]> git.proxmox.com Git - mirror_qemu.git/blob - bsd-user/qemu.h
bsd-user: Include more things in qemu.h
[mirror_qemu.git] / bsd-user / qemu.h
1 /*
2 * qemu bsd user mode definition
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see <http://www.gnu.org/licenses/>.
16 */
17 #ifndef QEMU_H
18 #define QEMU_H
19
20
21 #include "qemu/osdep.h"
22 #include "cpu.h"
23 #include "exec/cpu_ldst.h"
24 #include "exec/exec-all.h"
25
26 #undef DEBUG_REMAP
27
28 #include "exec/user/abitypes.h"
29
30 extern char **environ;
31
32 enum BSDType {
33 target_freebsd,
34 target_netbsd,
35 target_openbsd,
36 };
37 extern enum BSDType bsd_type;
38
39 #include "exec/user/thunk.h"
40 #include "target_arch.h"
41 #include "syscall_defs.h"
42 #include "target_syscall.h"
43 #include "exec/gdbstub.h"
44
45 /*
46 * This struct is used to hold certain information about the image. Basically,
47 * it replicates in user space what would be certain task_struct fields in the
48 * kernel
49 */
50 struct image_info {
51 abi_ulong load_addr;
52 abi_ulong start_code;
53 abi_ulong end_code;
54 abi_ulong start_data;
55 abi_ulong end_data;
56 abi_ulong start_brk;
57 abi_ulong brk;
58 abi_ulong start_mmap;
59 abi_ulong mmap;
60 abi_ulong rss;
61 abi_ulong start_stack;
62 abi_ulong entry;
63 abi_ulong code_offset;
64 abi_ulong data_offset;
65 };
66
67 #define MAX_SIGQUEUE_SIZE 1024
68
69 struct sigqueue {
70 struct sigqueue *next;
71 };
72
73 struct emulated_sigtable {
74 int pending; /* true if signal is pending */
75 struct sigqueue *first;
76 /* in order to always have memory for the first signal, we put it here */
77 struct sigqueue info;
78 };
79
80 /*
81 * NOTE: we force a big alignment so that the stack stored after is aligned too
82 */
83 typedef struct TaskState {
84 pid_t ts_tid; /* tid (or pid) of this task */
85
86 struct TaskState *next;
87 struct bsd_binprm *bprm;
88 int used; /* non zero if used */
89 struct image_info *info;
90
91 struct emulated_sigtable sigtab[TARGET_NSIG];
92 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
93 struct sigqueue *first_free; /* first free siginfo queue entry */
94 int signal_pending; /* non zero if a signal may be pending */
95
96 uint8_t stack[];
97 } __attribute__((aligned(16))) TaskState;
98
99 void init_task_state(TaskState *ts);
100 extern const char *qemu_uname_release;
101 extern unsigned long mmap_min_addr;
102
103 /*
104 * MAX_ARG_PAGES defines the number of pages allocated for arguments
105 * and envelope for the new program. 32 should suffice, this gives
106 * a maximum env+arg of 128kB w/4KB pages!
107 */
108 #define MAX_ARG_PAGES 32
109
110 /*
111 * This structure is used to hold the arguments that are
112 * used when loading binaries.
