 {
1332 assert(!bs->dev);
1333 assert(!bs->job);
1334 assert(!bs->in_use);
1335
1336 /* remove from list, if necessary */
1337 bdrv_make_anon(bs);
1338
1339 bdrv_close(bs);
1340
1341 assert(bs != bs_snapshots);
1342 g_free(bs);
1343 }
1344
1345 int bdrv_attach_dev(BlockDriverState *bs, void *dev)
1346 /* TODO change to DeviceState *dev when all users are qdevified */
1347 {
1348 if (bs->dev) {
1349 return -EBUSY;
1350 }
1351 bs->dev = dev;
1352 bdrv_iostatus_reset(bs);
1353 return 0;
1354 }
1355
1356 /* TODO qdevified devices don't use this, remove when devices are qdevified */
1357 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
1358 {
1359 if (bdrv_attach_dev(bs, dev) < 0) {
1360 abort();
1361 }
1362 }
1363
1364 void bdrv_detach_dev(BlockDriverState *bs, void *dev)
1365 /* TODO change to DeviceState *dev when all users are qdevified */
1366 {
1367 assert(bs->dev == dev);
1368 bs->dev = NULL;
1369 bs->dev_ops = NULL;
1370 bs->dev_opaque = NULL;
1371 bs->buffer_alignment = 512;
1372 }
1373
1374 /* TODO change to return DeviceState * when all users are qdevified */
1375 void *bdrv_get_attached_dev(BlockDriverState *bs)
1376 {
1377 return bs->dev;
1378 }
1379
1380 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
1381 void *opaque)
1382 {
1383 bs->dev_ops = ops;
1384 bs->dev_opaque = opaque;
1385 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) {
1386 bs_snapshots = NULL;
1387 }
1388 }
1389
1390 static void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
1391 BlockErrorAction action, bool is_read)
1392 {
1393 QObject *data;
1394 const char *action_str;
1395
1396 switch (action) {
1397 case BDRV_ACTION_REPORT:
1398 action_str = "report";
1399 break;
1400 case BDRV_ACTION_IGNORE:
1401 action_str = "ignore";
1402 break;
1403 case BDRV_ACTION_STOP:
1404 action_str = "stop";
1405 break;
1406 default:
1407 abort();
1408 }
1409
1410 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
1411 bdrv->device_name,
1412 action_str,
1413 is_read ? "read" : "write");
1414 monitor_protocol_event(QEVENT_BLOCK_IO_ERROR, data);
1415
1416 qobject_decref(data);
1417 }
1418
1419 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected)
1420 {
1421 QObject *data;
1422
1423 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }",
1424 bdrv_get_device_name(bs), ejected);
1425 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data);
1426
1427 qobject_decref(data);
1428 }
1429
1430 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
1431 {
1432 if (bs->dev_ops && bs->dev_ops->change_media_cb) {
1433 bool tray_was_closed = !bdrv_dev_is_tray_open(bs);
1434 bs->dev_ops->change_media_cb(bs->dev_opaque, load);
1435 if (tray_was_closed) {
1436 /* tray open */
1437 bdrv_emit_qmp_eject_event(bs, true);
1438 }
1439 if (load) {
1440 /* tray close */
1441 bdrv_emit_qmp_eject_event(bs, false);
1442 }
1443 }
1444 }
1445
1446 bool bdrv_dev_has_removable_media(BlockDriverState *bs)
1447 {
1448 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
1449 }
1450
1451 void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
1452 {
1453 if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
1454 bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
1455 }
1456 }
1457
1458 bool bdrv_dev_is_tray_open(BlockDriverState *bs)
1459 {
1460 if (bs->dev_ops && bs->dev_ops->is_tray_open) {
1461 return bs->dev_ops->is_tray_open(bs->dev_opaque);
1462 }
1463 return false;
1464 }
1465
1466 static void bdrv_dev_resize_cb(BlockDriverState *bs)
1467 {
1468 if (bs->dev_ops && bs->dev_ops->resize_cb) {
1469 bs->dev_ops->resize_cb(bs->dev_opaque);
1470 }
1471 }
1472
1473 bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
1474 {
1475 if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
1476 return bs->dev_ops->is_medium_locked(bs->dev_opaque);
1477 }
1478 return false;
1479 }
1480
1481 /*
1482 * Run consistency checks on an image
1483 *
1484 * Returns 0 if the check could be completed (it doesn't mean that the image is
1485 * free of errors) or -errno when an internal error occurred. The results of the
1486 * check are stored in res.
1487 */
1488 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix)
1489 {
1490 if (bs->drv->bdrv_check == NULL) {
1491 return -ENOTSUP;
1492 }
1493
1494 memset(res, 0, sizeof(*res));
1495 return bs->drv->bdrv_check(bs, res, fix);
1496 }
1497
1498 #define COMMIT_BUF_SECTORS 2048
1499
1500 /* commit COW file into the raw image */
1501 int bdrv_commit(BlockDriverState *bs)
1502 {
1503 BlockDriver *drv = bs->drv;
1504 int64_t sector, total_sectors;
1505 int n, ro, open_flags;
1506 int ret = 0;
1507 uint8_t *buf;
1508 char filename[1024];
1509
1510 if (!drv)
1511 return -ENOMEDIUM;
1512
1513 if (!bs->backing_hd) {
1514 return -ENOTSUP;
1515 }
1516
1517 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
1518 return -EBUSY;
1519 }
1520
1521 ro = bs->backing_hd->read_only;
1522 strncpy(filename, bs->backing_hd->filename, sizeof(filename));
1523 open_flags = bs->backing_hd->open_flags;
1524
1525 if (ro) {
1526 if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) {
1527 return -EACCES;
1528 }
1529 }
1530
1531 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
1532 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
1533
1534 for (sector = 0; sector < total_sectors; sector += n) {
1535 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
1536
1537 if (bdrv_read(bs, sector, buf, n) != 0) {
1538 ret = -EIO;
1539 goto ro_cleanup;
1540 }
1541
1542 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
1543 ret = -EIO;
1544 goto ro_cleanup;
1545 }
1546 }
1547 }
1548
1549 if (drv->bdrv_make_empty) {
1550 ret = drv->bdrv_make_empty(bs);
1551 bdrv_flush(bs);
1552 }
1553
1554 /*
1555 * Make sure all data we wrote to the backing device is actually
1556 * stable on disk.
1557 */
1558 if (bs->backing_hd)
1559 bdrv_flush(bs->backing_hd);
1560
1561 ro_cleanup:
1562 g_free(buf);
1563
1564 if (ro) {
1565 /* ignoring error return here */
1566 bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL);
1567 }
1568
1569 return ret;
1570 }
1571
1572 int bdrv_commit_all(void)
1573 {
1574 BlockDriverState *bs;
1575
1576 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1577 int ret = bdrv_commit(bs);
1578 if (ret < 0) {
1579 return ret;
1580 }
1581 }
1582 return 0;
1583 }
1584
1585 struct BdrvTrackedRequest {
1586 BlockDriverState *bs;
1587 int64_t sector_num;
1588 int nb_sectors;
1589 bool is_write;
1590 QLIST_ENTRY(BdrvTrackedRequest) list;
1591 Coroutine *co; /* owner, used for deadlock detection */
1592 CoQueue wait_queue; /* coroutines blocked on this request */
1593 };
1594
1595 /**
1596 * Remove an active request from the tracked requests list
1597 *
1598 * This function should be called when a tracked request is completing.
1599 */
1600 static void tracked_request_end(BdrvTrackedRequest *req)
1601 {
1602 QLIST_REMOVE(req, list);
1603 qemu_co_queue_restart_all(&req->wait_queue);
1604 }
1605
1606 /**
1607 * Add an active request to the tracked requests list
1608 */
1609 static void tracked_request_begin(BdrvTrackedRequest *req,
1610 BlockDriverState *bs,
1611 int64_t sector_num,
1612 int nb_sectors, bool is_write)
1613 {
1614 *req = (BdrvTrackedRequest){
1615 .bs = bs,
1616 .sector_num = sector_num,
1617 .nb_sectors = nb_sectors,
1618 .is_write = is_write,
1619 .co = qemu_coroutine_self(),
1620 };
1621
1622 qemu_co_queue_init(&req->wait_queue);
1623
1624 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
1625 }
1626
1627 /**
1628 * Round a region to cluster boundaries
1629 */
1630 static void round_to_clusters(BlockDriverState *bs,
1631 int64_t sector_num, int nb_sectors,
1632 int64_t *cluster_sector_num,
1633 int *cluster_nb_sectors)
1634 {
1635 BlockDriverInfo bdi;
1636
1637 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
1638 *cluster_sector_num = sector_num;
1639 *cluster_nb_sectors = nb_sectors;
1640 } else {
1641 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
1642 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1643 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1644 nb_sectors, c);
1645 }
1646 }
1647
1648 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
1649 int64_t sector_num, int nb_sectors) {
1650 /* aaaa bbbb */
1651 if (sector_num >= req->sector_num + req->nb_sectors) {
1652 return false;
1653 }
1654 /* bbbb aaaa */
1655 if (req->sector_num >= sector_num + nb_sectors) {
1656 return false;
1657 }
1658 return true;
1659 }
1660
1661 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
1662 int64_t sector_num, int nb_sectors)
1663 {
1664 BdrvTrackedRequest *req;
1665 int64_t cluster_sector_num;
1666 int cluster_nb_sectors;
1667 bool retry;
1668
1669 /* If we touch the same cluster it counts as an overlap. This guarantees
1670 * that allocating writes will be serialized and not race with each other
1671 * for the same cluster. For example, in copy-on-read it ensures that the
1672 * CoR read and write operations are atomic and guest writes cannot
1673 * interleave between them.
1674 */
1675 round_to_clusters(bs, sector_num, nb_sectors,
1676 &cluster_sector_num, &cluster_nb_sectors);
1677
1678 do {
1679 retry = false;
1680 QLIST_FOREACH(req, &bs->tracked_requests, list) {
1681 if (tracked_request_overlaps(req, cluster_sector_num,
1682 cluster_nb_sectors)) {
1683 /* Hitting this means there was a reentrant request, for
1684 * example, a block driver issuing nested requests. This must
1685 * never happen since it means deadlock.
1686 */
1687 assert(qemu_coroutine_self() != req->co);
1688
1689 qemu_co_queue_wait(&req->wait_queue);
1690 retry = true;
1691 break;
1692 }
1693 }
1694 } while (retry);
1695 }
1696
1697 /*
1698 * Return values:
1699 * 0 - success
1700 * -EINVAL - backing format specified, but no file
1701 * -ENOSPC - can't update the backing file because no space is left in the
1702 * image file header
1703 * -ENOTSUP - format driver doesn't support changing the backing file
1704 */
1705 int bdrv_change_backing_file(BlockDriverState *bs,
1706 const char *backing_file, const char *backing_fmt)
1707 {
1708 BlockDriver *drv = bs->drv;
1709 int ret;
1710
1711 /* Backing file format doesn't make sense without a backing file */
1712 if (backing_fmt && !backing_file) {
1713 return -EINVAL;
1714 }
1715
1716 if (drv->bdrv_change_backing_file != NULL) {
1717 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
1718 } else {
1719 ret = -ENOTSUP;
1720 }
1721
1722 if (ret == 0) {
1723 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: "");
1724 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: "");
1725 }
1726 return ret;
1727 }
1728
1729 /*
1730 * Finds the image layer in the chain that has 'bs' as its backing file.
