]> git.proxmox.com Git - mirror_qemu.git/blob - bsd-user/qemu.h
Merge remote-tracking branch 'remotes/armbru/tags/pull-qapi-2021-09-13' into staging
[mirror_qemu.git] / bsd-user / qemu.h
1 /*
2 * qemu bsd user mode definition
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see <http://www.gnu.org/licenses/>.
16 */
17 #ifndef QEMU_H
18 #define QEMU_H
19
20
21 #include "qemu/osdep.h"
22 #include "cpu.h"
23 #include "qemu/units.h"
24 #include "exec/cpu_ldst.h"
25 #include "exec/exec-all.h"
26
27 #undef DEBUG_REMAP
28
29 #include "exec/user/abitypes.h"
30
31 extern char **environ;
32
33 enum BSDType {
34 target_freebsd,
35 target_netbsd,
36 target_openbsd,
37 };
38 extern enum BSDType bsd_type;
39
40 #include "exec/user/thunk.h"
41 #include "target_arch.h"
42 #include "syscall_defs.h"
43 #include "target_syscall.h"
44 #include "target_os_vmparam.h"
45 #include "target_os_signal.h"
46 #include "exec/gdbstub.h"
47
48 /*
49 * This struct is used to hold certain information about the image. Basically,
50 * it replicates in user space what would be certain task_struct fields in the
51 * kernel
52 */
53 struct image_info {
54 abi_ulong load_bias;
55 abi_ulong load_addr;
56 abi_ulong start_code;
57 abi_ulong end_code;
58 abi_ulong start_data;
59 abi_ulong end_data;
60 abi_ulong start_brk;
61 abi_ulong brk;
62 abi_ulong start_mmap;
63 abi_ulong mmap;
64 abi_ulong rss;
65 abi_ulong start_stack;
66 abi_ulong entry;
67 abi_ulong code_offset;
68 abi_ulong data_offset;
69 abi_ulong arg_start;
70 abi_ulong arg_end;
71 uint32_t elf_flags;
72 };
73
74 #define MAX_SIGQUEUE_SIZE 1024
75
76 struct sigqueue {
77 struct sigqueue *next;
78 };
79
80 struct emulated_sigtable {
81 int pending; /* true if signal is pending */
82 struct sigqueue *first;
83 /* in order to always have memory for the first signal, we put it here */
84 struct sigqueue info;
85 };
86
87 /*
88 * NOTE: we force a big alignment so that the stack stored after is aligned too
89 */
90 typedef struct TaskState {
91 pid_t ts_tid; /* tid (or pid) of this task */
92
93 struct TaskState *next;
94 struct bsd_binprm *bprm;
95 int used; /* non zero if used */
96 struct image_info *info;
97
98 struct emulated_sigtable sigtab[TARGET_NSIG];
99 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
100 struct sigqueue *first_free; /* first free siginfo queue entry */
101 int signal_pending; /* non zero if a signal may be pending */
102
103 uint8_t stack[];
104 } __attribute__((aligned(16))) TaskState;
105
106 void init_task_state(TaskState *ts);
107 extern const char *qemu_uname_release;
108
109 /*
110 * TARGET_ARG_MAX defines the number of bytes allocated for arguments
111 * and envelope for the new program. 256k should suffice for a reasonable
112 * maxiumum env+arg in 32-bit environments, bump it up to 512k for !ILP32
113 * platforms.
114 */
115 #if TARGET_ABI_BITS > 32
116 #define TARGET_ARG_MAX (512 * KiB)
117 #else
118 #define TARGET_ARG_MAX (256 * KiB)
119 #endif
120 #define MAX_ARG_PAGES (TARGET_ARG_MAX / TARGET_PAGE_SIZE)
121
122 /*
123 * This structure is used to hold the arguments that are
124 * used when loading binaries.
