]> git.proxmox.com Git - mirror_qemu.git/blob - block.c
block: add a transfer rate for floppy types
[mirror_qemu.git] / block.c
1 /*
2 * QEMU System Emulator block driver
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "config-host.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "monitor.h"
28 #include "block_int.h"
29 #include "module.h"
30 #include "qjson.h"
31 #include "qemu-coroutine.h"
32 #include "qmp-commands.h"
33 #include "qemu-timer.h"
34
35 #ifdef CONFIG_BSD
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/queue.h>
40 #ifndef __DragonFly__
41 #include <sys/disk.h>
42 #endif
43 #endif
44
45 #ifdef _WIN32
46 #include <windows.h>
47 #endif
48
49 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
50
51 typedef enum {
52 BDRV_REQ_COPY_ON_READ = 0x1,
53 BDRV_REQ_ZERO_WRITE = 0x2,
54 } BdrvRequestFlags;
55
56 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
57 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
58 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
59 BlockDriverCompletionFunc *cb, void *opaque);
60 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
62 BlockDriverCompletionFunc *cb, void *opaque);
63 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
64 int64_t sector_num, int nb_sectors,
65 QEMUIOVector *iov);
66 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
67 int64_t sector_num, int nb_sectors,
68 QEMUIOVector *iov);
69 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
70 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
71 BdrvRequestFlags flags);
72 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
74 BdrvRequestFlags flags);
75 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
76 int64_t sector_num,
77 QEMUIOVector *qiov,
78 int nb_sectors,
79 BlockDriverCompletionFunc *cb,
80 void *opaque,
81 bool is_write);
82 static void coroutine_fn bdrv_co_do_rw(void *opaque);
83
84 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
85 bool is_write, double elapsed_time, uint64_t *wait);
86 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
87 double elapsed_time, uint64_t *wait);
88 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
89 bool is_write, int64_t *wait);
90
91 static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
92 QTAILQ_HEAD_INITIALIZER(bdrv_states);
93
94 static QLIST_HEAD(, BlockDriver) bdrv_drivers =
95 QLIST_HEAD_INITIALIZER(bdrv_drivers);
96
97 /* The device to use for VM snapshots */
98 static BlockDriverState *bs_snapshots;
99
100 /* If non-zero, use only whitelisted block drivers */
101 static int use_bdrv_whitelist;
102
103 #ifdef _WIN32
104 static int is_windows_drive_prefix(const char *filename)
105 {
106 return (((filename[0] >= 'a' && filename[0] <= 'z') ||
107 (filename[0] >= 'A' && filename[0] <= 'Z')) &&
108 filename[1] == ':');
109 }
110
111 int is_windows_drive(const char *filename)
112 {
113 if (is_windows_drive_prefix(filename) &&
114 filename[2] == '\0')
115 return 1;
116 if (strstart(filename, "\\\\.\\", NULL) ||
117 strstart(filename, "//./", NULL))
118 return 1;
119 return 0;
120 }
121 #endif
122
123 /* throttling disk I/O limits */
124 void bdrv_io_limits_disable(BlockDriverState *bs)
125 {
126 bs->io_limits_enabled = false;
127
128 while (qemu_co_queue_next(&bs->throttled_reqs));
129
130 if (bs->block_timer) {
131 qemu_del_timer(bs->block_timer);
132 qemu_free_timer(bs->block_timer);
133 bs->block_timer = NULL;
134 }
135
136 bs->slice_start = 0;
137 bs->slice_end = 0;
138 bs->slice_time = 0;
139 memset(&bs->io_base, 0, sizeof(bs->io_base));
140 }
141
142 static void bdrv_block_timer(void *opaque)
143 {
144 BlockDriverState *bs = opaque;
145
146 qemu_co_queue_next(&bs->throttled_reqs);
147 }
148
149 void bdrv_io_limits_enable(BlockDriverState *bs)
150 {
151 qemu_co_queue_init(&bs->throttled_reqs);
152 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
153 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
154 bs->slice_start = qemu_get_clock_ns(vm_clock);
155 bs->slice_end = bs->slice_start + bs->slice_time;
156 memset(&bs->io_base, 0, sizeof(bs->io_base));
157 bs->io_limits_enabled = true;
158 }
159
160 bool bdrv_io_limits_enabled(BlockDriverState *bs)
161 {
162 BlockIOLimit *io_limits = &bs->io_limits;
163 return io_limits->bps[BLOCK_IO_LIMIT_READ]
164 || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
165 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
166 || io_limits->iops[BLOCK_IO_LIMIT_READ]
167 || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
168 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
169 }
170
171 static void bdrv_io_limits_intercept(BlockDriverState *bs,
172 bool is_write, int nb_sectors)
173 {
174 int64_t wait_time = -1;
175
176 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
177 qemu_co_queue_wait(&bs->throttled_reqs);
178 }
179
180 /* In fact, we hope to keep each request's timing, in FIFO mode. The next
181 * throttled requests will not be dequeued until the current request is
182 * allowed to be serviced. So if the current request still exceeds the
183 * limits, it will be inserted to the head. All requests followed it will
184 * be still in throttled_reqs queue.
185 */
186
187 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
188 qemu_mod_timer(bs->block_timer,
189 wait_time + qemu_get_clock_ns(vm_clock));
190 qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
191 }
192
193 qemu_co_queue_next(&bs->throttled_reqs);
194 }
195
196 /* check if the path starts with "<protocol>:" */
197 static int path_has_protocol(const char *path)
198 {
199 #ifdef _WIN32
200 if (is_windows_drive(path) ||
201 is_windows_drive_prefix(path)) {
202 return 0;
203 }
204 #endif
205
206 return strchr(path, ':') != NULL;
207 }
208
209 int path_is_absolute(const char *path)
210 {
211 const char *p;
212 #ifdef _WIN32
213 /* specific case for names like: "\\.\d:" */
214 if (*path == '/' || *path == '\\')
215 return 1;
216 #endif
217 p = strchr(path, ':');
218 if (p)
219 p++;
220 else
221 p = path;
222 #ifdef _WIN32
223 return (*p == '/' || *p == '\\');
224 #else
225 return (*p == '/');
226 #endif
227 }
228
229 /* if filename is absolute, just copy it to dest. Otherwise, build a
230 path to it by considering it is relative to base_path. URL are
231 supported. */
232 void path_combine(char *dest, int dest_size,
233 const char *base_path,
234 const char *filename)
235 {
236 const char *p, *p1;
237 int len;
238
239 if (dest_size <= 0)
240 return;
241 if (path_is_absolute(filename)) {
242 pstrcpy(dest, dest_size, filename);
243 } else {
244 p = strchr(base_path, ':');
245 if (p)
246 p++;
247 else
248 p = base_path;
249 p1 = strrchr(base_path, '/');
250 #ifdef _WIN32
251 {
252 const char *p2;
253 p2 = strrchr(base_path, '\\');
254 if (!p1 || p2 > p1)
255 p1 = p2;
256 }
257 #endif
258 if (p1)
259 p1++;
260 else
261 p1 = base_path;
262 if (p1 > p)
263 p = p1;
264 len = p - base_path;
265 if (len > dest_size - 1)
266 len = dest_size - 1;
267 memcpy(dest, base_path, len);
268 dest[len] = '\0';
269 pstrcat(dest, dest_size, filename);
270 }
271 }
272
273 void bdrv_register(BlockDriver *bdrv)
274 {
275 /* Block drivers without coroutine functions need emulation */
276 if (!bdrv->bdrv_co_readv) {
277 bdrv->bdrv_co_readv = bdrv_co_readv_em;
278 bdrv->bdrv_co_writev = bdrv_co_writev_em;
279
280 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
281 * the block driver lacks aio we need to emulate that too.
282 */
283 if (!bdrv->bdrv_aio_readv) {
284 /* add AIO emulation layer */
285 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
286 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
287 }
288 }
289
290 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
291 }
292
293 /* create a new block device (by default it is empty) */
294 BlockDriverState *bdrv_new(const char *device_name)
295 {
296 BlockDriverState *bs;
297
298 bs = g_malloc0(sizeof(BlockDriverState));
299 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
300 if (device_name[0] != '\0') {
301 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
302 }
303 bdrv_iostatus_disable(bs);
304 return bs;
305 }
306
307 BlockDriver *bdrv_find_format(const char *format_name)
308 {
309 BlockDriver *drv1;
310 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
311 if (!strcmp(drv1->format_name, format_name)) {
312 return drv1;
313 }
314 }
315 return NULL;
316 }
317
318 static int bdrv_is_whitelisted(BlockDriver *drv)
319 {
320 static const char *whitelist[] = {
321 CONFIG_BDRV_WHITELIST
322 };
323 const char **p;
324
325 if (!whitelist[0])
326 return 1; /* no whitelist, anything goes */
327
328 for (p = whitelist; *p; p++) {
329 if (!strcmp(drv->format_name, *p)) {
330 return 1;
331 }
332 }
333 return 0;
334 }
335
336 BlockDriver *bdrv_find_whitelisted_format(const char *format_name)
337 {
338 BlockDriver *drv = bdrv_find_format(format_name);
339 return drv && bdrv_is_whitelisted(drv) ? drv : NULL;
340 }
341
342 int bdrv_create(BlockDriver *drv, const char* filename,
343 QEMUOptionParameter *options)
344 {
345 if (!drv->bdrv_create)
346 return -ENOTSUP;
347
348 return drv->bdrv_create(filename, options);
349 }
350
351 int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
352 {
353 BlockDriver *drv;
354
355 drv = bdrv_find_protocol(filename);
356 if (drv == NULL) {
357 return -ENOENT;
358 }
359
360 return bdrv_create(drv, filename, options);
361 }
362
363 #ifdef _WIN32
364 void get_tmp_filename(char *filename, int size)
365 {
366 char temp_dir[MAX_PATH];
367
368 GetTempPath(MAX_PATH, temp_dir);
369 GetTempFileName(temp_dir, "qem", 0, filename);
370 }
371 #else
372 void get_tmp_filename(char *filename, int size)
373 {
374 int fd;
375 const char *tmpdir;
376 /* XXX: race condition possible */
377 tmpdir = getenv("TMPDIR");
378 if (!tmpdir)
379 tmpdir = "/tmp";
380 snprintf(filename, size, "%s/vl.XXXXXX", tmpdir);
381 fd = mkstemp(filename);
382 close(fd);
383 }
384 #endif
385
386 /*
387 * Detect host devices. By convention, /dev/cdrom[N] is always
388 * recognized as a host CDROM.
389 */
390 static BlockDriver *find_hdev_driver(const char *filename)
391 {
392 int score_max = 0, score;
393 BlockDriver *drv = NULL, *d;
394
395 QLIST_FOREACH(d, &bdrv_drivers, list) {
396 if (d->bdrv_probe_device) {
397 score = d->bdrv_probe_device(filename);
398 if (score > score_max) {
399 score_max = score;
400 drv = d;
401 }
402 }
403 }
404
405 return drv;
406 }
407
408 BlockDriver *bdrv_find_protocol(const char *filename)
409 {
410 BlockDriver *drv1;
411 char protocol[128];
412 int len;
413 const char *p;
414
415 /* TODO Drivers without bdrv_file_open must be specified explicitly */
416
417 /*
418 * XXX(hch): we really should not let host device detection
419 * override an explicit protocol specification, but moving this
420 * later breaks access to device names with colons in them.
421 * Thanks to the brain-dead persistent naming schemes on udev-
422 * based Linux systems those actually are quite common.
423 */
424 drv1 = find_hdev_driver(filename);
425 if (drv1) {
426 return drv1;
427 }
428
429 if (!path_has_protocol(filename)) {
430 return bdrv_find_format("file");
431 }
432 p = strchr(filename, ':');
433 assert(p != NULL);
434 len = p - filename;
435 if (len > sizeof(protocol) - 1)
436 len = sizeof(protocol) - 1;
437 memcpy(protocol, filename, len);
438 protocol[len] = '\0';
439 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
440 if (drv1->protocol_name &&
441 !strcmp(drv1->protocol_name, protocol)) {
442 return drv1;
443 }
444 }
445 return NULL;
446 }
447
448 static int find_image_format(const char *filename, BlockDriver **pdrv)
449 {
450 int ret, score, score_max;
451 BlockDriver *drv1, *drv;
452 uint8_t buf[2048];
453 BlockDriverState *bs;
454
455 ret = bdrv_file_open(&bs, filename, 0);
456 if (ret < 0) {
457 *pdrv = NULL;
458 return ret;
459 }
460
461 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
462 if (bs->sg || !bdrv_is_inserted(bs)) {
463 bdrv_delete(bs);
464 drv = bdrv_find_format("raw");
465 if (!drv) {
466 ret = -ENOENT;
467 }
468 *pdrv = drv;
469 return ret;
470 }
471
472 ret = bdrv_pread(bs, 0, buf, sizeof(buf));
473 bdrv_delete(bs);
474 if (ret < 0) {
475 *pdrv = NULL;
476 return ret;
477 }
478
479 score_max = 0;
480 drv = NULL;
481 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
482 if (drv1->bdrv_probe) {
483 score = drv1->bdrv_probe(buf, ret, filename);
484 if (score > score_max) {
485 score_max = score;
486 drv = drv1;
487 }
488 }
489 }
490 if (!drv) {
491 ret = -ENOENT;
492 }
493 *pdrv = drv;
494 return ret;
495 }
496
497 /**
498 * Set the current 'total_sectors' value
499 */
500 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
501 {
502 BlockDriver *drv = bs->drv;
503
504 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
505 if (bs->sg)
506 return 0;
507
508 /* query actual device if possible, otherwise just trust the hint */
509 if (drv->bdrv_getlength) {
510 int64_t length = drv->bdrv_getlength(bs);
511 if (length < 0) {
512 return length;
513 }
514 hint = length >> BDRV_SECTOR_BITS;
515 }
516
517 bs->total_sectors = hint;
518 return 0;
519 }
520
521 /**
522 * Set open flags for a given cache mode
523 *
524 * Return 0 on success, -1 if the cache mode was invalid.
525 */
526 int bdrv_parse_cache_flags(const char *mode, int *flags)
527 {
528 *flags &= ~BDRV_O_CACHE_MASK;
529
530 if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
531 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
532 } else if (!strcmp(mode, "directsync")) {
533 *flags |= BDRV_O_NOCACHE;
534 } else if (!strcmp(mode, "writeback")) {
535 *flags |= BDRV_O_CACHE_WB;
536 } else if (!strcmp(mode, "unsafe")) {
537 *flags |= BDRV_O_CACHE_WB;
538 *flags |= BDRV_O_NO_FLUSH;
539 } else if (!strcmp(mode, "writethrough")) {
540 /* this is the default */
541 } else {
542 return -1;
543 }
544
545 return 0;
546 }
547
548 /**
549 * The copy-on-read flag is actually a reference count so multiple users may
550 * use the feature without worrying about clobbering its previous state.