1731 *
1732 * active is the current topmost image.
1733 *
1734 * Returns NULL if bs is not found in active's image chain,
1735 * or if active == bs.
1736 */
1737 BlockDriverState *bdrv_find_overlay(BlockDriverState *active,
1738 BlockDriverState *bs)
1739 {
1740 BlockDriverState *overlay = NULL;
1741 BlockDriverState *intermediate;
1742
1743 assert(active != NULL);
1744 assert(bs != NULL);
1745
1746 /* if bs is the same as active, then by definition it has no overlay
1747 */
1748 if (active == bs) {
1749 return NULL;
1750 }
1751
1752 intermediate = active;
1753 while (intermediate->backing_hd) {
1754 if (intermediate->backing_hd == bs) {
1755 overlay = intermediate;
1756 break;
1757 }
1758 intermediate = intermediate->backing_hd;
1759 }
1760
1761 return overlay;
1762 }
1763
1764 typedef struct BlkIntermediateStates {
1765 BlockDriverState *bs;
1766 QSIMPLEQ_ENTRY(BlkIntermediateStates) entry;
1767 } BlkIntermediateStates;
1768
1769
1770 /*
1771 * Drops images above 'base' up to and including 'top', and sets the image
1772 * above 'top' to have base as its backing file.
1773 *
1774 * Requires that the overlay to 'top' is opened r/w, so that the backing file
1775 * information in 'bs' can be properly updated.
1776 *
1777 * E.g., this will convert the following chain:
1778 * bottom <- base <- intermediate <- top <- active
1779 *
1780 * to
1781 *
1782 * bottom <- base <- active
1783 *
1784 * It is allowed for bottom==base, in which case it converts:
1785 *
1786 * base <- intermediate <- top <- active
1787 *
1788 * to
1789 *
1790 * base <- active
1791 *
1792 * Error conditions:
1793 * if active == top, that is considered an error
1794 *
1795 */
1796 int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top,
1797 BlockDriverState *base)
1798 {
1799 BlockDriverState *intermediate;
1800 BlockDriverState *base_bs = NULL;
1801 BlockDriverState *new_top_bs = NULL;
1802 BlkIntermediateStates *intermediate_state, *next;
1803 int ret = -EIO;
1804
1805 QSIMPLEQ_HEAD(states_to_delete, BlkIntermediateStates) states_to_delete;
1806 QSIMPLEQ_INIT(&states_to_delete);
1807
1808 if (!top->drv || !base->drv) {
1809 goto exit;
1810 }
1811
1812 new_top_bs = bdrv_find_overlay(active, top);
1813
1814 if (new_top_bs == NULL) {
1815 /* we could not find the image above 'top', this is an error */
1816 goto exit;
1817 }
1818
1819 /* special case of new_top_bs->backing_hd already pointing to base - nothing
1820 * to do, no intermediate images */
1821 if (new_top_bs->backing_hd == base) {
1822 ret = 0;
1823 goto exit;
1824 }
1825
1826 intermediate = top;
1827
1828 /* now we will go down through the list, and add each BDS we find
1829 * into our deletion queue, until we hit the 'base'
1830 */
1831 while (intermediate) {
1832 intermediate_state = g_malloc0(sizeof(BlkIntermediateStates));
1833 intermediate_state->bs = intermediate;
1834 QSIMPLEQ_INSERT_TAIL(&states_to_delete, intermediate_state, entry);
1835
1836 if (intermediate->backing_hd == base) {
1837 base_bs = intermediate->backing_hd;
1838 break;
1839 }
1840 intermediate = intermediate->backing_hd;
1841 }
1842 if (base_bs == NULL) {
1843 /* something went wrong, we did not end at the base. safely
1844 * unravel everything, and exit with error */
1845 goto exit;
1846 }
1847
1848 /* success - we can delete the intermediate states, and link top->base */
1849 ret = bdrv_change_backing_file(new_top_bs, base_bs->filename,
1850 base_bs->drv ? base_bs->drv->format_name : "");
1851 if (ret) {
1852 goto exit;
1853 }
1854 new_top_bs->backing_hd = base_bs;
1855
1856
1857 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
1858 /* so that bdrv_close() does not recursively close the chain */
1859 intermediate_state->bs->backing_hd = NULL;
1860 bdrv_delete(intermediate_state->bs);
1861 }
1862 ret = 0;
1863
1864 exit:
1865 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
1866 g_free(intermediate_state);
1867 }
1868 return ret;
1869 }
1870
1871
1872 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
1873 size_t size)
1874 {
1875 int64_t len;
1876
1877 if (!bdrv_is_inserted(bs))
1878 return -ENOMEDIUM;
1879
1880 if (bs->growable)
1881 return 0;
1882
1883 len = bdrv_getlength(bs);
1884
1885 if (offset < 0)
1886 return -EIO;
1887
1888 if ((offset > len) || (len - offset < size))
1889 return -EIO;
1890
1891 return 0;
1892 }
1893
1894 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
1895 int nb_sectors)
1896 {
1897 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
1898 nb_sectors * BDRV_SECTOR_SIZE);
1899 }
1900
1901 typedef struct RwCo {
1902 BlockDriverState *bs;
1903 int64_t sector_num;
1904 int nb_sectors;
1905 QEMUIOVector *qiov;
1906 bool is_write;
1907 int ret;
1908 } RwCo;
1909
1910 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
1911 {
1912 RwCo *rwco = opaque;
1913
1914 if (!rwco->is_write) {
1915 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
1916 rwco->nb_sectors, rwco->qiov, 0);
1917 } else {
1918 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
1919 rwco->nb_sectors, rwco->qiov, 0);
1920 }
1921 }
1922
1923 /*
1924 * Process a synchronous request using coroutines
1925 */
1926 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
1927 int nb_sectors, bool is_write)
1928 {
1929 QEMUIOVector qiov;
1930 struct iovec iov = {
1931 .iov_base = (void *)buf,
1932 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1933 };
1934 Coroutine *co;
1935 RwCo rwco = {
1936 .bs = bs,
1937 .sector_num = sector_num,
1938 .nb_sectors = nb_sectors,
1939 .qiov = &qiov,
1940 .is_write = is_write,
1941 .ret = NOT_DONE,
1942 };
1943
1944 qemu_iovec_init_external(&qiov, &iov, 1);
1945
1946 /**
1947 * In sync call context, when the vcpu is blocked, this throttling timer
1948 * will not fire; so the I/O throttling function has to be disabled here
1949 * if it has been enabled.
1950 */
1951 if (bs->io_limits_enabled) {
1952 fprintf(stderr, "Disabling I/O throttling on '%s' due "
1953 "to synchronous I/O.\n", bdrv_get_device_name(bs));
1954 bdrv_io_limits_disable(bs);
1955 }
1956
1957 if (qemu_in_coroutine()) {
1958 /* Fast-path if already in coroutine context */
1959 bdrv_rw_co_entry(&rwco);
1960 } else {
1961 co = qemu_coroutine_create(bdrv_rw_co_entry);
1962 qemu_coroutine_enter(co, &rwco);
1963 while (rwco.ret == NOT_DONE) {
1964 qemu_aio_wait();
1965 }
1966 }
1967 return rwco.ret;
1968 }
1969
1970 /* return < 0 if error. See bdrv_write() for the return codes */
1971 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
1972 uint8_t *buf, int nb_sectors)
1973 {
1974 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
1975 }
1976
1977 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */
1978 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
1979 uint8_t *buf, int nb_sectors)
1980 {
1981 bool enabled;
1982 int ret;
1983
1984 enabled = bs->io_limits_enabled;
1985 bs->io_limits_enabled = false;
1986 ret = bdrv_read(bs, 0, buf, 1);
1987 bs->io_limits_enabled = enabled;
1988 return ret;
1989 }
1990
1991 #define BITS_PER_LONG (sizeof(unsigned long) * 8)
1992
1993 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num,
1994 int nb_sectors, int dirty)
1995 {
1996 int64_t start, end;
1997 unsigned long val, idx, bit;
1998
1999 start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK;
2000 end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK;
2001
2002 for (; start <= end; start++) {
2003 idx = start / BITS_PER_LONG;
2004 bit = start % BITS_PER_LONG;
2005 val = bs->dirty_bitmap[idx];
2006 if (dirty) {
2007 if (!(val & (1UL << bit))) {
2008 bs->dirty_count++;
2009 val |= 1UL << bit;
2010 }
2011 } else {
2012 if (val & (1UL << bit)) {
2013 bs->dirty_count--;
2014 val &= ~(1UL << bit);
2015 }
2016 }
2017 bs->dirty_bitmap[idx] = val;
2018 }
2019 }
2020
2021 /* Return < 0 if error. Important errors are:
2022 -EIO generic I/O error (may happen for all errors)
2023 -ENOMEDIUM No media inserted.
2024 -EINVAL Invalid sector number or nb_sectors
2025 -EACCES Trying to write a read-only device
2026 */
2027 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
2028 const uint8_t *buf, int nb_sectors)
2029 {
2030 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
2031 }
2032
2033 int bdrv_pread(BlockDriverState *bs, int64_t offset,
2034 void *buf, int count1)
2035 {
2036 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2037 int len, nb_sectors, count;
2038 int64_t sector_num;
2039 int ret;
2040
2041 count = count1;
2042 /* first read to align to sector start */
2043 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2044 if (len > count)
2045 len = count;
2046 sector_num = offset >> BDRV_SECTOR_BITS;
2047 if (len > 0) {
2048 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2049 return ret;
2050 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
2051 count -= len;
2052 if (count == 0)
2053 return count1;
2054 sector_num++;
2055 buf += len;
2056 }
2057
2058 /* read the sectors "in place" */
2059 nb_sectors = count >> BDRV_SECTOR_BITS;
2060 if (nb_sectors > 0) {
2061 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
2062 return ret;
2063 sector_num += nb_sectors;
2064 len = nb_sectors << BDRV_SECTOR_BITS;
2065 buf += len;
2066 count -= len;
2067 }
2068
2069 /* add data from the last sector */
2070 if (count > 0) {
2071 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2072 return ret;
2073 memcpy(buf, tmp_buf, count);
2074 }
2075 return count1;
2076 }
2077
2078 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
2079 const void *buf, int count1)
2080 {
2081 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2082 int len, nb_sectors, count;
2083 int64_t sector_num;
2084 int ret;
2085
2086 count = count1;
2087 /* first write to align to sector start */
2088 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2089 if (len > count)
2090 len = count;
2091 sector_num = offset >> BDRV_SECTOR_BITS;
2092 if (len > 0) {
2093 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2094 return ret;
2095 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len);
2096 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2097 return ret;
2098 count -= len;
2099 if (count == 0)
2100 return count1;
2101 sector_num++;
2102 buf += len;
2103 }
2104
2105 /* write the sectors "in place" */
2106 nb_sectors = count >> BDRV_SECTOR_BITS;
2107 if (nb_sectors > 0) {
2108 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0)
2109 return ret;
2110 sector_num += nb_sectors;
2111 len = nb_sectors << BDRV_SECTOR_BITS;
2112 buf += len;
2113 count -= len;
2114 }
2115
2116 /* add data from the last sector */
2117 if (count > 0) {
2118 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2119 return ret;
2120 memcpy(tmp_buf, buf, count);
2121 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2122 return ret;
2123 }
2124 return count1;
2125 }
2126
2127 /*
2128 * Writes to the file and ensures that no writes are reordered across this
2129 * request (acts as a barrier)
2130 *
2131 * Returns 0 on success, -errno in error cases.
