]> git.proxmox.com Git - mirror_qemu.git/blob - bsd-user/signal.c
MAINTAINERS: Add tests/vm/*bsd to the list to get reviews on
[mirror_qemu.git] / bsd-user / signal.c
1 /*
2 * Emulation of BSD signals
3 *
4 * Copyright (c) 2003 - 2008 Fabrice Bellard
5 * Copyright (c) 2013 Stacey Son
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include "qemu/osdep.h"
22 #include "qemu.h"
23 #include "signal-common.h"
24 #include "trace.h"
25 #include "hw/core/tcg-cpu-ops.h"
26 #include "host-signal.h"
27
28 static struct target_sigaction sigact_table[TARGET_NSIG];
29 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc);
30 static void target_to_host_sigset_internal(sigset_t *d,
31 const target_sigset_t *s);
32
33 static inline int on_sig_stack(TaskState *ts, unsigned long sp)
34 {
35 return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size;
36 }
37
38 static inline int sas_ss_flags(TaskState *ts, unsigned long sp)
39 {
40 return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE :
41 on_sig_stack(ts, sp) ? SS_ONSTACK : 0;
42 }
43
44 /*
45 * The BSD ABIs use the same singal numbers across all the CPU architectures, so
46 * (unlike Linux) these functions are just the identity mapping. This might not
47 * be true for XyzBSD running on AbcBSD, which doesn't currently work.
48 */
49 int host_to_target_signal(int sig)
50 {
51 return sig;
52 }
53
54 int target_to_host_signal(int sig)
55 {
56 return sig;
57 }
58
59 static inline void target_sigemptyset(target_sigset_t *set)
60 {
61 memset(set, 0, sizeof(*set));
62 }
63
64 static inline void target_sigaddset(target_sigset_t *set, int signum)
65 {
66 signum--;
67 uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW);
68 set->__bits[signum / TARGET_NSIG_BPW] |= mask;
69 }
70
71 static inline int target_sigismember(const target_sigset_t *set, int signum)
72 {
73 signum--;
74 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
75 return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0;
76 }
77
78 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
79 static inline void rewind_if_in_safe_syscall(void *puc)
80 {
81 ucontext_t *uc = (ucontext_t *)puc;
82 uintptr_t pcreg = host_signal_pc(uc);
83
84 if (pcreg > (uintptr_t)safe_syscall_start
85 && pcreg < (uintptr_t)safe_syscall_end) {
86 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
87 }
88 }
89
90 /*
91 * Note: The following take advantage of the BSD signal property that all
92 * signals are available on all architectures.
93 */
94 static void host_to_target_sigset_internal(target_sigset_t *d,
95 const sigset_t *s)
96 {
97 int i;
98
99 target_sigemptyset(d);
100 for (i = 1; i <= NSIG; i++) {
101 if (sigismember(s, i)) {
102 target_sigaddset(d, host_to_target_signal(i));
103 }
104 }
105 }
106
107 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
108 {
109 target_sigset_t d1;
110 int i;
111
112 host_to_target_sigset_internal(&d1, s);
113 for (i = 0; i < _SIG_WORDS; i++) {
114 d->__bits[i] = tswap32(d1.__bits[i]);
115 }
116 }
117
118 static void target_to_host_sigset_internal(sigset_t *d,
119 const target_sigset_t *s)
120 {
121 int i;
122
123 sigemptyset(d);
124 for (i = 1; i <= TARGET_NSIG; i++) {
125 if (target_sigismember(s, i)) {
126 sigaddset(d, target_to_host_signal(i));
127 }
128 }
129 }
130
131 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
132 {
133 target_sigset_t s1;
134 int i;
135
136 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
137 s1.__bits[i] = tswap32(s->__bits[i]);
138 }
139 target_to_host_sigset_internal(d, &s1);
140 }
141
142 static bool has_trapno(int tsig)
143 {
144 return tsig == TARGET_SIGILL ||
145 tsig == TARGET_SIGFPE ||
146 tsig == TARGET_SIGSEGV ||
147 tsig == TARGET_SIGBUS ||
148 tsig == TARGET_SIGTRAP;
149 }
150
151 /* Siginfo conversion. */
152
153 /*
154 * Populate tinfo w/o swapping based on guessing which fields are valid.