113 */
114 struct bsd_binprm {
115 char buf[128];
116 void *page[MAX_ARG_PAGES];
117 abi_ulong p;
118 int fd;
119 int e_uid, e_gid;
120 int argc, envc;
121 char **argv;
122 char **envp;
123 char *filename; /* (Given) Name of binary */
124 char *fullpath; /* Full path of binary */
125 };
126
127 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
128 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
129 abi_ulong stringp);
130 int loader_exec(const char *filename, char **argv, char **envp,
131 struct target_pt_regs *regs, struct image_info *infop,
132 struct bsd_binprm *bprm);
133
134 int load_elf_binary(struct bsd_binprm *bprm, struct target_pt_regs *regs,
135 struct image_info *info);
136 int load_flt_binary(struct bsd_binprm *bprm, struct target_pt_regs *regs,
137 struct image_info *info);
138
139 abi_long memcpy_to_target(abi_ulong dest, const void *src,
140 unsigned long len);
141 void target_set_brk(abi_ulong new_brk);
142 abi_long do_brk(abi_ulong new_brk);
143 void syscall_init(void);
144 abi_long do_freebsd_syscall(void *cpu_env, int num, abi_long arg1,
145 abi_long arg2, abi_long arg3, abi_long arg4,
146 abi_long arg5, abi_long arg6, abi_long arg7,
147 abi_long arg8);
148 abi_long do_netbsd_syscall(void *cpu_env, int num, abi_long arg1,
149 abi_long arg2, abi_long arg3, abi_long arg4,
150 abi_long arg5, abi_long arg6);
151 abi_long do_openbsd_syscall(void *cpu_env, int num, abi_long arg1,
152 abi_long arg2, abi_long arg3, abi_long arg4,
153 abi_long arg5, abi_long arg6);
154 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
155 extern __thread CPUState *thread_cpu;
156 void cpu_loop(CPUArchState *env);
157 char *target_strerror(int err);
158 int get_osversion(void);
159 void fork_start(void);
160 void fork_end(int child);
161
162 #include "qemu/log.h"
163
164 /* strace.c */
165 struct syscallname {
166 int nr;
167 const char *name;
168 const char *format;
169 void (*call)(const struct syscallname *,
170 abi_long, abi_long, abi_long,
171 abi_long, abi_long, abi_long);
172 void (*result)(const struct syscallname *, abi_long);
173 };
174
175 void
176 print_freebsd_syscall(int num,
177 abi_long arg1, abi_long arg2, abi_long arg3,
178 abi_long arg4, abi_long arg5, abi_long arg6);
179 void print_freebsd_syscall_ret(int num, abi_long ret);
180 void
181 print_netbsd_syscall(int num,
182 abi_long arg1, abi_long arg2, abi_long arg3,
183 abi_long arg4, abi_long arg5, abi_long arg6);
184 void print_netbsd_syscall_ret(int num, abi_long ret);
185 void
186 print_openbsd_syscall(int num,
187 abi_long arg1, abi_long arg2, abi_long arg3,
188 abi_long arg4, abi_long arg5, abi_long arg6);
189 void print_openbsd_syscall_ret(int num, abi_long ret);
190 extern int do_strace;
191
192 /* signal.c */
193 void process_pending_signals(CPUArchState *cpu_env);
194 void signal_init(void);
195 long do_sigreturn(CPUArchState *env);
196 long do_rt_sigreturn(CPUArchState *env);
197 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
198
199 /* mmap.c */
200 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
201 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
202 int flags, int fd, abi_ulong offset);
203 int target_munmap(abi_ulong start, abi_ulong len);
204 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
205 abi_ulong new_size, unsigned long flags,
206 abi_ulong new_addr);
207 int target_msync(abi_ulong start, abi_ulong len, int flags);
208 extern unsigned long last_brk;
209 void mmap_fork_start(void);
210 void mmap_fork_end(int child);
211
212 /* main.c */
213 extern char qemu_proc_pathname[];
214 extern unsigned long x86_stack_size;
215
216 /* user access */
217
218 #define VERIFY_READ PAGE_READ
219 #define VERIFY_WRITE (PAGE_READ | PAGE_WRITE)
220
221 static inline bool access_ok(int type, abi_ulong addr, abi_ulong size)
222 {
223 return page_check_range((target_ulong)addr, size, type) == 0;
224 }
225
226 /*
227 * NOTE __get_user and __put_user use host pointers and don't check access.
228 *
229 * These are usually used to access struct data members once the struct has been
230 * locked - usually with lock_user_struct().
231 */
232 #define __put_user(x, hptr)\
233 ({\
234 int size = sizeof(*hptr);\
235 switch (size) {\
236 case 1:\
237 *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\
238 break;\
239 case 2:\
240 *(uint16_t *)(hptr) = tswap16((typeof(*hptr))(x));\
241 break;\
242 case 4:\
243 *(uint32_t *)(hptr) = tswap32((typeof(*hptr))(x));\
244 break;\
245 case 8:\
246 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\
247 break;\
248 default:\
249 abort();\
250 } \
251 0;\
252 })
253
254 #define __get_user(x, hptr) \
255 ({\
256 int size = sizeof(*hptr);\
257 switch (size) {\
258 case 1:\
259 x = (typeof(*hptr))*(uint8_t *)(hptr);\
260 break;\
261 case 2:\
262 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\
263 break;\
264 case 4:\
265 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\
266 break;\
267 case 8:\
268 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\
269 break;\
270 default:\
271 x = 0;\
272 abort();\
273 } \
274 0;\
275 })
276
277 /*
278 * put_user()/get_user() take a guest address and check access
279 *
280 * These are usually used to access an atomic data type, such as an int, that
281 * has been passed by address. These internally perform locking and unlocking
282 * on the data type.