2132 */
2133 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
2134 const void *buf, int count)
2135 {
2136 int ret;
2137
2138 ret = bdrv_pwrite(bs, offset, buf, count);
2139 if (ret < 0) {
2140 return ret;
2141 }
2142
2143 /* No flush needed for cache modes that already do it */
2144 if (bs->enable_write_cache) {
2145 bdrv_flush(bs);
2146 }
2147
2148 return 0;
2149 }
2150
2151 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
2152 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2153 {
2154 /* Perform I/O through a temporary buffer so that users who scribble over
2155 * their read buffer while the operation is in progress do not end up
2156 * modifying the image file. This is critical for zero-copy guest I/O
2157 * where anything might happen inside guest memory.
2158 */
2159 void *bounce_buffer;
2160
2161 BlockDriver *drv = bs->drv;
2162 struct iovec iov;
2163 QEMUIOVector bounce_qiov;
2164 int64_t cluster_sector_num;
2165 int cluster_nb_sectors;
2166 size_t skip_bytes;
2167 int ret;
2168
2169 /* Cover entire cluster so no additional backing file I/O is required when
2170 * allocating cluster in the image file.
2171 */
2172 round_to_clusters(bs, sector_num, nb_sectors,
2173 &cluster_sector_num, &cluster_nb_sectors);
2174
2175 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
2176 cluster_sector_num, cluster_nb_sectors);
2177
2178 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
2179 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
2180 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
2181
2182 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
2183 &bounce_qiov);
2184 if (ret < 0) {
2185 goto err;
2186 }
2187
2188 if (drv->bdrv_co_write_zeroes &&
2189 buffer_is_zero(bounce_buffer, iov.iov_len)) {
2190 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
2191 cluster_nb_sectors);
2192 } else {
2193 /* This does not change the data on the disk, it is not necessary
2194 * to flush even in cache=writethrough mode.
2195 */
2196 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
2197 &bounce_qiov);
2198 }
2199
2200 if (ret < 0) {
2201 /* It might be okay to ignore write errors for guest requests. If this
2202 * is a deliberate copy-on-read then we don't want to ignore the error.
2203 * Simply report it in all cases.
2204 */
2205 goto err;
2206 }
2207
2208 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
2209 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
2210 nb_sectors * BDRV_SECTOR_SIZE);
2211
2212 err:
2213 qemu_vfree(bounce_buffer);
2214 return ret;
2215 }
2216
2217 /*
2218 * Handle a read request in coroutine context
2219 */
2220 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
2221 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2222 BdrvRequestFlags flags)
2223 {
2224 BlockDriver *drv = bs->drv;
2225 BdrvTrackedRequest req;
2226 int ret;
2227
2228 if (!drv) {
2229 return -ENOMEDIUM;
2230 }
2231 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2232 return -EIO;
2233 }
2234
2235 /* throttling disk read I/O */
2236 if (bs->io_limits_enabled) {
2237 bdrv_io_limits_intercept(bs, false, nb_sectors);
2238 }
2239
2240 if (bs->copy_on_read) {
2241 flags |= BDRV_REQ_COPY_ON_READ;
2242 }
2243 if (flags & BDRV_REQ_COPY_ON_READ) {
2244 bs->copy_on_read_in_flight++;
2245 }
2246
2247 if (bs->copy_on_read_in_flight) {
2248 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2249 }
2250
2251 tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
2252
2253 if (flags & BDRV_REQ_COPY_ON_READ) {
2254 int pnum;
2255
2256 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
2257 if (ret < 0) {
2258 goto out;
2259 }
2260
2261 if (!ret || pnum != nb_sectors) {
2262 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
2263 goto out;
2264 }
2265 }
2266
2267 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
2268
2269 out:
2270 tracked_request_end(&req);
2271
2272 if (flags & BDRV_REQ_COPY_ON_READ) {
2273 bs->copy_on_read_in_flight--;
2274 }
2275
2276 return ret;
2277 }
2278
2279 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
2280 int nb_sectors, QEMUIOVector *qiov)
2281 {
2282 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
2283
2284 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
2285 }
2286
2287 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
2288 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2289 {
2290 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
2291
2292 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
2293 BDRV_REQ_COPY_ON_READ);
2294 }
2295
2296 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
2297 int64_t sector_num, int nb_sectors)
2298 {
2299 BlockDriver *drv = bs->drv;
2300 QEMUIOVector qiov;
2301 struct iovec iov;
2302 int ret;
2303
2304 /* TODO Emulate only part of misaligned requests instead of letting block
2305 * drivers return -ENOTSUP and emulate everything */
2306
2307 /* First try the efficient write zeroes operation */
2308 if (drv->bdrv_co_write_zeroes) {
2309 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2310 if (ret != -ENOTSUP) {
2311 return ret;
2312 }
2313 }
2314
2315 /* Fall back to bounce buffer if write zeroes is unsupported */
2316 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE;
2317 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
2318 memset(iov.iov_base, 0, iov.iov_len);
2319 qemu_iovec_init_external(&qiov, &iov, 1);
2320
2321 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
2322
2323 qemu_vfree(iov.iov_base);
2324 return ret;
2325 }
2326
2327 /*
2328 * Handle a write request in coroutine context
2329 */
2330 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
2331 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2332 BdrvRequestFlags flags)
2333 {
2334 BlockDriver *drv = bs->drv;
2335 BdrvTrackedRequest req;
2336 int ret;
2337
2338 if (!bs->drv) {
2339 return -ENOMEDIUM;
2340 }
2341 if (bs->read_only) {
2342 return -EACCES;
2343 }
2344 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2345 return -EIO;
2346 }
2347
2348 /* throttling disk write I/O */
2349 if (bs->io_limits_enabled) {
2350 bdrv_io_limits_intercept(bs, true, nb_sectors);
2351 }
2352
2353 if (bs->copy_on_read_in_flight) {
2354 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2355 }
2356
2357 tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
2358
2359 if (flags & BDRV_REQ_ZERO_WRITE) {
2360 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
2361 } else {
2362 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
2363 }
2364
2365 if (ret == 0 && !bs->enable_write_cache) {
2366 ret = bdrv_co_flush(bs);
2367 }
2368
2369 if (bs->dirty_bitmap) {
2370 set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
2371 }
2372
2373 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
2374 bs->wr_highest_sector = sector_num + nb_sectors - 1;
2375 }
2376
2377 tracked_request_end(&req);
2378
2379 return ret;
2380 }
2381
2382 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
2383 int nb_sectors, QEMUIOVector *qiov)
2384 {
2385 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
2386
2387 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
2388 }
2389
2390 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
2391 int64_t sector_num, int nb_sectors)
2392 {
2393 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2394
2395 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
2396 BDRV_REQ_ZERO_WRITE);
2397 }
2398
2399 /**
2400 * Truncate file to 'offset' bytes (needed only for file protocols)
2401 */
2402 int bdrv_truncate(BlockDriverState *bs, int64_t offset)
2403 {
2404 BlockDriver *drv = bs->drv;
2405 int ret;
2406 if (!drv)
2407 return -ENOMEDIUM;
2408 if (!drv->bdrv_truncate)
2409 return -ENOTSUP;
2410 if (bs->read_only)
2411 return -EACCES;
2412 if (bdrv_in_use(bs))
2413 return -EBUSY;
2414 ret = drv->bdrv_truncate(bs, offset);
2415 if (ret == 0) {
2416 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
2417 bdrv_dev_resize_cb(bs);
2418 }
2419 return ret;
2420 }
2421
2422 /**
2423 * Length of a allocated file in bytes. Sparse files are counted by actual
2424 * allocated space. Return < 0 if error or unknown.
2425 */
2426 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
2427 {
2428 BlockDriver *drv = bs->drv;
2429 if (!drv) {
2430 return -ENOMEDIUM;
2431 }
2432 if (drv->bdrv_get_allocated_file_size) {
2433 return drv->bdrv_get_allocated_file_size(bs);
2434 }
2435 if (bs->file) {
2436 return bdrv_get_allocated_file_size(bs->file);
2437 }
2438 return -ENOTSUP;
2439 }
2440
2441 /**
2442 * Length of a file in bytes. Return < 0 if error or unknown.
2443 */
2444 int64_t bdrv_getlength(BlockDriverState *bs)
2445 {
2446 BlockDriver *drv = bs->drv;
2447 if (!drv)
2448 return -ENOMEDIUM;
2449
2450 if (bs->growable || bdrv_dev_has_removable_media(bs)) {
2451 if (drv->bdrv_getlength) {
2452 return drv->bdrv_getlength(bs);
2453 }
2454 }
2455 return bs->total_sectors * BDRV_SECTOR_SIZE;
2456 }
2457
2458 /* return 0 as number of sectors if no device present or error */
2459 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
2460 {
2461 int64_t length;
2462 length = bdrv_getlength(bs);
2463 if (length < 0)
2464 length = 0;
2465 else
2466 length = length >> BDRV_SECTOR_BITS;
2467 *nb_sectors_ptr = length;
2468 }
2469
2470 /* throttling disk io limits */
2471 void bdrv_set_io_limits(BlockDriverState *bs,
2472 BlockIOLimit *io_limits)
2473 {
2474 bs->io_limits = *io_limits;
2475 bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
2476 }
2477
2478 void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error,
2479 BlockdevOnError on_write_error)
2480 {
2481 bs->on_read_error = on_read_error;
2482 bs->on_write_error = on_write_error;
2483 }
2484
2485 BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read)
2486 {
2487 return is_read ? bs->on_read_error : bs->on_write_error;
2488 }
2489
2490 BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error)
2491 {
2492 BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error;
2493
2494 switch (on_err) {
2495 case BLOCKDEV_ON_ERROR_ENOSPC:
2496 return (error == ENOSPC) ? BDRV_ACTION_STOP : BDRV_ACTION_REPORT;
2497 case BLOCKDEV_ON_ERROR_STOP:
2498 return BDRV_ACTION_STOP;
2499 case BLOCKDEV_ON_ERROR_REPORT:
2500 return BDRV_ACTION_REPORT;
2501 case BLOCKDEV_ON_ERROR_IGNORE:
2502 return BDRV_ACTION_IGNORE;
2503 default:
2504 abort();
2505 }
2506 }
2507
2508 /* This is done by device models because, while the block layer knows
2509 * about the error, it does not know whether an operation comes from
2510 * the device or the block layer (from a job, for example).
