]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_ast/src/ast.rs
New upstream version 1.61.0+dfsg1
[rustc.git] / compiler / rustc_ast / src / ast.rs
1 //! The Rust abstract syntax tree module.
2 //!
3 //! This module contains common structures forming the language AST.
4 //! Two main entities in the module are [`Item`] (which represents an AST element with
5 //! additional metadata), and [`ItemKind`] (which represents a concrete type and contains
6 //! information specific to the type of the item).
7 //!
8 //! Other module items worth mentioning:
9 //! - [`Ty`] and [`TyKind`]: A parsed Rust type.
10 //! - [`Expr`] and [`ExprKind`]: A parsed Rust expression.
11 //! - [`Pat`] and [`PatKind`]: A parsed Rust pattern. Patterns are often dual to expressions.
12 //! - [`Stmt`] and [`StmtKind`]: An executable action that does not return a value.
13 //! - [`FnDecl`], [`FnHeader`] and [`Param`]: Metadata associated with a function declaration.
14 //! - [`Generics`], [`GenericParam`], [`WhereClause`]: Metadata associated with generic parameters.
15 //! - [`EnumDef`] and [`Variant`]: Enum declaration.
16 //! - [`Lit`] and [`LitKind`]: Literal expressions.
17 //! - [`MacroDef`], [`MacStmtStyle`], [`MacCall`], [`MacDelimiter`]: Macro definition and invocation.
18 //! - [`Attribute`]: Metadata associated with item.
19 //! - [`UnOp`], [`BinOp`], and [`BinOpKind`]: Unary and binary operators.
20
21 pub use crate::util::parser::ExprPrecedence;
22 pub use GenericArgs::*;
23 pub use UnsafeSource::*;
24
25 use crate::ptr::P;
26 use crate::token::{self, CommentKind, DelimToken, Token};
27 use crate::tokenstream::{DelimSpan, LazyTokenStream, TokenStream, TokenTree};
28
29 use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
30 use rustc_data_structures::stack::ensure_sufficient_stack;
31 use rustc_data_structures::sync::Lrc;
32 use rustc_data_structures::thin_vec::ThinVec;
33 use rustc_macros::HashStable_Generic;
34 use rustc_serialize::{self, Decoder, Encoder};
35 use rustc_span::source_map::{respan, Spanned};
36 use rustc_span::symbol::{kw, sym, Ident, Symbol};
37 use rustc_span::{Span, DUMMY_SP};
38
39 use std::cmp::Ordering;
40 use std::convert::TryFrom;
41 use std::fmt;
42 use std::mem;
43
44 #[cfg(test)]
45 mod tests;
46
47 /// A "Label" is an identifier of some point in sources,
48 /// e.g. in the following code:
49 ///
50 /// ```rust
51 /// 'outer: loop {
52 /// break 'outer;
53 /// }
54 /// ```
55 ///
56 /// `'outer` is a label.
57 #[derive(Clone, Encodable, Decodable, Copy, HashStable_Generic, Eq, PartialEq)]
58 pub struct Label {
59 pub ident: Ident,
60 }
61
62 impl fmt::Debug for Label {
63 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
64 write!(f, "label({:?})", self.ident)
65 }
66 }
67
68 /// A "Lifetime" is an annotation of the scope in which variable
69 /// can be used, e.g. `'a` in `&'a i32`.
70 #[derive(Clone, Encodable, Decodable, Copy)]
71 pub struct Lifetime {
72 pub id: NodeId,
73 pub ident: Ident,
74 }
75
76 impl fmt::Debug for Lifetime {
77 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
78 write!(f, "lifetime({}: {})", self.id, self)
79 }
80 }
81
82 impl fmt::Display for Lifetime {
83 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
84 write!(f, "{}", self.ident.name)
85 }
86 }
87
88 /// A "Path" is essentially Rust's notion of a name.
89 ///
90 /// It's represented as a sequence of identifiers,
91 /// along with a bunch of supporting information.
