]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/drivers/bus/fslmc/qbman/qbman_portal.c
5d407cc01d6f6497b7f738ed2c399766df26d864
[ceph.git] / ceph / src / seastar / dpdk / drivers / bus / fslmc / qbman / qbman_portal.c
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * * Neither the name of Freescale Semiconductor nor the
14 * names of its contributors may be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
19 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
20 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
21 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
22 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
23 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
26 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include "qbman_portal.h"
30
31 /* QBMan portal management command codes */
32 #define QBMAN_MC_ACQUIRE 0x30
33 #define QBMAN_WQCHAN_CONFIGURE 0x46
34
35 /* CINH register offsets */
36 #define QBMAN_CINH_SWP_EQCR_PI 0x800
37 #define QBMAN_CINH_SWP_EQCR_CI 0x840
38 #define QBMAN_CINH_SWP_EQAR 0x8c0
39 #define QBMAN_CINH_SWP_DQPI 0xa00
40 #define QBMAN_CINH_SWP_DCAP 0xac0
41 #define QBMAN_CINH_SWP_SDQCR 0xb00
42 #define QBMAN_CINH_SWP_RAR 0xcc0
43 #define QBMAN_CINH_SWP_ISR 0xe00
44 #define QBMAN_CINH_SWP_IER 0xe40
45 #define QBMAN_CINH_SWP_ISDR 0xe80
46 #define QBMAN_CINH_SWP_IIR 0xec0
47
48 /* CENA register offsets */
49 #define QBMAN_CENA_SWP_EQCR(n) (0x000 + ((uint32_t)(n) << 6))
50 #define QBMAN_CENA_SWP_DQRR(n) (0x200 + ((uint32_t)(n) << 6))
51 #define QBMAN_CENA_SWP_RCR(n) (0x400 + ((uint32_t)(n) << 6))
52 #define QBMAN_CENA_SWP_CR 0x600
53 #define QBMAN_CENA_SWP_RR(vb) (0x700 + ((uint32_t)(vb) >> 1))
54 #define QBMAN_CENA_SWP_VDQCR 0x780
55 #define QBMAN_CENA_SWP_EQCR_CI 0x840
56
57 /* Reverse mapping of QBMAN_CENA_SWP_DQRR() */
58 #define QBMAN_IDX_FROM_DQRR(p) (((unsigned long)p & 0x1ff) >> 6)
59
60 /* QBMan FQ management command codes */
61 #define QBMAN_FQ_SCHEDULE 0x48
62 #define QBMAN_FQ_FORCE 0x49
63 #define QBMAN_FQ_XON 0x4d
64 #define QBMAN_FQ_XOFF 0x4e
65
66 /*******************************/
67 /* Pre-defined attribute codes */
68 /*******************************/
69
70 struct qb_attr_code code_generic_verb = QB_CODE(0, 0, 7);
71 struct qb_attr_code code_generic_rslt = QB_CODE(0, 8, 8);
72
73 /*************************/
74 /* SDQCR attribute codes */
75 /*************************/
76
77 /* we put these here because at least some of them are required by
78 * qbman_swp_init()
79 */
80 struct qb_attr_code code_sdqcr_dct = QB_CODE(0, 24, 2);
81 struct qb_attr_code code_sdqcr_fc = QB_CODE(0, 29, 1);
82 struct qb_attr_code code_sdqcr_tok = QB_CODE(0, 16, 8);
83 static struct qb_attr_code code_eq_dca_idx;
84 #define CODE_SDQCR_DQSRC(n) QB_CODE(0, n, 1)
85 enum qbman_sdqcr_dct {
86 qbman_sdqcr_dct_null = 0,
87 qbman_sdqcr_dct_prio_ics,
88 qbman_sdqcr_dct_active_ics,
89 qbman_sdqcr_dct_active
90 };
91
92 enum qbman_sdqcr_fc {
93 qbman_sdqcr_fc_one = 0,
94 qbman_sdqcr_fc_up_to_3 = 1
95 };
96
97 struct qb_attr_code code_sdqcr_dqsrc = QB_CODE(0, 0, 16);
98
99 /* We need to keep track of which SWP triggered a pull command
100 * so keep an array of portal IDs and use the token field to
101 * be able to find the proper portal
102 */
103 #define MAX_QBMAN_PORTALS 35
104 static struct qbman_swp *portal_idx_map[MAX_QBMAN_PORTALS];
105
106 uint32_t qman_version;
107
108 /*********************************/
109 /* Portal constructor/destructor */
110 /*********************************/
111
112 /* Software portals should always be in the power-on state when we initialise,
113 * due to the CCSR-based portal reset functionality that MC has.
114 *
115 * Erk! Turns out that QMan versions prior to 4.1 do not correctly reset DQRR
116 * valid-bits, so we need to support a workaround where we don't trust
117 * valid-bits when detecting new entries until any stale ring entries have been
118 * overwritten at least once. The idea is that we read PI for the first few
119 * entries, then switch to valid-bit after that. The trick is to clear the
120 * bug-work-around boolean once the PI wraps around the ring for the first time.
121 *
122 * Note: this still carries a slight additional cost once the decrementer hits
123 * zero.
124 */
125 struct qbman_swp *qbman_swp_init(const struct qbman_swp_desc *d)
126 {
127 int ret;
128 uint32_t eqcr_pi;
129 struct qbman_swp *p = kmalloc(sizeof(*p), GFP_KERNEL);
130
131 if (!p)
132 return NULL;
133 p->desc = *d;
134 #ifdef QBMAN_CHECKING
135 p->mc.check = swp_mc_can_start;
136 #endif
137 p->mc.valid_bit = QB_VALID_BIT;
138 p->sdq = 0;
139 qb_attr_code_encode(&code_sdqcr_dct, &p->sdq, qbman_sdqcr_dct_prio_ics);
140 qb_attr_code_encode(&code_sdqcr_fc, &p->sdq, qbman_sdqcr_fc_up_to_3);
141 qb_attr_code_encode(&code_sdqcr_tok, &p->sdq, 0xbb);
142 atomic_set(&p->vdq.busy, 1);
143 p->vdq.valid_bit = QB_VALID_BIT;
144 p->dqrr.next_idx = 0;
145 p->dqrr.valid_bit = QB_VALID_BIT;
146 qman_version = p->desc.qman_version;
147 if ((qman_version & 0xFFFF0000) < QMAN_REV_4100) {
148 p->dqrr.dqrr_size = 4;
149 p->dqrr.reset_bug = 1;
150 /* Set size of DQRR to 4, encoded in 2 bits */
151 code_eq_dca_idx = (struct qb_attr_code)QB_CODE(0, 8, 2);
152 } else {
153 p->dqrr.dqrr_size = 8;
154 p->dqrr.reset_bug = 0;
155 /* Set size of DQRR to 8, encoded in 3 bits */
156 code_eq_dca_idx = (struct qb_attr_code)QB_CODE(0, 8, 3);
157 }
158
159 ret = qbman_swp_sys_init(&p->sys, d, p->dqrr.dqrr_size);
160 if (ret) {
161 kfree(p);
162 pr_err("qbman_swp_sys_init() failed %d\n", ret);
163 return NULL;
164 }
165 /* SDQCR needs to be initialized to 0 when no channels are
166 * being dequeued from or else the QMan HW will indicate an
167 * error. The values that were calculated above will be
168 * applied when dequeues from a specific channel are enabled
169 */
170 qbman_cinh_write(&p->sys, QBMAN_CINH_SWP_SDQCR, 0);
171 eqcr_pi = qbman_cinh_read(&p->sys, QBMAN_CINH_SWP_EQCR_PI);
172 p->eqcr.pi = eqcr_pi & 0xF;
173 p->eqcr.pi_vb = eqcr_pi & QB_VALID_BIT;
174 p->eqcr.ci = qbman_cinh_read(&p->sys, QBMAN_CINH_SWP_EQCR_CI) & 0xF;
175 p->eqcr.available = QBMAN_EQCR_SIZE - qm_cyc_diff(QBMAN_EQCR_SIZE,
176 p->eqcr.ci, p->eqcr.pi);
177
178 portal_idx_map[p->desc.idx] = p;
179 return p;
180 }
181
182 void qbman_swp_finish(struct qbman_swp *p)
183 {
184 #ifdef QBMAN_CHECKING
185 QBMAN_BUG_ON(p->mc.check != swp_mc_can_start);
186 #endif
187 qbman_swp_sys_finish(&p->sys);
188 portal_idx_map[p->desc.idx] = NULL;
189 kfree(p);
190 }
191
192 const struct qbman_swp_desc *qbman_swp_get_desc(struct qbman_swp *p)
193 {
194 return &p->desc;
195 }
196
197 /**************/
198 /* Interrupts */
199 /**************/
200
201 uint32_t qbman_swp_interrupt_get_vanish(struct qbman_swp *p)
202 {
203 return qbman_cinh_read(&p->sys, QBMAN_CINH_SWP_ISDR);
204 }
205
206 void qbman_swp_interrupt_set_vanish(struct qbman_swp *p, uint32_t mask)
207 {
208 qbman_cinh_write(&p->sys, QBMAN_CINH_SWP_ISDR, mask);
209 }
210
211 uint32_t qbman_swp_interrupt_read_status(struct qbman_swp *p)
212 {
213 return qbman_cinh_read(&p->sys, QBMAN_CINH_SWP_ISR);
214 }
215
216 void qbman_swp_interrupt_clear_status(struct qbman_swp *p, uint32_t mask)
217 {
218 qbman_cinh_write(&p->sys, QBMAN_CINH_SWP_ISR, mask);
219 }
220
221 uint32_t qbman_swp_interrupt_get_trigger(struct qbman_swp *p)
222 {
223 return qbman_cinh_read(&p->sys, QBMAN_CINH_SWP_IER);
224 }
225
226 void qbman_swp_interrupt_set_trigger(struct qbman_swp *p, uint32_t mask)
227 {
228 qbman_cinh_write(&p->sys, QBMAN_CINH_SWP_IER, mask);
229 }
230
231 int qbman_swp_interrupt_get_inhibit(struct qbman_swp *p)
232 {
233 return qbman_cinh_read(&p->sys, QBMAN_CINH_SWP_IIR);
234 }
235
236 void qbman_swp_interrupt_set_inhibit(struct qbman_swp *p, int inhibit)
237 {
238 qbman_cinh_write(&p->sys, QBMAN_CINH_SWP_IIR, inhibit ? 0xffffffff : 0);
239 }
240
241 /***********************/
242 /* Management commands */
243 /***********************/
244
245 /*
246 * Internal code common to all types of management commands.