125 */
126 struct bsd_binprm {
127 char buf[128];
128 void *page[MAX_ARG_PAGES];
129 abi_ulong p;
130 abi_ulong stringp;
131 int fd;
132 int e_uid, e_gid;
133 int argc, envc;
134 char **argv;
135 char **envp;
136 char *filename; /* (Given) Name of binary */
137 char *fullpath; /* Full path of binary */
138 int (*core_dump)(int, CPUArchState *);
139 };
140
141 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
142 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
143 abi_ulong stringp);
144 int loader_exec(const char *filename, char **argv, char **envp,
145 struct target_pt_regs *regs, struct image_info *infop,
146 struct bsd_binprm *bprm);
147
148 int load_elf_binary(struct bsd_binprm *bprm, struct target_pt_regs *regs,
149 struct image_info *info);
150 int load_flt_binary(struct bsd_binprm *bprm, struct target_pt_regs *regs,
151 struct image_info *info);
152 int is_target_elf_binary(int fd);
153
154 abi_long memcpy_to_target(abi_ulong dest, const void *src,
155 unsigned long len);
156 void target_set_brk(abi_ulong new_brk);
157 abi_long do_brk(abi_ulong new_brk);
158 void syscall_init(void);
159 abi_long do_freebsd_syscall(void *cpu_env, int num, abi_long arg1,
160 abi_long arg2, abi_long arg3, abi_long arg4,
161 abi_long arg5, abi_long arg6, abi_long arg7,
162 abi_long arg8);
163 abi_long do_netbsd_syscall(void *cpu_env, int num, abi_long arg1,
164 abi_long arg2, abi_long arg3, abi_long arg4,
165 abi_long arg5, abi_long arg6);
166 abi_long do_openbsd_syscall(void *cpu_env, int num, abi_long arg1,
167 abi_long arg2, abi_long arg3, abi_long arg4,
168 abi_long arg5, abi_long arg6);
169 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
170 extern __thread CPUState *thread_cpu;
171 void cpu_loop(CPUArchState *env);
172 char *target_strerror(int err);
173 int get_osversion(void);
174 void fork_start(void);
175 void fork_end(int child);
176
177 #include "qemu/log.h"
178
179 /* strace.c */
180 struct syscallname {
181 int nr;
182 const char *name;
183 const char *format;
184 void (*call)(const struct syscallname *,
185 abi_long, abi_long, abi_long,
186 abi_long, abi_long, abi_long);
187 void (*result)(const struct syscallname *, abi_long);
188 };
189
190 void
191 print_freebsd_syscall(int num,
192 abi_long arg1, abi_long arg2, abi_long arg3,
193 abi_long arg4, abi_long arg5, abi_long arg6);
194 void print_freebsd_syscall_ret(int num, abi_long ret);
195 void
196 print_netbsd_syscall(int num,
197 abi_long arg1, abi_long arg2, abi_long arg3,
198 abi_long arg4, abi_long arg5, abi_long arg6);
199 void print_netbsd_syscall_ret(int num, abi_long ret);
200 void
201 print_openbsd_syscall(int num,
202 abi_long arg1, abi_long arg2, abi_long arg3,
203 abi_long arg4, abi_long arg5, abi_long arg6);
204 void print_openbsd_syscall_ret(int num, abi_long ret);
205 extern int do_strace;
206
207 /* signal.c */
208 void process_pending_signals(CPUArchState *cpu_env);
209 void signal_init(void);
210 long do_sigreturn(CPUArchState *env);
211 long do_rt_sigreturn(CPUArchState *env);
212 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
213
214 /* mmap.c */
215 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
216 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
217 int flags, int fd, off_t offset);
218 int target_munmap(abi_ulong start, abi_ulong len);
219 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
220 abi_ulong new_size, unsigned long flags,
221 abi_ulong new_addr);
222 int target_msync(abi_ulong start, abi_ulong len, int flags);
223 extern unsigned long last_brk;
224 extern abi_ulong mmap_next_start;
225 abi_ulong mmap_find_vma(abi_ulong start, abi_ulong size);
226 void mmap_fork_start(void);
227 void mmap_fork_end(int child);
228
229 /* main.c */
230 extern char qemu_proc_pathname[];
231 extern unsigned long target_maxtsiz;
232 extern unsigned long target_dfldsiz;
233 extern unsigned long target_maxdsiz;
234 extern unsigned long target_dflssiz;
235 extern unsigned long target_maxssiz;
236 extern unsigned long target_sgrowsiz;
237
238 /* user access */
239
240 #define VERIFY_READ PAGE_READ
241 #define VERIFY_WRITE (PAGE_READ | PAGE_WRITE)
242
243 static inline bool access_ok(int type, abi_ulong addr, abi_ulong size)
244 {
245 return page_check_range((target_ulong)addr, size, type) == 0;
246 }
247
248 /*
249 * NOTE __get_user and __put_user use host pointers and don't check access.
250 *
251 * These are usually used to access struct data members once the struct has been
252 * locked - usually with lock_user_struct().