2511 */
2512 void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action,
2513 bool is_read, int error)
2514 {
2515 assert(error >= 0);
2516 bdrv_emit_qmp_error_event(bs, action, is_read);
2517 if (action == BDRV_ACTION_STOP) {
2518 vm_stop(RUN_STATE_IO_ERROR);
2519 bdrv_iostatus_set_err(bs, error);
2520 }
2521 }
2522
2523 int bdrv_is_read_only(BlockDriverState *bs)
2524 {
2525 return bs->read_only;
2526 }
2527
2528 int bdrv_is_sg(BlockDriverState *bs)
2529 {
2530 return bs->sg;
2531 }
2532
2533 int bdrv_enable_write_cache(BlockDriverState *bs)
2534 {
2535 return bs->enable_write_cache;
2536 }
2537
2538 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce)
2539 {
2540 bs->enable_write_cache = wce;
2541
2542 /* so a reopen() will preserve wce */
2543 if (wce) {
2544 bs->open_flags |= BDRV_O_CACHE_WB;
2545 } else {
2546 bs->open_flags &= ~BDRV_O_CACHE_WB;
2547 }
2548 }
2549
2550 int bdrv_is_encrypted(BlockDriverState *bs)
2551 {
2552 if (bs->backing_hd && bs->backing_hd->encrypted)
2553 return 1;
2554 return bs->encrypted;
2555 }
2556
2557 int bdrv_key_required(BlockDriverState *bs)
2558 {
2559 BlockDriverState *backing_hd = bs->backing_hd;
2560
2561 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
2562 return 1;
2563 return (bs->encrypted && !bs->valid_key);
2564 }
2565
2566 int bdrv_set_key(BlockDriverState *bs, const char *key)
2567 {
2568 int ret;
2569 if (bs->backing_hd && bs->backing_hd->encrypted) {
2570 ret = bdrv_set_key(bs->backing_hd, key);
2571 if (ret < 0)
2572 return ret;
2573 if (!bs->encrypted)
2574 return 0;
2575 }
2576 if (!bs->encrypted) {
2577 return -EINVAL;
2578 } else if (!bs->drv || !bs->drv->bdrv_set_key) {
2579 return -ENOMEDIUM;
2580 }
2581 ret = bs->drv->bdrv_set_key(bs, key);
2582 if (ret < 0) {
2583 bs->valid_key = 0;
2584 } else if (!bs->valid_key) {
2585 bs->valid_key = 1;
2586 /* call the change callback now, we skipped it on open */
2587 bdrv_dev_change_media_cb(bs, true);
2588 }
2589 return ret;
2590 }
2591
2592 const char *bdrv_get_format_name(BlockDriverState *bs)
2593 {
2594 return bs->drv ? bs->drv->format_name : NULL;
2595 }
2596
2597 void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
2598 void *opaque)
2599 {
2600 BlockDriver *drv;
2601
2602 QLIST_FOREACH(drv, &bdrv_drivers, list) {
2603 it(opaque, drv->format_name);
2604 }
2605 }
2606
2607 BlockDriverState *bdrv_find(const char *name)
2608 {
2609 BlockDriverState *bs;
2610
2611 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2612 if (!strcmp(name, bs->device_name)) {
2613 return bs;
2614 }
2615 }
2616 return NULL;
2617 }
2618
2619 BlockDriverState *bdrv_next(BlockDriverState *bs)
2620 {
2621 if (!bs) {
2622 return QTAILQ_FIRST(&bdrv_states);
2623 }
2624 return QTAILQ_NEXT(bs, list);
2625 }
2626
2627 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
2628 {
2629 BlockDriverState *bs;
2630
2631 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2632 it(opaque, bs);
2633 }
2634 }
2635
2636 const char *bdrv_get_device_name(BlockDriverState *bs)
2637 {
2638 return bs->device_name;
2639 }
2640
2641 int bdrv_get_flags(BlockDriverState *bs)
2642 {
2643 return bs->open_flags;
2644 }
2645
2646 void bdrv_flush_all(void)
2647 {
2648 BlockDriverState *bs;
2649
2650 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2651 bdrv_flush(bs);
2652 }
2653 }
2654
2655 int bdrv_has_zero_init(BlockDriverState *bs)
2656 {
2657 assert(bs->drv);
2658
2659 if (bs->drv->bdrv_has_zero_init) {
2660 return bs->drv->bdrv_has_zero_init(bs);
2661 }
2662
2663 return 1;
2664 }
2665
2666 typedef struct BdrvCoIsAllocatedData {
2667 BlockDriverState *bs;
2668 int64_t sector_num;
2669 int nb_sectors;
2670 int *pnum;
2671 int ret;
2672 bool done;
2673 } BdrvCoIsAllocatedData;
2674
2675 /*
2676 * Returns true iff the specified sector is present in the disk image. Drivers
2677 * not implementing the functionality are assumed to not support backing files,
2678 * hence all their sectors are reported as allocated.
2679 *
2680 * If 'sector_num' is beyond the end of the disk image the return value is 0
2681 * and 'pnum' is set to 0.
2682 *
2683 * 'pnum' is set to the number of sectors (including and immediately following
2684 * the specified sector) that are known to be in the same
2685 * allocated/unallocated state.
2686 *
2687 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
2688 * beyond the end of the disk image it will be clamped.
2689 */
2690 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
2691 int nb_sectors, int *pnum)
2692 {
2693 int64_t n;
2694
2695 if (sector_num >= bs->total_sectors) {
2696 *pnum = 0;
2697 return 0;
2698 }
2699
2700 n = bs->total_sectors - sector_num;
2701 if (n < nb_sectors) {
2702 nb_sectors = n;
2703 }
2704
2705 if (!bs->drv->bdrv_co_is_allocated) {
2706 *pnum = nb_sectors;
2707 return 1;
2708 }
2709
2710 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
2711 }
2712
2713 /* Coroutine wrapper for bdrv_is_allocated() */
2714 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
2715 {
2716 BdrvCoIsAllocatedData *data = opaque;
2717 BlockDriverState *bs = data->bs;
2718
2719 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
2720 data->pnum);
2721 data->done = true;
2722 }
2723
2724 /*
2725 * Synchronous wrapper around bdrv_co_is_allocated().
2726 *
2727 * See bdrv_co_is_allocated() for details.
2728 */
2729 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2730 int *pnum)
2731 {
2732 Coroutine *co;
2733 BdrvCoIsAllocatedData data = {
2734 .bs = bs,
2735 .sector_num = sector_num,
2736 .nb_sectors = nb_sectors,
2737 .pnum = pnum,
2738 .done = false,
2739 };
2740
2741 co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
2742 qemu_coroutine_enter(co, &data);
2743 while (!data.done) {
2744 qemu_aio_wait();
2745 }
2746 return data.ret;
2747 }
2748
2749 /*
2750 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2751 *
2752 * Return true if the given sector is allocated in any image between
2753 * BASE and TOP (inclusive). BASE can be NULL to check if the given
2754 * sector is allocated in any image of the chain. Return false otherwise.
2755 *
2756 * 'pnum' is set to the number of sectors (including and immediately following
2757 * the specified sector) that are known to be in the same
2758 * allocated/unallocated state.
2759 *
2760 */
2761 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2762 BlockDriverState *base,
2763 int64_t sector_num,
2764 int nb_sectors, int *pnum)
2765 {
2766 BlockDriverState *intermediate;
2767 int ret, n = nb_sectors;
2768
2769 intermediate = top;
2770 while (intermediate && intermediate != base) {
2771 int pnum_inter;
2772 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors,
2773 &pnum_inter);
2774 if (ret < 0) {
2775 return ret;
2776 } else if (ret) {
2777 *pnum = pnum_inter;
2778 return 1;
2779 }
2780
2781 /*
2782 * [sector_num, nb_sectors] is unallocated on top but intermediate
2783 * might have
2784 *
2785 * [sector_num+x, nr_sectors] allocated.
2786 */
2787 if (n > pnum_inter) {
2788 n = pnum_inter;
2789 }
2790
2791 intermediate = intermediate->backing_hd;
2792 }
2793
2794 *pnum = n;
2795 return 0;
2796 }
2797
2798 BlockInfoList *qmp_query_block(Error **errp)
2799 {
2800 BlockInfoList *head = NULL, *cur_item = NULL;
2801 BlockDriverState *bs;
2802
2803 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2804 BlockInfoList *info = g_malloc0(sizeof(*info));
2805
2806 info->value = g_malloc0(sizeof(*info->value));
2807 info->value->device = g_strdup(bs->device_name);
2808 info->value->type = g_strdup("unknown");
2809 info->value->locked = bdrv_dev_is_medium_locked(bs);
2810 info->value->removable = bdrv_dev_has_removable_media(bs);
2811
2812 if (bdrv_dev_has_removable_media(bs)) {
2813 info->value->has_tray_open = true;
2814 info->value->tray_open = bdrv_dev_is_tray_open(bs);
2815 }
2816
2817 if (bdrv_iostatus_is_enabled(bs)) {
2818 info->value->has_io_status = true;
2819 info->value->io_status = bs->iostatus;
2820 }
2821
2822 if (bs->drv) {
2823 info->value->has_inserted = true;
2824 info->value->inserted = g_malloc0(sizeof(*info->value->inserted));
2825 info->value->inserted->file = g_strdup(bs->filename);
2826 info->value->inserted->ro = bs->read_only;
2827 info->value->inserted->drv = g_strdup(bs->drv->format_name);
2828 info->value->inserted->encrypted = bs->encrypted;
2829 info->value->inserted->encryption_key_missing = bdrv_key_required(bs);
2830 if (bs->backing_file[0]) {
2831 info->value->inserted->has_backing_file = true;
2832 info->value->inserted->backing_file = g_strdup(bs->backing_file);
2833 }
2834
2835 info->value->inserted->backing_file_depth =
2836 bdrv_get_backing_file_depth(bs);
2837
2838 if (bs->io_limits_enabled) {
2839 info->value->inserted->bps =
2840 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2841 info->value->inserted->bps_rd =
2842 bs->io_limits.bps[BLOCK_IO_LIMIT_READ];
2843 info->value->inserted->bps_wr =
2844 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE];
2845 info->value->inserted->iops =
2846 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
2847 info->value->inserted->iops_rd =
2848 bs->io_limits.iops[BLOCK_IO_LIMIT_READ];
2849 info->value->inserted->iops_wr =
2850 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE];
2851 }
2852 }
2853
2854 /* XXX: waiting for the qapi to support GSList */
2855 if (!cur_item) {
2856 head = cur_item = info;
2857 } else {
2858 cur_item->next = info;
2859 cur_item = info;
2860 }
2861 }
2862
2863 return head;
2864 }
2865
2866 /* Consider exposing this as a full fledged QMP command */
2867 static BlockStats *qmp_query_blockstat(const BlockDriverState *bs, Error **errp)
2868 {
2869 BlockStats *s;
2870
2871 s = g_malloc0(sizeof(*s));
2872
2873 if (bs->device_name[0]) {
2874 s->has_device = true;
2875 s->device = g_strdup(bs->device_name);
2876 }
2877
2878 s->stats = g_malloc0(sizeof(*s->stats));
2879 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ];
2880 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE];
2881 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ];
2882 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE];
2883 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE;
2884 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH];
2885 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE];
2886 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ];
2887 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH];
2888
2889 if (bs->file) {