155 */
156 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
157 const siginfo_t *info)
158 {
159 int sig = host_to_target_signal(info->si_signo);
160 int si_code = info->si_code;
161 int si_type;
162
163 /*
164 * Make sure we that the variable portion of the target siginfo is zeroed
165 * out so we don't leak anything into that.
166 */
167 memset(&tinfo->_reason, 0, sizeof(tinfo->_reason));
168
169 /*
170 * This is awkward, because we have to use a combination of the si_code and
171 * si_signo to figure out which of the union's members are valid.o We
172 * therefore make our best guess.
173 *
174 * Once we have made our guess, we record it in the top 16 bits of
175 * the si_code, so that tswap_siginfo() later can use it.
176 * tswap_siginfo() will strip these top bits out before writing
177 * si_code to the guest (sign-extending the lower bits).
178 */
179 tinfo->si_signo = sig;
180 tinfo->si_errno = info->si_errno;
181 tinfo->si_code = info->si_code;
182 tinfo->si_pid = info->si_pid;
183 tinfo->si_uid = info->si_uid;
184 tinfo->si_status = info->si_status;
185 tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr;
186 /*
187 * si_value is opaque to kernel. On all FreeBSD platforms,
188 * sizeof(sival_ptr) >= sizeof(sival_int) so the following
189 * always will copy the larger element.
190 */
191 tinfo->si_value.sival_ptr =
192 (abi_ulong)(unsigned long)info->si_value.sival_ptr;
193
194 switch (si_code) {
195 /*
196 * All the SI_xxx codes that are defined here are global to
197 * all the signals (they have values that none of the other,
198 * more specific signal info will set).
199 */
200 case SI_USER:
201 case SI_LWP:
202 case SI_KERNEL:
203 case SI_QUEUE:
204 case SI_ASYNCIO:
205 /*
206 * Only the fixed parts are valid (though FreeBSD doesn't always
207 * set all the fields to non-zero values.
208 */
209 si_type = QEMU_SI_NOINFO;
210 break;
211 case SI_TIMER:
212 tinfo->_reason._timer._timerid = info->_reason._timer._timerid;
213 tinfo->_reason._timer._overrun = info->_reason._timer._overrun;
214 si_type = QEMU_SI_TIMER;
215 break;
216 case SI_MESGQ:
217 tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd;
218 si_type = QEMU_SI_MESGQ;
219 break;
220 default:
221 /*
222 * We have to go based on the signal number now to figure out
223 * what's valid.
224 */
225 if (has_trapno(sig)) {
226 tinfo->_reason._fault._trapno = info->_reason._fault._trapno;
227 si_type = QEMU_SI_FAULT;
228 }
229 #ifdef TARGET_SIGPOLL
230 /*
231 * FreeBSD never had SIGPOLL, but emulates it for Linux so there's
232 * a chance it may popup in the future.
233 */
234 if (sig == TARGET_SIGPOLL) {
235 tinfo->_reason._poll._band = info->_reason._poll._band;
236 si_type = QEMU_SI_POLL;
237 }
238 #endif
239 /*
240 * Unsure that this can actually be generated, and our support for
241 * capsicum is somewhere between weak and non-existant, but if we get
242 * one, then we know what to save.
243 */
244 if (sig == TARGET_SIGTRAP) {
245 tinfo->_reason._capsicum._syscall =
246 info->_reason._capsicum._syscall;
247 si_type = QEMU_SI_CAPSICUM;
248 }
249 break;
250 }
251 tinfo->si_code = deposit32(si_code, 24, 8, si_type);
252 }
253
254 static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info)
255 {
256 int si_type = extract32(info->si_code, 24, 8);
257 int si_code = sextract32(info->si_code, 0, 24);
258
259 __put_user(info->si_signo, &tinfo->si_signo);
260 __put_user(info->si_errno, &tinfo->si_errno);
261 __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */
262 __put_user(info->si_pid, &tinfo->si_pid);
263 __put_user(info->si_uid, &tinfo->si_uid);
264 __put_user(info->si_status, &tinfo->si_status);
265 __put_user(info->si_addr, &tinfo->si_addr);
266 /*
267 * Unswapped, because we passed it through mostly untouched. si_value is
268 * opaque to the kernel, so we didn't bother with potentially wasting cycles
269 * to swap it into host byte order.