247 */
248
249 void *qbman_swp_mc_start(struct qbman_swp *p)
250 {
251 void *ret;
252 #ifdef QBMAN_CHECKING
253 QBMAN_BUG_ON(p->mc.check != swp_mc_can_start);
254 #endif
255 ret = qbman_cena_write_start(&p->sys, QBMAN_CENA_SWP_CR);
256 #ifdef QBMAN_CHECKING
257 if (!ret)
258 p->mc.check = swp_mc_can_submit;
259 #endif
260 return ret;
261 }
262
263 void qbman_swp_mc_submit(struct qbman_swp *p, void *cmd, uint32_t cmd_verb)
264 {
265 uint32_t *v = cmd;
266 #ifdef QBMAN_CHECKING
267 QBMAN_BUG_ON(!(p->mc.check != swp_mc_can_submit));
268 #endif
269 /* TBD: "|=" is going to hurt performance. Need to move as many fields
270 * out of word zero, and for those that remain, the "OR" needs to occur
271 * at the caller side. This debug check helps to catch cases where the
272 * caller wants to OR but has forgotten to do so.
273 */
274 QBMAN_BUG_ON((*v & cmd_verb) != *v);
275 *v = cmd_verb | p->mc.valid_bit;
276 qbman_cena_write_complete(&p->sys, QBMAN_CENA_SWP_CR, cmd);
277 #ifdef QBMAN_CHECKING
278 p->mc.check = swp_mc_can_poll;
279 #endif
280 }
281
282 void *qbman_swp_mc_result(struct qbman_swp *p)
283 {
284 uint32_t *ret, verb;
285 #ifdef QBMAN_CHECKING
286 QBMAN_BUG_ON(p->mc.check != swp_mc_can_poll);
287 #endif
288 qbman_cena_invalidate_prefetch(&p->sys,
289 QBMAN_CENA_SWP_RR(p->mc.valid_bit));
290 ret = qbman_cena_read(&p->sys, QBMAN_CENA_SWP_RR(p->mc.valid_bit));
291 /* Remove the valid-bit - command completed iff the rest is non-zero */
292 verb = ret[0] & ~QB_VALID_BIT;
293 if (!verb)
294 return NULL;
295 #ifdef QBMAN_CHECKING
296 p->mc.check = swp_mc_can_start;
297 #endif
298 p->mc.valid_bit ^= QB_VALID_BIT;
299 return ret;
300 }
301
302 /***********/
303 /* Enqueue */
304 /***********/
305
306 /* These should be const, eventually */
307 static struct qb_attr_code code_eq_cmd = QB_CODE(0, 0, 2);
308 static struct qb_attr_code code_eq_eqdi = QB_CODE(0, 3, 1);
309 static struct qb_attr_code code_eq_dca_en = QB_CODE(0, 15, 1);
310 static struct qb_attr_code code_eq_dca_pk = QB_CODE(0, 14, 1);
311 /* Can't set code_eq_dca_idx width. Need qman version. Read at runtime */
312 static struct qb_attr_code code_eq_orp_en = QB_CODE(0, 2, 1);
313 static struct qb_attr_code code_eq_orp_is_nesn = QB_CODE(0, 31, 1);
314 static struct qb_attr_code code_eq_orp_nlis = QB_CODE(0, 30, 1);
315 static struct qb_attr_code code_eq_orp_seqnum = QB_CODE(0, 16, 14);
316 static struct qb_attr_code code_eq_opr_id = QB_CODE(1, 0, 16);
317 static struct qb_attr_code code_eq_tgt_id = QB_CODE(2, 0, 24);
318 /* static struct qb_attr_code code_eq_tag = QB_CODE(3, 0, 32); */
319 static struct qb_attr_code code_eq_qd_en = QB_CODE(0, 4, 1);
320 static struct qb_attr_code code_eq_qd_bin = QB_CODE(4, 0, 16);
321 static struct qb_attr_code code_eq_qd_pri = QB_CODE(4, 16, 4);
322 static struct qb_attr_code code_eq_rsp_stash = QB_CODE(5, 16, 1);
323 static struct qb_attr_code code_eq_rsp_id = QB_CODE(5, 24, 8);
324 static struct qb_attr_code code_eq_rsp_lo = QB_CODE(6, 0, 32);
325
326 enum qbman_eq_cmd_e {
327 /* No enqueue, primarily for plugging ORP gaps for dropped frames */
328 qbman_eq_cmd_empty,
329 /* DMA an enqueue response once complete */
330 qbman_eq_cmd_respond,
331 /* DMA an enqueue response only if the enqueue fails */
332 qbman_eq_cmd_respond_reject
333 };
334
335 void qbman_eq_desc_clear(struct qbman_eq_desc *d)
336 {
337 memset(d, 0, sizeof(*d));
338 }
339
340 void qbman_eq_desc_set_no_orp(struct qbman_eq_desc *d, int respond_success)
341 {
342 uint32_t *cl = qb_cl(d);
343
344 qb_attr_code_encode(&code_eq_orp_en, cl, 0);
345 qb_attr_code_encode(&code_eq_cmd, cl,
346 respond_success ? qbman_eq_cmd_respond :
347 qbman_eq_cmd_respond_reject);
348 }
349
350 void qbman_eq_desc_set_orp(struct qbman_eq_desc *d, int respond_success,
351 uint32_t opr_id, uint32_t seqnum, int incomplete)
352 {
353 uint32_t *cl = qb_cl(d);
354
355 qb_attr_code_encode(&code_eq_orp_en, cl, 1);
356 qb_attr_code_encode(&code_eq_cmd, cl,
357 respond_success ? qbman_eq_cmd_respond :
358 qbman_eq_cmd_respond_reject);
359 qb_attr_code_encode(&code_eq_opr_id, cl, opr_id);
360 qb_attr_code_encode(&code_eq_orp_seqnum, cl, seqnum);
361 qb_attr_code_encode(&code_eq_orp_nlis, cl, !!incomplete);
362 }
363
364 void qbman_eq_desc_set_orp_hole(struct qbman_eq_desc *d, uint32_t opr_id,
365 uint32_t seqnum)
366 {
367 uint32_t *cl = qb_cl(d);
368
369 qb_attr_code_encode(&code_eq_orp_en, cl, 1);
370 qb_attr_code_encode(&code_eq_cmd, cl, qbman_eq_cmd_empty);
371 qb_attr_code_encode(&code_eq_opr_id, cl, opr_id);
372 qb_attr_code_encode(&code_eq_orp_seqnum, cl, seqnum);
373 qb_attr_code_encode(&code_eq_orp_nlis, cl, 0);
374 qb_attr_code_encode(&code_eq_orp_is_nesn, cl, 0);
375 }
376
377 void qbman_eq_desc_set_orp_nesn(struct qbman_eq_desc *d, uint32_t opr_id,
378 uint32_t seqnum)
379 {
380 uint32_t *cl = qb_cl(d);
381
382 qb_attr_code_encode(&code_eq_orp_en, cl, 1);
