]> git.proxmox.com Git - mirror_qemu.git/blob - bsd-user/signal.c
3ef7cf5e23c67abe6c42697d35fbea1b35021f2a
[mirror_qemu.git] / bsd-user / signal.c
1 /*
2 * Emulation of BSD signals
3 *
4 * Copyright (c) 2003 - 2008 Fabrice Bellard
5 * Copyright (c) 2013 Stacey Son
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include "qemu/osdep.h"
22 #include "qemu.h"
23 #include "signal-common.h"
24 #include "hw/core/tcg-cpu-ops.h"
25
26 /*
27 * Stubbed out routines until we merge signal support from bsd-user
28 * fork.
29 */
30
31 static struct target_sigaction sigact_table[TARGET_NSIG];
32 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc);
33
34 /*
35 * The BSD ABIs use the same singal numbers across all the CPU architectures, so
36 * (unlike Linux) these functions are just the identity mapping. This might not
37 * be true for XyzBSD running on AbcBSD, which doesn't currently work.
38 */
39 int host_to_target_signal(int sig)
40 {
41 return sig;
42 }
43
44 int target_to_host_signal(int sig)
45 {
46 return sig;
47 }
48
49 /*
50 * Queue a signal so that it will be send to the virtual CPU as soon as
51 * possible.
52 */
53 void queue_signal(CPUArchState *env, int sig, target_siginfo_t *info)
54 {
55 qemu_log_mask(LOG_UNIMP, "No signal queueing, dropping signal %d\n", sig);
56 }
57
58 static int fatal_signal(int sig)
59 {
60
61 switch (sig) {
62 case TARGET_SIGCHLD:
63 case TARGET_SIGURG:
64 case TARGET_SIGWINCH:
65 case TARGET_SIGINFO:
66 /* Ignored by default. */
67 return 0;
68 case TARGET_SIGCONT:
69 case TARGET_SIGSTOP:
70 case TARGET_SIGTSTP:
71 case TARGET_SIGTTIN:
72 case TARGET_SIGTTOU:
73 /* Job control signals. */
74 return 0;
75 default:
76 return 1;
77 }
78 }
79
80 /*
81 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
82 * 'force' part is handled in process_pending_signals().
83 */
84 void force_sig_fault(int sig, int code, abi_ulong addr)
85 {
86 CPUState *cpu = thread_cpu;
87 CPUArchState *env = cpu->env_ptr;
88 target_siginfo_t info = {};
89
90 info.si_signo = sig;
91 info.si_errno = 0;
92 info.si_code = code;
93 info.si_addr = addr;
94 queue_signal(env, sig, &info);
95 }
96
97 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
98 {
99 }
100
101 void signal_init(void)
102 {
103 TaskState *ts = (TaskState *)thread_cpu->opaque;
104 struct sigaction act;
105 struct sigaction oact;
106 int i;
107 int host_sig;
108
109 /* Set the signal mask from the host mask. */
110 sigprocmask(0, 0, &ts->signal_mask);
111
112 sigfillset(&act.sa_mask);
113 act.sa_sigaction = host_signal_handler;
114 act.sa_flags = SA_SIGINFO;
115
116 for (i = 1; i <= TARGET_NSIG; i++) {
117 #ifdef CONFIG_GPROF
118 if (i == TARGET_SIGPROF) {
119 continue;
120 }
121 #endif
122 host_sig = target_to_host_signal(i);
123 sigaction(host_sig, NULL, &oact);
124 if (oact.sa_sigaction == (void *)SIG_IGN) {
125 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
126 } else if (oact.sa_sigaction == (void *)SIG_DFL) {
127 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
128 }
129 /*
130 * If there's already a handler installed then something has
131 * gone horribly wrong, so don't even try to handle that case.
132 * Install some handlers for our own use. We need at least
133 * SIGSEGV and SIGBUS, to detect exceptions. We can not just
134 * trap all signals because it affects syscall interrupt
135 * behavior. But do trap all default-fatal signals.
136 */
137 if (fatal_signal(i)) {
138 sigaction(host_sig, &act, NULL);
139 }
140 }
141 }
142
143 void process_pending_signals(CPUArchState *cpu_env)
144 {
145 }
146
147 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
148 MMUAccessType access_type, bool maperr, uintptr_t ra)
149 {
150 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
151
152 if (tcg_ops->record_sigsegv) {
153 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
154 }
155
156 force_sig_fault(TARGET_SIGSEGV,
157 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
158 addr);
159 cpu->exception_index = EXCP_INTERRUPT;
160 cpu_loop_exit_restore(cpu, ra);
161 }
162
163 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
164 MMUAccessType access_type, uintptr_t ra)
165 {
166 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
167
168 if (tcg_ops->record_sigbus) {
169 tcg_ops->record_sigbus(cpu, addr, access_type, ra);
170 }
171
172 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
173 cpu->exception_index = EXCP_INTERRUPT;
174 cpu_loop_exit_restore(cpu, ra);
175 }