2890 s->has_parent = true;
2891 s->parent = qmp_query_blockstat(bs->file, NULL);
2892 }
2893
2894 return s;
2895 }
2896
2897 BlockStatsList *qmp_query_blockstats(Error **errp)
2898 {
2899 BlockStatsList *head = NULL, *cur_item = NULL;
2900 BlockDriverState *bs;
2901
2902 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2903 BlockStatsList *info = g_malloc0(sizeof(*info));
2904 info->value = qmp_query_blockstat(bs, NULL);
2905
2906 /* XXX: waiting for the qapi to support GSList */
2907 if (!cur_item) {
2908 head = cur_item = info;
2909 } else {
2910 cur_item->next = info;
2911 cur_item = info;
2912 }
2913 }
2914
2915 return head;
2916 }
2917
2918 const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
2919 {
2920 if (bs->backing_hd && bs->backing_hd->encrypted)
2921 return bs->backing_file;
2922 else if (bs->encrypted)
2923 return bs->filename;
2924 else
2925 return NULL;
2926 }
2927
2928 void bdrv_get_backing_filename(BlockDriverState *bs,
2929 char *filename, int filename_size)
2930 {
2931 pstrcpy(filename, filename_size, bs->backing_file);
2932 }
2933
2934 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
2935 const uint8_t *buf, int nb_sectors)
2936 {
2937 BlockDriver *drv = bs->drv;
2938 if (!drv)
2939 return -ENOMEDIUM;
2940 if (!drv->bdrv_write_compressed)
2941 return -ENOTSUP;
2942 if (bdrv_check_request(bs, sector_num, nb_sectors))
2943 return -EIO;
2944
2945 if (bs->dirty_bitmap) {
2946 set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
2947 }
2948
2949 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
2950 }
2951
2952 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
2953 {
2954 BlockDriver *drv = bs->drv;
2955 if (!drv)
2956 return -ENOMEDIUM;
2957 if (!drv->bdrv_get_info)
2958 return -ENOTSUP;
2959 memset(bdi, 0, sizeof(*bdi));
2960 return drv->bdrv_get_info(bs, bdi);
2961 }
2962
2963 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2964 int64_t pos, int size)
2965 {
2966 BlockDriver *drv = bs->drv;
2967 if (!drv)
2968 return -ENOMEDIUM;
2969 if (drv->bdrv_save_vmstate)
2970 return drv->bdrv_save_vmstate(bs, buf, pos, size);
2971 if (bs->file)
2972 return bdrv_save_vmstate(bs->file, buf, pos, size);
2973 return -ENOTSUP;
2974 }
2975
2976 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2977 int64_t pos, int size)
2978 {
2979 BlockDriver *drv = bs->drv;
2980 if (!drv)
2981 return -ENOMEDIUM;
2982 if (drv->bdrv_load_vmstate)
2983 return drv->bdrv_load_vmstate(bs, buf, pos, size);
2984 if (bs->file)
2985 return bdrv_load_vmstate(bs->file, buf, pos, size);
2986 return -ENOTSUP;
2987 }
2988
2989 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
2990 {
2991 BlockDriver *drv = bs->drv;
2992
2993 if (!drv || !drv->bdrv_debug_event) {
2994 return;
2995 }
2996
2997 drv->bdrv_debug_event(bs, event);
2998
2999 }
3000
3001 /**************************************************************/
3002 /* handling of snapshots */
3003
3004 int bdrv_can_snapshot(BlockDriverState *bs)
3005 {
3006 BlockDriver *drv = bs->drv;
3007 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
3008 return 0;
3009 }
3010
3011 if (!drv->bdrv_snapshot_create) {
3012 if (bs->file != NULL) {
3013 return bdrv_can_snapshot(bs->file);
3014 }
3015 return 0;
3016 }
3017
3018 return 1;
3019 }
3020
3021 int bdrv_is_snapshot(BlockDriverState *bs)
3022 {
3023 return !!(bs->open_flags & BDRV_O_SNAPSHOT);
3024 }
3025
3026 BlockDriverState *bdrv_snapshots(void)
3027 {
3028 BlockDriverState *bs;
3029
3030 if (bs_snapshots) {
3031 return bs_snapshots;
3032 }
3033
3034 bs = NULL;
3035 while ((bs = bdrv_next(bs))) {
3036 if (bdrv_can_snapshot(bs)) {
3037 bs_snapshots = bs;
3038 return bs;
3039 }
3040 }
3041 return NULL;
3042 }
3043
3044 int bdrv_snapshot_create(BlockDriverState *bs,
3045 QEMUSnapshotInfo *sn_info)
3046 {
3047 BlockDriver *drv = bs->drv;
3048 if (!drv)
3049 return -ENOMEDIUM;
3050 if (drv->bdrv_snapshot_create)
3051 return drv->bdrv_snapshot_create(bs, sn_info);
3052 if (bs->file)
3053 return bdrv_snapshot_create(bs->file, sn_info);
3054 return -ENOTSUP;
3055 }
3056
3057 int bdrv_snapshot_goto(BlockDriverState *bs,
3058 const char *snapshot_id)
3059 {
3060 BlockDriver *drv = bs->drv;
3061 int ret, open_ret;
3062
3063 if (!drv)
3064 return -ENOMEDIUM;
3065 if (drv->bdrv_snapshot_goto)
3066 return drv->bdrv_snapshot_goto(bs, snapshot_id);
3067
3068 if (bs->file) {
3069 drv->bdrv_close(bs);
3070 ret = bdrv_snapshot_goto(bs->file, snapshot_id);
3071 open_ret = drv->bdrv_open(bs, bs->open_flags);
3072 if (open_ret < 0) {
3073 bdrv_delete(bs->file);
3074 bs->drv = NULL;
3075 return open_ret;
3076 }
3077 return ret;
3078 }
3079
3080 return -ENOTSUP;
3081 }
3082
3083 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
3084 {
3085 BlockDriver *drv = bs->drv;
3086 if (!drv)
3087 return -ENOMEDIUM;
3088 if (drv->bdrv_snapshot_delete)
3089 return drv->bdrv_snapshot_delete(bs, snapshot_id);
3090 if (bs->file)
3091 return bdrv_snapshot_delete(bs->file, snapshot_id);
3092 return -ENOTSUP;
3093 }
3094
3095 int bdrv_snapshot_list(BlockDriverState *bs,
3096 QEMUSnapshotInfo **psn_info)
3097 {
3098 BlockDriver *drv = bs->drv;
3099 if (!drv)
3100 return -ENOMEDIUM;
3101 if (drv->bdrv_snapshot_list)
3102 return drv->bdrv_snapshot_list(bs, psn_info);
3103 if (bs->file)
3104 return bdrv_snapshot_list(bs->file, psn_info);
3105 return -ENOTSUP;
3106 }
3107
3108 int bdrv_snapshot_load_tmp(BlockDriverState *bs,
3109 const char *snapshot_name)
3110 {
3111 BlockDriver *drv = bs->drv;
3112 if (!drv) {
3113 return -ENOMEDIUM;
3114 }
3115 if (!bs->read_only) {
3116 return -EINVAL;
3117 }
3118 if (drv->bdrv_snapshot_load_tmp) {
3119 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name);
3120 }
3121 return -ENOTSUP;
3122 }
3123
3124 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
3125 const char *backing_file)
3126 {
3127 if (!bs->drv) {
3128 return NULL;
3129 }
3130
3131 if (bs->backing_hd) {
3132 if (strcmp(bs->backing_file, backing_file) == 0) {
3133 return bs->backing_hd;
3134 } else {
3135 return bdrv_find_backing_image(bs->backing_hd, backing_file);
3136 }
3137 }
3138
3139 return NULL;
3140 }
3141
3142 int bdrv_get_backing_file_depth(BlockDriverState *bs)
3143 {
3144 if (!bs->drv) {
3145 return 0;
3146 }
3147
3148 if (!bs->backing_hd) {
3149 return 0;
3150 }
3151
3152 return 1 + bdrv_get_backing_file_depth(bs->backing_hd);
3153 }
3154
3155 BlockDriverState *bdrv_find_base(BlockDriverState *bs)
3156 {
3157 BlockDriverState *curr_bs = NULL;
3158
3159 if (!bs) {
3160 return NULL;
3161 }
3162
3163 curr_bs = bs;
3164
3165 while (curr_bs->backing_hd) {
3166 curr_bs = curr_bs->backing_hd;
3167 }
3168 return curr_bs;
3169 }
3170
3171 #define NB_SUFFIXES 4
3172
3173 char *get_human_readable_size(char *buf, int buf_size, int64_t size)
3174 {
3175 static const char suffixes[NB_SUFFIXES] = "KMGT";
3176 int64_t base;
3177 int i;
3178
3179 if (size <= 999) {
3180 snprintf(buf, buf_size, "%" PRId64, size);
3181 } else {
3182 base = 1024;
3183 for(i = 0; i < NB_SUFFIXES; i++) {
3184 if (size < (10 * base)) {
3185 snprintf(buf, buf_size, "%0.1f%c",
3186 (double)size / base,
3187 suffixes[i]);
3188 break;
3189 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) {
3190 snprintf(buf, buf_size, "%" PRId64 "%c",
3191 ((size + (base >> 1)) / base),
3192 suffixes[i]);
3193 break;
3194 }
3195 base = base * 1024;
3196 }
3197 }
3198 return buf;
3199 }
3200
3201 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn)
3202 {
3203 char buf1[128], date_buf[128], clock_buf[128];
3204 #ifdef _WIN32
3205 struct tm *ptm;
3206 #else
3207 struct tm tm;
3208 #endif
3209 time_t ti;
3210 int64_t secs;
3211
3212 if (!sn) {
3213 snprintf(buf, buf_size,
3214 "%-10s%-20s%7s%20s%15s",
3215 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK");
3216 } else {
3217 ti = sn->date_sec;
3218 #ifdef _WIN32
3219 ptm = localtime(&ti);
3220 strftime(date_buf, sizeof(date_buf),
3221 "%Y-%m-%d %H:%M:%S", ptm);
3222 #else
3223 localtime_r(&ti, &tm);
3224 strftime(date_buf, sizeof(date_buf),
3225 "%Y-%m-%d %H:%M:%S", &tm);
3226 #endif
3227 secs = sn->vm_clock_nsec / 1000000000;
3228 snprintf(clock_buf, sizeof(clock_buf),
3229 "%02d:%02d:%02d.%03d",
3230 (int)(secs / 3600),
3231 (int)((secs / 60) % 60),
3232 (int)(secs % 60),
3233 (int)((sn->vm_clock_nsec / 1000000) % 1000));
3234 snprintf(buf, buf_size,
3235 "%-10s%-20s%7s%20s%15s",
3236 sn->id_str, sn->name,
3237 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size),
3238 date_buf,
3239 clock_buf);
3240 }
3241 return buf;
3242 }
3243
3244 /**************************************************************/
3245 /* async I/Os */
3246
3247 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
3248 QEMUIOVector *qiov, int nb_sectors,
3249 BlockDriverCompletionFunc *cb, void *opaque)
3250 {
3251 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
3252
3253 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3254 cb, opaque, false);
3255 }
3256
3257 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
3258 QEMUIOVector *qiov, int nb_sectors,
3259 BlockDriverCompletionFunc *cb, void *opaque)
3260 {
3261 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
3262
3263 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3264 cb, opaque, true);
3265 }
3266
3267
3268 typedef struct MultiwriteCB {
3269 int error;
3270 int num_requests;
3271 int num_callbacks;
3272 struct {
3273 BlockDriverCompletionFunc *cb;
3274 void *opaque;
3275 QEMUIOVector *free_qiov;
3276 } callbacks[];
3277 } MultiwriteCB;
3278
3279 static void multiwrite_user_cb(MultiwriteCB *mcb)
3280 {
3281 int i;
3282
3283 for (i = 0; i < mcb->num_callbacks; i++) {
3284 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
3285 if (mcb->callbacks[i].free_qiov) {
3286 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
3287 }
3288 g_free(mcb->callbacks[i].free_qiov);
3289 }
3290 }
3291
3292 static void multiwrite_cb(void *opaque, int ret)
3293 {
3294 MultiwriteCB *mcb = opaque;
3295
3296 trace_multiwrite_cb(mcb, ret);
3297
3298 if (ret < 0 && !mcb->error) {
3299 mcb->error = ret;
3300 }
3301
3302 mcb->num_requests--;
3303 if (mcb->num_requests == 0) {
3304 multiwrite_user_cb(mcb);
3305 g_free(mcb);
3306 }
3307 }
3308
3309 static int multiwrite_req_compare(const void *a, const void *b)
3310 {
3311 const BlockRequest *req1 = a, *req2 = b;
3312
3313 /*
3314 * Note that we can't simply subtract req2->sector from req1->sector
3315 * here as that could overflow the return value.