383 qb_attr_code_encode(&code_eq_cmd, cl, qbman_eq_cmd_empty);
384 qb_attr_code_encode(&code_eq_opr_id, cl, opr_id);
385 qb_attr_code_encode(&code_eq_orp_seqnum, cl, seqnum);
386 qb_attr_code_encode(&code_eq_orp_nlis, cl, 0);
387 qb_attr_code_encode(&code_eq_orp_is_nesn, cl, 1);
388 }
389
390 void qbman_eq_desc_set_response(struct qbman_eq_desc *d,
391 dma_addr_t storage_phys,
392 int stash)
393 {
394 uint32_t *cl = qb_cl(d);
395
396 qb_attr_code_encode_64(&code_eq_rsp_lo, (uint64_t *)cl, storage_phys);
397 qb_attr_code_encode(&code_eq_rsp_stash, cl, !!stash);
398 }
399
400 void qbman_eq_desc_set_token(struct qbman_eq_desc *d, uint8_t token)
401 {
402 uint32_t *cl = qb_cl(d);
403
404 qb_attr_code_encode(&code_eq_rsp_id, cl, (uint32_t)token);
405 }
406
407 void qbman_eq_desc_set_fq(struct qbman_eq_desc *d, uint32_t fqid)
408 {
409 uint32_t *cl = qb_cl(d);
410
411 qb_attr_code_encode(&code_eq_qd_en, cl, 0);
412 qb_attr_code_encode(&code_eq_tgt_id, cl, fqid);
413 }
414
415 void qbman_eq_desc_set_qd(struct qbman_eq_desc *d, uint32_t qdid,
416 uint32_t qd_bin, uint32_t qd_prio)
417 {
418 uint32_t *cl = qb_cl(d);
419
420 qb_attr_code_encode(&code_eq_qd_en, cl, 1);
421 qb_attr_code_encode(&code_eq_tgt_id, cl, qdid);
422 qb_attr_code_encode(&code_eq_qd_bin, cl, qd_bin);
423 qb_attr_code_encode(&code_eq_qd_pri, cl, qd_prio);
424 }
425
426 void qbman_eq_desc_set_eqdi(struct qbman_eq_desc *d, int enable)
427 {
428 uint32_t *cl = qb_cl(d);
429
430 qb_attr_code_encode(&code_eq_eqdi, cl, !!enable);
431 }
432
433 void qbman_eq_desc_set_dca(struct qbman_eq_desc *d, int enable,
434 uint32_t dqrr_idx, int park)
435 {
436 uint32_t *cl = qb_cl(d);
437
438 qb_attr_code_encode(&code_eq_dca_en, cl, !!enable);
439 if (enable) {
440 qb_attr_code_encode(&code_eq_dca_pk, cl, !!park);
441 qb_attr_code_encode(&code_eq_dca_idx, cl, dqrr_idx);
442 }
443 }
444
445 #define EQAR_IDX(eqar) ((eqar) & 0x7)
446 #define EQAR_VB(eqar) ((eqar) & 0x80)
447 #define EQAR_SUCCESS(eqar) ((eqar) & 0x100)
448 static int qbman_swp_enqueue_array_mode(struct qbman_swp *s,
449 const struct qbman_eq_desc *d,
450 const struct qbman_fd *fd)
451 {
452 uint32_t *p;
453 const uint32_t *cl = qb_cl(d);
454 uint32_t eqar = qbman_cinh_read(&s->sys, QBMAN_CINH_SWP_EQAR);
455
456 pr_debug("EQAR=%08x\n", eqar);
457 if (!EQAR_SUCCESS(eqar))
458 return -EBUSY;
459 p = qbman_cena_write_start_wo_shadow(&s->sys,
460 QBMAN_CENA_SWP_EQCR(EQAR_IDX(eqar)));
461 word_copy(&p[1], &cl[1], 7);
462 word_copy(&p[8], fd, sizeof(*fd) >> 2);
463 /* Set the verb byte, have to substitute in the valid-bit */
464 lwsync();
465 p[0] = cl[0] | EQAR_VB(eqar);
466 qbman_cena_write_complete_wo_shadow(&s->sys,
467 QBMAN_CENA_SWP_EQCR(EQAR_IDX(eqar)));
468 return 0;
469 }
470
471 static int qbman_swp_enqueue_ring_mode(struct qbman_swp *s,
472 const struct qbman_eq_desc *d,
473 const struct qbman_fd *fd)
474 {
475 uint32_t *p;
476 const uint32_t *cl = qb_cl(d);
477 uint32_t eqcr_ci;
478 uint8_t diff;
479
480 if (!s->eqcr.available) {
481 eqcr_ci = s->eqcr.ci;
482 s->eqcr.ci = qbman_cena_read_reg(&s->sys,
483 QBMAN_CENA_SWP_EQCR_CI) & 0xF;
484 diff = qm_cyc_diff(QBMAN_EQCR_SIZE,
485 eqcr_ci, s->eqcr.ci);
486 s->eqcr.available += diff;
487 if (!diff)
488 return -EBUSY;
489 }
490
491 p = qbman_cena_write_start_wo_shadow(&s->sys,
492 QBMAN_CENA_SWP_EQCR(s->eqcr.pi & 7));
493 word_copy(&p[1], &cl[1], 7);
494 word_copy(&p[8], fd, sizeof(*fd) >> 2);
495 lwsync();
496 /* Set the verb byte, have to substitute in the valid-bit */
497 p[0] = cl[0] | s->eqcr.pi_vb;
498 qbman_cena_write_complete_wo_shadow(&s->sys,
499 QBMAN_CENA_SWP_EQCR(s->eqcr.pi & 7));
500 s->eqcr.pi++;
501 s->eqcr.pi &= 0xF;
502 s->eqcr.available--;
503 if (!(s->eqcr.pi & 7))
504 s->eqcr.pi_vb ^= QB_VALID_BIT;
505 return 0;
506 }
507
508 int qbman_swp_fill_ring(struct qbman_swp *s,
509 const struct qbman_eq_desc *d,
510 const struct qbman_fd *fd,
511 __attribute__((unused)) uint8_t burst_index)
512 {
513 uint32_t *p;
514 const uint32_t *cl = qb_cl(d);
515 uint32_t eqcr_ci;
516 uint8_t diff;
517
518 if (!s->eqcr.available) {
519 eqcr_ci = s->eqcr.ci;
520 s->eqcr.ci = qbman_cena_read_reg(&s->sys,
521 QBMAN_CENA_SWP_EQCR_CI) & 0xF;
522 diff = qm_cyc_diff(QBMAN_EQCR_SIZE,
523 eqcr_ci, s->eqcr.ci);
524 s->eqcr.available += diff;
525 if (!diff)
526 return -EBUSY;
527 }
528 p = qbman_cena_write_start_wo_shadow(&s->sys,
529 QBMAN_CENA_SWP_EQCR((s->eqcr.pi/* +burst_index */) & 7));
530 /* word_copy(&p[1], &cl[1], 7); */
531 memcpy(&p[1], &cl[1], 7 * 4);
532 /* word_copy(&p[8], fd, sizeof(*fd) >> 2); */
533 memcpy(&p[8], fd, sizeof(struct qbman_fd));
534
535 /* lwsync(); */
536 p[0] = cl[0] | s->eqcr.pi_vb;
537
538 s->eqcr.pi++;
539 s->eqcr.pi &= 0xF;
540 s->eqcr.available--;
541 if (!(s->eqcr.pi & 7))
542 s->eqcr.pi_vb ^= QB_VALID_BIT;
543
544 return 0;
545 }
546
547 int qbman_swp_flush_ring(struct qbman_swp *s)
548 {
549 void *ptr = s->sys.addr_cena;
550
551 dcbf((uint64_t)ptr);