92 ///
93 /// E.g., `std::cmp::PartialEq`.
94 #[derive(Clone, Encodable, Decodable, Debug)]
95 pub struct Path {
96 pub span: Span,
97 /// The segments in the path: the things separated by `::`.
98 /// Global paths begin with `kw::PathRoot`.
99 pub segments: Vec<PathSegment>,
100 pub tokens: Option<LazyTokenStream>,
101 }
102
103 impl PartialEq<Symbol> for Path {
104 #[inline]
105 fn eq(&self, symbol: &Symbol) -> bool {
106 self.segments.len() == 1 && { self.segments[0].ident.name == *symbol }
107 }
108 }
109
110 impl<CTX> HashStable<CTX> for Path {
111 fn hash_stable(&self, hcx: &mut CTX, hasher: &mut StableHasher) {
112 self.segments.len().hash_stable(hcx, hasher);
113 for segment in &self.segments {
114 segment.ident.name.hash_stable(hcx, hasher);
115 }
116 }
117 }
118
119 impl Path {
120 // Convert a span and an identifier to the corresponding
121 // one-segment path.
122 pub fn from_ident(ident: Ident) -> Path {
123 Path { segments: vec![PathSegment::from_ident(ident)], span: ident.span, tokens: None }
124 }
125
126 pub fn is_global(&self) -> bool {
127 !self.segments.is_empty() && self.segments[0].ident.name == kw::PathRoot
128 }
129 }
130
131 /// A segment of a path: an identifier, an optional lifetime, and a set of types.
132 ///
133 /// E.g., `std`, `String` or `Box<T>`.
134 #[derive(Clone, Encodable, Decodable, Debug)]
135 pub struct PathSegment {
136 /// The identifier portion of this path segment.
137 pub ident: Ident,
138
139 pub id: NodeId,
140
141 /// Type/lifetime parameters attached to this path. They come in
142 /// two flavors: `Path<A,B,C>` and `Path(A,B) -> C`.
143 /// `None` means that no parameter list is supplied (`Path`),
144 /// `Some` means that parameter list is supplied (`Path<X, Y>`)
145 /// but it can be empty (`Path<>`).
146 /// `P` is used as a size optimization for the common case with no parameters.
147 pub args: Option<P<GenericArgs>>,
148 }
149
150 impl PathSegment {
151 pub fn from_ident(ident: Ident) -> Self {
152 PathSegment { ident, id: DUMMY_NODE_ID, args: None }
153 }
154
155 pub fn path_root(span: Span) -> Self {
156 PathSegment::from_ident(Ident::new(kw::PathRoot, span))
157 }
158
159 pub fn span(&self) -> Span {
160 match &self.args {
161 Some(args) => self.ident.span.to(args.span()),
162 None => self.ident.span,
163 }
164 }
165 }
166
167 /// The arguments of a path segment.
168 ///
169 /// E.g., `<A, B>` as in `Foo<A, B>` or `(A, B)` as in `Foo(A, B)`.
170 #[derive(Clone, Encodable, Decodable, Debug)]
171 pub enum GenericArgs {
172 /// The `<'a, A, B, C>` in `foo::bar::baz::<'a, A, B, C>`.
173 AngleBracketed(AngleBracketedArgs),
174 /// The `(A, B)` and `C` in `Foo(A, B) -> C`.
175 Parenthesized(ParenthesizedArgs),
176 }
177
178 impl GenericArgs {
179 pub fn is_angle_bracketed(&self) -> bool {
180 matches!(self, AngleBracketed(..))
181 }
182
183 pub fn span(&self) -> Span {
184 match *self {
185 AngleBracketed(ref data) => data.span,
186 Parenthesized(ref data) => data.span,
187 }
188 }
189 }
190
191 /// Concrete argument in the sequence of generic args.
