]> git.proxmox.com Git - mirror_qemu.git/blob - bsd-user/x86_64/target_arch_cpu.h
bsd-user: Implement pdfork(2) system call.
[mirror_qemu.git] / bsd-user / x86_64 / target_arch_cpu.h
1 /*
2 * x86_64 cpu init and loop
3 *
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #ifndef TARGET_ARCH_CPU_H
20 #define TARGET_ARCH_CPU_H
21
22 #include "target_arch.h"
23 #include "signal-common.h"
24
25 #define TARGET_DEFAULT_CPU_MODEL "qemu64"
26
27 static inline void target_cpu_init(CPUX86State *env,
28 struct target_pt_regs *regs)
29 {
30 uint64_t *gdt_table;
31
32 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
33 env->hflags |= HF_PE_MASK | HF_CPL_MASK;
34 if (env->features[FEAT_1_EDX] & CPUID_SSE) {
35 env->cr[4] |= CR4_OSFXSR_MASK;
36 env->hflags |= HF_OSFXSR_MASK;
37 }
38
39 /* enable 64 bit mode if possible */
40 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) {
41 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
42 exit(1);
43 }
44 env->cr[4] |= CR4_PAE_MASK;
45 env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
46 env->hflags |= HF_LMA_MASK;
47
48 /* flags setup : we activate the IRQs by default as in user mode */
49 env->eflags |= IF_MASK;
50
51 /* register setup */
52 env->regs[R_EAX] = regs->rax;
53 env->regs[R_EBX] = regs->rbx;
54 env->regs[R_ECX] = regs->rcx;
55 env->regs[R_EDX] = regs->rdx;
56 env->regs[R_ESI] = regs->rsi;
57 env->regs[R_EDI] = regs->rdi;
58 env->regs[R_EBP] = regs->rbp;
59 env->regs[R_ESP] = regs->rsp;
60 env->eip = regs->rip;
61
62 /* interrupt setup */
63 env->idt.limit = 511;
64
65 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
66 PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
67 bsd_x86_64_set_idt_base(env->idt.base);
68 bsd_x86_64_set_idt(0, 0);
69 bsd_x86_64_set_idt(1, 0);
70 bsd_x86_64_set_idt(2, 0);
71 bsd_x86_64_set_idt(3, 3);
72 bsd_x86_64_set_idt(4, 3);
73 bsd_x86_64_set_idt(5, 0);
74 bsd_x86_64_set_idt(6, 0);
75 bsd_x86_64_set_idt(7, 0);
76 bsd_x86_64_set_idt(8, 0);
77 bsd_x86_64_set_idt(9, 0);
78 bsd_x86_64_set_idt(10, 0);
79 bsd_x86_64_set_idt(11, 0);
80 bsd_x86_64_set_idt(12, 0);
81 bsd_x86_64_set_idt(13, 0);
82 bsd_x86_64_set_idt(14, 0);
83 bsd_x86_64_set_idt(15, 0);
84 bsd_x86_64_set_idt(16, 0);
85 bsd_x86_64_set_idt(17, 0);
86 bsd_x86_64_set_idt(18, 0);
87 bsd_x86_64_set_idt(19, 0);
88 bsd_x86_64_set_idt(0x80, 3);
89
90 /* segment setup */
91 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
92 PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
93 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
94 gdt_table = g2h_untagged(env->gdt.base);
95
96 /* 64 bit code segment */
97 bsd_x86_64_write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
98 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | DESC_L_MASK
99 | (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
100
101 bsd_x86_64_write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
102 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
103 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
104
105 cpu_x86_load_seg(env, R_CS, __USER_CS);
106 cpu_x86_load_seg(env, R_SS, __USER_DS);
107 cpu_x86_load_seg(env, R_DS, 0);
108 cpu_x86_load_seg(env, R_ES, 0);
109 cpu_x86_load_seg(env, R_FS, 0);
110 cpu_x86_load_seg(env, R_GS, 0);
111 }
112
113 static inline void target_cpu_loop(CPUX86State *env)
114 {
115 CPUState *cs = env_cpu(env);
116 int trapnr;
117 abi_ulong pc;
118 /* target_siginfo_t info; */
119
120 for (;;) {
121 cpu_exec_start(cs);
122 trapnr = cpu_exec(cs);
123 cpu_exec_end(cs);
124 process_queued_cpu_work(cs);
125
126 switch (trapnr) {
127 case EXCP_SYSCALL:
128 /* syscall from syscall instruction */
129 env->regs[R_EAX] = do_freebsd_syscall(env,
130 env->regs[R_EAX],
131 env->regs[R_EDI],
132 env->regs[R_ESI],
133 env->regs[R_EDX],
134 env->regs[R_ECX],
135 env->regs[8],
136 env->regs[9], 0, 0);
137 env->eip = env->exception_next_eip;
138 if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) {
139 env->regs[R_EAX] = -env->regs[R_EAX];
140 env->eflags |= CC_C;
141 } else {
142 env->eflags &= ~CC_C;
143 }
144 break;
145
146 case EXCP_INTERRUPT:
147 /* just indicate that signals should be handled asap */
148 break;
149
150 case EXCP_ATOMIC:
151 cpu_exec_step_atomic(cs);
152 break;
153
154 default:
155 pc = env->segs[R_CS].base + env->eip;
156 fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - "
157 "aborting\n", (long)pc, trapnr);
158 abort();
159 }
160 process_pending_signals(env);
161 }
162 }
163
164 static inline void target_cpu_clone_regs(CPUX86State *env, target_ulong newsp)
165 {
166 if (newsp) {
167 env->regs[R_ESP] = newsp;
168 }
169 env->regs[R_EAX] = 0;
170 }
171
172 static inline void target_cpu_reset(CPUArchState *env)
173 {
174 cpu_reset(env_cpu(env));
175 }
176
177 #endif /* TARGET_ARCH_CPU_H */