551 * Copy-on-read stays enabled until all users have called to disable it.
552 */
553 void bdrv_enable_copy_on_read(BlockDriverState *bs)
554 {
555 bs->copy_on_read++;
556 }
557
558 void bdrv_disable_copy_on_read(BlockDriverState *bs)
559 {
560 assert(bs->copy_on_read > 0);
561 bs->copy_on_read--;
562 }
563
564 /*
565 * Common part for opening disk images and files
566 */
567 static int bdrv_open_common(BlockDriverState *bs, const char *filename,
568 int flags, BlockDriver *drv)
569 {
570 int ret, open_flags;
571
572 assert(drv != NULL);
573
574 trace_bdrv_open_common(bs, filename, flags, drv->format_name);
575
576 bs->file = NULL;
577 bs->total_sectors = 0;
578 bs->encrypted = 0;
579 bs->valid_key = 0;
580 bs->sg = 0;
581 bs->open_flags = flags;
582 bs->growable = 0;
583 bs->buffer_alignment = 512;
584
585 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
586 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) {
587 bdrv_enable_copy_on_read(bs);
588 }
589
590 pstrcpy(bs->filename, sizeof(bs->filename), filename);
591 bs->backing_file[0] = '\0';
592
593 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) {
594 return -ENOTSUP;
595 }
596
597 bs->drv = drv;
598 bs->opaque = g_malloc0(drv->instance_size);
599
600 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
601
602 /*
603 * Clear flags that are internal to the block layer before opening the
604 * image.
605 */
606 open_flags = flags & ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
607
608 /*
609 * Snapshots should be writable.
610 */
611 if (bs->is_temporary) {
612 open_flags |= BDRV_O_RDWR;
613 }
614
615 bs->keep_read_only = bs->read_only = !(open_flags & BDRV_O_RDWR);
616
617 /* Open the image, either directly or using a protocol */
618 if (drv->bdrv_file_open) {
619 ret = drv->bdrv_file_open(bs, filename, open_flags);
620 } else {
621 ret = bdrv_file_open(&bs->file, filename, open_flags);
622 if (ret >= 0) {
623 ret = drv->bdrv_open(bs, open_flags);
624 }
625 }
626
627 if (ret < 0) {
628 goto free_and_fail;
629 }
630
631 ret = refresh_total_sectors(bs, bs->total_sectors);
632 if (ret < 0) {
633 goto free_and_fail;
634 }
635
636 #ifndef _WIN32
637 if (bs->is_temporary) {
638 unlink(filename);
639 }
640 #endif
641 return 0;
642
643 free_and_fail:
644 if (bs->file) {
645 bdrv_delete(bs->file);
646 bs->file = NULL;
647 }
648 g_free(bs->opaque);
649 bs->opaque = NULL;
650 bs->drv = NULL;
651 return ret;
652 }
653
654 /*
655 * Opens a file using a protocol (file, host_device, nbd, ...)
656 */
657 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags)
658 {
659 BlockDriverState *bs;
660 BlockDriver *drv;
661 int ret;
662
663 drv = bdrv_find_protocol(filename);
664 if (!drv) {
665 return -ENOENT;
666 }
667
668 bs = bdrv_new("");
669 ret = bdrv_open_common(bs, filename, flags, drv);
670 if (ret < 0) {
671 bdrv_delete(bs);
672 return ret;
673 }
674 bs->growable = 1;
675 *pbs = bs;
676 return 0;
677 }
678
679 /*
680 * Opens a disk image (raw, qcow2, vmdk, ...)
681 */
682 int bdrv_open(BlockDriverState *bs, const char *filename, int flags,
683 BlockDriver *drv)
684 {
685 int ret;
686 char tmp_filename[PATH_MAX];
687
688 if (flags & BDRV_O_SNAPSHOT) {
689 BlockDriverState *bs1;
690 int64_t total_size;
691 int is_protocol = 0;
692 BlockDriver *bdrv_qcow2;
693 QEMUOptionParameter *options;
694 char backing_filename[PATH_MAX];
695
696 /* if snapshot, we create a temporary backing file and open it
697 instead of opening 'filename' directly */
698
699 /* if there is a backing file, use it */
700 bs1 = bdrv_new("");
701 ret = bdrv_open(bs1, filename, 0, drv);
702 if (ret < 0) {
703 bdrv_delete(bs1);
704 return ret;
705 }
706 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
707
708 if (bs1->drv && bs1->drv->protocol_name)
709 is_protocol = 1;
710
711 bdrv_delete(bs1);
712
713 get_tmp_filename(tmp_filename, sizeof(tmp_filename));
714
715 /* Real path is meaningless for protocols */
716 if (is_protocol)
717 snprintf(backing_filename, sizeof(backing_filename),
718 "%s", filename);
719 else if (!realpath(filename, backing_filename))
720 return -errno;
721
722 bdrv_qcow2 = bdrv_find_format("qcow2");
723 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL);
724
725 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size);
726 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename);
727 if (drv) {
728 set_option_parameter(options, BLOCK_OPT_BACKING_FMT,
729 drv->format_name);
730 }
731
732 ret = bdrv_create(bdrv_qcow2, tmp_filename, options);
733 free_option_parameters(options);
734 if (ret < 0) {
735 return ret;
736 }
737
738 filename = tmp_filename;
739 drv = bdrv_qcow2;
740 bs->is_temporary = 1;
741 }
742
743 /* Find the right image format driver */
744 if (!drv) {
745 ret = find_image_format(filename, &drv);
746 }
747
748 if (!drv) {
749 goto unlink_and_fail;
750 }
751
752 /* Open the image */
753 ret = bdrv_open_common(bs, filename, flags, drv);
754 if (ret < 0) {
755 goto unlink_and_fail;
756 }
757
758 /* If there is a backing file, use it */
759 if ((flags & BDRV_O_NO_BACKING) == 0 && bs->backing_file[0] != '\0') {
760 char backing_filename[PATH_MAX];
761 int back_flags;
762 BlockDriver *back_drv = NULL;
763
764 bs->backing_hd = bdrv_new("");
765
766 if (path_has_protocol(bs->backing_file)) {
767 pstrcpy(backing_filename, sizeof(backing_filename),
768 bs->backing_file);
769 } else {
770 path_combine(backing_filename, sizeof(backing_filename),
771 filename, bs->backing_file);
772 }
773
774 if (bs->backing_format[0] != '\0') {
775 back_drv = bdrv_find_format(bs->backing_format);
776 }
777
778 /* backing files always opened read-only */
779 back_flags =
780 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
781
782 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv);
783 if (ret < 0) {
784 bdrv_close(bs);
785 return ret;
786 }
787 if (bs->is_temporary) {
788 bs->backing_hd->keep_read_only = !(flags & BDRV_O_RDWR);
789 } else {
790 /* base image inherits from "parent" */
791 bs->backing_hd->keep_read_only = bs->keep_read_only;
792 }
793 }
794
795 if (!bdrv_key_required(bs)) {
796 bdrv_dev_change_media_cb(bs, true);
797 }
798
799 /* throttling disk I/O limits */
800 if (bs->io_limits_enabled) {
801 bdrv_io_limits_enable(bs);
802 }
803
804 return 0;
805
806 unlink_and_fail:
807 if (bs->is_temporary) {
808 unlink(filename);
809 }
810 return ret;
811 }
812
813 void bdrv_close(BlockDriverState *bs)
814 {
815 if (bs->drv) {
816 if (bs == bs_snapshots) {
817 bs_snapshots = NULL;
818 }
819 if (bs->backing_hd) {
820 bdrv_delete(bs->backing_hd);
821 bs->backing_hd = NULL;
822 }
823 bs->drv->bdrv_close(bs);
824 g_free(bs->opaque);
825 #ifdef _WIN32
826 if (bs->is_temporary) {
827 unlink(bs->filename);
828 }
829 #endif
830 bs->opaque = NULL;
831 bs->drv = NULL;
832 bs->copy_on_read = 0;
833
834 if (bs->file != NULL) {
835 bdrv_close(bs->file);
836 }
837
838 bdrv_dev_change_media_cb(bs, false);
839 }
840
841 /*throttling disk I/O limits*/
842 if (bs->io_limits_enabled) {
843 bdrv_io_limits_disable(bs);
844 }
845 }
846
847 void bdrv_close_all(void)
848 {
849 BlockDriverState *bs;
850
851 QTAILQ_FOREACH(bs, &bdrv_states, list) {
852 bdrv_close(bs);
853 }
854 }
855
856 /*
857 * Wait for pending requests to complete across all BlockDriverStates
858 *
859 * This function does not flush data to disk, use bdrv_flush_all() for that
860 * after calling this function.
861 */
862 void bdrv_drain_all(void)
863 {
864 BlockDriverState *bs;
865
866 qemu_aio_flush();
867
868 /* If requests are still pending there is a bug somewhere */
869 QTAILQ_FOREACH(bs, &bdrv_states, list) {
870 assert(QLIST_EMPTY(&bs->tracked_requests));
871 assert(qemu_co_queue_empty(&bs->throttled_reqs));
872 }
873 }
874
875 /* make a BlockDriverState anonymous by removing from bdrv_state list.
876 Also, NULL terminate the device_name to prevent double remove */
877 void bdrv_make_anon(BlockDriverState *bs)
878 {
879 if (bs->device_name[0] != '\0') {
880 QTAILQ_REMOVE(&bdrv_states, bs, list);
881 }
882 bs->device_name[0] = '\0';
883 }
884
885 void bdrv_delete(BlockDriverState *bs)
886 {
887 assert(!bs->dev);
888
889 /* remove from list, if necessary */
890 bdrv_make_anon(bs);
891
892 bdrv_close(bs);
893 if (bs->file != NULL) {
894 bdrv_delete(bs->file);
895 }
896
897 assert(bs != bs_snapshots);
898 g_free(bs);
899 }
900
901 int bdrv_attach_dev(BlockDriverState *bs, void *dev)
902 /* TODO change to DeviceState *dev when all users are qdevified */
903 {
904 if (bs->dev) {
905 return -EBUSY;
906 }
907 bs->dev = dev;
908 bdrv_iostatus_reset(bs);
909 return 0;
910 }
911
912 /* TODO qdevified devices don't use this, remove when devices are qdevified */
913 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
914 {
915 if (bdrv_attach_dev(bs, dev) < 0) {
916 abort();
917 }
918 }
919
920 void bdrv_detach_dev(BlockDriverState *bs, void *dev)
921 /* TODO change to DeviceState *dev when all users are qdevified */
922 {
923 assert(bs->dev == dev);
924 bs->dev = NULL;
925 bs->dev_ops = NULL;
926 bs->dev_opaque = NULL;
927 bs->buffer_alignment = 512;
928 }
929
930 /* TODO change to return DeviceState * when all users are qdevified */
931 void *bdrv_get_attached_dev(BlockDriverState *bs)
932 {
933 return bs->dev;
934 }
935
936 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
937 void *opaque)
938 {
939 bs->dev_ops = ops;
940 bs->dev_opaque = opaque;
941 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) {
942 bs_snapshots = NULL;
943 }
944 }
945
946 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
947 BlockQMPEventAction action, int is_read)
948 {
949 QObject *data;
950 const char *action_str;
951
952 switch (action) {
953 case BDRV_ACTION_REPORT:
954 action_str = "report";
955 break;
956 case BDRV_ACTION_IGNORE:
957 action_str = "ignore";
958 break;
959 case BDRV_ACTION_STOP:
960 action_str = "stop";
961 break;
962 default:
963 abort();
964 }
965
966 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
967 bdrv->device_name,
968 action_str,
969 is_read ? "read" : "write");
970 monitor_protocol_event(QEVENT_BLOCK_IO_ERROR, data);
971
972 qobject_decref(data);
973 }
974
975 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected)
976 {
977 QObject *data;
978
979 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }",
980 bdrv_get_device_name(bs), ejected);
981 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data);
982
983 qobject_decref(data);
984 }
985
986 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
987 {
988 if (bs->dev_ops && bs->dev_ops->change_media_cb) {
989 bool tray_was_closed = !bdrv_dev_is_tray_open(bs);
990 bs->dev_ops->change_media_cb(bs->dev_opaque, load);
991 if (tray_was_closed) {
992 /* tray open */
993 bdrv_emit_qmp_eject_event(bs, true);
994 }
995 if (load) {
996 /* tray close */
997 bdrv_emit_qmp_eject_event(bs, false);
998 }
999 }
1000 }
1001
1002 bool bdrv_dev_has_removable_media(BlockDriverState *bs)
1003 {
1004 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
1005 }
1006
1007 void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
1008 {
1009 if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
1010 bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
1011 }
1012 }
1013
1014 bool bdrv_dev_is_tray_open(BlockDriverState *bs)
1015 {
1016 if (bs->dev_ops && bs->dev_ops->is_tray_open) {
1017 return bs->dev_ops->is_tray_open(bs->dev_opaque);
1018 }
1019 return false;
1020 }
1021
1022 static void bdrv_dev_resize_cb(BlockDriverState *bs)
1023 {
1024 if (bs->dev_ops && bs->dev_ops->resize_cb) {
1025 bs->dev_ops->resize_cb(bs->dev_opaque);
1026 }
1027 }
1028
1029 bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
1030 {
1031 if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
1032 return bs->dev_ops->is_medium_locked(bs->dev_opaque);
1033 }
1034 return false;
1035 }
1036
1037 /*
1038 * Run consistency checks on an image
1039 *
1040 * Returns 0 if the check could be completed (it doesn't mean that the image is
1041 * free of errors) or -errno when an internal error occurred. The results of the
1042 * check are stored in res.