552 dcbf((uint64_t)ptr + 0x40);
553 dcbf((uint64_t)ptr + 0x80);
554 dcbf((uint64_t)ptr + 0xc0);
555 dcbf((uint64_t)ptr + 0x100);
556 dcbf((uint64_t)ptr + 0x140);
557 dcbf((uint64_t)ptr + 0x180);
558 dcbf((uint64_t)ptr + 0x1c0);
559
560 return 0;
561 }
562
563 void qbman_sync(void)
564 {
565 lwsync();
566 }
567
568 int qbman_swp_enqueue(struct qbman_swp *s, const struct qbman_eq_desc *d,
569 const struct qbman_fd *fd)
570 {
571 if (s->sys.eqcr_mode == qman_eqcr_vb_array)
572 return qbman_swp_enqueue_array_mode(s, d, fd);
573 else /* Use ring mode by default */
574 return qbman_swp_enqueue_ring_mode(s, d, fd);
575 }
576
577 /*************************/
578 /* Static (push) dequeue */
579 /*************************/
580
581 void qbman_swp_push_get(struct qbman_swp *s, uint8_t channel_idx, int *enabled)
582 {
583 struct qb_attr_code code = CODE_SDQCR_DQSRC(channel_idx);
584
585 QBMAN_BUG_ON(channel_idx > 15);
586 *enabled = (int)qb_attr_code_decode(&code, &s->sdq);
587 }
588
589 void qbman_swp_push_set(struct qbman_swp *s, uint8_t channel_idx, int enable)
590 {
591 uint16_t dqsrc;
592 struct qb_attr_code code = CODE_SDQCR_DQSRC(channel_idx);
593
594 QBMAN_BUG_ON(channel_idx > 15);
595 qb_attr_code_encode(&code, &s->sdq, !!enable);
596 /* Read make the complete src map. If no channels are enabled
597 * the SDQCR must be 0 or else QMan will assert errors
598 */
599 dqsrc = (uint16_t)qb_attr_code_decode(&code_sdqcr_dqsrc, &s->sdq);
600 if (dqsrc != 0)
601 qbman_cinh_write(&s->sys, QBMAN_CINH_SWP_SDQCR, s->sdq);
602 else
603 qbman_cinh_write(&s->sys, QBMAN_CINH_SWP_SDQCR, 0);
604 }
605
606 /***************************/
607 /* Volatile (pull) dequeue */
608 /***************************/
609
610 /* These should be const, eventually */
611 static struct qb_attr_code code_pull_dct = QB_CODE(0, 0, 2);
612 static struct qb_attr_code code_pull_dt = QB_CODE(0, 2, 2);
613 static struct qb_attr_code code_pull_rls = QB_CODE(0, 4, 1);
614 static struct qb_attr_code code_pull_stash = QB_CODE(0, 5, 1);
615 static struct qb_attr_code code_pull_numframes = QB_CODE(0, 8, 4);
616 static struct qb_attr_code code_pull_token = QB_CODE(0, 16, 8);
617 static struct qb_attr_code code_pull_dqsource = QB_CODE(1, 0, 24);
618 static struct qb_attr_code code_pull_rsp_lo = QB_CODE(2, 0, 32);
619
620 enum qb_pull_dt_e {
621 qb_pull_dt_channel,
622 qb_pull_dt_workqueue,
623 qb_pull_dt_framequeue
624 };
625
626 void qbman_pull_desc_clear(struct qbman_pull_desc *d)
627 {
628 memset(d, 0, sizeof(*d));
629 }
630
631 void qbman_pull_desc_set_storage(struct qbman_pull_desc *d,
632 struct qbman_result *storage,
633 dma_addr_t storage_phys,
634 int stash)
635 {
636 uint32_t *cl = qb_cl(d);
637 /* Squiggle the pointer 'storage' into the extra 2 words of the
638 * descriptor (which aren't copied to the hw command)
639 */
640 *(void **)&cl[4] = storage;
641 if (!storage) {
642 qb_attr_code_encode(&code_pull_rls, cl, 0);
643 return;
644 }
645 qb_attr_code_encode(&code_pull_rls, cl, 1);
646 qb_attr_code_encode(&code_pull_stash, cl, !!stash);
647 qb_attr_code_encode_64(&code_pull_rsp_lo, (uint64_t *)cl, storage_phys);
648 }
649
650 void qbman_pull_desc_set_numframes(struct qbman_pull_desc *d, uint8_t numframes)
651 {
652 uint32_t *cl = qb_cl(d);
653
654 QBMAN_BUG_ON(!numframes || (numframes > 16));
655 qb_attr_code_encode(&code_pull_numframes, cl,
656 (uint32_t)(numframes - 1));
657 }
658
659 void qbman_pull_desc_set_token(struct qbman_pull_desc *d, uint8_t token)
660 {
661 uint32_t *cl = qb_cl(d);
662
663 qb_attr_code_encode(&code_pull_token, cl, token);
664 }
665
666 void qbman_pull_desc_set_fq(struct qbman_pull_desc *d, uint32_t fqid)
667 {
668 uint32_t *cl = qb_cl(d);
669
670 qb_attr_code_encode(&code_pull_dct, cl, 1);
671 qb_attr_code_encode(&code_pull_dt, cl, qb_pull_dt_framequeue);
672 qb_attr_code_encode(&code_pull_dqsource, cl, fqid);
673 }
674
675 void qbman_pull_desc_set_wq(struct qbman_pull_desc *d, uint32_t wqid,
676 enum qbman_pull_type_e dct)
677 {
678 uint32_t *cl = qb_cl(d);
679
680 qb_attr_code_encode(&code_pull_dct, cl, dct);
681 qb_attr_code_encode(&code_pull_dt, cl, qb_pull_dt_workqueue);
682 qb_attr_code_encode(&code_pull_dqsource, cl, wqid);
683 }
684
685 void qbman_pull_desc_set_channel(struct qbman_pull_desc *d, uint32_t chid,
686 enum qbman_pull_type_e dct)
687 {
688 uint32_t *cl = qb_cl(d);
689
690 qb_attr_code_encode(&code_pull_dct, cl, dct);
691 qb_attr_code_encode(&code_pull_dt, cl, qb_pull_dt_channel);
692 qb_attr_code_encode(&code_pull_dqsource, cl, chid);
693 }
694
695 int qbman_swp_pull(struct qbman_swp *s, struct qbman_pull_desc *d)
696 {
697 uint32_t *p;
698 uint32_t *cl = qb_cl(d);
699
700 if (!atomic_dec_and_test(&s->vdq.busy)) {
701 atomic_inc(&s->vdq.busy);
702 return -EBUSY;
703 }
704 s->vdq.storage = *(void **)&cl[4];
705 /* We use portal index +1 as token so that 0 still indicates
706 * that the result isn't valid yet.