270 */
271 tinfo->si_value.sival_ptr = info->si_value.sival_ptr;
272
273 /*
274 * We can use our internal marker of which fields in the structure
275 * are valid, rather than duplicating the guesswork of
276 * host_to_target_siginfo_noswap() here.
277 */
278 switch (si_type) {
279 case QEMU_SI_NOINFO: /* No additional info */
280 break;
281 case QEMU_SI_FAULT:
282 __put_user(info->_reason._fault._trapno,
283 &tinfo->_reason._fault._trapno);
284 break;
285 case QEMU_SI_TIMER:
286 __put_user(info->_reason._timer._timerid,
287 &tinfo->_reason._timer._timerid);
288 __put_user(info->_reason._timer._overrun,
289 &tinfo->_reason._timer._overrun);
290 break;
291 case QEMU_SI_MESGQ:
292 __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd);
293 break;
294 case QEMU_SI_POLL:
295 /* Note: Not generated on FreeBSD */
296 __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band);
297 break;
298 case QEMU_SI_CAPSICUM:
299 __put_user(info->_reason._capsicum._syscall,
300 &tinfo->_reason._capsicum._syscall);
301 break;
302 default:
303 g_assert_not_reached();
304 }
305 }
306
307 int block_signals(void)
308 {
309 TaskState *ts = (TaskState *)thread_cpu->opaque;
310 sigset_t set;
311
312 /*
313 * It's OK to block everything including SIGSEGV, because we won't run any
314 * further guest code before unblocking signals in
315 * process_pending_signals(). We depend on the FreeBSD behaivor here where
316 * this will only affect this thread's signal mask. We don't use
317 * pthread_sigmask which might seem more correct because that routine also
318 * does odd things with SIGCANCEL to implement pthread_cancel().
319 */
320 sigfillset(&set);
321 sigprocmask(SIG_SETMASK, &set, 0);
322
323 return qatomic_xchg(&ts->signal_pending, 1);
324 }
325
326 /* Returns 1 if given signal should dump core if not handled. */
327 static int core_dump_signal(int sig)
328 {
329 switch (sig) {
330 case TARGET_SIGABRT:
331 case TARGET_SIGFPE:
332 case TARGET_SIGILL:
333 case TARGET_SIGQUIT:
334 case TARGET_SIGSEGV:
335 case TARGET_SIGTRAP:
336 case TARGET_SIGBUS:
337 return 1;
338 default:
339 return 0;
340 }
341 }
342
343 /* Abort execution with signal. */
344 static void QEMU_NORETURN dump_core_and_abort(int target_sig)
345 {
346 CPUArchState *env = thread_cpu->env_ptr;
347 CPUState *cpu = env_cpu(env);
348 TaskState *ts = cpu->opaque;
349 int core_dumped = 0;
350 int host_sig;
351 struct sigaction act;
352
353 host_sig = target_to_host_signal(target_sig);
354 gdb_signalled(env, target_sig);
355
356 /* Dump core if supported by target binary format */
357 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
358 stop_all_tasks();
359 core_dumped =
360 ((*ts->bprm->core_dump)(target_sig, env) == 0);
361 }
362 if (core_dumped) {
363 struct rlimit nodump;
364
365 /*
366 * We already dumped the core of target process, we don't want
367 * a coredump of qemu itself.
368 */
369 getrlimit(RLIMIT_CORE, &nodump);
370 nodump.rlim_cur = 0;
371 setrlimit(RLIMIT_CORE, &nodump);
372 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) "
373 "- %s\n", target_sig, strsignal(host_sig), "core dumped");
374 }
375
376 /*
377 * The proper exit code for dying from an uncaught signal is
378 * -<signal>. The kernel doesn't allow exit() or _exit() to pass
379 * a negative value. To get the proper exit code we need to
380 * actually die from an uncaught signal. Here the default signal
381 * handler is installed, we send ourself a signal and we wait for
382 * it to arrive.
383 */
384 memset(&act, 0, sizeof(act));
385 sigfillset(&act.sa_mask);
386 act.sa_handler = SIG_DFL;
387 sigaction(host_sig, &act, NULL);
388
389 kill(getpid(), host_sig);
390
391 /*
392 * Make sure the signal isn't masked (just reuse the mask inside
393 * of act).
