]> git.proxmox.com Git - mirror_qemu.git/blob - bsd-user/qemu.h
e85c164babdb1a4ab817625f1119c0153e8b7ba5
[mirror_qemu.git] / bsd-user / qemu.h
1 /*
2 * qemu bsd user mode definition
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see <http://www.gnu.org/licenses/>.
16 */
17 #ifndef QEMU_H
18 #define QEMU_H
19
20
21 #include "cpu.h"
22 #include "exec/cpu_ldst.h"
23
24 #undef DEBUG_REMAP
25 #ifdef DEBUG_REMAP
26 #endif /* DEBUG_REMAP */
27
28 #include "exec/user/abitypes.h"
29
30 extern char **environ;
31
32 enum BSDType {
33 target_freebsd,
34 target_netbsd,
35 target_openbsd,
36 };
37 extern enum BSDType bsd_type;
38
39 #include "syscall_defs.h"
40 #include "target_syscall.h"
41 #include "exec/gdbstub.h"
42
43 #if defined(CONFIG_USE_NPTL)
44 #define THREAD __thread
45 #else
46 #define THREAD
47 #endif
48
49 /*
50 * This struct is used to hold certain information about the image. Basically,
51 * it replicates in user space what would be certain task_struct fields in the
52 * kernel
53 */
54 struct image_info {
55 abi_ulong load_addr;
56 abi_ulong start_code;
57 abi_ulong end_code;
58 abi_ulong start_data;
59 abi_ulong end_data;
60 abi_ulong start_brk;
61 abi_ulong brk;
62 abi_ulong start_mmap;
63 abi_ulong mmap;
64 abi_ulong rss;
65 abi_ulong start_stack;
66 abi_ulong entry;
67 abi_ulong code_offset;
68 abi_ulong data_offset;
69 };
70
71 #define MAX_SIGQUEUE_SIZE 1024
72
73 struct sigqueue {
74 struct sigqueue *next;
75 };
76
77 struct emulated_sigtable {
78 int pending; /* true if signal is pending */
79 struct sigqueue *first;
80 /* in order to always have memory for the first signal, we put it here */
81 struct sigqueue info;
82 };
83
84 /*
85 * NOTE: we force a big alignment so that the stack stored after is aligned too
86 */
87 typedef struct TaskState {
88 pid_t ts_tid; /* tid (or pid) of this task */
89
90 struct TaskState *next;
91 int used; /* non zero if used */
92 struct image_info *info;
93
94 struct emulated_sigtable sigtab[TARGET_NSIG];
95 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
96 struct sigqueue *first_free; /* first free siginfo queue entry */
97 int signal_pending; /* non zero if a signal may be pending */
98
99 uint8_t stack[];
100 } __attribute__((aligned(16))) TaskState;
101
102 void init_task_state(TaskState *ts);
103 extern const char *qemu_uname_release;
104 extern unsigned long mmap_min_addr;
105
106 /*
107 * MAX_ARG_PAGES defines the number of pages allocated for arguments
108 * and envelope for the new program. 32 should suffice, this gives
109 * a maximum env+arg of 128kB w/4KB pages!
110 */
111 #define MAX_ARG_PAGES 32
112
113 /*
114 * This structure is used to hold the arguments that are
115 * used when loading binaries.