707 */
708 qb_attr_code_encode(&code_pull_token, cl, s->desc.idx + 1);
709 p = qbman_cena_write_start_wo_shadow(&s->sys, QBMAN_CENA_SWP_VDQCR);
710 word_copy(&p[1], &cl[1], 3);
711 /* Set the verb byte, have to substitute in the valid-bit */
712 lwsync();
713 p[0] = cl[0] | s->vdq.valid_bit;
714 s->vdq.valid_bit ^= QB_VALID_BIT;
715 qbman_cena_write_complete_wo_shadow(&s->sys, QBMAN_CENA_SWP_VDQCR);
716 return 0;
717 }
718
719 /****************/
720 /* Polling DQRR */
721 /****************/
722
723 static struct qb_attr_code code_dqrr_verb = QB_CODE(0, 0, 8);
724 static struct qb_attr_code code_dqrr_response = QB_CODE(0, 0, 7);
725 static struct qb_attr_code code_dqrr_stat = QB_CODE(0, 8, 8);
726 static struct qb_attr_code code_dqrr_seqnum = QB_CODE(0, 16, 14);
727 static struct qb_attr_code code_dqrr_odpid = QB_CODE(1, 0, 16);
728 /* static struct qb_attr_code code_dqrr_tok = QB_CODE(1, 24, 8); */
729 static struct qb_attr_code code_dqrr_fqid = QB_CODE(2, 0, 24);
730 static struct qb_attr_code code_dqrr_byte_count = QB_CODE(4, 0, 32);
731 static struct qb_attr_code code_dqrr_frame_count = QB_CODE(5, 0, 24);
732 static struct qb_attr_code code_dqrr_ctx_lo = QB_CODE(6, 0, 32);
733
734 #define QBMAN_RESULT_DQ 0x60
735 #define QBMAN_RESULT_FQRN 0x21
736 #define QBMAN_RESULT_FQRNI 0x22
737 #define QBMAN_RESULT_FQPN 0x24
738 #define QBMAN_RESULT_FQDAN 0x25
739 #define QBMAN_RESULT_CDAN 0x26
740 #define QBMAN_RESULT_CSCN_MEM 0x27
741 #define QBMAN_RESULT_CGCU 0x28
742 #define QBMAN_RESULT_BPSCN 0x29
743 #define QBMAN_RESULT_CSCN_WQ 0x2a
744
745 static struct qb_attr_code code_dqpi_pi = QB_CODE(0, 0, 4);
746
747 /* NULL return if there are no unconsumed DQRR entries. Returns a DQRR entry
748 * only once, so repeated calls can return a sequence of DQRR entries, without
749 * requiring they be consumed immediately or in any particular order.
750 */
751 const struct qbman_result *qbman_swp_dqrr_next(struct qbman_swp *s)
752 {
753 uint32_t verb;
754 uint32_t response_verb;
755 uint32_t flags;
756 const struct qbman_result *dq;
757 const uint32_t *p;
758
759 /* Before using valid-bit to detect if something is there, we have to
760 * handle the case of the DQRR reset bug...
761 */
762 if (unlikely(s->dqrr.reset_bug)) {
763 /* We pick up new entries by cache-inhibited producer index,
764 * which means that a non-coherent mapping would require us to
765 * invalidate and read *only* once that PI has indicated that
766 * there's an entry here. The first trip around the DQRR ring
767 * will be much less efficient than all subsequent trips around
768 * it...
769 */
770 uint32_t dqpi = qbman_cinh_read(&s->sys, QBMAN_CINH_SWP_DQPI);
771 uint32_t pi = qb_attr_code_decode(&code_dqpi_pi, &dqpi);
772 /* there are new entries iff pi != next_idx */
773 if (pi == s->dqrr.next_idx)
774 return NULL;
775 /* if next_idx is/was the last ring index, and 'pi' is
776 * different, we can disable the workaround as all the ring
777 * entries have now been DMA'd to so valid-bit checking is
778 * repaired. Note: this logic needs to be based on next_idx
779 * (which increments one at a time), rather than on pi (which
780 * can burst and wrap-around between our snapshots of it).
781 */
782 QBMAN_BUG_ON((s->dqrr.dqrr_size - 1) < 0);
783 if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1u)) {
784 pr_debug("DEBUG: next_idx=%d, pi=%d, clear reset bug\n",
785 s->dqrr.next_idx, pi);
786 s->dqrr.reset_bug = 0;
787 }
788 qbman_cena_invalidate_prefetch(&s->sys,
789 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
790 }
791 dq = qbman_cena_read_wo_shadow(&s->sys,
792 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
793 p = qb_cl(dq);
794 verb = qb_attr_code_decode(&code_dqrr_verb, p);
795 /* If the valid-bit isn't of the expected polarity, nothing there. Note,
796 * in the DQRR reset bug workaround, we shouldn't need to skip these
797 * check, because we've already determined that a new entry is available
798 * and we've invalidated the cacheline before reading it, so the
799 * valid-bit behaviour is repaired and should tell us what we already
800 * knew from reading PI.
801 */
802 if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit)
803 return NULL;
804
805 /* There's something there. Move "next_idx" attention to the next ring
806 * entry (and prefetch it) before returning what we found.
807 */
808 s->dqrr.next_idx++;
809 if (s->dqrr.next_idx == s->dqrr.dqrr_size) {
810 s->dqrr.next_idx = 0;
811 s->dqrr.valid_bit ^= QB_VALID_BIT;
812 }
813 /* If this is the final response to a volatile dequeue command
814 * indicate that the vdq is no longer busy.
815 */
816 flags = qbman_result_DQ_flags(dq);
817 response_verb = qb_attr_code_decode(&code_dqrr_response, &verb);
818 if ((response_verb == QBMAN_RESULT_DQ) &&
819 (flags & QBMAN_DQ_STAT_VOLATILE) &&
820 (flags & QBMAN_DQ_STAT_EXPIRED))
821 atomic_inc(&s->vdq.busy);
822
823 return dq;
824 }
825
826 /* Consume DQRR entries previously returned from qbman_swp_dqrr_next(). */
827 void qbman_swp_dqrr_consume(struct qbman_swp *s,
828 const struct qbman_result *dq)
829 {
830 qbman_cinh_write(&s->sys, QBMAN_CINH_SWP_DCAP, QBMAN_IDX_FROM_DQRR(dq));
831 }
832
833 /*********************************/
834 /* Polling user-provided storage */
835 /*********************************/
836
837 int qbman_result_has_new_result(__attribute__((unused)) struct qbman_swp *s,
838 const struct qbman_result *dq)
839 {
840 /* To avoid converting the little-endian DQ entry to host-endian prior
841 * to us knowing whether there is a valid entry or not (and run the
842 * risk of corrupting the incoming hardware LE write), we detect in
843 * hardware endianness rather than host. This means we need a different
844 * "code" depending on whether we are BE or LE in software, which is
845 * where DQRR_TOK_OFFSET comes in...
846 */
847 static struct qb_attr_code code_dqrr_tok_detect =
848 QB_CODE(0, DQRR_TOK_OFFSET, 8);
849 /* The user trying to poll for a result treats "dq" as const. It is
850 * however the same address that was provided to us non-const in the
851 * first place, for directing hardware DMA to. So we can cast away the
852 * const because it is mutable from our perspective.
853 */
854 uint32_t *p = (uint32_t *)(unsigned long)qb_cl(dq);
855 uint32_t token;
856
857 token = qb_attr_code_decode(&code_dqrr_tok_detect, &p[1]);
858 if (token == 0)
859 return 0;
860 /* Entry is valid - overwrite token back to 0 so
861 * a) If this memory is reused tokesn will be 0
862 * b) If someone calls "has_new_result()" again on this entry it
863 * will not appear to be new
864 */
865 qb_attr_code_encode(&code_dqrr_tok_detect, &p[1], 0);
866
867 /* Only now do we convert from hardware to host endianness. Also, as we
868 * are returning success, the user has promised not to call us again, so
869 * there's no risk of us converting the endianness twice...
870 */
871 make_le32_n(p, 16);
872 return 1;
873 }
874
875 int qbman_check_command_complete(struct qbman_swp *s,
876 const struct qbman_result *dq)
877 {
878 /* To avoid converting the little-endian DQ entry to host-endian prior
879 * to us knowing whether there is a valid entry or not (and run the
880 * risk of corrupting the incoming hardware LE write), we detect in
881 * hardware endianness rather than host. This means we need a different
882 * "code" depending on whether we are BE or LE in software, which is
883 * where DQRR_TOK_OFFSET comes in...
884 */
885 static struct qb_attr_code code_dqrr_tok_detect =
886 QB_CODE(0, DQRR_TOK_OFFSET, 8);
887 /* The user trying to poll for a result treats "dq" as const. It is
888 * however the same address that was provided to us non-const in the
889 * first place, for directing hardware DMA to. So we can cast away the
890 * const because it is mutable from our perspective.
