]> git.proxmox.com Git - mirror_qemu.git/blob - bsd-user/x86_64/target_arch_cpu.h
bsd-user: Create target specific vmparam.h
[mirror_qemu.git] / bsd-user / x86_64 / target_arch_cpu.h
1 /*
2 * x86_64 cpu init and loop
3 *
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #ifndef _TARGET_ARCH_CPU_H_
20 #define _TARGET_ARCH_CPU_H_
21
22 #include "target_arch.h"
23
24 #define TARGET_DEFAULT_CPU_MODEL "qemu64"
25
26 #define TARGET_CPU_RESET(cpu)
27
28 static inline void target_cpu_init(CPUX86State *env,
29 struct target_pt_regs *regs)
30 {
31 uint64_t *gdt_table;
32
33 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
34 env->hflags |= HF_PE_MASK | HF_CPL_MASK;
35 if (env->features[FEAT_1_EDX] & CPUID_SSE) {
36 env->cr[4] |= CR4_OSFXSR_MASK;
37 env->hflags |= HF_OSFXSR_MASK;
38 }
39
40 /* enable 64 bit mode if possible */
41 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) {
42 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
43 exit(1);
44 }
45 env->cr[4] |= CR4_PAE_MASK;
46 env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
47 env->hflags |= HF_LMA_MASK;
48
49 /* flags setup : we activate the IRQs by default as in user mode */
50 env->eflags |= IF_MASK;
51
52 /* register setup */
53 env->regs[R_EAX] = regs->rax;
54 env->regs[R_EBX] = regs->rbx;
55 env->regs[R_ECX] = regs->rcx;
56 env->regs[R_EDX] = regs->rdx;
57 env->regs[R_ESI] = regs->rsi;
58 env->regs[R_EDI] = regs->rdi;
59 env->regs[R_EBP] = regs->rbp;
60 env->regs[R_ESP] = regs->rsp;
61 env->eip = regs->rip;
62
63 /* interrupt setup */
64 env->idt.limit = 511;
65
66 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
67 PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
68 bsd_x86_64_set_idt_base(env->idt.base);
69 bsd_x86_64_set_idt(0, 0);
70 bsd_x86_64_set_idt(1, 0);
71 bsd_x86_64_set_idt(2, 0);
72 bsd_x86_64_set_idt(3, 3);
73 bsd_x86_64_set_idt(4, 3);
74 bsd_x86_64_set_idt(5, 0);
75 bsd_x86_64_set_idt(6, 0);
76 bsd_x86_64_set_idt(7, 0);
77 bsd_x86_64_set_idt(8, 0);
78 bsd_x86_64_set_idt(9, 0);
79 bsd_x86_64_set_idt(10, 0);
80 bsd_x86_64_set_idt(11, 0);
81 bsd_x86_64_set_idt(12, 0);
82 bsd_x86_64_set_idt(13, 0);
83 bsd_x86_64_set_idt(14, 0);
84 bsd_x86_64_set_idt(15, 0);
85 bsd_x86_64_set_idt(16, 0);
86 bsd_x86_64_set_idt(17, 0);
87 bsd_x86_64_set_idt(18, 0);
88 bsd_x86_64_set_idt(19, 0);
89 bsd_x86_64_set_idt(0x80, 3);
90
91 /* segment setup */
92 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
93 PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
94 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
95 gdt_table = g2h_untagged(env->gdt.base);
96
97 /* 64 bit code segment */
98 bsd_x86_64_write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
99 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | DESC_L_MASK
100 | (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
101
102 bsd_x86_64_write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
103 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
104 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
105
106 cpu_x86_load_seg(env, R_CS, __USER_CS);
107 cpu_x86_load_seg(env, R_SS, __USER_DS);
108 cpu_x86_load_seg(env, R_DS, 0);
109 cpu_x86_load_seg(env, R_ES, 0);
110 cpu_x86_load_seg(env, R_FS, 0);
111 cpu_x86_load_seg(env, R_GS, 0);
112 }
113
114 static inline void target_cpu_loop(CPUX86State *env)
115 {