1043 */
1044 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res)
1045 {
1046 if (bs->drv->bdrv_check == NULL) {
1047 return -ENOTSUP;
1048 }
1049
1050 memset(res, 0, sizeof(*res));
1051 return bs->drv->bdrv_check(bs, res);
1052 }
1053
1054 #define COMMIT_BUF_SECTORS 2048
1055
1056 /* commit COW file into the raw image */
1057 int bdrv_commit(BlockDriverState *bs)
1058 {
1059 BlockDriver *drv = bs->drv;
1060 BlockDriver *backing_drv;
1061 int64_t sector, total_sectors;
1062 int n, ro, open_flags;
1063 int ret = 0, rw_ret = 0;
1064 uint8_t *buf;
1065 char filename[1024];
1066 BlockDriverState *bs_rw, *bs_ro;
1067
1068 if (!drv)
1069 return -ENOMEDIUM;
1070
1071 if (!bs->backing_hd) {
1072 return -ENOTSUP;
1073 }
1074
1075 if (bs->backing_hd->keep_read_only) {
1076 return -EACCES;
1077 }
1078
1079 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
1080 return -EBUSY;
1081 }
1082
1083 backing_drv = bs->backing_hd->drv;
1084 ro = bs->backing_hd->read_only;
1085 strncpy(filename, bs->backing_hd->filename, sizeof(filename));
1086 open_flags = bs->backing_hd->open_flags;
1087
1088 if (ro) {
1089 /* re-open as RW */
1090 bdrv_delete(bs->backing_hd);
1091 bs->backing_hd = NULL;
1092 bs_rw = bdrv_new("");
1093 rw_ret = bdrv_open(bs_rw, filename, open_flags | BDRV_O_RDWR,
1094 backing_drv);
1095 if (rw_ret < 0) {
1096 bdrv_delete(bs_rw);
1097 /* try to re-open read-only */
1098 bs_ro = bdrv_new("");
1099 ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR,
1100 backing_drv);
1101 if (ret < 0) {
1102 bdrv_delete(bs_ro);
1103 /* drive not functional anymore */
1104 bs->drv = NULL;
1105 return ret;
1106 }
1107 bs->backing_hd = bs_ro;
1108 return rw_ret;
1109 }
1110 bs->backing_hd = bs_rw;
1111 }
1112
1113 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
1114 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
1115
1116 for (sector = 0; sector < total_sectors; sector += n) {
1117 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
1118
1119 if (bdrv_read(bs, sector, buf, n) != 0) {
1120 ret = -EIO;
1121 goto ro_cleanup;
1122 }
1123
1124 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
1125 ret = -EIO;
1126 goto ro_cleanup;
1127 }
1128 }
1129 }
1130
1131 if (drv->bdrv_make_empty) {
1132 ret = drv->bdrv_make_empty(bs);
1133 bdrv_flush(bs);
1134 }
1135
1136 /*
1137 * Make sure all data we wrote to the backing device is actually
1138 * stable on disk.
1139 */
1140 if (bs->backing_hd)
1141 bdrv_flush(bs->backing_hd);
1142
1143 ro_cleanup:
1144 g_free(buf);
1145
1146 if (ro) {
1147 /* re-open as RO */
1148 bdrv_delete(bs->backing_hd);
1149 bs->backing_hd = NULL;
1150 bs_ro = bdrv_new("");
1151 ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR,
1152 backing_drv);
1153 if (ret < 0) {
1154 bdrv_delete(bs_ro);
1155 /* drive not functional anymore */
1156 bs->drv = NULL;
1157 return ret;
1158 }
1159 bs->backing_hd = bs_ro;
1160 bs->backing_hd->keep_read_only = 0;
1161 }
1162
1163 return ret;
1164 }
1165
1166 void bdrv_commit_all(void)
1167 {
1168 BlockDriverState *bs;
1169
1170 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1171 bdrv_commit(bs);
1172 }
1173 }
1174
1175 struct BdrvTrackedRequest {
1176 BlockDriverState *bs;
1177 int64_t sector_num;
1178 int nb_sectors;
1179 bool is_write;
1180 QLIST_ENTRY(BdrvTrackedRequest) list;
1181 Coroutine *co; /* owner, used for deadlock detection */
1182 CoQueue wait_queue; /* coroutines blocked on this request */
1183 };
1184
1185 /**
1186 * Remove an active request from the tracked requests list
1187 *
1188 * This function should be called when a tracked request is completing.
1189 */
1190 static void tracked_request_end(BdrvTrackedRequest *req)
1191 {
1192 QLIST_REMOVE(req, list);
1193 qemu_co_queue_restart_all(&req->wait_queue);
1194 }
1195
1196 /**
1197 * Add an active request to the tracked requests list
1198 */
1199 static void tracked_request_begin(BdrvTrackedRequest *req,
1200 BlockDriverState *bs,
1201 int64_t sector_num,
1202 int nb_sectors, bool is_write)
1203 {
1204 *req = (BdrvTrackedRequest){
1205 .bs = bs,
1206 .sector_num = sector_num,
1207 .nb_sectors = nb_sectors,
1208 .is_write = is_write,
1209 .co = qemu_coroutine_self(),
1210 };
1211
1212 qemu_co_queue_init(&req->wait_queue);
1213
1214 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
1215 }
1216
1217 /**
1218 * Round a region to cluster boundaries
1219 */
1220 static void round_to_clusters(BlockDriverState *bs,
1221 int64_t sector_num, int nb_sectors,
1222 int64_t *cluster_sector_num,
1223 int *cluster_nb_sectors)
1224 {
1225 BlockDriverInfo bdi;
1226
1227 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
1228 *cluster_sector_num = sector_num;
1229 *cluster_nb_sectors = nb_sectors;
1230 } else {
1231 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
1232 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1233 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1234 nb_sectors, c);
1235 }
1236 }
1237
1238 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
1239 int64_t sector_num, int nb_sectors) {
1240 /* aaaa bbbb */
1241 if (sector_num >= req->sector_num + req->nb_sectors) {
1242 return false;
1243 }
1244 /* bbbb aaaa */
1245 if (req->sector_num >= sector_num + nb_sectors) {
1246 return false;
1247 }
1248 return true;
1249 }
1250
1251 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
1252 int64_t sector_num, int nb_sectors)
1253 {
1254 BdrvTrackedRequest *req;
1255 int64_t cluster_sector_num;
1256 int cluster_nb_sectors;
1257 bool retry;
1258
1259 /* If we touch the same cluster it counts as an overlap. This guarantees
1260 * that allocating writes will be serialized and not race with each other
1261 * for the same cluster. For example, in copy-on-read it ensures that the
1262 * CoR read and write operations are atomic and guest writes cannot
1263 * interleave between them.
1264 */
1265 round_to_clusters(bs, sector_num, nb_sectors,
1266 &cluster_sector_num, &cluster_nb_sectors);
1267
1268 do {
1269 retry = false;
1270 QLIST_FOREACH(req, &bs->tracked_requests, list) {
1271 if (tracked_request_overlaps(req, cluster_sector_num,
1272 cluster_nb_sectors)) {
1273 /* Hitting this means there was a reentrant request, for
1274 * example, a block driver issuing nested requests. This must
1275 * never happen since it means deadlock.
1276 */
1277 assert(qemu_coroutine_self() != req->co);
1278
1279 qemu_co_queue_wait(&req->wait_queue);
1280 retry = true;
1281 break;
1282 }
1283 }
1284 } while (retry);
1285 }
1286
1287 /*
1288 * Return values:
1289 * 0 - success
1290 * -EINVAL - backing format specified, but no file
1291 * -ENOSPC - can't update the backing file because no space is left in the
1292 * image file header
1293 * -ENOTSUP - format driver doesn't support changing the backing file
1294 */
1295 int bdrv_change_backing_file(BlockDriverState *bs,
1296 const char *backing_file, const char *backing_fmt)
1297 {
1298 BlockDriver *drv = bs->drv;
1299
1300 if (drv->bdrv_change_backing_file != NULL) {
1301 return drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
1302 } else {
1303 return -ENOTSUP;
1304 }
1305 }
1306
1307 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
1308 size_t size)
1309 {
1310 int64_t len;
1311
1312 if (!bdrv_is_inserted(bs))
1313 return -ENOMEDIUM;
1314
1315 if (bs->growable)
1316 return 0;
1317
1318 len = bdrv_getlength(bs);
1319
1320 if (offset < 0)
1321 return -EIO;
1322
1323 if ((offset > len) || (len - offset < size))
1324 return -EIO;
1325
1326 return 0;
1327 }
1328
1329 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
1330 int nb_sectors)
1331 {
1332 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
1333 nb_sectors * BDRV_SECTOR_SIZE);
1334 }
1335
1336 typedef struct RwCo {
1337 BlockDriverState *bs;
1338 int64_t sector_num;
1339 int nb_sectors;
1340 QEMUIOVector *qiov;
1341 bool is_write;
1342 int ret;
1343 } RwCo;
1344
1345 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
1346 {
1347 RwCo *rwco = opaque;
1348
1349 if (!rwco->is_write) {
1350 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
1351 rwco->nb_sectors, rwco->qiov, 0);
1352 } else {
1353 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
1354 rwco->nb_sectors, rwco->qiov, 0);
1355 }
1356 }
1357
1358 /*
1359 * Process a synchronous request using coroutines
1360 */
1361 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
1362 int nb_sectors, bool is_write)
1363 {
1364 QEMUIOVector qiov;
1365 struct iovec iov = {
1366 .iov_base = (void *)buf,
1367 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1368 };
1369 Coroutine *co;
1370 RwCo rwco = {
1371 .bs = bs,
1372 .sector_num = sector_num,
1373 .nb_sectors = nb_sectors,
1374 .qiov = &qiov,
1375 .is_write = is_write,
1376 .ret = NOT_DONE,
1377 };
1378
1379 qemu_iovec_init_external(&qiov, &iov, 1);
1380
1381 if (qemu_in_coroutine()) {
1382 /* Fast-path if already in coroutine context */
1383 bdrv_rw_co_entry(&rwco);
1384 } else {
1385 co = qemu_coroutine_create(bdrv_rw_co_entry);
1386 qemu_coroutine_enter(co, &rwco);
1387 while (rwco.ret == NOT_DONE) {
1388 qemu_aio_wait();
1389 }
1390 }
1391 return rwco.ret;
1392 }
1393
1394 /* return < 0 if error. See bdrv_write() for the return codes */
1395 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
1396 uint8_t *buf, int nb_sectors)
1397 {
1398 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
1399 }
1400
1401 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num,
1402 int nb_sectors, int dirty)
1403 {
1404 int64_t start, end;
1405 unsigned long val, idx, bit;
1406
1407 start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK;
1408 end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK;
1409
1410 for (; start <= end; start++) {
1411 idx = start / (sizeof(unsigned long) * 8);
1412 bit = start % (sizeof(unsigned long) * 8);
1413 val = bs->dirty_bitmap[idx];
1414 if (dirty) {
1415 if (!(val & (1UL << bit))) {
1416 bs->dirty_count++;
1417 val |= 1UL << bit;
1418 }
1419 } else {
1420 if (val & (1UL << bit)) {
1421 bs->dirty_count--;
1422 val &= ~(1UL << bit);
1423 }
1424 }
1425 bs->dirty_bitmap[idx] = val;
1426 }
1427 }
1428
1429 /* Return < 0 if error. Important errors are:
1430 -EIO generic I/O error (may happen for all errors)
1431 -ENOMEDIUM No media inserted.
1432 -EINVAL Invalid sector number or nb_sectors
1433 -EACCES Trying to write a read-only device
1434 */
1435 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
1436 const uint8_t *buf, int nb_sectors)
1437 {
1438 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
1439 }
1440
1441 int bdrv_pread(BlockDriverState *bs, int64_t offset,
1442 void *buf, int count1)
1443 {
1444 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
1445 int len, nb_sectors, count;
1446 int64_t sector_num;
1447 int ret;
1448
1449 count = count1;
1450 /* first read to align to sector start */
1451 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
1452 if (len > count)
1453 len = count;
1454 sector_num = offset >> BDRV_SECTOR_BITS;
1455 if (len > 0) {
1456 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1457 return ret;
1458 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
1459 count -= len;
1460 if (count == 0)
1461 return count1;
1462 sector_num++;
1463 buf += len;
1464 }
1465
1466 /* read the sectors "in place" */
1467 nb_sectors = count >> BDRV_SECTOR_BITS;
1468 if (nb_sectors > 0) {
1469 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
1470 return ret;
1471 sector_num += nb_sectors;
1472 len = nb_sectors << BDRV_SECTOR_BITS;
1473 buf += len;
1474 count -= len;
1475 }
1476
1477 /* add data from the last sector */
1478 if (count > 0) {
1479 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1480 return ret;
1481 memcpy(buf, tmp_buf, count);
1482 }
1483 return count1;
1484 }
1485
1486 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
1487 const void *buf, int count1)
1488 {
1489 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
1490 int len, nb_sectors, count;
1491 int64_t sector_num;
1492 int ret;
1493
1494 count = count1;
1495 /* first write to align to sector start */
1496 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
1497 if (len > count)
1498 len = count;
1499 sector_num = offset >> BDRV_SECTOR_BITS;
1500 if (len > 0) {
1501 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1502 return ret;
1503 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len);
1504 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
1505 return ret;
1506 count -= len;
1507 if (count == 0)
1508 return count1;
1509 sector_num++;
1510 buf += len;
1511 }
1512
1513 /* write the sectors "in place" */
1514 nb_sectors = count >> BDRV_SECTOR_BITS;
1515 if (nb_sectors > 0) {
1516 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0)
1517 return ret;
1518 sector_num += nb_sectors;
1519 len = nb_sectors << BDRV_SECTOR_BITS;
1520 buf += len;
1521 count -= len;
1522 }
1523
1524 /* add data from the last sector */
1525 if (count > 0) {
1526 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1527 return ret;
1528 memcpy(tmp_buf, buf, count);
1529 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
1530 return ret;
1531 }
1532 return count1;
1533 }
1534
1535 /*
1536 * Writes to the file and ensures that no writes are reordered across this
1537 * request (acts as a barrier)
1538 *
1539 * Returns 0 on success, -errno in error cases.
1540 */
1541 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
1542 const void *buf, int count)
1543 {
1544 int ret;
1545
1546 ret = bdrv_pwrite(bs, offset, buf, count);
1547 if (ret < 0) {
1548 return ret;
1549 }
1550
1551 /* No flush needed for cache modes that use O_DSYNC */
1552 if ((bs->open_flags & BDRV_O_CACHE_WB) != 0) {
1553 bdrv_flush(bs);
1554 }
1555
1556 return 0;
1557 }
1558
1559 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
1560 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1561 {
1562 /* Perform I/O through a temporary buffer so that users who scribble over
1563 * their read buffer while the operation is in progress do not end up
1564 * modifying the image file. This is critical for zero-copy guest I/O
1565 * where anything might happen inside guest memory.
1566 */
1567 void *bounce_buffer;
1568
1569 BlockDriver *drv = bs->drv;
1570 struct iovec iov;
1571 QEMUIOVector bounce_qiov;
1572 int64_t cluster_sector_num;
1573 int cluster_nb_sectors;
1574 size_t skip_bytes;
1575 int ret;
1576
1577 /* Cover entire cluster so no additional backing file I/O is required when
1578 * allocating cluster in the image file.
1579 */
1580 round_to_clusters(bs, sector_num, nb_sectors,
1581 &cluster_sector_num, &cluster_nb_sectors);
1582
1583 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
1584 cluster_sector_num, cluster_nb_sectors);
1585
1586 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
1587 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
1588 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
1589
1590 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
1591 &bounce_qiov);
1592 if (ret < 0) {
1593 goto err;
1594 }
1595
1596 if (drv->bdrv_co_write_zeroes &&
1597 buffer_is_zero(bounce_buffer, iov.iov_len)) {
1598 ret = drv->bdrv_co_write_zeroes(bs, cluster_sector_num,
1599 cluster_nb_sectors);
1600 } else {
1601 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
1602 &bounce_qiov);
1603 }
1604
1605 if (ret < 0) {
1606 /* It might be okay to ignore write errors for guest requests. If this
1607 * is a deliberate copy-on-read then we don't want to ignore the error.