192 #[derive(Clone, Encodable, Decodable, Debug)]
193 pub enum GenericArg {
194 /// `'a` in `Foo<'a>`
195 Lifetime(Lifetime),
196 /// `Bar` in `Foo<Bar>`
197 Type(P<Ty>),
198 /// `1` in `Foo<1>`
199 Const(AnonConst),
200 }
201
202 impl GenericArg {
203 pub fn span(&self) -> Span {
204 match self {
205 GenericArg::Lifetime(lt) => lt.ident.span,
206 GenericArg::Type(ty) => ty.span,
207 GenericArg::Const(ct) => ct.value.span,
208 }
209 }
210 }
211
212 /// A path like `Foo<'a, T>`.
213 #[derive(Clone, Encodable, Decodable, Debug, Default)]
214 pub struct AngleBracketedArgs {
215 /// The overall span.
216 pub span: Span,
217 /// The comma separated parts in the `<...>`.
218 pub args: Vec<AngleBracketedArg>,
219 }
220
221 /// Either an argument for a parameter e.g., `'a`, `Vec<u8>`, `0`,
222 /// or a constraint on an associated item, e.g., `Item = String` or `Item: Bound`.
223 #[derive(Clone, Encodable, Decodable, Debug)]
224 pub enum AngleBracketedArg {
225 /// Argument for a generic parameter.
226 Arg(GenericArg),
227 /// Constraint for an associated item.
228 Constraint(AssocConstraint),
229 }
230
231 impl AngleBracketedArg {
232 pub fn span(&self) -> Span {
233 match self {
234 AngleBracketedArg::Arg(arg) => arg.span(),
235 AngleBracketedArg::Constraint(constraint) => constraint.span,
236 }
237 }
238 }
239
240 impl Into<Option<P<GenericArgs>>> for AngleBracketedArgs {
241 fn into(self) -> Option<P<GenericArgs>> {
242 Some(P(GenericArgs::AngleBracketed(self)))
243 }
244 }
245
246 impl Into<Option<P<GenericArgs>>> for ParenthesizedArgs {
247 fn into(self) -> Option<P<GenericArgs>> {
248 Some(P(GenericArgs::Parenthesized(self)))
249 }
250 }
251
252 /// A path like `Foo(A, B) -> C`.
253 #[derive(Clone, Encodable, Decodable, Debug)]
254 pub struct ParenthesizedArgs {
255 /// ```text
256 /// Foo(A, B) -> C
257 /// ^^^^^^^^^^^^^^
258 /// ```
259 pub span: Span,
260
261 /// `(A, B)`
262 pub inputs: Vec<P<Ty>>,
263
264 /// ```text
265 /// Foo(A, B) -> C
266 /// ^^^^^^
267 /// ```
268 pub inputs_span: Span,
269
270 /// `C`
271 pub output: FnRetTy,
272 }
273
274 impl ParenthesizedArgs {
275 pub fn as_angle_bracketed_args(&self) -> AngleBracketedArgs {
276 let args = self
277 .inputs
278 .iter()
279 .cloned()
280 .map(|input| AngleBracketedArg::Arg(GenericArg::Type(input)))
281 .collect();
282 AngleBracketedArgs { span: self.inputs_span, args }
283 }
284 }
285
286 pub use crate::node_id::{NodeId, CRATE_NODE_ID, DUMMY_NODE_ID};
287
288 /// A modifier on a bound, e.g., `?Trait` or `~const Trait`.
289 ///
290 /// Negative bounds should also be handled here.
291 #[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug)]
292 pub enum TraitBoundModifier {
293 /// No modifiers
294 None,
295
296 /// `?Trait`
297 Maybe,
298
299 /// `~const Trait`
300 MaybeConst,
301
302 /// `~const ?Trait`
303 //
304 // This parses but will be rejected during AST validation.
305 MaybeConstMaybe,
306 }
307
308 /// The AST represents all type param bounds as types.