116 CPUState *cs = env_cpu(env);
117 int trapnr;
118 abi_ulong pc;
119 /* target_siginfo_t info; */
120
121 for (;;) {
122 cpu_exec_start(cs);
123 trapnr = cpu_exec(cs);
124 cpu_exec_end(cs);
125 process_queued_cpu_work(cs);
126
127 switch (trapnr) {
128 case 0x80:
129 /* syscall from int $0x80 */
130 if (bsd_type == target_freebsd) {
131 abi_ulong params = (abi_ulong) env->regs[R_ESP] +
132 sizeof(int32_t);
133 int32_t syscall_nr = env->regs[R_EAX];
134 int32_t arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8;
135
136 if (syscall_nr == TARGET_FREEBSD_NR_syscall) {
137 get_user_s32(syscall_nr, params);
138 params += sizeof(int32_t);
139 } else if (syscall_nr == TARGET_FREEBSD_NR___syscall) {
140 get_user_s32(syscall_nr, params);
141 params += sizeof(int64_t);
142 }
143 get_user_s32(arg1, params);
144 params += sizeof(int32_t);
145 get_user_s32(arg2, params);
146 params += sizeof(int32_t);
147 get_user_s32(arg3, params);
148 params += sizeof(int32_t);
149 get_user_s32(arg4, params);
150 params += sizeof(int32_t);
151 get_user_s32(arg5, params);
152 params += sizeof(int32_t);
153 get_user_s32(arg6, params);
154 params += sizeof(int32_t);
155 get_user_s32(arg7, params);
156 params += sizeof(int32_t);
157 get_user_s32(arg8, params);
158 env->regs[R_EAX] = do_freebsd_syscall(env,
159 syscall_nr,
160 arg1,
161 arg2,
162 arg3,
163 arg4,
164 arg5,
165 arg6,
166 arg7,
167 arg8);
168 } else { /* if (bsd_type == target_openbsd) */
169 env->regs[R_EAX] = do_openbsd_syscall(env,
170 env->regs[R_EAX],
171 env->regs[R_EBX],
172 env->regs[R_ECX],
173 env->regs[R_EDX],
174 env->regs[R_ESI],
175 env->regs[R_EDI],
176 env->regs[R_EBP]);
177 }
178 if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) {
179 env->regs[R_EAX] = -env->regs[R_EAX];
180 env->eflags |= CC_C;
181 } else {
182 env->eflags &= ~CC_C;
183 }
184 break;
185
186 case EXCP_SYSCALL:
187 /* syscall from syscall instruction */
188 if (bsd_type == target_freebsd) {
189 env->regs[R_EAX] = do_freebsd_syscall(env,
190 env->regs[R_EAX],
191 env->regs[R_EDI],
192 env->regs[R_ESI],
193 env->regs[R_EDX],
194 env->regs[R_ECX],
195 env->regs[8],
196 env->regs[9], 0, 0);
197 } else { /* if (bsd_type == target_openbsd) */
198 env->regs[R_EAX] = do_openbsd_syscall(env,
199 env->regs[R_EAX],
200 env->regs[R_EDI],
201 env->regs[R_ESI],
202 env->regs[R_EDX],
203 env->regs[10],
204 env->regs[8],
205 env->regs[9]);
206 }
207 env->eip = env->exception_next_eip;
208 if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) {
209 env->regs[R_EAX] = -env->regs[R_EAX];
210 env->eflags |= CC_C;
211 } else {
212 env->eflags &= ~CC_C;
213 }
214 break;
215
216 case EXCP_INTERRUPT:
217 /* just indicate that signals should be handled asap */
218 break;
219
220 case EXCP_ATOMIC:
221 cpu_exec_step_atomic(cs);
222 break;
223
224 default:
225 pc = env->segs[R_CS].base + env->eip;
226 fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - "
227 "aborting\n", (long)pc, trapnr);
228 abort();
229 }
230 process_pending_signals(env);
231 }
232 }
233
234 static inline void target_cpu_clone_regs(CPUX86State *env, target_ulong newsp)
235 {
236 if (newsp) {
237 env->regs[R_ESP] = newsp;
238 }
239 env->regs[R_EAX] = 0;
240 }
241
242 static inline void target_cpu_reset(CPUArchState *cpu)
243 {
244 cpu_reset(env_cpu(cpu));
245 }
246
247 #endif /* ! _TARGET_ARCH_CPU_H_ */