1608 * Simply report it in all cases.
1609 */
1610 goto err;
1611 }
1612
1613 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
1614 qemu_iovec_from_buffer(qiov, bounce_buffer + skip_bytes,
1615 nb_sectors * BDRV_SECTOR_SIZE);
1616
1617 err:
1618 qemu_vfree(bounce_buffer);
1619 return ret;
1620 }
1621
1622 /*
1623 * Handle a read request in coroutine context
1624 */
1625 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
1626 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1627 BdrvRequestFlags flags)
1628 {
1629 BlockDriver *drv = bs->drv;
1630 BdrvTrackedRequest req;
1631 int ret;
1632
1633 if (!drv) {
1634 return -ENOMEDIUM;
1635 }
1636 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
1637 return -EIO;
1638 }
1639
1640 /* throttling disk read I/O */
1641 if (bs->io_limits_enabled) {
1642 bdrv_io_limits_intercept(bs, false, nb_sectors);
1643 }
1644
1645 if (bs->copy_on_read) {
1646 flags |= BDRV_REQ_COPY_ON_READ;
1647 }
1648 if (flags & BDRV_REQ_COPY_ON_READ) {
1649 bs->copy_on_read_in_flight++;
1650 }
1651
1652 if (bs->copy_on_read_in_flight) {
1653 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
1654 }
1655
1656 tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
1657
1658 if (flags & BDRV_REQ_COPY_ON_READ) {
1659 int pnum;
1660
1661 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
1662 if (ret < 0) {
1663 goto out;
1664 }
1665
1666 if (!ret || pnum != nb_sectors) {
1667 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
1668 goto out;
1669 }
1670 }
1671
1672 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1673
1674 out:
1675 tracked_request_end(&req);
1676
1677 if (flags & BDRV_REQ_COPY_ON_READ) {
1678 bs->copy_on_read_in_flight--;
1679 }
1680
1681 return ret;
1682 }
1683
1684 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
1685 int nb_sectors, QEMUIOVector *qiov)
1686 {
1687 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
1688
1689 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
1690 }
1691
1692 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
1693 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1694 {
1695 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
1696
1697 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1698 BDRV_REQ_COPY_ON_READ);
1699 }
1700
1701 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
1702 int64_t sector_num, int nb_sectors)
1703 {
1704 BlockDriver *drv = bs->drv;
1705 QEMUIOVector qiov;
1706 struct iovec iov;
1707 int ret;
1708
1709 /* First try the efficient write zeroes operation */
1710 if (drv->bdrv_co_write_zeroes) {
1711 return drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
1712 }
1713
1714 /* Fall back to bounce buffer if write zeroes is unsupported */
1715 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE;
1716 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
1717 memset(iov.iov_base, 0, iov.iov_len);
1718 qemu_iovec_init_external(&qiov, &iov, 1);
1719
1720 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
1721
1722 qemu_vfree(iov.iov_base);
1723 return ret;
1724 }
1725
1726 /*
1727 * Handle a write request in coroutine context
1728 */
1729 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
1730 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1731 BdrvRequestFlags flags)
1732 {
1733 BlockDriver *drv = bs->drv;
1734 BdrvTrackedRequest req;
1735 int ret;
1736
1737 if (!bs->drv) {
1738 return -ENOMEDIUM;
1739 }
1740 if (bs->read_only) {
1741 return -EACCES;
1742 }
1743 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
1744 return -EIO;
1745 }
1746
1747 /* throttling disk write I/O */
1748 if (bs->io_limits_enabled) {
1749 bdrv_io_limits_intercept(bs, true, nb_sectors);
1750 }
1751
1752 if (bs->copy_on_read_in_flight) {
1753 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
1754 }
1755
1756 tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
1757
1758 if (flags & BDRV_REQ_ZERO_WRITE) {
1759 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
1760 } else {
1761 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
1762 }
1763
1764 if (bs->dirty_bitmap) {
1765 set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
1766 }
1767
1768 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
1769 bs->wr_highest_sector = sector_num + nb_sectors - 1;
1770 }
1771
1772 tracked_request_end(&req);
1773
1774 return ret;
1775 }
1776
1777 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
1778 int nb_sectors, QEMUIOVector *qiov)
1779 {
1780 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
1781
1782 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
1783 }
1784
1785 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
1786 int64_t sector_num, int nb_sectors)
1787 {
1788 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
1789
1790 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
1791 BDRV_REQ_ZERO_WRITE);
1792 }
1793
1794 /**
1795 * Truncate file to 'offset' bytes (needed only for file protocols)
1796 */
1797 int bdrv_truncate(BlockDriverState *bs, int64_t offset)
1798 {
1799 BlockDriver *drv = bs->drv;
1800 int ret;
1801 if (!drv)
1802 return -ENOMEDIUM;
1803 if (!drv->bdrv_truncate)
1804 return -ENOTSUP;
1805 if (bs->read_only)
1806 return -EACCES;
1807 if (bdrv_in_use(bs))
1808 return -EBUSY;
1809 ret = drv->bdrv_truncate(bs, offset);
1810 if (ret == 0) {
1811 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
1812 bdrv_dev_resize_cb(bs);
1813 }
1814 return ret;
1815 }
1816
1817 /**
1818 * Length of a allocated file in bytes. Sparse files are counted by actual
1819 * allocated space. Return < 0 if error or unknown.
1820 */
1821 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
1822 {
1823 BlockDriver *drv = bs->drv;
1824 if (!drv) {
1825 return -ENOMEDIUM;
1826 }
1827 if (drv->bdrv_get_allocated_file_size) {
1828 return drv->bdrv_get_allocated_file_size(bs);
1829 }
1830 if (bs->file) {
1831 return bdrv_get_allocated_file_size(bs->file);
1832 }
1833 return -ENOTSUP;
1834 }
1835
1836 /**
1837 * Length of a file in bytes. Return < 0 if error or unknown.
1838 */
1839 int64_t bdrv_getlength(BlockDriverState *bs)
1840 {
1841 BlockDriver *drv = bs->drv;
1842 if (!drv)
1843 return -ENOMEDIUM;
1844
1845 if (bs->growable || bdrv_dev_has_removable_media(bs)) {
1846 if (drv->bdrv_getlength) {
1847 return drv->bdrv_getlength(bs);
1848 }
1849 }
1850 return bs->total_sectors * BDRV_SECTOR_SIZE;
1851 }
1852
1853 /* return 0 as number of sectors if no device present or error */
1854 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
1855 {
1856 int64_t length;
1857 length = bdrv_getlength(bs);
1858 if (length < 0)
1859 length = 0;
1860 else
1861 length = length >> BDRV_SECTOR_BITS;
1862 *nb_sectors_ptr = length;
1863 }
1864
1865 struct partition {
1866 uint8_t boot_ind; /* 0x80 - active */
1867 uint8_t head; /* starting head */
1868 uint8_t sector; /* starting sector */
1869 uint8_t cyl; /* starting cylinder */
1870 uint8_t sys_ind; /* What partition type */
1871 uint8_t end_head; /* end head */
1872 uint8_t end_sector; /* end sector */
1873 uint8_t end_cyl; /* end cylinder */
1874 uint32_t start_sect; /* starting sector counting from 0 */
1875 uint32_t nr_sects; /* nr of sectors in partition */
1876 } QEMU_PACKED;
1877
1878 /* try to guess the disk logical geometry from the MSDOS partition table. Return 0 if OK, -1 if could not guess */
1879 static int guess_disk_lchs(BlockDriverState *bs,
1880 int *pcylinders, int *pheads, int *psectors)
1881 {
1882 uint8_t buf[BDRV_SECTOR_SIZE];
1883 int ret, i, heads, sectors, cylinders;
1884 struct partition *p;
1885 uint32_t nr_sects;
1886 uint64_t nb_sectors;
1887
1888 bdrv_get_geometry(bs, &nb_sectors);
1889
1890 ret = bdrv_read(bs, 0, buf, 1);
1891 if (ret < 0)
1892 return -1;
1893 /* test msdos magic */
1894 if (buf[510] != 0x55 || buf[511] != 0xaa)
1895 return -1;
1896 for(i = 0; i < 4; i++) {
1897 p = ((struct partition *)(buf + 0x1be)) + i;
1898 nr_sects = le32_to_cpu(p->nr_sects);
1899 if (nr_sects && p->end_head) {
1900 /* We make the assumption that the partition terminates on
1901 a cylinder boundary */
1902 heads = p->end_head + 1;
1903 sectors = p->end_sector & 63;
1904 if (sectors == 0)
1905 continue;
1906 cylinders = nb_sectors / (heads * sectors);
1907 if (cylinders < 1 || cylinders > 16383)
1908 continue;
1909 *pheads = heads;
1910 *psectors = sectors;
1911 *pcylinders = cylinders;
1912 #if 0
1913 printf("guessed geometry: LCHS=%d %d %d\n",
1914 cylinders, heads, sectors);
1915 #endif
1916 return 0;
1917 }
1918 }
1919 return -1;
1920 }
1921
1922 void bdrv_guess_geometry(BlockDriverState *bs, int *pcyls, int *pheads, int *psecs)
1923 {
1924 int translation, lba_detected = 0;
1925 int cylinders, heads, secs;
1926 uint64_t nb_sectors;
1927
1928 /* if a geometry hint is available, use it */
1929 bdrv_get_geometry(bs, &nb_sectors);
1930 bdrv_get_geometry_hint(bs, &cylinders, &heads, &secs);
1931 translation = bdrv_get_translation_hint(bs);
1932 if (cylinders != 0) {
1933 *pcyls = cylinders;
1934 *pheads = heads;
1935 *psecs = secs;
1936 } else {
1937 if (guess_disk_lchs(bs, &cylinders, &heads, &secs) == 0) {
1938 if (heads > 16) {
1939 /* if heads > 16, it means that a BIOS LBA
1940 translation was active, so the default
1941 hardware geometry is OK */
1942 lba_detected = 1;
1943 goto default_geometry;
1944 } else {
1945 *pcyls = cylinders;
1946 *pheads = heads;
1947 *psecs = secs;
1948 /* disable any translation to be in sync with
1949 the logical geometry */
1950 if (translation == BIOS_ATA_TRANSLATION_AUTO) {
1951 bdrv_set_translation_hint(bs,
1952 BIOS_ATA_TRANSLATION_NONE);
1953 }
1954 }
1955 } else {
1956 default_geometry:
1957 /* if no geometry, use a standard physical disk geometry */
1958 cylinders = nb_sectors / (16 * 63);
1959
1960 if (cylinders > 16383)
1961 cylinders = 16383;
1962 else if (cylinders < 2)
1963 cylinders = 2;
1964 *pcyls = cylinders;
1965 *pheads = 16;
1966 *psecs = 63;
1967 if ((lba_detected == 1) && (translation == BIOS_ATA_TRANSLATION_AUTO)) {
1968 if ((*pcyls * *pheads) <= 131072) {
1969 bdrv_set_translation_hint(bs,
1970 BIOS_ATA_TRANSLATION_LARGE);
1971 } else {
1972 bdrv_set_translation_hint(bs,
1973 BIOS_ATA_TRANSLATION_LBA);
1974 }
1975 }
1976 }
1977 bdrv_set_geometry_hint(bs, *pcyls, *pheads, *psecs);
1978 }
1979 }
1980
1981 void bdrv_set_geometry_hint(BlockDriverState *bs,
1982 int cyls, int heads, int secs)
1983 {
1984 bs->cyls = cyls;
1985 bs->heads = heads;
1986 bs->secs = secs;
1987 }
1988
1989 void bdrv_set_translation_hint(BlockDriverState *bs, int translation)
1990 {
1991 bs->translation = translation;
1992 }
1993
1994 void bdrv_get_geometry_hint(BlockDriverState *bs,
1995 int *pcyls, int *pheads, int *psecs)
1996 {
1997 *pcyls = bs->cyls;
1998 *pheads = bs->heads;
1999 *psecs = bs->secs;
2000 }
2001
2002 /* throttling disk io limits */
2003 void bdrv_set_io_limits(BlockDriverState *bs,
2004 BlockIOLimit *io_limits)
2005 {
2006 bs->io_limits = *io_limits;
2007 bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
2008 }
2009
2010 /* Recognize floppy formats */
2011 typedef struct FDFormat {
2012 FDriveType drive;
2013 uint8_t last_sect;
2014 uint8_t max_track;
2015 uint8_t max_head;
2016 FDriveRate rate;
2017 } FDFormat;
2018
2019 static const FDFormat fd_formats[] = {
2020 /* First entry is default format */
2021 /* 1.44 MB 3"1/2 floppy disks */
2022 { FDRIVE_DRV_144, 18, 80, 1, FDRIVE_RATE_500K, },
2023 { FDRIVE_DRV_144, 20, 80, 1, FDRIVE_RATE_500K, },
2024 { FDRIVE_DRV_144, 21, 80, 1, FDRIVE_RATE_500K, },
2025 { FDRIVE_DRV_144, 21, 82, 1, FDRIVE_RATE_500K, },
2026 { FDRIVE_DRV_144, 21, 83, 1, FDRIVE_RATE_500K, },
2027 { FDRIVE_DRV_144, 22, 80, 1, FDRIVE_RATE_500K, },
2028 { FDRIVE_DRV_144, 23, 80, 1, FDRIVE_RATE_500K, },
2029 { FDRIVE_DRV_144, 24, 80, 1, FDRIVE_RATE_500K, },
2030 /* 2.88 MB 3"1/2 floppy disks */
2031 { FDRIVE_DRV_288, 36, 80, 1, FDRIVE_RATE_1M, },
2032 { FDRIVE_DRV_288, 39, 80, 1, FDRIVE_RATE_1M, },
2033 { FDRIVE_DRV_288, 40, 80, 1, FDRIVE_RATE_1M, },
2034 { FDRIVE_DRV_288, 44, 80, 1, FDRIVE_RATE_1M, },
2035 { FDRIVE_DRV_288, 48, 80, 1, FDRIVE_RATE_1M, },
2036 /* 720 kB 3"1/2 floppy disks */
2037 { FDRIVE_DRV_144, 9, 80, 1, FDRIVE_RATE_250K, },
2038 { FDRIVE_DRV_144, 10, 80, 1, FDRIVE_RATE_250K, },
2039 { FDRIVE_DRV_144, 10, 82, 1, FDRIVE_RATE_250K, },
2040 { FDRIVE_DRV_144, 10, 83, 1, FDRIVE_RATE_250K, },
2041 { FDRIVE_DRV_144, 13, 80, 1, FDRIVE_RATE_250K, },
2042 { FDRIVE_DRV_144, 14, 80, 1, FDRIVE_RATE_250K, },
2043 /* 1.2 MB 5"1/4 floppy disks */
2044 { FDRIVE_DRV_120, 15, 80, 1, FDRIVE_RATE_500K, },
2045 { FDRIVE_DRV_120, 18, 80, 1, FDRIVE_RATE_500K, },
2046 { FDRIVE_DRV_120, 18, 82, 1, FDRIVE_RATE_500K, },
2047 { FDRIVE_DRV_120, 18, 83, 1, FDRIVE_RATE_500K, },
2048 { FDRIVE_DRV_120, 20, 80, 1, FDRIVE_RATE_500K, },
2049 /* 720 kB 5"1/4 floppy disks */
2050 { FDRIVE_DRV_120, 9, 80, 1, FDRIVE_RATE_250K, },
2051 { FDRIVE_DRV_120, 11, 80, 1, FDRIVE_RATE_250K, },
2052 /* 360 kB 5"1/4 floppy disks */
2053 { FDRIVE_DRV_120, 9, 40, 1, FDRIVE_RATE_300K, },
2054 { FDRIVE_DRV_120, 9, 40, 0, FDRIVE_RATE_300K, },
2055 { FDRIVE_DRV_120, 10, 41, 1, FDRIVE_RATE_300K, },