394 */
395 sigdelset(&act.sa_mask, host_sig);
396 sigsuspend(&act.sa_mask);
397
398 /* unreachable */
399 abort();
400 }
401
402 /*
403 * Queue a signal so that it will be send to the virtual CPU as soon as
404 * possible.
405 */
406 void queue_signal(CPUArchState *env, int sig, int si_type,
407 target_siginfo_t *info)
408 {
409 CPUState *cpu = env_cpu(env);
410 TaskState *ts = cpu->opaque;
411
412 trace_user_queue_signal(env, sig);
413
414 info->si_code = deposit32(info->si_code, 24, 8, si_type);
415
416 ts->sync_signal.info = *info;
417 ts->sync_signal.pending = sig;
418 /* Signal that a new signal is pending. */
419 qatomic_set(&ts->signal_pending, 1);
420 return;
421 }
422
423 static int fatal_signal(int sig)
424 {
425
426 switch (sig) {
427 case TARGET_SIGCHLD:
428 case TARGET_SIGURG:
429 case TARGET_SIGWINCH:
430 case TARGET_SIGINFO:
431 /* Ignored by default. */
432 return 0;
433 case TARGET_SIGCONT:
434 case TARGET_SIGSTOP:
435 case TARGET_SIGTSTP:
436 case TARGET_SIGTTIN:
437 case TARGET_SIGTTOU:
438 /* Job control signals. */
439 return 0;
440 default:
441 return 1;
442 }
443 }
444
445 /*
446 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
447 * 'force' part is handled in process_pending_signals().
448 */
449 void force_sig_fault(int sig, int code, abi_ulong addr)
450 {
451 CPUState *cpu = thread_cpu;
452 CPUArchState *env = cpu->env_ptr;
453 target_siginfo_t info = {};
454
455 info.si_signo = sig;
456 info.si_errno = 0;
457 info.si_code = code;
458 info.si_addr = addr;
459 queue_signal(env, sig, QEMU_SI_FAULT, &info);
460 }
461
462 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
463 {
464 CPUArchState *env = thread_cpu->env_ptr;
465 CPUState *cpu = env_cpu(env);
466 TaskState *ts = cpu->opaque;
467 target_siginfo_t tinfo;
468 ucontext_t *uc = puc;
469 struct emulated_sigtable *k;
470 int guest_sig;
471 uintptr_t pc = 0;
472 bool sync_sig = false;
473
474 /*
475 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
476 * handling wrt signal blocking and unwinding.
477 */
478 if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) {
479 MMUAccessType access_type;
480 uintptr_t host_addr;
481 abi_ptr guest_addr;
482 bool is_write;
483
484 host_addr = (uintptr_t)info->si_addr;
485
486 /*
487 * Convert forcefully to guest address space: addresses outside
488 * reserved_va are still valid to report via SEGV_MAPERR.
489 */
490 guest_addr = h2g_nocheck(host_addr);
491
492 pc = host_signal_pc(uc);
493 is_write = host_signal_write(info, uc);
494 access_type = adjust_signal_pc(&pc, is_write);
495
496 if (host_sig == SIGSEGV) {
497 bool maperr = true;
498
499 if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) {
500 /* If this was a write to a TB protected page, restart. */
501 if (is_write &&
502 handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask,
503 pc, guest_addr)) {
504 return;
505 }
506
507 /*
508 * With reserved_va, the whole address space is PROT_NONE,
509 * which means that we may get ACCERR when we want MAPERR.
510 */
511 if (page_get_flags(guest_addr) & PAGE_VALID) {
512 maperr = false;
513 } else {
514 info->si_code = SEGV_MAPERR;
515 }
516 }
517
518 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
519 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
520 } else {
521 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
522 if (info->si_code == BUS_ADRALN) {
523 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
524 }
525 }
526
527 sync_sig = true;
528 }
529
530 /* Get the target signal number. */
531 guest_sig = host_to_target_signal(host_sig);
532 if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
533 return;
534 }
535 trace_user_host_signal(cpu, host_sig, guest_sig);
536
537 host_to_target_siginfo_noswap(&tinfo, info);
538
539 k = &ts->sigtab[guest_sig - 1];
540 k->info = tinfo;
541 k->pending = guest_sig;
542 ts->signal_pending = 1;
543
544 /*
545 * For synchronous signals, unwind the cpu state to the faulting
546 * insn and then exit back to the main loop so that the signal
547 * is delivered immediately.