891 */
892 uint32_t *p = (uint32_t *)(unsigned long)qb_cl(dq);
893 uint32_t token;
894
895 token = qb_attr_code_decode(&code_dqrr_tok_detect, &p[1]);
896 if (token == 0)
897 return 0;
898 /* TODO: Remove qbman_swp from parameters and make it a local
899 * once we've tested the reserve portal map change
900 */
901 s = portal_idx_map[token - 1];
902 /* When token is set it indicates that VDQ command has been fetched
903 * by qbman and is working on it. It is safe for software to issue
904 * another VDQ command, so incrementing the busy variable.
905 */
906 if (s->vdq.storage == dq) {
907 s->vdq.storage = NULL;
908 atomic_inc(&s->vdq.busy);
909 }
910 return 1;
911 }
912
913 /********************************/
914 /* Categorising qbman results */
915 /********************************/
916
917 static struct qb_attr_code code_result_in_mem =
918 QB_CODE(0, QBMAN_RESULT_VERB_OFFSET_IN_MEM, 7);
919
920 static inline int __qbman_result_is_x(const struct qbman_result *dq,
921 uint32_t x)
922 {
923 const uint32_t *p = qb_cl(dq);
924 uint32_t response_verb = qb_attr_code_decode(&code_dqrr_response, p);
925
926 return (response_verb == x);
927 }
928
929 static inline int __qbman_result_is_x_in_mem(const struct qbman_result *dq,
930 uint32_t x)
931 {
932 const uint32_t *p = qb_cl(dq);
933 uint32_t response_verb = qb_attr_code_decode(&code_result_in_mem, p);
934
935 return (response_verb == x);
936 }
937
938 int qbman_result_is_DQ(const struct qbman_result *dq)
939 {
940 return __qbman_result_is_x(dq, QBMAN_RESULT_DQ);
941 }
942
943 int qbman_result_is_FQDAN(const struct qbman_result *dq)
944 {
945 return __qbman_result_is_x(dq, QBMAN_RESULT_FQDAN);
946 }
947
948 int qbman_result_is_CDAN(const struct qbman_result *dq)
949 {
950 return __qbman_result_is_x(dq, QBMAN_RESULT_CDAN);
951 }
952
953 int qbman_result_is_CSCN(const struct qbman_result *dq)
954 {
955 return __qbman_result_is_x_in_mem(dq, QBMAN_RESULT_CSCN_MEM) ||
956 __qbman_result_is_x(dq, QBMAN_RESULT_CSCN_WQ);
957 }
958
959 int qbman_result_is_BPSCN(const struct qbman_result *dq)
960 {
961 return __qbman_result_is_x_in_mem(dq, QBMAN_RESULT_BPSCN);
962 }
963
964 int qbman_result_is_CGCU(const struct qbman_result *dq)
965 {
966 return __qbman_result_is_x_in_mem(dq, QBMAN_RESULT_CGCU);
967 }
968
969 int qbman_result_is_FQRN(const struct qbman_result *dq)
970 {
971 return __qbman_result_is_x_in_mem(dq, QBMAN_RESULT_FQRN);
972 }
973
974 int qbman_result_is_FQRNI(const struct qbman_result *dq)
975 {
976 return __qbman_result_is_x_in_mem(dq, QBMAN_RESULT_FQRNI);
977 }
978
979 int qbman_result_is_FQPN(const struct qbman_result *dq)
980 {
981 return __qbman_result_is_x(dq, QBMAN_RESULT_FQPN);
982 }
983
984 /*********************************/
985 /* Parsing frame dequeue results */
986 /*********************************/
987
988 /* These APIs assume qbman_result_is_DQ() is TRUE */
989
990 uint32_t qbman_result_DQ_flags(const struct qbman_result *dq)
991 {
992 const uint32_t *p = qb_cl(dq);
993
994 return qb_attr_code_decode(&code_dqrr_stat, p);
995 }
996
997 uint16_t qbman_result_DQ_seqnum(const struct qbman_result *dq)
998 {
999 const uint32_t *p = qb_cl(dq);
1000
1001 return (uint16_t)qb_attr_code_decode(&code_dqrr_seqnum, p);
1002 }
1003
1004 uint16_t qbman_result_DQ_odpid(const struct qbman_result *dq)
1005 {
1006 const uint32_t *p = qb_cl(dq);
1007
1008 return (uint16_t)qb_attr_code_decode(&code_dqrr_odpid, p);
1009 }
1010
1011 uint32_t qbman_result_DQ_fqid(const struct qbman_result *dq)
1012 {
1013 const uint32_t *p = qb_cl(dq);
1014
1015 return qb_attr_code_decode(&code_dqrr_fqid, p);
1016 }
1017
1018 uint32_t qbman_result_DQ_byte_count(const struct qbman_result *dq)
1019 {
1020 const uint32_t *p = qb_cl(dq);
1021
1022 return qb_attr_code_decode(&code_dqrr_byte_count, p);
1023 }
1024
1025 uint32_t qbman_result_DQ_frame_count(const struct qbman_result *dq)
1026 {
1027 const uint32_t *p = qb_cl(dq);
1028
1029 return qb_attr_code_decode(&code_dqrr_frame_count, p);
1030 }
1031
1032 uint64_t qbman_result_DQ_fqd_ctx(const struct qbman_result *dq)
1033 {
1034 const uint64_t *p = (const uint64_t *)qb_cl(dq);
1035
1036 return qb_attr_code_decode_64(&code_dqrr_ctx_lo, p);
1037 }
1038
1039 const struct qbman_fd *qbman_result_DQ_fd(const struct qbman_result *dq)
1040 {
1041 const uint32_t *p = qb_cl(dq);
1042
1043 return (const struct qbman_fd *)&p[8];
1044 }
1045
1046 /**************************************/
1047 /* Parsing state-change notifications */
1048 /**************************************/
1049
1050 static struct qb_attr_code code_scn_state = QB_CODE(0, 16, 8);
1051 static struct qb_attr_code code_scn_rid = QB_CODE(1, 0, 24);
1052 static struct qb_attr_code code_scn_state_in_mem =
1053 QB_CODE(0, SCN_STATE_OFFSET_IN_MEM, 8);
1054 static struct qb_attr_code code_scn_rid_in_mem =
1055 QB_CODE(1, SCN_RID_OFFSET_IN_MEM, 24);
1056 static struct qb_attr_code code_scn_ctx_lo = QB_CODE(2, 0, 32);
1057
1058 uint8_t qbman_result_SCN_state(const struct qbman_result *scn)
1059 {
1060 const uint32_t *p = qb_cl(scn);
1061
1062 return (uint8_t)qb_attr_code_decode(&code_scn_state, p);
1063 }
1064
1065 uint32_t qbman_result_SCN_rid(const struct qbman_result *scn)
1066 {
1067 const uint32_t *p = qb_cl(scn);
1068
1069 return qb_attr_code_decode(&code_scn_rid, p);
1070 }
1071
1072 uint64_t qbman_result_SCN_ctx(const struct qbman_result *scn)
1073 {
1074 const uint64_t *p = (const uint64_t *)qb_cl(scn);
1075
1076 return qb_attr_code_decode_64(&code_scn_ctx_lo, p);
1077 }
1078
1079 uint8_t qbman_result_SCN_state_in_mem(const struct qbman_result *scn)
1080 {
1081 const uint32_t *p = qb_cl(scn);
1082
1083 return (uint8_t)qb_attr_code_decode(&code_scn_state_in_mem, p);
1084 }
1085
1086 uint32_t qbman_result_SCN_rid_in_mem(const struct qbman_result *scn)
1087 {
1088 const uint32_t *p = qb_cl(scn);
1089 uint32_t result_rid;
1090
1091 result_rid = qb_attr_code_decode(&code_scn_rid_in_mem, p);
1092 return make_le24(result_rid);
1093 }
1094
1095 /*****************/
1096 /* Parsing BPSCN */
1097 /*****************/
1098 uint16_t qbman_result_bpscn_bpid(const struct qbman_result *scn)
1099 {
1100 return (uint16_t)qbman_result_SCN_rid_in_mem(scn) & 0x3FFF;
1101 }
1102
1103 int qbman_result_bpscn_has_free_bufs(const struct qbman_result *scn)
1104 {
1105 return !(int)(qbman_result_SCN_state_in_mem(scn) & 0x1);
1106 }
1107
1108 int qbman_result_bpscn_is_depleted(const struct qbman_result *scn)
1109 {
1110 return (int)(qbman_result_SCN_state_in_mem(scn) & 0x2);
1111 }
1112
1113 int qbman_result_bpscn_is_surplus(const struct qbman_result *scn)
1114 {
1115 return (int)(qbman_result_SCN_state_in_mem(scn) & 0x4);