2056 { FDRIVE_DRV_120, 10, 42, 1, FDRIVE_RATE_300K, },
2057 /* 320 kB 5"1/4 floppy disks */
2058 { FDRIVE_DRV_120, 8, 40, 1, FDRIVE_RATE_250K, },
2059 { FDRIVE_DRV_120, 8, 40, 0, FDRIVE_RATE_250K, },
2060 /* 360 kB must match 5"1/4 better than 3"1/2... */
2061 { FDRIVE_DRV_144, 9, 80, 0, FDRIVE_RATE_250K, },
2062 /* end */
2063 { FDRIVE_DRV_NONE, -1, -1, 0, 0, },
2064 };
2065
2066 void bdrv_get_floppy_geometry_hint(BlockDriverState *bs, int *nb_heads,
2067 int *max_track, int *last_sect,
2068 FDriveType drive_in, FDriveType *drive,
2069 FDriveRate *rate)
2070 {
2071 const FDFormat *parse;
2072 uint64_t nb_sectors, size;
2073 int i, first_match, match;
2074
2075 bdrv_get_geometry_hint(bs, nb_heads, max_track, last_sect);
2076 if (*nb_heads != 0 && *max_track != 0 && *last_sect != 0) {
2077 /* User defined disk */
2078 *rate = FDRIVE_RATE_500K;
2079 } else {
2080 bdrv_get_geometry(bs, &nb_sectors);
2081 match = -1;
2082 first_match = -1;
2083 for (i = 0; ; i++) {
2084 parse = &fd_formats[i];
2085 if (parse->drive == FDRIVE_DRV_NONE) {
2086 break;
2087 }
2088 if (drive_in == parse->drive ||
2089 drive_in == FDRIVE_DRV_NONE) {
2090 size = (parse->max_head + 1) * parse->max_track *
2091 parse->last_sect;
2092 if (nb_sectors == size) {
2093 match = i;
2094 break;
2095 }
2096 if (first_match == -1) {
2097 first_match = i;
2098 }
2099 }
2100 }
2101 if (match == -1) {
2102 if (first_match == -1) {
2103 match = 1;
2104 } else {
2105 match = first_match;
2106 }
2107 parse = &fd_formats[match];
2108 }
2109 *nb_heads = parse->max_head + 1;
2110 *max_track = parse->max_track;
2111 *last_sect = parse->last_sect;
2112 *drive = parse->drive;
2113 *rate = parse->rate;
2114 }
2115 }
2116
2117 int bdrv_get_translation_hint(BlockDriverState *bs)
2118 {
2119 return bs->translation;
2120 }
2121
2122 void bdrv_set_on_error(BlockDriverState *bs, BlockErrorAction on_read_error,
2123 BlockErrorAction on_write_error)
2124 {
2125 bs->on_read_error = on_read_error;
2126 bs->on_write_error = on_write_error;
2127 }
2128
2129 BlockErrorAction bdrv_get_on_error(BlockDriverState *bs, int is_read)
2130 {
2131 return is_read ? bs->on_read_error : bs->on_write_error;
2132 }
2133
2134 int bdrv_is_read_only(BlockDriverState *bs)
2135 {
2136 return bs->read_only;
2137 }
2138
2139 int bdrv_is_sg(BlockDriverState *bs)
2140 {
2141 return bs->sg;
2142 }
2143
2144 int bdrv_enable_write_cache(BlockDriverState *bs)
2145 {
2146 return bs->enable_write_cache;
2147 }
2148
2149 int bdrv_is_encrypted(BlockDriverState *bs)
2150 {
2151 if (bs->backing_hd && bs->backing_hd->encrypted)
2152 return 1;
2153 return bs->encrypted;
2154 }
2155
2156 int bdrv_key_required(BlockDriverState *bs)
2157 {
2158 BlockDriverState *backing_hd = bs->backing_hd;
2159
2160 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
2161 return 1;
2162 return (bs->encrypted && !bs->valid_key);
2163 }
2164
2165 int bdrv_set_key(BlockDriverState *bs, const char *key)
2166 {
2167 int ret;
2168 if (bs->backing_hd && bs->backing_hd->encrypted) {
2169 ret = bdrv_set_key(bs->backing_hd, key);
2170 if (ret < 0)
2171 return ret;
2172 if (!bs->encrypted)
2173 return 0;
2174 }
2175 if (!bs->encrypted) {
2176 return -EINVAL;
2177 } else if (!bs->drv || !bs->drv->bdrv_set_key) {
2178 return -ENOMEDIUM;
2179 }
2180 ret = bs->drv->bdrv_set_key(bs, key);
2181 if (ret < 0) {
2182 bs->valid_key = 0;
2183 } else if (!bs->valid_key) {
2184 bs->valid_key = 1;
2185 /* call the change callback now, we skipped it on open */
2186 bdrv_dev_change_media_cb(bs, true);
2187 }
2188 return ret;
2189 }
2190
2191 void bdrv_get_format(BlockDriverState *bs, char *buf, int buf_size)
2192 {
2193 if (!bs->drv) {
2194 buf[0] = '\0';
2195 } else {
2196 pstrcpy(buf, buf_size, bs->drv->format_name);
2197 }
2198 }
2199
2200 void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
2201 void *opaque)
2202 {
2203 BlockDriver *drv;
2204
2205 QLIST_FOREACH(drv, &bdrv_drivers, list) {
2206 it(opaque, drv->format_name);
2207 }
2208 }
2209
2210 BlockDriverState *bdrv_find(const char *name)
2211 {
2212 BlockDriverState *bs;
2213
2214 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2215 if (!strcmp(name, bs->device_name)) {
2216 return bs;
2217 }
2218 }
2219 return NULL;
2220 }
2221
2222 BlockDriverState *bdrv_next(BlockDriverState *bs)
2223 {
2224 if (!bs) {
2225 return QTAILQ_FIRST(&bdrv_states);
2226 }
2227 return QTAILQ_NEXT(bs, list);
2228 }
2229
2230 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
2231 {
2232 BlockDriverState *bs;
2233
2234 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2235 it(opaque, bs);
2236 }
2237 }
2238
2239 const char *bdrv_get_device_name(BlockDriverState *bs)
2240 {
2241 return bs->device_name;
2242 }
2243
2244 void bdrv_flush_all(void)
2245 {
2246 BlockDriverState *bs;
2247
2248 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2249 if (!bdrv_is_read_only(bs) && bdrv_is_inserted(bs)) {
2250 bdrv_flush(bs);
2251 }
2252 }
2253 }
2254
2255 int bdrv_has_zero_init(BlockDriverState *bs)
2256 {
2257 assert(bs->drv);
2258
2259 if (bs->drv->bdrv_has_zero_init) {
2260 return bs->drv->bdrv_has_zero_init(bs);
2261 }
2262
2263 return 1;
2264 }
2265
2266 typedef struct BdrvCoIsAllocatedData {
2267 BlockDriverState *bs;
2268 int64_t sector_num;
2269 int nb_sectors;
2270 int *pnum;
2271 int ret;
2272 bool done;
2273 } BdrvCoIsAllocatedData;
2274
2275 /*
2276 * Returns true iff the specified sector is present in the disk image. Drivers
2277 * not implementing the functionality are assumed to not support backing files,
2278 * hence all their sectors are reported as allocated.
2279 *
2280 * If 'sector_num' is beyond the end of the disk image the return value is 0
2281 * and 'pnum' is set to 0.
2282 *
2283 * 'pnum' is set to the number of sectors (including and immediately following
2284 * the specified sector) that are known to be in the same
2285 * allocated/unallocated state.
2286 *
2287 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
2288 * beyond the end of the disk image it will be clamped.
2289 */
2290 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
2291 int nb_sectors, int *pnum)
2292 {
2293 int64_t n;
2294
2295 if (sector_num >= bs->total_sectors) {
2296 *pnum = 0;
2297 return 0;
2298 }
2299
2300 n = bs->total_sectors - sector_num;
2301 if (n < nb_sectors) {
2302 nb_sectors = n;
2303 }
2304
2305 if (!bs->drv->bdrv_co_is_allocated) {
2306 *pnum = nb_sectors;
2307 return 1;
2308 }
2309
2310 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
2311 }
2312
2313 /* Coroutine wrapper for bdrv_is_allocated() */
2314 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
2315 {
2316 BdrvCoIsAllocatedData *data = opaque;
2317 BlockDriverState *bs = data->bs;
2318
2319 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
2320 data->pnum);
2321 data->done = true;
2322 }
2323
2324 /*
2325 * Synchronous wrapper around bdrv_co_is_allocated().
2326 *
2327 * See bdrv_co_is_allocated() for details.
2328 */
2329 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2330 int *pnum)
2331 {
2332 Coroutine *co;
2333 BdrvCoIsAllocatedData data = {
2334 .bs = bs,
2335 .sector_num = sector_num,
2336 .nb_sectors = nb_sectors,
2337 .pnum = pnum,
2338 .done = false,
2339 };
2340
2341 co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
2342 qemu_coroutine_enter(co, &data);
2343 while (!data.done) {
2344 qemu_aio_wait();
2345 }
2346 return data.ret;
2347 }
2348
2349 BlockInfoList *qmp_query_block(Error **errp)
2350 {
2351 BlockInfoList *head = NULL, *cur_item = NULL;
2352 BlockDriverState *bs;
2353
2354 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2355 BlockInfoList *info = g_malloc0(sizeof(*info));
2356
2357 info->value = g_malloc0(sizeof(*info->value));
2358 info->value->device = g_strdup(bs->device_name);
2359 info->value->type = g_strdup("unknown");
2360 info->value->locked = bdrv_dev_is_medium_locked(bs);
2361 info->value->removable = bdrv_dev_has_removable_media(bs);
2362
2363 if (bdrv_dev_has_removable_media(bs)) {
2364 info->value->has_tray_open = true;
2365 info->value->tray_open = bdrv_dev_is_tray_open(bs);
2366 }
2367
2368 if (bdrv_iostatus_is_enabled(bs)) {
2369 info->value->has_io_status = true;
2370 info->value->io_status = bs->iostatus;
2371 }
2372
2373 if (bs->drv) {
2374 info->value->has_inserted = true;
2375 info->value->inserted = g_malloc0(sizeof(*info->value->inserted));
2376 info->value->inserted->file = g_strdup(bs->filename);
2377 info->value->inserted->ro = bs->read_only;
2378 info->value->inserted->drv = g_strdup(bs->drv->format_name);
2379 info->value->inserted->encrypted = bs->encrypted;
2380 if (bs->backing_file[0]) {
2381 info->value->inserted->has_backing_file = true;
2382 info->value->inserted->backing_file = g_strdup(bs->backing_file);
2383 }
2384
2385 if (bs->io_limits_enabled) {
2386 info->value->inserted->bps =
2387 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2388 info->value->inserted->bps_rd =
2389 bs->io_limits.bps[BLOCK_IO_LIMIT_READ];
2390 info->value->inserted->bps_wr =
2391 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE];
2392 info->value->inserted->iops =
2393 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
2394 info->value->inserted->iops_rd =
2395 bs->io_limits.iops[BLOCK_IO_LIMIT_READ];
2396 info->value->inserted->iops_wr =
2397 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE];
2398 }
2399 }
2400
2401 /* XXX: waiting for the qapi to support GSList */
2402 if (!cur_item) {
2403 head = cur_item = info;
2404 } else {
2405 cur_item->next = info;
2406 cur_item = info;
2407 }
2408 }
2409
2410 return head;
2411 }
2412
2413 /* Consider exposing this as a full fledged QMP command */
2414 static BlockStats *qmp_query_blockstat(const BlockDriverState *bs, Error **errp)
2415 {
2416 BlockStats *s;
2417
2418 s = g_malloc0(sizeof(*s));
2419
2420 if (bs->device_name[0]) {
2421 s->has_device = true;
2422 s->device = g_strdup(bs->device_name);
2423 }
2424
2425 s->stats = g_malloc0(sizeof(*s->stats));
2426 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ];
2427 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE];
2428 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ];
2429 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE];
2430 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE;
2431 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH];
2432 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE];
2433 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ];
2434 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH];
2435
2436 if (bs->file) {
2437 s->has_parent = true;
2438 s->parent = qmp_query_blockstat(bs->file, NULL);
2439 }
2440
2441 return s;
2442 }
2443
2444 BlockStatsList *qmp_query_blockstats(Error **errp)
2445 {
2446 BlockStatsList *head = NULL, *cur_item = NULL;
2447 BlockDriverState *bs;
2448
2449 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2450 BlockStatsList *info = g_malloc0(sizeof(*info));
2451 info->value = qmp_query_blockstat(bs, NULL);
2452
2453 /* XXX: waiting for the qapi to support GSList */
2454 if (!cur_item) {
2455 head = cur_item = info;
2456 } else {
2457 cur_item->next = info;
2458 cur_item = info;
2459 }
2460 }
2461
2462 return head;
2463 }
2464
2465 const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
2466 {
2467 if (bs->backing_hd && bs->backing_hd->encrypted)
2468 return bs->backing_file;
2469 else if (bs->encrypted)
2470 return bs->filename;
2471 else
2472 return NULL;
2473 }
2474
2475 void bdrv_get_backing_filename(BlockDriverState *bs,
2476 char *filename, int filename_size)
2477 {
2478 pstrcpy(filename, filename_size, bs->backing_file);
2479 }
2480
2481 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
2482 const uint8_t *buf, int nb_sectors)
2483 {
2484 BlockDriver *drv = bs->drv;
2485 if (!drv)
2486 return -ENOMEDIUM;
2487 if (!drv->bdrv_write_compressed)
2488 return -ENOTSUP;
2489 if (bdrv_check_request(bs, sector_num, nb_sectors))
2490 return -EIO;
2491
2492 if (bs->dirty_bitmap) {
2493 set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
2494 }
2495
2496 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
2497 }
2498
2499 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
2500 {
2501 BlockDriver *drv = bs->drv;
2502 if (!drv)
2503 return -ENOMEDIUM;
2504 if (!drv->bdrv_get_info)
2505 return -ENOTSUP;
2506 memset(bdi, 0, sizeof(*bdi));
2507 return drv->bdrv_get_info(bs, bdi);
2508 }
2509
2510 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2511 int64_t pos, int size)
2512 {
2513 BlockDriver *drv = bs->drv;
2514 if (!drv)
2515 return -ENOMEDIUM;
2516 if (drv->bdrv_save_vmstate)
2517 return drv->bdrv_save_vmstate(bs, buf, pos, size);
2518 if (bs->file)
2519 return bdrv_save_vmstate(bs->file, buf, pos, size);
2520 return -ENOTSUP;
2521 }
2522
2523 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2524 int64_t pos, int size)
2525 {
2526 BlockDriver *drv = bs->drv;
2527 if (!drv)
2528 return -ENOMEDIUM;
2529 if (drv->bdrv_load_vmstate)
2530 return drv->bdrv_load_vmstate(bs, buf, pos, size);
2531 if (bs->file)
2532 return bdrv_load_vmstate(bs->file, buf, pos, size);
2533 return -ENOTSUP;
2534 }
2535