3316 */
3317 if (req1->sector > req2->sector) {
3318 return 1;
3319 } else if (req1->sector < req2->sector) {
3320 return -1;
3321 } else {
3322 return 0;
3323 }
3324 }
3325
3326 /*
3327 * Takes a bunch of requests and tries to merge them. Returns the number of
3328 * requests that remain after merging.
3329 */
3330 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
3331 int num_reqs, MultiwriteCB *mcb)
3332 {
3333 int i, outidx;
3334
3335 // Sort requests by start sector
3336 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
3337
3338 // Check if adjacent requests touch the same clusters. If so, combine them,
3339 // filling up gaps with zero sectors.
3340 outidx = 0;
3341 for (i = 1; i < num_reqs; i++) {
3342 int merge = 0;
3343 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
3344
3345 // Handle exactly sequential writes and overlapping writes.
3346 if (reqs[i].sector <= oldreq_last) {
3347 merge = 1;
3348 }
3349
3350 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
3351 merge = 0;
3352 }
3353
3354 if (merge) {
3355 size_t size;
3356 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
3357 qemu_iovec_init(qiov,
3358 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
3359
3360 // Add the first request to the merged one. If the requests are
3361 // overlapping, drop the last sectors of the first request.
3362 size = (reqs[i].sector - reqs[outidx].sector) << 9;
3363 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
3364
3365 // We should need to add any zeros between the two requests
3366 assert (reqs[i].sector <= oldreq_last);
3367
3368 // Add the second request
3369 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
3370
3371 reqs[outidx].nb_sectors = qiov->size >> 9;
3372 reqs[outidx].qiov = qiov;
3373
3374 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
3375 } else {
3376 outidx++;
3377 reqs[outidx].sector = reqs[i].sector;
3378 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
3379 reqs[outidx].qiov = reqs[i].qiov;
3380 }
3381 }
3382
3383 return outidx + 1;
3384 }
3385
3386 /*
3387 * Submit multiple AIO write requests at once.
3388 *
3389 * On success, the function returns 0 and all requests in the reqs array have
3390 * been submitted. In error case this function returns -1, and any of the
3391 * requests may or may not be submitted yet. In particular, this means that the
3392 * callback will be called for some of the requests, for others it won't. The
3393 * caller must check the error field of the BlockRequest to wait for the right
3394 * callbacks (if error != 0, no callback will be called).
3395 *
3396 * The implementation may modify the contents of the reqs array, e.g. to merge
3397 * requests. However, the fields opaque and error are left unmodified as they
3398 * are used to signal failure for a single request to the caller.
3399 */
3400 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
3401 {
3402 MultiwriteCB *mcb;
3403 int i;
3404
3405 /* don't submit writes if we don't have a medium */
3406 if (bs->drv == NULL) {
3407 for (i = 0; i < num_reqs; i++) {
3408 reqs[i].error = -ENOMEDIUM;
3409 }
3410 return -1;
3411 }
3412
3413 if (num_reqs == 0) {
3414 return 0;
3415 }
3416
3417 // Create MultiwriteCB structure
3418 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
3419 mcb->num_requests = 0;
3420 mcb->num_callbacks = num_reqs;
3421
3422 for (i = 0; i < num_reqs; i++) {
3423 mcb->callbacks[i].cb = reqs[i].cb;
3424 mcb->callbacks[i].opaque = reqs[i].opaque;
3425 }
3426
3427 // Check for mergable requests
3428 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
3429
3430 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
3431
3432 /* Run the aio requests. */
3433 mcb->num_requests = num_reqs;
3434 for (i = 0; i < num_reqs; i++) {
3435 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
3436 reqs[i].nb_sectors, multiwrite_cb, mcb);
3437 }
3438
3439 return 0;
3440 }
3441
3442 void bdrv_aio_cancel(BlockDriverAIOCB *acb)
3443 {
3444 acb->pool->cancel(acb);
3445 }
3446
3447 /* block I/O throttling */
3448 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
3449 bool is_write, double elapsed_time, uint64_t *wait)
3450 {
3451 uint64_t bps_limit = 0;
3452 double bytes_limit, bytes_base, bytes_res;
3453 double slice_time, wait_time;
3454
3455 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3456 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
3457 } else if (bs->io_limits.bps[is_write]) {
3458 bps_limit = bs->io_limits.bps[is_write];
3459 } else {
3460 if (wait) {
3461 *wait = 0;
3462 }
3463
3464 return false;
3465 }
3466
3467 slice_time = bs->slice_end - bs->slice_start;
3468 slice_time /= (NANOSECONDS_PER_SECOND);
3469 bytes_limit = bps_limit * slice_time;
3470 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write];
3471 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3472 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write];
3473 }
3474
3475 /* bytes_base: the bytes of data which have been read/written; and
3476 * it is obtained from the history statistic info.
3477 * bytes_res: the remaining bytes of data which need to be read/written.
3478 * (bytes_base + bytes_res) / bps_limit: used to calcuate
3479 * the total time for completing reading/writting all data.
3480 */
3481 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
3482
3483 if (bytes_base + bytes_res <= bytes_limit) {
3484 if (wait) {
3485 *wait = 0;
3486 }
3487
3488 return false;
3489 }
3490
3491 /* Calc approx time to dispatch */
3492 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
3493
3494 /* When the I/O rate at runtime exceeds the limits,
3495 * bs->slice_end need to be extended in order that the current statistic
3496 * info can be kept until the timer fire, so it is increased and tuned
3497 * based on the result of experiment.
3498 */
3499 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3500 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3501 if (wait) {
3502 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3503 }
3504
3505 return true;
3506 }
3507
3508 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
3509 double elapsed_time, uint64_t *wait)
3510 {
3511 uint64_t iops_limit = 0;
3512 double ios_limit, ios_base;
3513 double slice_time, wait_time;
3514
3515 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3516 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3517 } else if (bs->io_limits.iops[is_write]) {
3518 iops_limit = bs->io_limits.iops[is_write];
3519 } else {
3520 if (wait) {
3521 *wait = 0;
3522 }
3523
3524 return false;
3525 }
3526
3527 slice_time = bs->slice_end - bs->slice_start;
3528 slice_time /= (NANOSECONDS_PER_SECOND);
3529 ios_limit = iops_limit * slice_time;
3530 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write];
3531 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3532 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write];
3533 }
3534
3535 if (ios_base + 1 <= ios_limit) {
3536 if (wait) {
3537 *wait = 0;
3538 }
3539
3540 return false;
3541 }
3542
3543 /* Calc approx time to dispatch */
3544 wait_time = (ios_base + 1) / iops_limit;
3545 if (wait_time > elapsed_time) {
3546 wait_time = wait_time - elapsed_time;
3547 } else {
3548 wait_time = 0;
3549 }
3550
3551 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3552 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3553 if (wait) {
3554 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3555 }
3556
3557 return true;
3558 }
3559
3560 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
3561 bool is_write, int64_t *wait)
3562 {
3563 int64_t now, max_wait;
3564 uint64_t bps_wait = 0, iops_wait = 0;
3565 double elapsed_time;
3566 int bps_ret, iops_ret;
3567
3568 now = qemu_get_clock_ns(vm_clock);
3569 if ((bs->slice_start < now)
3570 && (bs->slice_end > now)) {
3571 bs->slice_end = now + bs->slice_time;
3572 } else {
3573 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
3574 bs->slice_start = now;
3575 bs->slice_end = now + bs->slice_time;
3576
3577 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write];
3578 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write];
3579
3580 bs->io_base.ios[is_write] = bs->nr_ops[is_write];
3581 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write];
3582 }
3583
3584 elapsed_time = now - bs->slice_start;
3585 elapsed_time /= (NANOSECONDS_PER_SECOND);
3586
3587 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors,
3588 is_write, elapsed_time, &bps_wait);
3589 iops_ret = bdrv_exceed_iops_limits(bs, is_write,
3590 elapsed_time, &iops_wait);
3591 if (bps_ret || iops_ret) {
3592 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
3593 if (wait) {
3594 *wait = max_wait;
3595 }
3596
3597 now = qemu_get_clock_ns(vm_clock);
3598 if (bs->slice_end < now + max_wait) {
3599 bs->slice_end = now + max_wait;
3600 }
3601
3602 return true;
3603 }
3604
3605 if (wait) {
3606 *wait = 0;
3607 }
3608
3609 return false;
3610 }
3611
3612 /**************************************************************/
3613 /* async block device emulation */
3614
3615 typedef struct BlockDriverAIOCBSync {
3616 BlockDriverAIOCB common;
3617 QEMUBH *bh;
3618 int ret;
3619 /* vector translation state */
3620 QEMUIOVector *qiov;
3621 uint8_t *bounce;
3622 int is_write;
3623 } BlockDriverAIOCBSync;
3624
3625 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
3626 {
3627 BlockDriverAIOCBSync *acb =
3628 container_of(blockacb, BlockDriverAIOCBSync, common);
3629 qemu_bh_delete(acb->bh);
3630 acb->bh = NULL;
3631 qemu_aio_release(acb);
3632 }
3633
3634 static AIOPool bdrv_em_aio_pool = {
3635 .aiocb_size = sizeof(BlockDriverAIOCBSync),
3636 .cancel = bdrv_aio_cancel_em,
3637 };
3638
3639 static void bdrv_aio_bh_cb(void *opaque)
3640 {
3641 BlockDriverAIOCBSync *acb = opaque;
3642
3643 if (!acb->is_write)
3644 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
3645 qemu_vfree(acb->bounce);
3646 acb->common.cb(acb->common.opaque, acb->ret);
3647 qemu_bh_delete(acb->bh);
3648 acb->bh = NULL;
3649 qemu_aio_release(acb);
3650 }
3651
3652 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
3653 int64_t sector_num,
3654 QEMUIOVector *qiov,
3655 int nb_sectors,
3656 BlockDriverCompletionFunc *cb,
3657 void *opaque,
3658 int is_write)
3659
3660 {
3661 BlockDriverAIOCBSync *acb;
3662
3663 acb = qemu_aio_get(&bdrv_em_aio_pool, bs, cb, opaque);
3664 acb->is_write = is_write;
3665 acb->qiov = qiov;
3666 acb->bounce = qemu_blockalign(bs, qiov->size);
3667 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
3668
3669 if (is_write) {
3670 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
3671 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
3672 } else {
3673 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
3674 }
3675
3676 qemu_bh_schedule(acb->bh);
3677
3678 return &acb->common;
3679 }
3680
3681 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
3682 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3683 BlockDriverCompletionFunc *cb, void *opaque)
3684 {
3685 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