548 */
549 if (sync_sig) {
550 cpu->exception_index = EXCP_INTERRUPT;
551 cpu_loop_exit_restore(cpu, pc);
552 }
553
554 rewind_if_in_safe_syscall(puc);
555
556 /*
557 * Block host signals until target signal handler entered. We
558 * can't block SIGSEGV or SIGBUS while we're executing guest
559 * code in case the guest code provokes one in the window between
560 * now and it getting out to the main loop. Signals will be
561 * unblocked again in process_pending_signals().
562 */
563 sigfillset(&uc->uc_sigmask);
564 sigdelset(&uc->uc_sigmask, SIGSEGV);
565 sigdelset(&uc->uc_sigmask, SIGBUS);
566
567 /* Interrupt the virtual CPU as soon as possible. */
568 cpu_exit(thread_cpu);
569 }
570
571 /* do_sigaltstack() returns target values and errnos. */
572 /* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */
573 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp)
574 {
575 TaskState *ts = (TaskState *)thread_cpu->opaque;
576 int ret;
577 target_stack_t oss;
578
579 if (uoss_addr) {
580 /* Save current signal stack params */
581 oss.ss_sp = tswapl(ts->sigaltstack_used.ss_sp);
582 oss.ss_size = tswapl(ts->sigaltstack_used.ss_size);
583 oss.ss_flags = tswapl(sas_ss_flags(ts, sp));
584 }
585
586 if (uss_addr) {
587 target_stack_t *uss;
588 target_stack_t ss;
589 size_t minstacksize = TARGET_MINSIGSTKSZ;
590
591 ret = -TARGET_EFAULT;
592 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
593 goto out;
594 }
595 __get_user(ss.ss_sp, &uss->ss_sp);
596 __get_user(ss.ss_size, &uss->ss_size);
597 __get_user(ss.ss_flags, &uss->ss_flags);
598 unlock_user_struct(uss, uss_addr, 0);
599
600 ret = -TARGET_EPERM;
601 if (on_sig_stack(ts, sp)) {
602 goto out;
603 }
604
605 ret = -TARGET_EINVAL;
606 if (ss.ss_flags != TARGET_SS_DISABLE
607 && ss.ss_flags != TARGET_SS_ONSTACK
608 && ss.ss_flags != 0) {
609 goto out;
610 }
611
612 if (ss.ss_flags == TARGET_SS_DISABLE) {
613 ss.ss_size = 0;
614 ss.ss_sp = 0;
615 } else {
616 ret = -TARGET_ENOMEM;
617 if (ss.ss_size < minstacksize) {
618 goto out;
619 }
620 }
621
622 ts->sigaltstack_used.ss_sp = ss.ss_sp;
623 ts->sigaltstack_used.ss_size = ss.ss_size;
624 }
625
626 if (uoss_addr) {
627 ret = -TARGET_EFAULT;
628 if (copy_to_user(uoss_addr, &oss, sizeof(oss))) {
629 goto out;
630 }
631 }
632
633 ret = 0;
634 out:
635 return ret;
636 }
637
638 /* do_sigaction() return host values and errnos */
639 int do_sigaction(int sig, const struct target_sigaction *act,
640 struct target_sigaction *oact)
641 {
642 struct target_sigaction *k;
643 struct sigaction act1;
644 int host_sig;
645 int ret = 0;
646
647 if (sig < 1 || sig > TARGET_NSIG) {
648 return -TARGET_EINVAL;
649 }
650
651 if ((sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) &&
652 act != NULL && act->_sa_handler != TARGET_SIG_DFL) {
653 return -TARGET_EINVAL;
654 }
655
656 if (block_signals()) {
657 return -TARGET_ERESTART;
658 }
659
660 k = &sigact_table[sig - 1];
661 if (oact) {
662 oact->_sa_handler = tswapal(k->_sa_handler);
663 oact->sa_flags = tswap32(k->sa_flags);
664 oact->sa_mask = k->sa_mask;
665 }
666 if (act) {
667 k->_sa_handler = tswapal(act->_sa_handler);
668 k->sa_flags = tswap32(act->sa_flags);
669 k->sa_mask = act->sa_mask;
670
671 /* Update the host signal state. */
672 host_sig = target_to_host_signal(sig);
673 if (host_sig != SIGSEGV && host_sig != SIGBUS) {
674 memset(&act1, 0, sizeof(struct sigaction));
675 sigfillset(&act1.sa_mask);
676 act1.sa_flags = SA_SIGINFO;
677 if (k->sa_flags & TARGET_SA_RESTART) {
678 act1.sa_flags |= SA_RESTART;
679 }
680 /*
681 * Note: It is important to update the host kernel signal mask to
682 * avoid getting unexpected interrupted system calls.