2536 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
2537 {
2538 BlockDriver *drv = bs->drv;
2539
2540 if (!drv || !drv->bdrv_debug_event) {
2541 return;
2542 }
2543
2544 return drv->bdrv_debug_event(bs, event);
2545
2546 }
2547
2548 /**************************************************************/
2549 /* handling of snapshots */
2550
2551 int bdrv_can_snapshot(BlockDriverState *bs)
2552 {
2553 BlockDriver *drv = bs->drv;
2554 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2555 return 0;
2556 }
2557
2558 if (!drv->bdrv_snapshot_create) {
2559 if (bs->file != NULL) {
2560 return bdrv_can_snapshot(bs->file);
2561 }
2562 return 0;
2563 }
2564
2565 return 1;
2566 }
2567
2568 int bdrv_is_snapshot(BlockDriverState *bs)
2569 {
2570 return !!(bs->open_flags & BDRV_O_SNAPSHOT);
2571 }
2572
2573 BlockDriverState *bdrv_snapshots(void)
2574 {
2575 BlockDriverState *bs;
2576
2577 if (bs_snapshots) {
2578 return bs_snapshots;
2579 }
2580
2581 bs = NULL;
2582 while ((bs = bdrv_next(bs))) {
2583 if (bdrv_can_snapshot(bs)) {
2584 bs_snapshots = bs;
2585 return bs;
2586 }
2587 }
2588 return NULL;
2589 }
2590
2591 int bdrv_snapshot_create(BlockDriverState *bs,
2592 QEMUSnapshotInfo *sn_info)
2593 {
2594 BlockDriver *drv = bs->drv;
2595 if (!drv)
2596 return -ENOMEDIUM;
2597 if (drv->bdrv_snapshot_create)
2598 return drv->bdrv_snapshot_create(bs, sn_info);
2599 if (bs->file)
2600 return bdrv_snapshot_create(bs->file, sn_info);
2601 return -ENOTSUP;
2602 }
2603
2604 int bdrv_snapshot_goto(BlockDriverState *bs,
2605 const char *snapshot_id)
2606 {
2607 BlockDriver *drv = bs->drv;
2608 int ret, open_ret;
2609
2610 if (!drv)
2611 return -ENOMEDIUM;
2612 if (drv->bdrv_snapshot_goto)
2613 return drv->bdrv_snapshot_goto(bs, snapshot_id);
2614
2615 if (bs->file) {
2616 drv->bdrv_close(bs);
2617 ret = bdrv_snapshot_goto(bs->file, snapshot_id);
2618 open_ret = drv->bdrv_open(bs, bs->open_flags);
2619 if (open_ret < 0) {
2620 bdrv_delete(bs->file);
2621 bs->drv = NULL;
2622 return open_ret;
2623 }
2624 return ret;
2625 }
2626
2627 return -ENOTSUP;
2628 }
2629
2630 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
2631 {
2632 BlockDriver *drv = bs->drv;
2633 if (!drv)
2634 return -ENOMEDIUM;
2635 if (drv->bdrv_snapshot_delete)
2636 return drv->bdrv_snapshot_delete(bs, snapshot_id);
2637 if (bs->file)
2638 return bdrv_snapshot_delete(bs->file, snapshot_id);
2639 return -ENOTSUP;
2640 }
2641
2642 int bdrv_snapshot_list(BlockDriverState *bs,
2643 QEMUSnapshotInfo **psn_info)
2644 {
2645 BlockDriver *drv = bs->drv;
2646 if (!drv)
2647 return -ENOMEDIUM;
2648 if (drv->bdrv_snapshot_list)
2649 return drv->bdrv_snapshot_list(bs, psn_info);
2650 if (bs->file)
2651 return bdrv_snapshot_list(bs->file, psn_info);
2652 return -ENOTSUP;
2653 }
2654
2655 int bdrv_snapshot_load_tmp(BlockDriverState *bs,
2656 const char *snapshot_name)
2657 {
2658 BlockDriver *drv = bs->drv;
2659 if (!drv) {
2660 return -ENOMEDIUM;
2661 }
2662 if (!bs->read_only) {
2663 return -EINVAL;
2664 }
2665 if (drv->bdrv_snapshot_load_tmp) {
2666 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name);
2667 }
2668 return -ENOTSUP;
2669 }
2670
2671 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
2672 const char *backing_file)
2673 {
2674 if (!bs->drv) {
2675 return NULL;
2676 }
2677
2678 if (bs->backing_hd) {
2679 if (strcmp(bs->backing_file, backing_file) == 0) {
2680 return bs->backing_hd;
2681 } else {
2682 return bdrv_find_backing_image(bs->backing_hd, backing_file);
2683 }
2684 }
2685
2686 return NULL;
2687 }
2688
2689 #define NB_SUFFIXES 4
2690
2691 char *get_human_readable_size(char *buf, int buf_size, int64_t size)
2692 {
2693 static const char suffixes[NB_SUFFIXES] = "KMGT";
2694 int64_t base;
2695 int i;
2696
2697 if (size <= 999) {
2698 snprintf(buf, buf_size, "%" PRId64, size);
2699 } else {
2700 base = 1024;
2701 for(i = 0; i < NB_SUFFIXES; i++) {
2702 if (size < (10 * base)) {
2703 snprintf(buf, buf_size, "%0.1f%c",
2704 (double)size / base,
2705 suffixes[i]);
2706 break;
2707 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) {
2708 snprintf(buf, buf_size, "%" PRId64 "%c",
2709 ((size + (base >> 1)) / base),
2710 suffixes[i]);
2711 break;
2712 }
2713 base = base * 1024;
2714 }
2715 }
2716 return buf;
2717 }
2718
2719 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn)
2720 {
2721 char buf1[128], date_buf[128], clock_buf[128];
2722 #ifdef _WIN32
2723 struct tm *ptm;
2724 #else
2725 struct tm tm;
2726 #endif
2727 time_t ti;
2728 int64_t secs;
2729
2730 if (!sn) {
2731 snprintf(buf, buf_size,
2732 "%-10s%-20s%7s%20s%15s",
2733 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK");
2734 } else {
2735 ti = sn->date_sec;
2736 #ifdef _WIN32
2737 ptm = localtime(&ti);
2738 strftime(date_buf, sizeof(date_buf),
2739 "%Y-%m-%d %H:%M:%S", ptm);
2740 #else
2741 localtime_r(&ti, &tm);
2742 strftime(date_buf, sizeof(date_buf),
2743 "%Y-%m-%d %H:%M:%S", &tm);
2744 #endif
2745 secs = sn->vm_clock_nsec / 1000000000;
2746 snprintf(clock_buf, sizeof(clock_buf),
2747 "%02d:%02d:%02d.%03d",
2748 (int)(secs / 3600),
2749 (int)((secs / 60) % 60),
2750 (int)(secs % 60),
2751 (int)((sn->vm_clock_nsec / 1000000) % 1000));
2752 snprintf(buf, buf_size,
2753 "%-10s%-20s%7s%20s%15s",
2754 sn->id_str, sn->name,
2755 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size),
2756 date_buf,
2757 clock_buf);
2758 }
2759 return buf;
2760 }
2761
2762 /**************************************************************/
2763 /* async I/Os */
2764
2765 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
2766 QEMUIOVector *qiov, int nb_sectors,
2767 BlockDriverCompletionFunc *cb, void *opaque)
2768 {
2769 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
2770
2771 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
2772 cb, opaque, false);
2773 }
2774
2775 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
2776 QEMUIOVector *qiov, int nb_sectors,
2777 BlockDriverCompletionFunc *cb, void *opaque)
2778 {
2779 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
2780
2781 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
2782 cb, opaque, true);
2783 }
2784
2785
2786 typedef struct MultiwriteCB {
2787 int error;
2788 int num_requests;
2789 int num_callbacks;
2790 struct {
2791 BlockDriverCompletionFunc *cb;
2792 void *opaque;
2793 QEMUIOVector *free_qiov;
2794 void *free_buf;
2795 } callbacks[];
2796 } MultiwriteCB;
2797
2798 static void multiwrite_user_cb(MultiwriteCB *mcb)
2799 {
2800 int i;
2801
2802 for (i = 0; i < mcb->num_callbacks; i++) {
2803 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
2804 if (mcb->callbacks[i].free_qiov) {
2805 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
2806 }
2807 g_free(mcb->callbacks[i].free_qiov);
2808 qemu_vfree(mcb->callbacks[i].free_buf);
2809 }
2810 }
2811
2812 static void multiwrite_cb(void *opaque, int ret)
2813 {
2814 MultiwriteCB *mcb = opaque;
2815
2816 trace_multiwrite_cb(mcb, ret);
2817
2818 if (ret < 0 && !mcb->error) {
2819 mcb->error = ret;
2820 }
2821
2822 mcb->num_requests--;
2823 if (mcb->num_requests == 0) {
2824 multiwrite_user_cb(mcb);
2825 g_free(mcb);
2826 }
2827 }
2828
2829 static int multiwrite_req_compare(const void *a, const void *b)
2830 {
2831 const BlockRequest *req1 = a, *req2 = b;
2832
2833 /*
2834 * Note that we can't simply subtract req2->sector from req1->sector
2835 * here as that could overflow the return value.
2836 */
2837 if (req1->sector > req2->sector) {
2838 return 1;
2839 } else if (req1->sector < req2->sector) {
2840 return -1;
2841 } else {
2842 return 0;
2843 }
2844 }
2845
2846 /*
2847 * Takes a bunch of requests and tries to merge them. Returns the number of
2848 * requests that remain after merging.
2849 */
2850 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
2851 int num_reqs, MultiwriteCB *mcb)
2852 {
2853 int i, outidx;
2854
2855 // Sort requests by start sector
2856 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
2857
2858 // Check if adjacent requests touch the same clusters. If so, combine them,
2859 // filling up gaps with zero sectors.
2860 outidx = 0;
2861 for (i = 1; i < num_reqs; i++) {
2862 int merge = 0;
2863 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
2864
2865 // This handles the cases that are valid for all block drivers, namely
2866 // exactly sequential writes and overlapping writes.
2867 if (reqs[i].sector <= oldreq_last) {
2868 merge = 1;
2869 }
2870
2871 // The block driver may decide that it makes sense to combine requests
2872 // even if there is a gap of some sectors between them. In this case,
2873 // the gap is filled with zeros (therefore only applicable for yet
2874 // unused space in format like qcow2).
2875 if (!merge && bs->drv->bdrv_merge_requests) {
2876 merge = bs->drv->bdrv_merge_requests(bs, &reqs[outidx], &reqs[i]);
2877 }
2878
2879 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
2880 merge = 0;
2881 }
2882
2883 if (merge) {
2884 size_t size;
2885 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
2886 qemu_iovec_init(qiov,
2887 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
2888
2889 // Add the first request to the merged one. If the requests are
2890 // overlapping, drop the last sectors of the first request.
2891 size = (reqs[i].sector - reqs[outidx].sector) << 9;
2892 qemu_iovec_concat(qiov, reqs[outidx].qiov, size);
2893
2894 // We might need to add some zeros between the two requests
2895 if (reqs[i].sector > oldreq_last) {
2896 size_t zero_bytes = (reqs[i].sector - oldreq_last) << 9;
2897 uint8_t *buf = qemu_blockalign(bs, zero_bytes);
2898 memset(buf, 0, zero_bytes);
2899 qemu_iovec_add(qiov, buf, zero_bytes);
2900 mcb->callbacks[i].free_buf = buf;
2901 }
2902
2903 // Add the second request
2904 qemu_iovec_concat(qiov, reqs[i].qiov, reqs[i].qiov->size);
2905
2906 reqs[outidx].nb_sectors = qiov->size >> 9;
2907 reqs[outidx].qiov = qiov;
2908
2909 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
2910 } else {
2911 outidx++;
2912 reqs[outidx].sector = reqs[i].sector;
2913 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
2914 reqs[outidx].qiov = reqs[i].qiov;
2915 }
2916 }
2917
2918 return outidx + 1;
2919 }
2920
2921 /*
2922 * Submit multiple AIO write requests at once.
2923 *
2924 * On success, the function returns 0 and all requests in the reqs array have
2925 * been submitted. In error case this function returns -1, and any of the
2926 * requests may or may not be submitted yet. In particular, this means that the
2927 * callback will be called for some of the requests, for others it won't. The
2928 * caller must check the error field of the BlockRequest to wait for the right
2929 * callbacks (if error != 0, no callback will be called).
2930 *
2931 * The implementation may modify the contents of the reqs array, e.g. to merge
2932 * requests. However, the fields opaque and error are left unmodified as they
2933 * are used to signal failure for a single request to the caller.
2934 */
2935 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
2936 {
2937 MultiwriteCB *mcb;
2938 int i;
2939
2940 /* don't submit writes if we don't have a medium */
2941 if (bs->drv == NULL) {
2942 for (i = 0; i < num_reqs; i++) {
2943 reqs[i].error = -ENOMEDIUM;
2944 }
2945 return -1;
2946 }
2947
2948 if (num_reqs == 0) {
2949 return 0;
2950 }
2951
2952 // Create MultiwriteCB structure
2953 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
2954 mcb->num_requests = 0;
2955 mcb->num_callbacks = num_reqs;
2956
2957 for (i = 0; i < num_reqs; i++) {
2958 mcb->callbacks[i].cb = reqs[i].cb;
2959 mcb->callbacks[i].opaque = reqs[i].opaque;
2960 }
2961
2962 // Check for mergable requests
2963 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
2964
2965 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
2966
2967 /* Run the aio requests. */
2968 mcb->num_requests = num_reqs;
2969 for (i = 0; i < num_reqs; i++) {
2970 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
2971 reqs[i].nb_sectors, multiwrite_cb, mcb);
2972 }
2973
2974 return 0;
2975 }
2976
2977 void bdrv_aio_cancel(BlockDriverAIOCB *acb)
2978 {
2979 acb->pool->cancel(acb);
2980 }
2981
2982 /* block I/O throttling */
2983 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
2984 bool is_write, double elapsed_time, uint64_t *wait)
2985 {
2986 uint64_t bps_limit = 0;
2987 double bytes_limit, bytes_base, bytes_res;
2988 double slice_time, wait_time;
2989
2990 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
2991 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2992 } else if (bs->io_limits.bps[is_write]) {
2993 bps_limit = bs->io_limits.bps[is_write];
2994 } else {
2995 if (wait) {
2996 *wait = 0;
2997 }
2998
2999 return false;
3000 }
3001
3002 slice_time = bs->slice_end - bs->slice_start;
3003 slice_time /= (NANOSECONDS_PER_SECOND);
3004 bytes_limit = bps_limit * slice_time;
3005 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write];
3006 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3007 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write];
3008 }
3009
3010 /* bytes_base: the bytes of data which have been read/written; and
3011 * it is obtained from the history statistic info.