1116 }
1117
1118 uint64_t qbman_result_bpscn_ctx(const struct qbman_result *scn)
1119 {
1120 uint64_t ctx;
1121 uint32_t ctx_hi, ctx_lo;
1122
1123 ctx = qbman_result_SCN_ctx(scn);
1124 ctx_hi = upper32(ctx);
1125 ctx_lo = lower32(ctx);
1126 return ((uint64_t)make_le32(ctx_hi) << 32 |
1127 (uint64_t)make_le32(ctx_lo));
1128 }
1129
1130 /*****************/
1131 /* Parsing CGCU */
1132 /*****************/
1133 uint16_t qbman_result_cgcu_cgid(const struct qbman_result *scn)
1134 {
1135 return (uint16_t)qbman_result_SCN_rid_in_mem(scn) & 0xFFFF;
1136 }
1137
1138 uint64_t qbman_result_cgcu_icnt(const struct qbman_result *scn)
1139 {
1140 uint64_t ctx;
1141 uint32_t ctx_hi, ctx_lo;
1142
1143 ctx = qbman_result_SCN_ctx(scn);
1144 ctx_hi = upper32(ctx);
1145 ctx_lo = lower32(ctx);
1146 return ((uint64_t)(make_le32(ctx_hi) & 0xFF) << 32) |
1147 (uint64_t)make_le32(ctx_lo);
1148 }
1149
1150 /******************/
1151 /* Buffer release */
1152 /******************/
1153
1154 /* These should be const, eventually */
1155 /* static struct qb_attr_code code_release_num = QB_CODE(0, 0, 3); */
1156 static struct qb_attr_code code_release_set_me = QB_CODE(0, 5, 1);
1157 static struct qb_attr_code code_release_rcdi = QB_CODE(0, 6, 1);
1158 static struct qb_attr_code code_release_bpid = QB_CODE(0, 16, 16);
1159
1160 void qbman_release_desc_clear(struct qbman_release_desc *d)
1161 {
1162 uint32_t *cl;
1163
1164 memset(d, 0, sizeof(*d));
1165 cl = qb_cl(d);
1166 qb_attr_code_encode(&code_release_set_me, cl, 1);
1167 }
1168
1169 void qbman_release_desc_set_bpid(struct qbman_release_desc *d, uint32_t bpid)
1170 {
1171 uint32_t *cl = qb_cl(d);
1172
1173 qb_attr_code_encode(&code_release_bpid, cl, bpid);
1174 }
1175
1176 void qbman_release_desc_set_rcdi(struct qbman_release_desc *d, int enable)
1177 {
1178 uint32_t *cl = qb_cl(d);
1179
1180 qb_attr_code_encode(&code_release_rcdi, cl, !!enable);
1181 }
1182
1183 #define RAR_IDX(rar) ((rar) & 0x7)
1184 #define RAR_VB(rar) ((rar) & 0x80)
1185 #define RAR_SUCCESS(rar) ((rar) & 0x100)
1186
1187 int qbman_swp_release(struct qbman_swp *s, const struct qbman_release_desc *d,
1188 const uint64_t *buffers, unsigned int num_buffers)
1189 {
1190 uint32_t *p;
1191 const uint32_t *cl = qb_cl(d);
1192 uint32_t rar = qbman_cinh_read(&s->sys, QBMAN_CINH_SWP_RAR);
1193
1194 pr_debug("RAR=%08x\n", rar);
1195 if (!RAR_SUCCESS(rar))
1196 return -EBUSY;
1197 QBMAN_BUG_ON(!num_buffers || (num_buffers > 7));
1198 /* Start the release command */
1199 p = qbman_cena_write_start_wo_shadow(&s->sys,
1200 QBMAN_CENA_SWP_RCR(RAR_IDX(rar)));
1201 /* Copy the caller's buffer pointers to the command */
1202 u64_to_le32_copy(&p[2], buffers, num_buffers);
1203 /* Set the verb byte, have to substitute in the valid-bit and the number
1204 * of buffers.
1205 */
1206 lwsync();
1207 p[0] = cl[0] | RAR_VB(rar) | num_buffers;
1208 qbman_cena_write_complete_wo_shadow(&s->sys,
1209 QBMAN_CENA_SWP_RCR(RAR_IDX(rar)));
1210 return 0;
1211 }
1212
1213 /*******************/
1214 /* Buffer acquires */
1215 /*******************/
1216
1217 /* These should be const, eventually */
1218 static struct qb_attr_code code_acquire_bpid = QB_CODE(0, 16, 16);
1219 static struct qb_attr_code code_acquire_num = QB_CODE(1, 0, 3);
1220 static struct qb_attr_code code_acquire_r_num = QB_CODE(1, 0, 3);
1221
1222 int qbman_swp_acquire(struct qbman_swp *s, uint32_t bpid, uint64_t *buffers,
1223 unsigned int num_buffers)
1224 {
1225 uint32_t *p;
1226 uint32_t rslt, num;
1227
1228 QBMAN_BUG_ON(!num_buffers || (num_buffers > 7));
1229
1230 /* Start the management command */
1231 p = qbman_swp_mc_start(s);
1232
1233 if (!p)
1234 return -EBUSY;
1235
1236 /* Encode the caller-provided attributes */
1237 qb_attr_code_encode(&code_acquire_bpid, p, bpid);
1238 qb_attr_code_encode(&code_acquire_num, p, num_buffers);
1239
1240 /* Complete the management command */
1241 p = qbman_swp_mc_complete(s, p, p[0] | QBMAN_MC_ACQUIRE);
1242
1243 /* Decode the outcome */
1244 rslt = qb_attr_code_decode(&code_generic_rslt, p);
1245 num = qb_attr_code_decode(&code_acquire_r_num, p);
1246 QBMAN_BUG_ON(qb_attr_code_decode(&code_generic_verb, p) !=
1247 QBMAN_MC_ACQUIRE);
1248
1249 /* Determine success or failure */
1250 if (unlikely(rslt != QBMAN_MC_RSLT_OK)) {
1251 pr_err("Acquire buffers from BPID 0x%x failed, code=0x%02x\n",
1252 bpid, rslt);
1253 return -EIO;
1254 }
1255 QBMAN_BUG_ON(num > num_buffers);
1256 /* Copy the acquired buffers to the caller's array */
1257 u64_from_le32_copy(buffers, &p[2], num);
1258 return (int)num;
1259 }
1260
1261 /*****************/
1262 /* FQ management */
1263 /*****************/
1264
1265 static struct qb_attr_code code_fqalt_fqid = QB_CODE(1, 0, 32);
1266
1267 static int qbman_swp_alt_fq_state(struct qbman_swp *s, uint32_t fqid,
1268 uint8_t alt_fq_verb)
1269 {
1270 uint32_t *p;
1271 uint32_t rslt;
1272
1273 /* Start the management command */
1274 p = qbman_swp_mc_start(s);
1275 if (!p)
1276 return -EBUSY;
1277
1278 qb_attr_code_encode(&code_fqalt_fqid, p, fqid);
1279 /* Complete the management command */
1280 p = qbman_swp_mc_complete(s, p, p[0] | alt_fq_verb);
1281
1282 /* Decode the outcome */
1283 rslt = qb_attr_code_decode(&code_generic_rslt, p);
1284 QBMAN_BUG_ON(qb_attr_code_decode(&code_generic_verb, p) != alt_fq_verb);
1285
1286 /* Determine success or failure */
1287 if (unlikely(rslt != QBMAN_MC_RSLT_OK)) {
1288 pr_err("ALT FQID %d failed: verb = 0x%08x, code = 0x%02x\n",
1289 fqid, alt_fq_verb, rslt);
1290 return -EIO;
1291 }
1292
1293 return 0;
1294 }
1295
1296 int qbman_swp_fq_schedule(struct qbman_swp *s, uint32_t fqid)
1297 {
1298 return qbman_swp_alt_fq_state(s, fqid, QBMAN_FQ_SCHEDULE);
1299 }
1300
1301 int qbman_swp_fq_force(struct qbman_swp *s, uint32_t fqid)
1302 {
1303 return qbman_swp_alt_fq_state(s, fqid, QBMAN_FQ_FORCE);
1304 }
1305
1306 int qbman_swp_fq_xon(struct qbman_swp *s, uint32_t fqid)
1307 {
1308 return qbman_swp_alt_fq_state(s, fqid, QBMAN_FQ_XON);
1309 }
1310
1311 int qbman_swp_fq_xoff(struct qbman_swp *s, uint32_t fqid)
1312 {
1313 return qbman_swp_alt_fq_state(s, fqid, QBMAN_FQ_XOFF);
1314 }
1315
1316 /**********************/
1317 /* Channel management */
1318 /**********************/
1319
1320 static struct qb_attr_code code_cdan_cid = QB_CODE(0, 16, 12);
1321 static struct qb_attr_code code_cdan_we = QB_CODE(1, 0, 8);
1322 static struct qb_attr_code code_cdan_en = QB_CODE(1, 8, 1);
1323 static struct qb_attr_code code_cdan_ctx_lo = QB_CODE(2, 0, 32);
1324
1325 /* Hide "ICD" for now as we don't use it, don't set it, and don't test it, so it
1326 * would be irresponsible to expose it.