116 */
117 struct bsd_binprm {
118 char buf[128];
119 void *page[MAX_ARG_PAGES];
120 abi_ulong p;
121 int fd;
122 int e_uid, e_gid;
123 int argc, envc;
124 char **argv;
125 char **envp;
126 char *filename; /* (Given) Name of binary */
127 char *fullpath; /* Full path of binary */
128 };
129
130 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
131 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
132 abi_ulong stringp, int push_ptr);
133 int loader_exec(const char *filename, char **argv, char **envp,
134 struct target_pt_regs *regs, struct image_info *infop,
135 struct bsd_binprm *bprm);
136
137 int load_elf_binary(struct bsd_binprm *bprm, struct target_pt_regs *regs,
138 struct image_info *info);
139 int load_flt_binary(struct bsd_binprm *bprm, struct target_pt_regs *regs,
140 struct image_info *info);
141
142 abi_long memcpy_to_target(abi_ulong dest, const void *src,
143 unsigned long len);
144 void target_set_brk(abi_ulong new_brk);
145 abi_long do_brk(abi_ulong new_brk);
146 void syscall_init(void);
147 abi_long do_freebsd_syscall(void *cpu_env, int num, abi_long arg1,
148 abi_long arg2, abi_long arg3, abi_long arg4,
149 abi_long arg5, abi_long arg6, abi_long arg7,
150 abi_long arg8);
151 abi_long do_netbsd_syscall(void *cpu_env, int num, abi_long arg1,
152 abi_long arg2, abi_long arg3, abi_long arg4,
153 abi_long arg5, abi_long arg6);
154 abi_long do_openbsd_syscall(void *cpu_env, int num, abi_long arg1,
155 abi_long arg2, abi_long arg3, abi_long arg4,
156 abi_long arg5, abi_long arg6);
157 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
158 extern THREAD CPUState *thread_cpu;
159 void cpu_loop(CPUArchState *env);
160 char *target_strerror(int err);
161 int get_osversion(void);
162 void fork_start(void);
163 void fork_end(int child);
164
165 #include "qemu/log.h"
166
167 /* strace.c */
168 struct syscallname {
169 int nr;
170 const char *name;
171 const char *format;
172 void (*call)(const struct syscallname *,
173 abi_long, abi_long, abi_long,
174 abi_long, abi_long, abi_long);
175 void (*result)(const struct syscallname *, abi_long);
176 };
177
178 void
179 print_freebsd_syscall(int num,
180 abi_long arg1, abi_long arg2, abi_long arg3,
181 abi_long arg4, abi_long arg5, abi_long arg6);
182 void print_freebsd_syscall_ret(int num, abi_long ret);
183 void
184 print_netbsd_syscall(int num,
185 abi_long arg1, abi_long arg2, abi_long arg3,
186 abi_long arg4, abi_long arg5, abi_long arg6);
187 void print_netbsd_syscall_ret(int num, abi_long ret);
188 void
189 print_openbsd_syscall(int num,
190 abi_long arg1, abi_long arg2, abi_long arg3,
191 abi_long arg4, abi_long arg5, abi_long arg6);
192 void print_openbsd_syscall_ret(int num, abi_long ret);
193 extern int do_strace;
194
195 /* signal.c */
196 void process_pending_signals(CPUArchState *cpu_env);
197 void signal_init(void);
198 long do_sigreturn(CPUArchState *env);
199 long do_rt_sigreturn(CPUArchState *env);
200 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
201
202 /* mmap.c */
203 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
204 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
205 int flags, int fd, abi_ulong offset);
206 int target_munmap(abi_ulong start, abi_ulong len);
207 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
208 abi_ulong new_size, unsigned long flags,
209 abi_ulong new_addr);
210 int target_msync(abi_ulong start, abi_ulong len, int flags);
211 extern unsigned long last_brk;
212 void mmap_fork_start(void);
213 void mmap_fork_end(int child);
214
215 /* main.c */
216 extern unsigned long x86_stack_size;
217
218 /* user access */
219
220 #define VERIFY_READ PAGE_READ
221 #define VERIFY_WRITE (PAGE_READ | PAGE_WRITE)
222
223 static inline bool access_ok(int type, abi_ulong addr, abi_ulong size)
224 {
225 return page_check_range((target_ulong)addr, size, type) == 0;
226 }
227
228 /*
229 * NOTE __get_user and __put_user use host pointers and don't check access.
230 *
231 * These are usually used to access struct data members once the struct has been
232 * locked - usually with lock_user_struct().
233 */
234 #define __put_user(x, hptr)\
235 ({\
236 int size = sizeof(*hptr);\
237 switch (size) {\
238 case 1:\
239 *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\
240 break;\
241 case 2:\
242 *(uint16_t *)(hptr) = tswap16((typeof(*hptr))(x));\
243 break;\
244 case 4:\
245 *(uint32_t *)(hptr) = tswap32((typeof(*hptr))(x));\
246 break;\
247 case 8:\
248 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\
249 break;\
250 default:\
251 abort();\
252 } \
253 0;\
254 })
255
256 #define __get_user(x, hptr) \
257 ({\
258 int size = sizeof(*hptr);\
259 switch (size) {\
260 case 1:\
261 x = (typeof(*hptr))*(uint8_t *)(hptr);\
262 break;\
263 case 2:\
264 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\
265 break;\
266 case 4:\
267 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\
268 break;\
269 case 8:\
270 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\
271 break;\
272 default:\
273 x = 0;\
274 abort();\
275 } \
276 0;\
277 })
278
279 /*
280 * put_user()/get_user() take a guest address and check access
281 *
282 * These are usually used to access an atomic data type, such as an int, that
283 * has been passed by address. These internally perform locking and unlocking
284 * on the data type.