3012 * bytes_res: the remaining bytes of data which need to be read/written.
3013 * (bytes_base + bytes_res) / bps_limit: used to calcuate
3014 * the total time for completing reading/writting all data.
3015 */
3016 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
3017
3018 if (bytes_base + bytes_res <= bytes_limit) {
3019 if (wait) {
3020 *wait = 0;
3021 }
3022
3023 return false;
3024 }
3025
3026 /* Calc approx time to dispatch */
3027 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
3028
3029 /* When the I/O rate at runtime exceeds the limits,
3030 * bs->slice_end need to be extended in order that the current statistic
3031 * info can be kept until the timer fire, so it is increased and tuned
3032 * based on the result of experiment.
3033 */
3034 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3035 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3036 if (wait) {
3037 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3038 }
3039
3040 return true;
3041 }
3042
3043 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
3044 double elapsed_time, uint64_t *wait)
3045 {
3046 uint64_t iops_limit = 0;
3047 double ios_limit, ios_base;
3048 double slice_time, wait_time;
3049
3050 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3051 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3052 } else if (bs->io_limits.iops[is_write]) {
3053 iops_limit = bs->io_limits.iops[is_write];
3054 } else {
3055 if (wait) {
3056 *wait = 0;
3057 }
3058
3059 return false;
3060 }
3061
3062 slice_time = bs->slice_end - bs->slice_start;
3063 slice_time /= (NANOSECONDS_PER_SECOND);
3064 ios_limit = iops_limit * slice_time;
3065 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write];
3066 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3067 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write];
3068 }
3069
3070 if (ios_base + 1 <= ios_limit) {
3071 if (wait) {
3072 *wait = 0;
3073 }
3074
3075 return false;
3076 }
3077
3078 /* Calc approx time to dispatch */
3079 wait_time = (ios_base + 1) / iops_limit;
3080 if (wait_time > elapsed_time) {
3081 wait_time = wait_time - elapsed_time;
3082 } else {
3083 wait_time = 0;
3084 }
3085
3086 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3087 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3088 if (wait) {
3089 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3090 }
3091
3092 return true;
3093 }
3094
3095 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
3096 bool is_write, int64_t *wait)
3097 {
3098 int64_t now, max_wait;
3099 uint64_t bps_wait = 0, iops_wait = 0;
3100 double elapsed_time;
3101 int bps_ret, iops_ret;
3102
3103 now = qemu_get_clock_ns(vm_clock);
3104 if ((bs->slice_start < now)
3105 && (bs->slice_end > now)) {
3106 bs->slice_end = now + bs->slice_time;
3107 } else {
3108 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
3109 bs->slice_start = now;
3110 bs->slice_end = now + bs->slice_time;
3111
3112 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write];
3113 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write];
3114
3115 bs->io_base.ios[is_write] = bs->nr_ops[is_write];
3116 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write];
3117 }
3118
3119 elapsed_time = now - bs->slice_start;
3120 elapsed_time /= (NANOSECONDS_PER_SECOND);
3121
3122 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors,
3123 is_write, elapsed_time, &bps_wait);
3124 iops_ret = bdrv_exceed_iops_limits(bs, is_write,
3125 elapsed_time, &iops_wait);
3126 if (bps_ret || iops_ret) {
3127 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
3128 if (wait) {
3129 *wait = max_wait;
3130 }
3131
3132 now = qemu_get_clock_ns(vm_clock);
3133 if (bs->slice_end < now + max_wait) {
3134 bs->slice_end = now + max_wait;
3135 }
3136
3137 return true;
3138 }
3139
3140 if (wait) {
3141 *wait = 0;
3142 }
3143
3144 return false;
3145 }
3146
3147 /**************************************************************/
3148 /* async block device emulation */
3149
3150 typedef struct BlockDriverAIOCBSync {
3151 BlockDriverAIOCB common;
3152 QEMUBH *bh;
3153 int ret;
3154 /* vector translation state */
3155 QEMUIOVector *qiov;
3156 uint8_t *bounce;
3157 int is_write;
3158 } BlockDriverAIOCBSync;
3159
3160 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
3161 {
3162 BlockDriverAIOCBSync *acb =
3163 container_of(blockacb, BlockDriverAIOCBSync, common);
3164 qemu_bh_delete(acb->bh);
3165 acb->bh = NULL;
3166 qemu_aio_release(acb);
3167 }
3168
3169 static AIOPool bdrv_em_aio_pool = {
3170 .aiocb_size = sizeof(BlockDriverAIOCBSync),
3171 .cancel = bdrv_aio_cancel_em,
3172 };
3173
3174 static void bdrv_aio_bh_cb(void *opaque)
3175 {
3176 BlockDriverAIOCBSync *acb = opaque;
3177
3178 if (!acb->is_write)
3179 qemu_iovec_from_buffer(acb->qiov, acb->bounce, acb->qiov->size);
3180 qemu_vfree(acb->bounce);
3181 acb->common.cb(acb->common.opaque, acb->ret);
3182 qemu_bh_delete(acb->bh);
3183 acb->bh = NULL;
3184 qemu_aio_release(acb);
3185 }
3186
3187 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
3188 int64_t sector_num,
3189 QEMUIOVector *qiov,
3190 int nb_sectors,
3191 BlockDriverCompletionFunc *cb,
3192 void *opaque,
3193 int is_write)
3194
3195 {
3196 BlockDriverAIOCBSync *acb;
3197
3198 acb = qemu_aio_get(&bdrv_em_aio_pool, bs, cb, opaque);
3199 acb->is_write = is_write;
3200 acb->qiov = qiov;
3201 acb->bounce = qemu_blockalign(bs, qiov->size);
3202 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
3203
3204 if (is_write) {
3205 qemu_iovec_to_buffer(acb->qiov, acb->bounce);
3206 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
3207 } else {
3208 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
3209 }
3210
3211 qemu_bh_schedule(acb->bh);
3212
3213 return &acb->common;
3214 }
3215
3216 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
3217 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3218 BlockDriverCompletionFunc *cb, void *opaque)
3219 {
3220 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
3221 }
3222
3223 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
3224 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3225 BlockDriverCompletionFunc *cb, void *opaque)
3226 {
3227 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
3228 }
3229
3230
3231 typedef struct BlockDriverAIOCBCoroutine {
3232 BlockDriverAIOCB common;
3233 BlockRequest req;
3234 bool is_write;
3235 QEMUBH* bh;
3236 } BlockDriverAIOCBCoroutine;
3237
3238 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
3239 {
3240 qemu_aio_flush();
3241 }
3242
3243 static AIOPool bdrv_em_co_aio_pool = {
3244 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine),
3245 .cancel = bdrv_aio_co_cancel_em,
3246 };
3247
3248 static void bdrv_co_em_bh(void *opaque)
3249 {
3250 BlockDriverAIOCBCoroutine *acb = opaque;
3251
3252 acb->common.cb(acb->common.opaque, acb->req.error);
3253 qemu_bh_delete(acb->bh);
3254 qemu_aio_release(acb);
3255 }
3256
3257 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
3258 static void coroutine_fn bdrv_co_do_rw(void *opaque)
3259 {
3260 BlockDriverAIOCBCoroutine *acb = opaque;
3261 BlockDriverState *bs = acb->common.bs;
3262
3263 if (!acb->is_write) {
3264 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
3265 acb->req.nb_sectors, acb->req.qiov, 0);
3266 } else {
3267 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
3268 acb->req.nb_sectors, acb->req.qiov, 0);
3269 }
3270
3271 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3272 qemu_bh_schedule(acb->bh);
3273 }
3274
3275 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
3276 int64_t sector_num,
3277 QEMUIOVector *qiov,
3278 int nb_sectors,
3279 BlockDriverCompletionFunc *cb,
3280 void *opaque,
3281 bool is_write)
3282 {
3283 Coroutine *co;
3284 BlockDriverAIOCBCoroutine *acb;
3285
3286 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3287 acb->req.sector = sector_num;
3288 acb->req.nb_sectors = nb_sectors;
3289 acb->req.qiov = qiov;
3290 acb->is_write = is_write;
3291
3292 co = qemu_coroutine_create(bdrv_co_do_rw);
3293 qemu_coroutine_enter(co, acb);
3294
3295 return &acb->common;
3296 }
3297
3298 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
3299 {
3300 BlockDriverAIOCBCoroutine *acb = opaque;
3301 BlockDriverState *bs = acb->common.bs;
3302
3303 acb->req.error = bdrv_co_flush(bs);
3304 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3305 qemu_bh_schedule(acb->bh);
3306 }
3307
3308 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
3309 BlockDriverCompletionFunc *cb, void *opaque)
3310 {
3311 trace_bdrv_aio_flush(bs, opaque);
3312
3313 Coroutine *co;
3314 BlockDriverAIOCBCoroutine *acb;
3315
3316 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3317 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
3318 qemu_coroutine_enter(co, acb);
3319
3320 return &acb->common;
3321 }
3322
3323 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
3324 {
3325 BlockDriverAIOCBCoroutine *acb = opaque;
3326 BlockDriverState *bs = acb->common.bs;
3327
3328 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
3329 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3330 qemu_bh_schedule(acb->bh);
3331 }
3332
3333 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
3334 int64_t sector_num, int nb_sectors,
3335 BlockDriverCompletionFunc *cb, void *opaque)
3336 {
3337 Coroutine *co;
3338 BlockDriverAIOCBCoroutine *acb;
3339
3340 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
3341
3342 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3343 acb->req.sector = sector_num;
3344 acb->req.nb_sectors = nb_sectors;
3345 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
3346 qemu_coroutine_enter(co, acb);
3347
3348 return &acb->common;
3349 }
3350
3351 void bdrv_init(void)
3352 {
3353 module_call_init(MODULE_INIT_BLOCK);
3354 }
3355
3356 void bdrv_init_with_whitelist(void)
3357 {
3358 use_bdrv_whitelist = 1;
3359 bdrv_init();
3360 }
3361
3362 void *qemu_aio_get(AIOPool *pool, BlockDriverState *bs,
3363 BlockDriverCompletionFunc *cb, void *opaque)
3364 {
3365 BlockDriverAIOCB *acb;
3366
3367 if (pool->free_aiocb) {
3368 acb = pool->free_aiocb;
3369 pool->free_aiocb = acb->next;
3370 } else {
3371 acb = g_malloc0(pool->aiocb_size);
3372 acb->pool = pool;
3373 }
3374 acb->bs = bs;
3375 acb->cb = cb;
3376 acb->opaque = opaque;
3377 return acb;
3378 }
3379
3380 void qemu_aio_release(void *p)
3381 {
3382 BlockDriverAIOCB *acb = (BlockDriverAIOCB *)p;
3383 AIOPool *pool = acb->pool;
3384 acb->next = pool->free_aiocb;
3385 pool->free_aiocb = acb;
3386 }
3387
3388 /**************************************************************/
3389 /* Coroutine block device emulation */
3390
3391 typedef struct CoroutineIOCompletion {
3392 Coroutine *coroutine;
3393 int ret;
3394 } CoroutineIOCompletion;
3395
3396 static void bdrv_co_io_em_complete(void *opaque, int ret)
3397 {
3398 CoroutineIOCompletion *co = opaque;
3399
3400 co->ret = ret;
3401 qemu_coroutine_enter(co->coroutine, NULL);
3402 }
3403
3404 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
3405 int nb_sectors, QEMUIOVector *iov,
3406 bool is_write)
3407 {
3408 CoroutineIOCompletion co = {
3409 .coroutine = qemu_coroutine_self(),
3410 };
3411 BlockDriverAIOCB *acb;
3412
3413 if (is_write) {
3414 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
3415 bdrv_co_io_em_complete, &co);
3416 } else {
3417 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
3418 bdrv_co_io_em_complete, &co);
3419 }
3420
3421 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
3422 if (!acb) {
3423 return -EIO;
3424 }
3425 qemu_coroutine_yield();
3426
3427 return co.ret;
3428 }
3429
3430 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
3431 int64_t sector_num, int nb_sectors,
3432 QEMUIOVector *iov)
3433 {
3434 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
3435 }
3436
3437 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
3438 int64_t sector_num, int nb_sectors,
3439 QEMUIOVector *iov)
3440 {
3441 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
3442 }
3443
3444 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
3445 {
3446 RwCo *rwco = opaque;
3447
3448 rwco->ret = bdrv_co_flush(rwco->bs);
3449 }
3450
3451 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
3452 {
3453 int ret;
3454
3455 if (!bs->drv) {
3456 return 0;
3457 }
3458
3459 /* Write back cached data to the OS even with cache=unsafe */
3460 if (bs->drv->bdrv_co_flush_to_os) {
3461 ret = bs->drv->bdrv_co_flush_to_os(bs);
3462 if (ret < 0) {
3463 return ret;
3464 }
3465 }
3466
3467 /* But don't actually force it to the disk with cache=unsafe */
3468 if (bs->open_flags & BDRV_O_NO_FLUSH) {
3469 return 0;
3470 }
3471
3472 if (bs->drv->bdrv_co_flush_to_disk) {
3473 return bs->drv->bdrv_co_flush_to_disk(bs);
3474 } else if (bs->drv->bdrv_aio_flush) {
3475 BlockDriverAIOCB *acb;
3476 CoroutineIOCompletion co = {
3477 .coroutine = qemu_coroutine_self(),
3478 };
3479
3480 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3481 if (acb == NULL) {
3482 return -EIO;
3483 } else {
3484 qemu_coroutine_yield();
3485 return co.ret;
3486 }
3487 } else {
3488 /*
3489 * Some block drivers always operate in either writethrough or unsafe
3490 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3491 * know how the server works (because the behaviour is hardcoded or
3492 * depends on server-side configuration), so we can't ensure that
3493 * everything is safe on disk. Returning an error doesn't work because
3494 * that would break guests even if the server operates in writethrough
3495 * mode.
3496 *
3497 * Let's hope the user knows what he's doing.