283 */
284 #define put_user(x, gaddr, target_type) \
285 ({ \
286 abi_ulong __gaddr = (gaddr); \
287 target_type *__hptr; \
288 abi_long __ret; \
289 __hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0); \
290 if (__hptr) { \
291 __ret = __put_user((x), __hptr); \
292 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
293 } else \
294 __ret = -TARGET_EFAULT; \
295 __ret; \
296 })
297
298 #define get_user(x, gaddr, target_type) \
299 ({ \
300 abi_ulong __gaddr = (gaddr); \
301 target_type *__hptr; \
302 abi_long __ret; \
303 __hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1); \
304 if (__hptr) { \
305 __ret = __get_user((x), __hptr); \
306 unlock_user(__hptr, __gaddr, 0); \
307 } else { \
308 (x) = 0; \
309 __ret = -TARGET_EFAULT; \
310 } \
311 __ret; \
312 })
313
314 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
315 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
316 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
317 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
318 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
319 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
320 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
321 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
322 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
323 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
324
325 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
326 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
327 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
328 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
329 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
330 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
331 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
332 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
333 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
334 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
335
336 /*
337 * copy_from_user() and copy_to_user() are usually used to copy data
338 * buffers between the target and host. These internally perform
339 * locking/unlocking of the memory.
340 */
341 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
342 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
343
344 /*
345 * Functions for accessing guest memory. The tget and tput functions
346 * read/write single values, byteswapping as necessary. The lock_user function
347 * gets a pointer to a contiguous area of guest memory, but does not perform
348 * any byteswapping. lock_user may return either a pointer to the guest
349 * memory, or a temporary buffer.
350 */
351
352 /*
353 * Lock an area of guest memory into the host. If copy is true then the
354 * host area will have the same contents as the guest.
355 */
356 static inline void *lock_user(int type, abi_ulong guest_addr, long len,
357 int copy)
358 {
359 if (!access_ok(type, guest_addr, len)) {
360 return NULL;
361 }
362 #ifdef DEBUG_REMAP
363 {
364 void *addr;
365 addr = g_malloc(len);
366 if (copy) {
367 memcpy(addr, g2h_untagged(guest_addr), len);
368 } else {
369 memset(addr, 0, len);
370 }
371 return addr;
372 }
373 #else
374 return g2h_untagged(guest_addr);
375 #endif
376 }
377
378 /*
379 * Unlock an area of guest memory. The first LEN bytes must be flushed back to
380 * guest memory. host_ptr = NULL is explicitly allowed and does nothing.
381 */
382 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
383 long len)
384 {
385
386 #ifdef DEBUG_REMAP
387 if (!host_ptr) {
388 return;
389 }
390 if (host_ptr == g2h_untagged(guest_addr)) {
391 return;
392 }
393 if (len > 0) {
394 memcpy(g2h_untagged(guest_addr), host_ptr, len);
395 }
396 g_free(host_ptr);
397 #endif
398 }
399
400 /*
401 * Return the length of a string in target memory or -TARGET_EFAULT if access
402 * error.
403 */
404 abi_long target_strlen(abi_ulong gaddr);
405
406 /* Like lock_user but for null terminated strings. */
407 static inline void *lock_user_string(abi_ulong guest_addr)
408 {
409 abi_long len;
410 len = target_strlen(guest_addr);
411 if (len < 0) {
412 return NULL;
413 }
414 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
415 }
416
417 /* Helper macros for locking/unlocking a target struct. */
418 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
419 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
420 #define unlock_user_struct(host_ptr, guest_addr, copy) \
421 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
422
423 #include <pthread.h>
424
425 #endif /* QEMU_H */