285 */
286 #define put_user(x, gaddr, target_type) \
287 ({ \
288 abi_ulong __gaddr = (gaddr); \
289 target_type *__hptr; \
290 abi_long __ret; \
291 __hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0); \
292 if (__hptr) { \
293 __ret = __put_user((x), __hptr); \
294 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
295 } else \
296 __ret = -TARGET_EFAULT; \
297 __ret; \
298 })
299
300 #define get_user(x, gaddr, target_type) \
301 ({ \
302 abi_ulong __gaddr = (gaddr); \
303 target_type *__hptr; \
304 abi_long __ret; \
305 __hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1); \
306 if (__hptr) { \
307 __ret = __get_user((x), __hptr); \
308 unlock_user(__hptr, __gaddr, 0); \
309 } else { \
310 (x) = 0; \
311 __ret = -TARGET_EFAULT; \
312 } \
313 __ret; \
314 })
315
316 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
317 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
318 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
319 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
320 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
321 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
322 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
323 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
324 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
325 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
326
327 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
328 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
329 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
330 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
331 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
332 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
333 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
334 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
335 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
336 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
337
338 /*
339 * copy_from_user() and copy_to_user() are usually used to copy data
340 * buffers between the target and host. These internally perform
341 * locking/unlocking of the memory.
342 */
343 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
344 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
345
346 /*
347 * Functions for accessing guest memory. The tget and tput functions
348 * read/write single values, byteswapping as necessary. The lock_user function
349 * gets a pointer to a contiguous area of guest memory, but does not perform
350 * any byteswapping. lock_user may return either a pointer to the guest
351 * memory, or a temporary buffer.
352 */
353
354 /*
355 * Lock an area of guest memory into the host. If copy is true then the
356 * host area will have the same contents as the guest.
357 */
358 static inline void *lock_user(int type, abi_ulong guest_addr, long len,
359 int copy)
360 {
361 if (!access_ok(type, guest_addr, len)) {
362 return NULL;
363 }
364 #ifdef DEBUG_REMAP
365 {
366 void *addr;
367 addr = g_malloc(len);
368 if (copy) {
369 memcpy(addr, g2h_untagged(guest_addr), len);
370 } else {
371 memset(addr, 0, len);
372 }
373 return addr;
374 }
375 #else
376 return g2h_untagged(guest_addr);
377 #endif
378 }
379
380 /*
381 * Unlock an area of guest memory. The first LEN bytes must be flushed back to
382 * guest memory. host_ptr = NULL is explicitly allowed and does nothing.
383 */
384 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
385 long len)
386 {
387
388 #ifdef DEBUG_REMAP
389 if (!host_ptr) {
390 return;
391 }
392 if (host_ptr == g2h_untagged(guest_addr)) {
393 return;
394 }
395 if (len > 0) {
396 memcpy(g2h_untagged(guest_addr), host_ptr, len);
397 }
398 g_free(host_ptr);
399 #endif
400 }
401
402 /*
403 * Return the length of a string in target memory or -TARGET_EFAULT if access
404 * error.
405 */
406 abi_long target_strlen(abi_ulong gaddr);
407
408 /* Like lock_user but for null terminated strings. */
409 static inline void *lock_user_string(abi_ulong guest_addr)
410 {
411 abi_long len;
412 len = target_strlen(guest_addr);
413 if (len < 0) {
414 return NULL;
415 }
416 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
417 }
418
419 /* Helper macros for locking/unlocking a target struct. */
420 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
421 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
422 #define unlock_user_struct(host_ptr, guest_addr, copy) \
423 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
424
425 #if defined(CONFIG_USE_NPTL)
426 #include <pthread.h>
427 #endif
428
429 #endif /* QEMU_H */