3498 */
3499 return 0;
3500 }
3501 }
3502
3503 void bdrv_invalidate_cache(BlockDriverState *bs)
3504 {
3505 if (bs->drv && bs->drv->bdrv_invalidate_cache) {
3506 bs->drv->bdrv_invalidate_cache(bs);
3507 }
3508 }
3509
3510 void bdrv_invalidate_cache_all(void)
3511 {
3512 BlockDriverState *bs;
3513
3514 QTAILQ_FOREACH(bs, &bdrv_states, list) {
3515 bdrv_invalidate_cache(bs);
3516 }
3517 }
3518
3519 int bdrv_flush(BlockDriverState *bs)
3520 {
3521 Coroutine *co;
3522 RwCo rwco = {
3523 .bs = bs,
3524 .ret = NOT_DONE,
3525 };
3526
3527 if (qemu_in_coroutine()) {
3528 /* Fast-path if already in coroutine context */
3529 bdrv_flush_co_entry(&rwco);
3530 } else {
3531 co = qemu_coroutine_create(bdrv_flush_co_entry);
3532 qemu_coroutine_enter(co, &rwco);
3533 while (rwco.ret == NOT_DONE) {
3534 qemu_aio_wait();
3535 }
3536 }
3537
3538 return rwco.ret;
3539 }
3540
3541 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
3542 {
3543 RwCo *rwco = opaque;
3544
3545 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
3546 }
3547
3548 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
3549 int nb_sectors)
3550 {
3551 if (!bs->drv) {
3552 return -ENOMEDIUM;
3553 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
3554 return -EIO;
3555 } else if (bs->read_only) {
3556 return -EROFS;
3557 } else if (bs->drv->bdrv_co_discard) {
3558 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
3559 } else if (bs->drv->bdrv_aio_discard) {
3560 BlockDriverAIOCB *acb;
3561 CoroutineIOCompletion co = {
3562 .coroutine = qemu_coroutine_self(),
3563 };
3564
3565 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
3566 bdrv_co_io_em_complete, &co);
3567 if (acb == NULL) {
3568 return -EIO;
3569 } else {
3570 qemu_coroutine_yield();
3571 return co.ret;
3572 }
3573 } else {
3574 return 0;
3575 }
3576 }
3577
3578 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
3579 {
3580 Coroutine *co;
3581 RwCo rwco = {
3582 .bs = bs,
3583 .sector_num = sector_num,
3584 .nb_sectors = nb_sectors,
3585 .ret = NOT_DONE,
3586 };
3587
3588 if (qemu_in_coroutine()) {
3589 /* Fast-path if already in coroutine context */
3590 bdrv_discard_co_entry(&rwco);
3591 } else {
3592 co = qemu_coroutine_create(bdrv_discard_co_entry);
3593 qemu_coroutine_enter(co, &rwco);
3594 while (rwco.ret == NOT_DONE) {
3595 qemu_aio_wait();
3596 }
3597 }
3598
3599 return rwco.ret;
3600 }
3601
3602 /**************************************************************/
3603 /* removable device support */
3604
3605 /**
3606 * Return TRUE if the media is present
3607 */
3608 int bdrv_is_inserted(BlockDriverState *bs)
3609 {
3610 BlockDriver *drv = bs->drv;
3611
3612 if (!drv)
3613 return 0;
3614 if (!drv->bdrv_is_inserted)
3615 return 1;
3616 return drv->bdrv_is_inserted(bs);
3617 }
3618
3619 /**
3620 * Return whether the media changed since the last call to this
3621 * function, or -ENOTSUP if we don't know. Most drivers don't know.
3622 */
3623 int bdrv_media_changed(BlockDriverState *bs)
3624 {
3625 BlockDriver *drv = bs->drv;
3626
3627 if (drv && drv->bdrv_media_changed) {
3628 return drv->bdrv_media_changed(bs);
3629 }
3630 return -ENOTSUP;
3631 }
3632
3633 /**
3634 * If eject_flag is TRUE, eject the media. Otherwise, close the tray
3635 */
3636 void bdrv_eject(BlockDriverState *bs, bool eject_flag)
3637 {
3638 BlockDriver *drv = bs->drv;
3639
3640 if (drv && drv->bdrv_eject) {
3641 drv->bdrv_eject(bs, eject_flag);
3642 }
3643
3644 if (bs->device_name[0] != '\0') {
3645 bdrv_emit_qmp_eject_event(bs, eject_flag);
3646 }
3647 }
3648
3649 /**
3650 * Lock or unlock the media (if it is locked, the user won't be able
3651 * to eject it manually).
3652 */
3653 void bdrv_lock_medium(BlockDriverState *bs, bool locked)
3654 {
3655 BlockDriver *drv = bs->drv;
3656
3657 trace_bdrv_lock_medium(bs, locked);
3658
3659 if (drv && drv->bdrv_lock_medium) {
3660 drv->bdrv_lock_medium(bs, locked);
3661 }
3662 }
3663
3664 /* needed for generic scsi interface */
3665
3666 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
3667 {
3668 BlockDriver *drv = bs->drv;
3669
3670 if (drv && drv->bdrv_ioctl)
3671 return drv->bdrv_ioctl(bs, req, buf);
3672 return -ENOTSUP;
3673 }
3674
3675 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
3676 unsigned long int req, void *buf,
3677 BlockDriverCompletionFunc *cb, void *opaque)
3678 {
3679 BlockDriver *drv = bs->drv;
3680
3681 if (drv && drv->bdrv_aio_ioctl)
3682 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
3683 return NULL;
3684 }
3685
3686 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
3687 {
3688 bs->buffer_alignment = align;
3689 }
3690
3691 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3692 {
3693 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
3694 }
3695
3696 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable)
3697 {
3698 int64_t bitmap_size;
3699
3700 bs->dirty_count = 0;
3701 if (enable) {
3702 if (!bs->dirty_bitmap) {
3703 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) +
3704 BDRV_SECTORS_PER_DIRTY_CHUNK * 8 - 1;
3705 bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * 8;
3706
3707 bs->dirty_bitmap = g_malloc0(bitmap_size);
3708 }
3709 } else {
3710 if (bs->dirty_bitmap) {
3711 g_free(bs->dirty_bitmap);
3712 bs->dirty_bitmap = NULL;
3713 }
3714 }
3715 }
3716
3717 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
3718 {
3719 int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK;
3720
3721 if (bs->dirty_bitmap &&
3722 (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) {
3723 return !!(bs->dirty_bitmap[chunk / (sizeof(unsigned long) * 8)] &
3724 (1UL << (chunk % (sizeof(unsigned long) * 8))));
3725 } else {
3726 return 0;
3727 }
3728 }
3729
3730 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
3731 int nr_sectors)
3732 {
3733 set_dirty_bitmap(bs, cur_sector, nr_sectors, 0);
3734 }
3735
3736 int64_t bdrv_get_dirty_count(BlockDriverState *bs)
3737 {
3738 return bs->dirty_count;
3739 }
3740
3741 void bdrv_set_in_use(BlockDriverState *bs, int in_use)
3742 {
3743 assert(bs->in_use != in_use);
3744 bs->in_use = in_use;
3745 }
3746
3747 int bdrv_in_use(BlockDriverState *bs)
3748 {
3749 return bs->in_use;
3750 }
3751
3752 void bdrv_iostatus_enable(BlockDriverState *bs)
3753 {
3754 bs->iostatus_enabled = true;
3755 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
3756 }
3757
3758 /* The I/O status is only enabled if the drive explicitly
3759 * enables it _and_ the VM is configured to stop on errors */
3760 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
3761 {
3762 return (bs->iostatus_enabled &&
3763 (bs->on_write_error == BLOCK_ERR_STOP_ENOSPC ||
3764 bs->on_write_error == BLOCK_ERR_STOP_ANY ||
3765 bs->on_read_error == BLOCK_ERR_STOP_ANY));
3766 }
3767
3768 void bdrv_iostatus_disable(BlockDriverState *bs)
3769 {
3770 bs->iostatus_enabled = false;
3771 }
3772
3773 void bdrv_iostatus_reset(BlockDriverState *bs)
3774 {
3775 if (bdrv_iostatus_is_enabled(bs)) {
3776 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
3777 }
3778 }
3779
3780 /* XXX: Today this is set by device models because it makes the implementation
3781 quite simple. However, the block layer knows about the error, so it's
3782 possible to implement this without device models being involved */
3783 void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
3784 {
3785 if (bdrv_iostatus_is_enabled(bs) &&
3786 bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
3787 assert(error >= 0);
3788 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
3789 BLOCK_DEVICE_IO_STATUS_FAILED;
3790 }
3791 }
3792
3793 void
3794 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
3795 enum BlockAcctType type)
3796 {
3797 assert(type < BDRV_MAX_IOTYPE);
3798
3799 cookie->bytes = bytes;
3800 cookie->start_time_ns = get_clock();
3801 cookie->type = type;
3802 }
3803
3804 void
3805 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
3806 {
3807 assert(cookie->type < BDRV_MAX_IOTYPE);
3808
3809 bs->nr_bytes[cookie->type] += cookie->bytes;
3810 bs->nr_ops[cookie->type]++;
3811 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
3812 }
3813
3814 int bdrv_img_create(const char *filename, const char *fmt,
3815 const char *base_filename, const char *base_fmt,
3816 char *options, uint64_t img_size, int flags)
3817 {
3818 QEMUOptionParameter *param = NULL, *create_options = NULL;
3819 QEMUOptionParameter *backing_fmt, *backing_file, *size;
3820 BlockDriverState *bs = NULL;
3821 BlockDriver *drv, *proto_drv;
3822 BlockDriver *backing_drv = NULL;
3823 int ret = 0;
3824
3825 /* Find driver and parse its options */
3826 drv = bdrv_find_format(fmt);
3827 if (!drv) {
3828 error_report("Unknown file format '%s'", fmt);
3829 ret = -EINVAL;
3830 goto out;
3831 }
3832
3833 proto_drv = bdrv_find_protocol(filename);
3834 if (!proto_drv) {
3835 error_report("Unknown protocol '%s'", filename);
3836 ret = -EINVAL;
3837 goto out;
3838 }
3839
3840 create_options = append_option_parameters(create_options,
3841 drv->create_options);
3842 create_options = append_option_parameters(create_options,
3843 proto_drv->create_options);
3844
3845 /* Create parameter list with default values */
3846 param = parse_option_parameters("", create_options, param);
3847
3848 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
3849
3850 /* Parse -o options */
3851 if (options) {
3852 param = parse_option_parameters(options, create_options, param);
3853 if (param == NULL) {
3854 error_report("Invalid options for file format '%s'.", fmt);
3855 ret = -EINVAL;
3856 goto out;
3857 }
3858 }
3859
3860 if (base_filename) {
3861 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
3862 base_filename)) {
3863 error_report("Backing file not supported for file format '%s'",
3864 fmt);
3865 ret = -EINVAL;
3866 goto out;
3867 }
3868 }
3869
3870 if (base_fmt) {
3871 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
3872 error_report("Backing file format not supported for file "
3873 "format '%s'", fmt);
3874 ret = -EINVAL;
3875 goto out;
3876 }
3877 }
3878
3879 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
3880 if (backing_file && backing_file->value.s) {
3881 if (!strcmp(filename, backing_file->value.s)) {
3882 error_report("Error: Trying to create an image with the "
3883 "same filename as the backing file");
3884 ret = -EINVAL;
3885 goto out;
3886 }
3887 }
3888
3889 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
3890 if (backing_fmt && backing_fmt->value.s) {
3891 backing_drv = bdrv_find_format(backing_fmt->value.s);
3892 if (!backing_drv) {
3893 error_report("Unknown backing file format '%s'",
3894 backing_fmt->value.s);
3895 ret = -EINVAL;
3896 goto out;
3897 }
3898 }
3899
3900 // The size for the image must always be specified, with one exception:
3901 // If we are using a backing file, we can obtain the size from there
3902 size = get_option_parameter(param, BLOCK_OPT_SIZE);
3903 if (size && size->value.n == -1) {
3904 if (backing_file && backing_file->value.s) {
3905 uint64_t size;
3906 char buf[32];
3907
3908 bs = bdrv_new("");
3909
3910 ret = bdrv_open(bs, backing_file->value.s, flags, backing_drv);
3911 if (ret < 0) {
3912 error_report("Could not open '%s'", backing_file->value.s);
3913 goto out;
3914 }
3915 bdrv_get_geometry(bs, &size);
3916 size *= 512;
3917
3918 snprintf(buf, sizeof(buf), "%" PRId64, size);
3919 set_option_parameter(param, BLOCK_OPT_SIZE, buf);
3920 } else {
3921 error_report("Image creation needs a size parameter");
3922 ret = -EINVAL;
3923 goto out;
3924 }
3925 }
3926
3927 printf("Formatting '%s', fmt=%s ", filename, fmt);
3928 print_option_parameters(param);
3929 puts("");
3930
3931 ret = bdrv_create(drv, filename, param);
3932
3933 if (ret < 0) {
3934 if (ret == -ENOTSUP) {
3935 error_report("Formatting or formatting option not supported for "
3936 "file format '%s'", fmt);
3937 } else if (ret == -EFBIG) {
3938 error_report("The image size is too large for file format '%s'",
3939 fmt);
3940 } else {
3941 error_report("%s: error while creating %s: %s", filename, fmt,
3942 strerror(-ret));
3943 }
3944 }
3945
3946 out:
3947 free_option_parameters(create_options);
3948 free_option_parameters(param);
3949
3950 if (bs) {
3951 bdrv_delete(bs);
3952 }
3953
3954 return ret;
3955 }
3956
3957 void *block_job_create(const BlockJobType *job_type, BlockDriverState *bs,
3958 BlockDriverCompletionFunc *cb, void *opaque)
3959 {
3960 BlockJob *job;
3961
3962 if (bs->job || bdrv_in_use(bs)) {
3963 return NULL;
3964 }
3965 bdrv_set_in_use(bs, 1);
3966
3967 job = g_malloc0(job_type->instance_size);
3968 job->job_type = job_type;
3969 job->bs = bs;
3970 job->cb = cb;
3971 job->opaque = opaque;
3972 bs->job = job;
3973 return job;
3974 }
3975
3976 void block_job_complete(BlockJob *job, int ret)
3977 {
3978 BlockDriverState *bs = job->bs;
3979
3980 assert(bs->job == job);
3981 job->cb(job->opaque, ret);
3982 bs->job = NULL;
3983 g_free(job);
3984 bdrv_set_in_use(bs, 0);
3985 }
3986
3987 int block_job_set_speed(BlockJob *job, int64_t value)
3988 {
3989 if (!job->job_type->set_speed) {
3990 return -ENOTSUP;
3991 }
3992 return job->job_type->set_speed(job, value);
3993 }
3994
3995 void block_job_cancel(BlockJob *job)
3996 {
3997 job->cancelled = true;
3998 }
3999
4000 bool block_job_is_cancelled(BlockJob *job)
4001 {
4002 return job->cancelled;
4003 }