309 /// `typeck::collect::compute_bounds` matches these against
310 /// the "special" built-in traits (see `middle::lang_items`) and
311 /// detects `Copy`, `Send` and `Sync`.
312 #[derive(Clone, Encodable, Decodable, Debug)]
313 pub enum GenericBound {
314 Trait(PolyTraitRef, TraitBoundModifier),
315 Outlives(Lifetime),
316 }
317
318 impl GenericBound {
319 pub fn span(&self) -> Span {
320 match self {
321 GenericBound::Trait(ref t, ..) => t.span,
322 GenericBound::Outlives(ref l) => l.ident.span,
323 }
324 }
325 }
326
327 pub type GenericBounds = Vec<GenericBound>;
328
329 /// Specifies the enforced ordering for generic parameters. In the future,
330 /// if we wanted to relax this order, we could override `PartialEq` and
331 /// `PartialOrd`, to allow the kinds to be unordered.
332 #[derive(Hash, Clone, Copy)]
333 pub enum ParamKindOrd {
334 Lifetime,
335 Type,
336 Const,
337 // `Infer` is not actually constructed directly from the AST, but is implicitly constructed
338 // during HIR lowering, and `ParamKindOrd` will implicitly order inferred variables last.
339 Infer,
340 }
341
342 impl Ord for ParamKindOrd {
343 fn cmp(&self, other: &Self) -> Ordering {
344 use ParamKindOrd::*;
345 let to_int = |v| match v {
346 Lifetime => 0,
347 Infer | Type | Const => 1,
348 };
349
350 to_int(*self).cmp(&to_int(*other))
351 }
352 }
353 impl PartialOrd for ParamKindOrd {
354 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
355 Some(self.cmp(other))
356 }
357 }
358 impl PartialEq for ParamKindOrd {
359 fn eq(&self, other: &Self) -> bool {
360 self.cmp(other) == Ordering::Equal
361 }
362 }
363 impl Eq for ParamKindOrd {}
364
365 impl fmt::Display for ParamKindOrd {
366 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
367 match self {
368 ParamKindOrd::Lifetime => "lifetime".fmt(f),
369 ParamKindOrd::Type => "type".fmt(f),
370 ParamKindOrd::Const { .. } => "const".fmt(f),
371 ParamKindOrd::Infer => "infer".fmt(f),
372 }
373 }
374 }
375
376 #[derive(Clone, Encodable, Decodable, Debug)]
377 pub enum GenericParamKind {
378 /// A lifetime definition (e.g., `'a: 'b + 'c + 'd`).
379 Lifetime,
380 Type {
381 default: Option<P<Ty>>,
382 },
383 Const {
384 ty: P<Ty>,
385 /// Span of the `const` keyword.
386 kw_span: Span,
387 /// Optional default value for the const generic param
388 default: Option<AnonConst>,
389 },
390 }
391
392 #[derive(Clone, Encodable, Decodable, Debug)]
393 pub struct GenericParam {
394 pub id: NodeId,
395 pub ident: Ident,
396 pub attrs: AttrVec,
397 pub bounds: GenericBounds,
398 pub is_placeholder: bool,
399 pub kind: GenericParamKind,
400 }
401
402 impl GenericParam {
403 pub fn span(&self) -> Span {
404 match &self.kind {
405 GenericParamKind::Lifetime | GenericParamKind::Type { default: None } => {
406 self.ident.span
407 }
408 GenericParamKind::Type { default: Some(ty) } => self.ident.span.to(ty.span),
409 GenericParamKind::Const { kw_span, default: Some(default), .. } => {
410 kw_span.to(default.value.span)
411 }
412 GenericParamKind::Const { kw_span, default: None, ty } => kw_span.to(ty.span),
413 }
414 }
415 }
416
417 /// Represents lifetime, type and const parameters attached to a declaration of
418 /// a function, enum, trait, etc.