683 */
684 if (k->_sa_handler == TARGET_SIG_IGN) {
685 act1.sa_sigaction = (void *)SIG_IGN;
686 } else if (k->_sa_handler == TARGET_SIG_DFL) {
687 if (fatal_signal(sig)) {
688 act1.sa_sigaction = host_signal_handler;
689 } else {
690 act1.sa_sigaction = (void *)SIG_DFL;
691 }
692 } else {
693 act1.sa_sigaction = host_signal_handler;
694 }
695 ret = sigaction(host_sig, &act1, NULL);
696 }
697 }
698 return ret;
699 }
700
701 static inline abi_ulong get_sigframe(struct target_sigaction *ka,
702 CPUArchState *env, size_t frame_size)
703 {
704 TaskState *ts = (TaskState *)thread_cpu->opaque;
705 abi_ulong sp;
706
707 /* Use default user stack */
708 sp = get_sp_from_cpustate(env);
709
710 if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) {
711 sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
712 }
713
714 /* TODO: make this a target_arch function / define */
715 #if defined(TARGET_ARM)
716 return (sp - frame_size) & ~7;
717 #elif defined(TARGET_AARCH64)
718 return (sp - frame_size) & ~15;
719 #else
720 return sp - frame_size;
721 #endif
722 }
723
724 /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */
725
726 static void setup_frame(int sig, int code, struct target_sigaction *ka,
727 target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env)
728 {
729 struct target_sigframe *frame;
730 abi_ulong frame_addr;
731 int i;
732
733 frame_addr = get_sigframe(ka, env, sizeof(*frame));
734 trace_user_setup_frame(env, frame_addr);
735 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) {
736 unlock_user_struct(frame, frame_addr, 1);
737 dump_core_and_abort(TARGET_SIGILL);
738 return;
739 }
740
741 memset(frame, 0, sizeof(*frame));
742 setup_sigframe_arch(env, frame_addr, frame, 0);
743
744 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
745 __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]);
746 }
747
748 if (tinfo) {
749 frame->sf_si.si_signo = tinfo->si_signo;
750 frame->sf_si.si_errno = tinfo->si_errno;
751 frame->sf_si.si_code = tinfo->si_code;
752 frame->sf_si.si_pid = tinfo->si_pid;
753 frame->sf_si.si_uid = tinfo->si_uid;
754 frame->sf_si.si_status = tinfo->si_status;
755 frame->sf_si.si_addr = tinfo->si_addr;
756 /* see host_to_target_siginfo_noswap() for more details */
757 frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr;
758 /*
759 * At this point, whatever is in the _reason union is complete
760 * and in target order, so just copy the whole thing over, even
761 * if it's too large for this specific signal.
762 * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured
763 * that's so.