253 */
254 #define __put_user(x, hptr)\
255 ({\
256 int size = sizeof(*hptr);\
257 switch (size) {\
258 case 1:\
259 *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\
260 break;\
261 case 2:\
262 *(uint16_t *)(hptr) = tswap16((typeof(*hptr))(x));\
263 break;\
264 case 4:\
265 *(uint32_t *)(hptr) = tswap32((typeof(*hptr))(x));\
266 break;\
267 case 8:\
268 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\
269 break;\
270 default:\
271 abort();\
272 } \
273 0;\
274 })
275
276 #define __get_user(x, hptr) \
277 ({\
278 int size = sizeof(*hptr);\
279 switch (size) {\
280 case 1:\
281 x = (typeof(*hptr))*(uint8_t *)(hptr);\
282 break;\
283 case 2:\
284 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\
285 break;\
286 case 4:\
287 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\
288 break;\
289 case 8:\
290 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\
291 break;\
292 default:\
293 x = 0;\
294 abort();\
295 } \
296 0;\
297 })
298
299 /*
300 * put_user()/get_user() take a guest address and check access
301 *
302 * These are usually used to access an atomic data type, such as an int, that
303 * has been passed by address. These internally perform locking and unlocking
304 * on the data type.
305 */
306 #define put_user(x, gaddr, target_type) \
307 ({ \
308 abi_ulong __gaddr = (gaddr); \
309 target_type *__hptr; \
310 abi_long __ret; \
311 __hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0); \
312 if (__hptr) { \
313 __ret = __put_user((x), __hptr); \
314 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
315 } else \
316 __ret = -TARGET_EFAULT; \
317 __ret; \
318 })
319
320 #define get_user(x, gaddr, target_type) \
321 ({ \
322 abi_ulong __gaddr = (gaddr); \
323 target_type *__hptr; \
324 abi_long __ret; \
325 __hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1); \
326 if (__hptr) { \
327 __ret = __get_user((x), __hptr); \
328 unlock_user(__hptr, __gaddr, 0); \
329 } else { \
330 (x) = 0; \
331 __ret = -TARGET_EFAULT; \
332 } \
333 __ret; \
334 })
335
336 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
337 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
338 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
339 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
340 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
341 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
342 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
343 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
344 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
345 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
346
347 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
348 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
349 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
350 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
351 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
352 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
353 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
354 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
355 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
356 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
357
358 /*
359 * copy_from_user() and copy_to_user() are usually used to copy data
360 * buffers between the target and host. These internally perform
361 * locking/unlocking of the memory.
362 */
363 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
364 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
365
366 /*
367 * Functions for accessing guest memory. The tget and tput functions
368 * read/write single values, byteswapping as necessary. The lock_user function
369 * gets a pointer to a contiguous area of guest memory, but does not perform
370 * any byteswapping. lock_user may return either a pointer to the guest
371 * memory, or a temporary buffer.
372 */
373
374 /*
375 * Lock an area of guest memory into the host. If copy is true then the
376 * host area will have the same contents as the guest.
377 */
378 static inline void *lock_user(int type, abi_ulong guest_addr, long len,
379 int copy)
380 {
381 if (!access_ok(type, guest_addr, len)) {
382 return NULL;
383 }
384 #ifdef DEBUG_REMAP
385 {
386 void *addr;
387 addr = g_malloc(len);
388 if (copy) {
389 memcpy(addr, g2h_untagged(guest_addr), len);
390 } else {
391 memset(addr, 0, len);
392 }
393 return addr;
394 }
395 #else
396 return g2h_untagged(guest_addr);
397 #endif
398 }
399
400 /*
401 * Unlock an area of guest memory. The first LEN bytes must be flushed back to
402 * guest memory. host_ptr = NULL is explicitly allowed and does nothing.
403 */
404 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
405 long len)
406 {
407
408 #ifdef DEBUG_REMAP
409 if (!host_ptr) {
410 return;
411 }
412 if (host_ptr == g2h_untagged(guest_addr)) {
413 return;
414 }
415 if (len > 0) {
416 memcpy(g2h_untagged(guest_addr), host_ptr, len);
417 }
418 g_free(host_ptr);
419 #endif
420 }
421
422 /*
423 * Return the length of a string in target memory or -TARGET_EFAULT if access
424 * error.
425 */
426 abi_long target_strlen(abi_ulong gaddr);
427
428 /* Like lock_user but for null terminated strings. */
429 static inline void *lock_user_string(abi_ulong guest_addr)
430 {
431 abi_long len;
432 len = target_strlen(guest_addr);
433 if (len < 0) {
434 return NULL;
435 }
436 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
437 }
438
439 /* Helper macros for locking/unlocking a target struct. */
440 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
441 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
442 #define unlock_user_struct(host_ptr, guest_addr, copy) \
443 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
444
445 #include <pthread.h>
446
447 #endif /* QEMU_H */