1327 */
1328 #define CODE_CDAN_WE_EN 0x1
1329 #define CODE_CDAN_WE_CTX 0x4
1330
1331 static int qbman_swp_CDAN_set(struct qbman_swp *s, uint16_t channelid,
1332 uint8_t we_mask, uint8_t cdan_en,
1333 uint64_t ctx)
1334 {
1335 uint32_t *p;
1336 uint32_t rslt;
1337
1338 /* Start the management command */
1339 p = qbman_swp_mc_start(s);
1340 if (!p)
1341 return -EBUSY;
1342
1343 /* Encode the caller-provided attributes */
1344 qb_attr_code_encode(&code_cdan_cid, p, channelid);
1345 qb_attr_code_encode(&code_cdan_we, p, we_mask);
1346 qb_attr_code_encode(&code_cdan_en, p, cdan_en);
1347 qb_attr_code_encode_64(&code_cdan_ctx_lo, (uint64_t *)p, ctx);
1348 /* Complete the management command */
1349 p = qbman_swp_mc_complete(s, p, p[0] | QBMAN_WQCHAN_CONFIGURE);
1350
1351 /* Decode the outcome */
1352 rslt = qb_attr_code_decode(&code_generic_rslt, p);
1353 QBMAN_BUG_ON(qb_attr_code_decode(&code_generic_verb, p)
1354 != QBMAN_WQCHAN_CONFIGURE);
1355
1356 /* Determine success or failure */
1357 if (unlikely(rslt != QBMAN_MC_RSLT_OK)) {
1358 pr_err("CDAN cQID %d failed: code = 0x%02x\n",
1359 channelid, rslt);
1360 return -EIO;
1361 }
1362
1363 return 0;
1364 }
1365
1366 int qbman_swp_CDAN_set_context(struct qbman_swp *s, uint16_t channelid,
1367 uint64_t ctx)
1368 {
1369 return qbman_swp_CDAN_set(s, channelid,
1370 CODE_CDAN_WE_CTX,
1371 0, ctx);
1372 }
1373
1374 int qbman_swp_CDAN_enable(struct qbman_swp *s, uint16_t channelid)
1375 {
1376 return qbman_swp_CDAN_set(s, channelid,
1377 CODE_CDAN_WE_EN,
1378 1, 0);
1379 }
1380
1381 int qbman_swp_CDAN_disable(struct qbman_swp *s, uint16_t channelid)
1382 {
1383 return qbman_swp_CDAN_set(s, channelid,
1384 CODE_CDAN_WE_EN,
1385 0, 0);
1386 }
1387
1388 int qbman_swp_CDAN_set_context_enable(struct qbman_swp *s, uint16_t channelid,
1389 uint64_t ctx)
1390 {
1391 return qbman_swp_CDAN_set(s, channelid,
1392 CODE_CDAN_WE_EN | CODE_CDAN_WE_CTX,
1393 1, ctx);
1394 }
1395
1396 uint8_t qbman_get_dqrr_idx(struct qbman_result *dqrr)
1397 {
1398 return QBMAN_IDX_FROM_DQRR(dqrr);
1399 }
1400
1401 struct qbman_result *qbman_get_dqrr_from_idx(struct qbman_swp *s, uint8_t idx)
1402 {
1403 struct qbman_result *dq;
1404
1405 dq = qbman_cena_read(&s->sys, QBMAN_CENA_SWP_DQRR(idx));
1406 return dq;
1407 }
1408
1409 int qbman_swp_send_multiple(struct qbman_swp *s,
1410 const struct qbman_eq_desc *d,
1411 const struct qbman_fd *fd,
1412 int frames_to_send)
1413 {
1414 uint32_t *p;
1415 const uint32_t *cl = qb_cl(d);
1416 uint32_t eqcr_ci;
1417 uint8_t diff;
1418 int sent = 0;
1419 int i;
1420 int initial_pi = s->eqcr.pi;
1421 uint64_t start_pointer;
1422
1423 if (!s->eqcr.available) {
1424 eqcr_ci = s->eqcr.ci;
1425 s->eqcr.ci = qbman_cena_read_reg(&s->sys,
1426 QBMAN_CENA_SWP_EQCR_CI) & 0xF;
1427 diff = qm_cyc_diff(QBMAN_EQCR_SIZE,
1428 eqcr_ci, s->eqcr.ci);
1429 if (!diff)
1430 goto done;
1431 s->eqcr.available += diff;
1432 }
1433
1434 /* we are trying to send frames_to_send,
1435 * if we have enough space in the ring
1436 */
1437 while (s->eqcr.available && frames_to_send--) {
1438 p = qbman_cena_write_start_wo_shadow_fast(&s->sys,
1439 QBMAN_CENA_SWP_EQCR((initial_pi) & 7));
1440 /* Write command (except of first byte) and FD */
1441 memcpy(&p[1], &cl[1], 7 * 4);
1442 memcpy(&p[8], &fd[sent], sizeof(struct qbman_fd));
1443
1444 initial_pi++;
1445 initial_pi &= 0xF;
1446 s->eqcr.available--;
1447 sent++;
1448 }
1449
1450 done:
1451 initial_pi = s->eqcr.pi;
1452 lwsync();
1453
1454 /* in order for flushes to complete faster:
1455 * we use a following trick: we record all lines in 32 bit word
1456 */
1457
1458 initial_pi = s->eqcr.pi;
1459 for (i = 0; i < sent; i++) {
1460 p = qbman_cena_write_start_wo_shadow_fast(&s->sys,
1461 QBMAN_CENA_SWP_EQCR((initial_pi) & 7));
1462
1463 p[0] = cl[0] | s->eqcr.pi_vb;
1464 initial_pi++;
1465 initial_pi &= 0xF;
1466
1467 if (!(initial_pi & 7))
1468 s->eqcr.pi_vb ^= QB_VALID_BIT;
1469 }
1470
1471 initial_pi = s->eqcr.pi;
1472
1473 /* We need to flush all the lines but without
1474 * load/store operations between them.
1475 * We assign start_pointer before we start loop so that
1476 * in loop we do not read it from memory
1477 */
1478 start_pointer = (uint64_t)s->sys.addr_cena;
1479 for (i = 0; i < sent; i++) {
1480 p = (uint32_t *)(start_pointer
1481 + QBMAN_CENA_SWP_EQCR(initial_pi & 7));
1482 dcbf((uint64_t)p);
1483 initial_pi++;
1484 initial_pi &= 0xF;
1485 }
1486
1487 /* Update producer index for the next call */
1488 s->eqcr.pi = initial_pi;
1489
1490 return sent;
1491 }
1492
1493 int qbman_get_version(void)
1494 {
1495 return qman_version;
1496 }