419 #[derive(Clone, Encodable, Decodable, Debug)]
420 pub struct Generics {
421 pub params: Vec<GenericParam>,
422 pub where_clause: WhereClause,
423 pub span: Span,
424 }
425
426 impl Default for Generics {
427 /// Creates an instance of `Generics`.
428 fn default() -> Generics {
429 Generics {
430 params: Vec::new(),
431 where_clause: WhereClause {
432 has_where_token: false,
433 predicates: Vec::new(),
434 span: DUMMY_SP,
435 },
436 span: DUMMY_SP,
437 }
438 }
439 }
440
441 /// A where-clause in a definition.
442 #[derive(Clone, Encodable, Decodable, Debug)]
443 pub struct WhereClause {
444 /// `true` if we ate a `where` token: this can happen
445 /// if we parsed no predicates (e.g. `struct Foo where {}`).
446 /// This allows us to accurately pretty-print
447 /// in `nt_to_tokenstream`
448 pub has_where_token: bool,
449 pub predicates: Vec<WherePredicate>,
450 pub span: Span,
451 }
452
453 /// A single predicate in a where-clause.
454 #[derive(Clone, Encodable, Decodable, Debug)]
455 pub enum WherePredicate {
456 /// A type binding (e.g., `for<'c> Foo: Send + Clone + 'c`).
457 BoundPredicate(WhereBoundPredicate),
458 /// A lifetime predicate (e.g., `'a: 'b + 'c`).
459 RegionPredicate(WhereRegionPredicate),
460 /// An equality predicate (unsupported).
461 EqPredicate(WhereEqPredicate),
462 }
463
464 impl WherePredicate {
465 pub fn span(&self) -> Span {
466 match self {
467 WherePredicate::BoundPredicate(p) => p.span,
468 WherePredicate::RegionPredicate(p) => p.span,
469 WherePredicate::EqPredicate(p) => p.span,
470 }
471 }
472 }
473
474 /// A type bound.
475 ///
476 /// E.g., `for<'c> Foo: Send + Clone + 'c`.
477 #[derive(Clone, Encodable, Decodable, Debug)]
478 pub struct WhereBoundPredicate {
479 pub span: Span,
480 /// Any generics from a `for` binding.
481 pub bound_generic_params: Vec<GenericParam>,
482 /// The type being bounded.
483 pub bounded_ty: P<Ty>,
484 /// Trait and lifetime bounds (`Clone + Send + 'static`).
485 pub bounds: GenericBounds,
486 }
487
488 /// A lifetime predicate.
489 ///
490 /// E.g., `'a: 'b + 'c`.
491 #[derive(Clone, Encodable, Decodable, Debug)]
492 pub struct WhereRegionPredicate {
493 pub span: Span,
494 pub lifetime: Lifetime,
495 pub bounds: GenericBounds,
496 }
497
498 /// An equality predicate (unsupported).
499 ///
500 /// E.g., `T = int`.
501 #[derive(Clone, Encodable, Decodable, Debug)]
502 pub struct WhereEqPredicate {
503 pub id: NodeId,
504 pub span: Span,
505 pub lhs_ty: P<Ty>,
506 pub rhs_ty: P<Ty>,
507 }
508
509 #[derive(Clone, Encodable, Decodable, Debug)]
510 pub struct Crate {
511 pub attrs: Vec<Attribute>,
512 pub items: Vec<P<Item>>,
513 pub spans: ModSpans,
514 /// Must be equal to `CRATE_NODE_ID` after the crate root is expanded, but may hold
515 /// expansion placeholders or an unassigned value (`DUMMY_NODE_ID`) before that.
516 pub id: NodeId,
517 pub is_placeholder: bool,
518 }
519
520 /// Possible values inside of compile-time attribute lists.
521 ///
522 /// E.g., the '..' in `#[name(..)]`.
523 #[derive(Clone, Encodable, Decodable, Debug, HashStable_Generic)]
524 pub enum NestedMetaItem {
525 /// A full MetaItem, for recursive meta items.