3686 }
3687
3688 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
3689 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3690 BlockDriverCompletionFunc *cb, void *opaque)
3691 {
3692 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
3693 }
3694
3695
3696 typedef struct BlockDriverAIOCBCoroutine {
3697 BlockDriverAIOCB common;
3698 BlockRequest req;
3699 bool is_write;
3700 QEMUBH* bh;
3701 } BlockDriverAIOCBCoroutine;
3702
3703 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
3704 {
3705 qemu_aio_flush();
3706 }
3707
3708 static AIOPool bdrv_em_co_aio_pool = {
3709 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine),
3710 .cancel = bdrv_aio_co_cancel_em,
3711 };
3712
3713 static void bdrv_co_em_bh(void *opaque)
3714 {
3715 BlockDriverAIOCBCoroutine *acb = opaque;
3716
3717 acb->common.cb(acb->common.opaque, acb->req.error);
3718 qemu_bh_delete(acb->bh);
3719 qemu_aio_release(acb);
3720 }
3721
3722 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
3723 static void coroutine_fn bdrv_co_do_rw(void *opaque)
3724 {
3725 BlockDriverAIOCBCoroutine *acb = opaque;
3726 BlockDriverState *bs = acb->common.bs;
3727
3728 if (!acb->is_write) {
3729 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
3730 acb->req.nb_sectors, acb->req.qiov, 0);
3731 } else {
3732 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
3733 acb->req.nb_sectors, acb->req.qiov, 0);
3734 }
3735
3736 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3737 qemu_bh_schedule(acb->bh);
3738 }
3739
3740 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
3741 int64_t sector_num,
3742 QEMUIOVector *qiov,
3743 int nb_sectors,
3744 BlockDriverCompletionFunc *cb,
3745 void *opaque,
3746 bool is_write)
3747 {
3748 Coroutine *co;
3749 BlockDriverAIOCBCoroutine *acb;
3750
3751 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3752 acb->req.sector = sector_num;
3753 acb->req.nb_sectors = nb_sectors;
3754 acb->req.qiov = qiov;
3755 acb->is_write = is_write;
3756
3757 co = qemu_coroutine_create(bdrv_co_do_rw);
3758 qemu_coroutine_enter(co, acb);
3759
3760 return &acb->common;
3761 }
3762
3763 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
3764 {
3765 BlockDriverAIOCBCoroutine *acb = opaque;
3766 BlockDriverState *bs = acb->common.bs;
3767
3768 acb->req.error = bdrv_co_flush(bs);
3769 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3770 qemu_bh_schedule(acb->bh);
3771 }
3772
3773 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
3774 BlockDriverCompletionFunc *cb, void *opaque)
3775 {
3776 trace_bdrv_aio_flush(bs, opaque);
3777
3778 Coroutine *co;
3779 BlockDriverAIOCBCoroutine *acb;
3780
3781 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3782 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
3783 qemu_coroutine_enter(co, acb);
3784
3785 return &acb->common;
3786 }
3787
3788 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
3789 {
3790 BlockDriverAIOCBCoroutine *acb = opaque;
3791 BlockDriverState *bs = acb->common.bs;
3792
3793 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
3794 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3795 qemu_bh_schedule(acb->bh);
3796 }
3797
3798 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
3799 int64_t sector_num, int nb_sectors,
3800 BlockDriverCompletionFunc *cb, void *opaque)
3801 {
3802 Coroutine *co;
3803 BlockDriverAIOCBCoroutine *acb;
3804
3805 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
3806
3807 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3808 acb->req.sector = sector_num;
3809 acb->req.nb_sectors = nb_sectors;
3810 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
3811 qemu_coroutine_enter(co, acb);
3812
3813 return &acb->common;
3814 }
3815
3816 void bdrv_init(void)
3817 {
3818 module_call_init(MODULE_INIT_BLOCK);
3819 }
3820
3821 void bdrv_init_with_whitelist(void)
3822 {
3823 use_bdrv_whitelist = 1;
3824 bdrv_init();
3825 }
3826
3827 void *qemu_aio_get(AIOPool *pool, BlockDriverState *bs,
3828 BlockDriverCompletionFunc *cb, void *opaque)
3829 {
3830 BlockDriverAIOCB *acb;
3831
3832 if (pool->free_aiocb) {
3833 acb = pool->free_aiocb;
3834 pool->free_aiocb = acb->next;
3835 } else {
3836 acb = g_malloc0(pool->aiocb_size);
3837 acb->pool = pool;
3838 }
3839 acb->bs = bs;
3840 acb->cb = cb;
3841 acb->opaque = opaque;
3842 return acb;
3843 }
3844
3845 void qemu_aio_release(void *p)
3846 {
3847 BlockDriverAIOCB *acb = (BlockDriverAIOCB *)p;
3848 AIOPool *pool = acb->pool;
3849 acb->next = pool->free_aiocb;
3850 pool->free_aiocb = acb;
3851 }
3852
3853 /**************************************************************/
3854 /* Coroutine block device emulation */
3855
3856 typedef struct CoroutineIOCompletion {
3857 Coroutine *coroutine;
3858 int ret;
3859 } CoroutineIOCompletion;
3860
3861 static void bdrv_co_io_em_complete(void *opaque, int ret)
3862 {
3863 CoroutineIOCompletion *co = opaque;
3864
3865 co->ret = ret;
3866 qemu_coroutine_enter(co->coroutine, NULL);
3867 }
3868
3869 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
3870 int nb_sectors, QEMUIOVector *iov,
3871 bool is_write)
3872 {
3873 CoroutineIOCompletion co = {
3874 .coroutine = qemu_coroutine_self(),
3875 };
3876 BlockDriverAIOCB *acb;
3877
3878 if (is_write) {
3879 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
3880 bdrv_co_io_em_complete, &co);
3881 } else {
3882 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
3883 bdrv_co_io_em_complete, &co);
3884 }
3885
3886 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
3887 if (!acb) {
3888 return -EIO;
3889 }
3890 qemu_coroutine_yield();
3891
3892 return co.ret;
3893 }
3894
3895 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
3896 int64_t sector_num, int nb_sectors,
3897 QEMUIOVector *iov)
3898 {
3899 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
3900 }
3901
3902 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
3903 int64_t sector_num, int nb_sectors,
3904 QEMUIOVector *iov)
3905 {
3906 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
3907 }
3908
3909 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
3910 {
3911 RwCo *rwco = opaque;
3912
3913 rwco->ret = bdrv_co_flush(rwco->bs);
3914 }
3915
3916 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
3917 {
3918 int ret;
3919
3920 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
3921 return 0;
3922 }
3923
3924 /* Write back cached data to the OS even with cache=unsafe */
3925 if (bs->drv->bdrv_co_flush_to_os) {
3926 ret = bs->drv->bdrv_co_flush_to_os(bs);
3927 if (ret < 0) {
3928 return ret;
3929 }
3930 }
3931
3932 /* But don't actually force it to the disk with cache=unsafe */
3933 if (bs->open_flags & BDRV_O_NO_FLUSH) {
3934 goto flush_parent;
3935 }
3936
3937 if (bs->drv->bdrv_co_flush_to_disk) {
3938 ret = bs->drv->bdrv_co_flush_to_disk(bs);
3939 } else if (bs->drv->bdrv_aio_flush) {
3940 BlockDriverAIOCB *acb;
3941 CoroutineIOCompletion co = {
3942 .coroutine = qemu_coroutine_self(),
3943 };
3944
3945 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3946 if (acb == NULL) {
3947 ret = -EIO;
3948 } else {
3949 qemu_coroutine_yield();
3950 ret = co.ret;
3951 }
3952 } else {
3953 /*
3954 * Some block drivers always operate in either writethrough or unsafe
3955 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3956 * know how the server works (because the behaviour is hardcoded or
3957 * depends on server-side configuration), so we can't ensure that
3958 * everything is safe on disk. Returning an error doesn't work because
3959 * that would break guests even if the server operates in writethrough
3960 * mode.
3961 *
3962 * Let's hope the user knows what he's doing.
3963 */
3964 ret = 0;
3965 }
3966 if (ret < 0) {
3967 return ret;
3968 }
3969
3970 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
3971 * in the case of cache=unsafe, so there are no useless flushes.
3972 */
3973 flush_parent:
3974 return bdrv_co_flush(bs->file);
3975 }
3976
3977 void bdrv_invalidate_cache(BlockDriverState *bs)
3978 {
3979 if (bs->drv && bs->drv->bdrv_invalidate_cache) {
3980 bs->drv->bdrv_invalidate_cache(bs);
3981 }
3982 }
3983
3984 void bdrv_invalidate_cache_all(void)
3985 {
3986 BlockDriverState *bs;
3987
3988 QTAILQ_FOREACH(bs, &bdrv_states, list) {
3989 bdrv_invalidate_cache(bs);
3990 }
3991 }
3992
3993 void bdrv_clear_incoming_migration_all(void)
3994 {
3995 BlockDriverState *bs;
3996
3997 QTAILQ_FOREACH(bs, &bdrv_states, list) {
3998 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING);
3999 }
4000 }
4001
4002 int bdrv_flush(BlockDriverState *bs)
4003 {
4004 Coroutine *co;
4005 RwCo rwco = {
4006 .bs = bs,
4007 .ret = NOT_DONE,
4008 };
4009
4010 if (qemu_in_coroutine()) {
4011 /* Fast-path if already in coroutine context */
4012 bdrv_flush_co_entry(&rwco);
4013 } else {
4014 co = qemu_coroutine_create(bdrv_flush_co_entry);
4015 qemu_coroutine_enter(co, &rwco);
4016 while (rwco.ret == NOT_DONE) {
4017 qemu_aio_wait();
4018 }
4019 }
4020
4021 return rwco.ret;
4022 }
4023
4024 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
4025 {
4026 RwCo *rwco = opaque;
4027
4028 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
4029 }
4030
4031 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
4032 int nb_sectors)
4033 {
4034 if (!bs->drv) {
4035 return -ENOMEDIUM;
4036 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
4037 return -EIO;
4038 } else if (bs->read_only) {
4039 return -EROFS;
4040 } else if (bs->drv->bdrv_co_discard) {
4041 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
4042 } else if (bs->drv->bdrv_aio_discard) {
4043 BlockDriverAIOCB *acb;
4044 CoroutineIOCompletion co = {
4045 .coroutine = qemu_coroutine_self(),
4046 };
4047
4048 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
4049 bdrv_co_io_em_complete, &co);
4050 if (acb == NULL) {
4051 return -EIO;
4052 } else {
4053 qemu_coroutine_yield();
4054 return co.ret;
4055 }
4056 } else {
4057 return 0;
4058 }
4059 }
4060
4061 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
4062 {
4063 Coroutine *co;
4064 RwCo rwco = {
4065 .bs = bs,
4066 .sector_num = sector_num,
4067 .nb_sectors = nb_sectors,
4068 .ret = NOT_DONE,
4069 };
4070
4071 if (qemu_in_coroutine()) {
4072 /* Fast-path if already in coroutine context */
4073 bdrv_discard_co_entry(&rwco);
4074 } else {
4075 co = qemu_coroutine_create(bdrv_discard_co_entry);
4076 qemu_coroutine_enter(co, &rwco);
4077 while (rwco.ret == NOT_DONE) {
4078 qemu_aio_wait();
4079 }
4080 }
4081
4082 return rwco.ret;
4083 }
4084
4085 /**************************************************************/
4086 /* removable device support */
4087
4088 /**
4089 * Return TRUE if the media is present
4090 */
4091 int bdrv_is_inserted(BlockDriverState *bs)
4092 {
4093 BlockDriver *drv = bs->drv;
4094
4095 if (!drv)
4096 return 0;
4097 if (!drv->bdrv_is_inserted)
4098 return 1;
4099 return drv->bdrv_is_inserted(bs);
4100 }
4101
4102 /**
4103 * Return whether the media changed since the last call to this
4104 * function, or -ENOTSUP if we don't know. Most drivers don't know.