764 */
765 memcpy(&frame->sf_si._reason, &tinfo->_reason,
766 sizeof(tinfo->_reason));
767 }
768
769 set_sigtramp_args(env, sig, frame, frame_addr, ka);
770
771 unlock_user_struct(frame, frame_addr, 1);
772 }
773
774 static int reset_signal_mask(target_ucontext_t *ucontext)
775 {
776 int i;
777 sigset_t blocked;
778 target_sigset_t target_set;
779 TaskState *ts = (TaskState *)thread_cpu->opaque;
780
781 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
782 if (__get_user(target_set.__bits[i],
783 &ucontext->uc_sigmask.__bits[i])) {
784 return -TARGET_EFAULT;
785 }
786 }
787 target_to_host_sigset_internal(&blocked, &target_set);
788 ts->signal_mask = blocked;
789
790 return 0;
791 }
792
793 /* See sys/$M/$M/exec_machdep.c sigreturn() */
794 long do_sigreturn(CPUArchState *env, abi_ulong addr)
795 {
796 long ret;
797 abi_ulong target_ucontext;
798 target_ucontext_t *ucontext = NULL;
799
800 /* Get the target ucontext address from the stack frame */
801 ret = get_ucontext_sigreturn(env, addr, &target_ucontext);
802 if (is_error(ret)) {
803 return ret;
804 }
805 trace_user_do_sigreturn(env, addr);
806 if (!lock_user_struct(VERIFY_READ, ucontext, target_ucontext, 0)) {
807 goto badframe;
808 }
809
810 /* Set the register state back to before the signal. */
811 if (set_mcontext(env, &ucontext->uc_mcontext, 1)) {
812 goto badframe;
813 }
814
815 /* And reset the signal mask. */
816 if (reset_signal_mask(ucontext)) {
817 goto badframe;
818 }
819
820 unlock_user_struct(ucontext, target_ucontext, 0);
821 return -TARGET_EJUSTRETURN;
822
823 badframe:
824 if (ucontext != NULL) {
825 unlock_user_struct(ucontext, target_ucontext, 0);
826 }
827 return -TARGET_EFAULT;
828 }
829
830 void signal_init(void)
831 {
832 TaskState *ts = (TaskState *)thread_cpu->opaque;
833 struct sigaction act;
834 struct sigaction oact;
835 int i;
836 int host_sig;
837
838 /* Set the signal mask from the host mask. */
839 sigprocmask(0, 0, &ts->signal_mask);
840
841 sigfillset(&act.sa_mask);
842 act.sa_sigaction = host_signal_handler;
843 act.sa_flags = SA_SIGINFO;
844
845 for (i = 1; i <= TARGET_NSIG; i++) {
846 #ifdef CONFIG_GPROF
847 if (i == TARGET_SIGPROF) {
848 continue;
849 }
850 #endif
851 host_sig = target_to_host_signal(i);
852 sigaction(host_sig, NULL, &oact);
853 if (oact.sa_sigaction == (void *)SIG_IGN) {
854 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
855 } else if (oact.sa_sigaction == (void *)SIG_DFL) {
856 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
857 }
858 /*
859 * If there's already a handler installed then something has
860 * gone horribly wrong, so don't even try to handle that case.
861 * Install some handlers for our own use. We need at least
862 * SIGSEGV and SIGBUS, to detect exceptions. We can not just
863 * trap all signals because it affects syscall interrupt
864 * behavior. But do trap all default-fatal signals.
865 */
866 if (fatal_signal(i)) {
867 sigaction(host_sig, &act, NULL);
868 }
869 }
870 }
871
872 static void handle_pending_signal(CPUArchState *env, int sig,
873 struct emulated_sigtable *k)
874 {
875 CPUState *cpu = env_cpu(env);
876 TaskState *ts = cpu->opaque;
877 struct target_sigaction *sa;
878 int code;
879 sigset_t set;
880 abi_ulong handler;
881 target_siginfo_t tinfo;
882 target_sigset_t target_old_set;
883
884 trace_user_handle_signal(env, sig);
885
886 k->pending = 0;
887
888 sig = gdb_handlesig(cpu, sig);
889 if (!sig) {
890 sa = NULL;
891 handler = TARGET_SIG_IGN;
892 } else {
893 sa = &sigact_table[sig - 1];
894 handler = sa->_sa_handler;
895 }
896
897 if (do_strace) {
898 print_taken_signal(sig, &k->info);
899 }
900
901 if (handler == TARGET_SIG_DFL) {
902 /*
903 * default handler : ignore some signal. The other are job
904 * control or fatal.
905 */
906 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN ||
907 sig == TARGET_SIGTTOU) {
908 kill(getpid(), SIGSTOP);
909 } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG &&
910 sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH &&
911 sig != TARGET_SIGCONT) {
912 dump_core_and_abort(sig);
913 }
914 } else if (handler == TARGET_SIG_IGN) {
915 /* ignore sig */
916 } else if (handler == TARGET_SIG_ERR) {
917 dump_core_and_abort(sig);
918 } else {
919 /* compute the blocked signals during the handler execution */
920 sigset_t *blocked_set;
921
922 target_to_host_sigset(&set, &sa->sa_mask);
923 /*
924 * SA_NODEFER indicates that the current signal should not be
925 * blocked during the handler.