4105 */
4106 int bdrv_media_changed(BlockDriverState *bs)
4107 {
4108 BlockDriver *drv = bs->drv;
4109
4110 if (drv && drv->bdrv_media_changed) {
4111 return drv->bdrv_media_changed(bs);
4112 }
4113 return -ENOTSUP;
4114 }
4115
4116 /**
4117 * If eject_flag is TRUE, eject the media. Otherwise, close the tray
4118 */
4119 void bdrv_eject(BlockDriverState *bs, bool eject_flag)
4120 {
4121 BlockDriver *drv = bs->drv;
4122
4123 if (drv && drv->bdrv_eject) {
4124 drv->bdrv_eject(bs, eject_flag);
4125 }
4126
4127 if (bs->device_name[0] != '\0') {
4128 bdrv_emit_qmp_eject_event(bs, eject_flag);
4129 }
4130 }
4131
4132 /**
4133 * Lock or unlock the media (if it is locked, the user won't be able
4134 * to eject it manually).
4135 */
4136 void bdrv_lock_medium(BlockDriverState *bs, bool locked)
4137 {
4138 BlockDriver *drv = bs->drv;
4139
4140 trace_bdrv_lock_medium(bs, locked);
4141
4142 if (drv && drv->bdrv_lock_medium) {
4143 drv->bdrv_lock_medium(bs, locked);
4144 }
4145 }
4146
4147 /* needed for generic scsi interface */
4148
4149 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
4150 {
4151 BlockDriver *drv = bs->drv;
4152
4153 if (drv && drv->bdrv_ioctl)
4154 return drv->bdrv_ioctl(bs, req, buf);
4155 return -ENOTSUP;
4156 }
4157
4158 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
4159 unsigned long int req, void *buf,
4160 BlockDriverCompletionFunc *cb, void *opaque)
4161 {
4162 BlockDriver *drv = bs->drv;
4163
4164 if (drv && drv->bdrv_aio_ioctl)
4165 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
4166 return NULL;
4167 }
4168
4169 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
4170 {
4171 bs->buffer_alignment = align;
4172 }
4173
4174 void *qemu_blockalign(BlockDriverState *bs, size_t size)
4175 {
4176 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
4177 }
4178
4179 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable)
4180 {
4181 int64_t bitmap_size;
4182
4183 bs->dirty_count = 0;
4184 if (enable) {
4185 if (!bs->dirty_bitmap) {
4186 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) +
4187 BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG - 1;
4188 bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG;
4189
4190 bs->dirty_bitmap = g_new0(unsigned long, bitmap_size);
4191 }
4192 } else {
4193 if (bs->dirty_bitmap) {
4194 g_free(bs->dirty_bitmap);
4195 bs->dirty_bitmap = NULL;
4196 }
4197 }
4198 }
4199
4200 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
4201 {
4202 int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK;
4203
4204 if (bs->dirty_bitmap &&
4205 (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) {
4206 return !!(bs->dirty_bitmap[chunk / (sizeof(unsigned long) * 8)] &
4207 (1UL << (chunk % (sizeof(unsigned long) * 8))));
4208 } else {
4209 return 0;
4210 }
4211 }
4212
4213 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
4214 int nr_sectors)
4215 {
4216 set_dirty_bitmap(bs, cur_sector, nr_sectors, 0);
4217 }
4218
4219 int64_t bdrv_get_dirty_count(BlockDriverState *bs)
4220 {
4221 return bs->dirty_count;
4222 }
4223
4224 void bdrv_set_in_use(BlockDriverState *bs, int in_use)
4225 {
4226 assert(bs->in_use != in_use);
4227 bs->in_use = in_use;
4228 }
4229
4230 int bdrv_in_use(BlockDriverState *bs)
4231 {
4232 return bs->in_use;
4233 }
4234
4235 void bdrv_iostatus_enable(BlockDriverState *bs)
4236 {
4237 bs->iostatus_enabled = true;
4238 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4239 }
4240
4241 /* The I/O status is only enabled if the drive explicitly
4242 * enables it _and_ the VM is configured to stop on errors */
4243 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
4244 {
4245 return (bs->iostatus_enabled &&
4246 (bs->on_write_error == BLOCKDEV_ON_ERROR_ENOSPC ||
4247 bs->on_write_error == BLOCKDEV_ON_ERROR_STOP ||
4248 bs->on_read_error == BLOCKDEV_ON_ERROR_STOP));
4249 }
4250
4251 void bdrv_iostatus_disable(BlockDriverState *bs)
4252 {
4253 bs->iostatus_enabled = false;
4254 }
4255
4256 void bdrv_iostatus_reset(BlockDriverState *bs)
4257 {
4258 if (bdrv_iostatus_is_enabled(bs)) {
4259 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4260 }
4261 }
4262
4263 void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
4264 {
4265 assert(bdrv_iostatus_is_enabled(bs));
4266 if (bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
4267 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
4268 BLOCK_DEVICE_IO_STATUS_FAILED;
4269 }
4270 }
4271
4272 void
4273 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
4274 enum BlockAcctType type)
4275 {
4276 assert(type < BDRV_MAX_IOTYPE);
4277
4278 cookie->bytes = bytes;
4279 cookie->start_time_ns = get_clock();
4280 cookie->type = type;
4281 }
4282
4283 void
4284 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
4285 {
4286 assert(cookie->type < BDRV_MAX_IOTYPE);
4287
4288 bs->nr_bytes[cookie->type] += cookie->bytes;
4289 bs->nr_ops[cookie->type]++;
4290 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
4291 }
4292
4293 int bdrv_img_create(const char *filename, const char *fmt,
4294 const char *base_filename, const char *base_fmt,
4295 char *options, uint64_t img_size, int flags)
4296 {
4297 QEMUOptionParameter *param = NULL, *create_options = NULL;
4298 QEMUOptionParameter *backing_fmt, *backing_file, *size;
4299 BlockDriverState *bs = NULL;
4300 BlockDriver *drv, *proto_drv;
4301 BlockDriver *backing_drv = NULL;
4302 int ret = 0;
4303
4304 /* Find driver and parse its options */
4305 drv = bdrv_find_format(fmt);
4306 if (!drv) {
4307 error_report("Unknown file format '%s'", fmt);
4308 ret = -EINVAL;
4309 goto out;
4310 }
4311
4312 proto_drv = bdrv_find_protocol(filename);
4313 if (!proto_drv) {
4314 error_report("Unknown protocol '%s'", filename);
4315 ret = -EINVAL;
4316 goto out;
4317 }
4318
4319 create_options = append_option_parameters(create_options,
4320 drv->create_options);
4321 create_options = append_option_parameters(create_options,
4322 proto_drv->create_options);
4323
4324 /* Create parameter list with default values */
4325 param = parse_option_parameters("", create_options, param);
4326
4327 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
4328
4329 /* Parse -o options */
4330 if (options) {
4331 param = parse_option_parameters(options, create_options, param);
4332 if (param == NULL) {
4333 error_report("Invalid options for file format '%s'.", fmt);
4334 ret = -EINVAL;
4335 goto out;
4336 }
4337 }
4338
4339 if (base_filename) {
4340 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
4341 base_filename)) {
4342 error_report("Backing file not supported for file format '%s'",
4343 fmt);
4344 ret = -EINVAL;
4345 goto out;
4346 }
4347 }
4348
4349 if (base_fmt) {
4350 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
4351 error_report("Backing file format not supported for file "
4352 "format '%s'", fmt);
4353 ret = -EINVAL;
4354 goto out;
4355 }
4356 }
4357
4358 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
4359 if (backing_file && backing_file->value.s) {
4360 if (!strcmp(filename, backing_file->value.s)) {
4361 error_report("Error: Trying to create an image with the "
4362 "same filename as the backing file");
4363 ret = -EINVAL;
4364 goto out;
4365 }
4366 }
4367
4368 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
4369 if (backing_fmt && backing_fmt->value.s) {
4370 backing_drv = bdrv_find_format(backing_fmt->value.s);
4371 if (!backing_drv) {
4372 error_report("Unknown backing file format '%s'",
4373 backing_fmt->value.s);
4374 ret = -EINVAL;
4375 goto out;
4376 }
4377 }
4378
4379 // The size for the image must always be specified, with one exception:
4380 // If we are using a backing file, we can obtain the size from there
4381 size = get_option_parameter(param, BLOCK_OPT_SIZE);
4382 if (size && size->value.n == -1) {
4383 if (backing_file && backing_file->value.s) {
4384 uint64_t size;
4385 char buf[32];
4386 int back_flags;
4387
4388 /* backing files always opened read-only */
4389 back_flags =
4390 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
4391
4392 bs = bdrv_new("");
4393
4394 ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv);
4395 if (ret < 0) {
4396 error_report("Could not open '%s'", backing_file->value.s);
4397 goto out;
4398 }
4399 bdrv_get_geometry(bs, &size);
4400 size *= 512;
4401
4402 snprintf(buf, sizeof(buf), "%" PRId64, size);
4403 set_option_parameter(param, BLOCK_OPT_SIZE, buf);
4404 } else {
4405 error_report("Image creation needs a size parameter");
4406 ret = -EINVAL;
4407 goto out;
4408 }
4409 }
4410
4411 printf("Formatting '%s', fmt=%s ", filename, fmt);
4412 print_option_parameters(param);
4413 puts("");
4414
4415 ret = bdrv_create(drv, filename, param);
4416
4417 if (ret < 0) {
4418 if (ret == -ENOTSUP) {
4419 error_report("Formatting or formatting option not supported for "
4420 "file format '%s'", fmt);
4421 } else if (ret == -EFBIG) {
4422 error_report("The image size is too large for file format '%s'",
4423 fmt);
4424 } else {
4425 error_report("%s: error while creating %s: %s", filename, fmt,
4426 strerror(-ret));
4427 }
4428 }
4429
4430 out:
4431 free_option_parameters(create_options);
4432 free_option_parameters(param);
4433
4434 if (bs) {
4435 bdrv_delete(bs);
4436 }
4437
4438 return ret;
4439 }