926 */
927 if (!(sa->sa_flags & TARGET_SA_NODEFER)) {
928 sigaddset(&set, target_to_host_signal(sig));
929 }
930
931 /*
932 * Save the previous blocked signal state to restore it at the
933 * end of the signal execution (see do_sigreturn).
934 */
935 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
936
937 blocked_set = ts->in_sigsuspend ?
938 &ts->sigsuspend_mask : &ts->signal_mask;
939 sigorset(&ts->signal_mask, blocked_set, &set);
940 ts->in_sigsuspend = false;
941 sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL);
942
943 /* XXX VM86 on x86 ??? */
944
945 code = k->info.si_code; /* From host, so no si_type */
946 /* prepare the stack frame of the virtual CPU */
947 if (sa->sa_flags & TARGET_SA_SIGINFO) {
948 tswap_siginfo(&tinfo, &k->info);
949 setup_frame(sig, code, sa, &target_old_set, &tinfo, env);
950 } else {
951 setup_frame(sig, code, sa, &target_old_set, NULL, env);
952 }
953 if (sa->sa_flags & TARGET_SA_RESETHAND) {
954 sa->_sa_handler = TARGET_SIG_DFL;
955 }
956 }
957 }
958
959 void process_pending_signals(CPUArchState *env)
960 {
961 CPUState *cpu = env_cpu(env);
962 int sig;
963 sigset_t *blocked_set, set;
964 struct emulated_sigtable *k;
965 TaskState *ts = cpu->opaque;
966
967 while (qatomic_read(&ts->signal_pending)) {
968 sigfillset(&set);
969 sigprocmask(SIG_SETMASK, &set, 0);
970
971 restart_scan:
972 sig = ts->sync_signal.pending;
973 if (sig) {
974 /*
975 * Synchronous signals are forced by the emulated CPU in some way.
976 * If they are set to ignore, restore the default handler (see
977 * sys/kern_sig.c trapsignal() and execsigs() for this behavior)
978 * though maybe this is done only when forcing exit for non SIGCHLD.
979 */
980 if (sigismember(&ts->signal_mask, target_to_host_signal(sig)) ||
981 sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
982 sigdelset(&ts->signal_mask, target_to_host_signal(sig));
983 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
984 }
985 handle_pending_signal(env, sig, &ts->sync_signal);
986 }
987
988 k = ts->sigtab;
989 for (sig = 1; sig <= TARGET_NSIG; sig++, k++) {
990 blocked_set = ts->in_sigsuspend ?
991 &ts->sigsuspend_mask : &ts->signal_mask;
992 if (k->pending &&
993 !sigismember(blocked_set, target_to_host_signal(sig))) {
994 handle_pending_signal(env, sig, k);
995 /*
996 * Restart scan from the beginning, as handle_pending_signal
997 * might have resulted in a new synchronous signal (eg SIGSEGV).
998 */
999 goto restart_scan;
1000 }
1001 }
1002
1003 /*
1004 * Unblock signals and check one more time. Unblocking signals may cause
1005 * us to take another host signal, which will set signal_pending again.
1006 */
1007 qatomic_set(&ts->signal_pending, 0);
1008 ts->in_sigsuspend = false;
1009 set = ts->signal_mask;
1010 sigdelset(&set, SIGSEGV);
1011 sigdelset(&set, SIGBUS);
1012 sigprocmask(SIG_SETMASK, &set, 0);
1013 }
1014 ts->in_sigsuspend = false;
1015 }
1016
1017 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
1018 MMUAccessType access_type, bool maperr, uintptr_t ra)
1019 {
1020 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1021
1022 if (tcg_ops->record_sigsegv) {
1023 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
1024 }
1025
1026 force_sig_fault(TARGET_SIGSEGV,
1027 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
1028 addr);
1029 cpu->exception_index = EXCP_INTERRUPT;
1030 cpu_loop_exit_restore(cpu, ra);
1031 }
1032
1033 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
1034 MMUAccessType access_type, uintptr_t ra)
1035 {
1036 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1037
1038 if (tcg_ops->record_sigbus) {
1039 tcg_ops->record_sigbus(cpu, addr, access_type, ra);
1040 }
1041
1042 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
1043 cpu->exception_index = EXCP_INTERRUPT;
1044 cpu_loop_exit_restore(cpu, ra);
1045 }