526 MetaItem(MetaItem),
527 /// A literal.
528 ///
529 /// E.g., `"foo"`, `64`, `true`.
530 Literal(Lit),
531 }
532
533 /// A spanned compile-time attribute item.
534 ///
535 /// E.g., `#[test]`, `#[derive(..)]`, `#[rustfmt::skip]` or `#[feature = "foo"]`.
536 #[derive(Clone, Encodable, Decodable, Debug, HashStable_Generic)]
537 pub struct MetaItem {
538 pub path: Path,
539 pub kind: MetaItemKind,
540 pub span: Span,
541 }
542
543 /// A compile-time attribute item.
544 ///
545 /// E.g., `#[test]`, `#[derive(..)]` or `#[feature = "foo"]`.
546 #[derive(Clone, Encodable, Decodable, Debug, HashStable_Generic)]
547 pub enum MetaItemKind {
548 /// Word meta item.
549 ///
550 /// E.g., `test` as in `#[test]`.
551 Word,
552 /// List meta item.
553 ///
554 /// E.g., `derive(..)` as in `#[derive(..)]`.
555 List(Vec<NestedMetaItem>),
556 /// Name value meta item.
557 ///
558 /// E.g., `feature = "foo"` as in `#[feature = "foo"]`.
559 NameValue(Lit),
560 }
561
562 /// A block (`{ .. }`).
563 ///
564 /// E.g., `{ .. }` as in `fn foo() { .. }`.
565 #[derive(Clone, Encodable, Decodable, Debug)]
566 pub struct Block {
567 /// The statements in the block.
568 pub stmts: Vec<Stmt>,
569 pub id: NodeId,
570 /// Distinguishes between `unsafe { ... }` and `{ ... }`.
571 pub rules: BlockCheckMode,
572 pub span: Span,
573 pub tokens: Option<LazyTokenStream>,
574 /// The following *isn't* a parse error, but will cause multiple errors in following stages.
575 /// ```
576 /// let x = {
577 /// foo: var
578 /// };
579 /// ```
580 /// #34255
581 pub could_be_bare_literal: bool,
582 }
583
584 /// A match pattern.
585 ///
586 /// Patterns appear in match statements and some other contexts, such as `let` and `if let`.
587 #[derive(Clone, Encodable, Decodable, Debug)]
588 pub struct Pat {
589 pub id: NodeId,
590 pub kind: PatKind,
591 pub span: Span,
592 pub tokens: Option<LazyTokenStream>,
593 }
594
595 impl Pat {
596 /// Attempt reparsing the pattern as a type.
597 /// This is intended for use by diagnostics.
598 pub fn to_ty(&self) -> Option<P<Ty>> {
599 let kind = match &self.kind {
600 // In a type expression `_` is an inference variable.
601 PatKind::Wild => TyKind::Infer,
602 // An IDENT pattern with no binding mode would be valid as path to a type. E.g. `u32`.
603 PatKind::Ident(BindingMode::ByValue(Mutability::Not), ident, None) => {
604 TyKind::Path(None, Path::from_ident(*ident))
605 }
606 PatKind::Path(qself, path) => TyKind::Path(qself.clone(), path.clone()),
607 PatKind::MacCall(mac) => TyKind::MacCall(mac.clone()),
608 // `&mut? P` can be reinterpreted as `&mut? T` where `T` is `P` reparsed as a type.
609 PatKind::Ref(pat, mutbl) => {
610 pat.to_ty().map(|ty| TyKind::Rptr(None, MutTy { ty, mutbl: *mutbl }))?
611 }
612 // A slice/array pattern `[P]` can be reparsed as `[T]`, an unsized array,
613 // when `P` can be reparsed as a type `T`.
614 PatKind::Slice(pats) if pats.len() == 1 => pats[0].to_ty().map(TyKind::Slice)?,
615 // A tuple pattern `(P0, .., Pn)` can be reparsed as `(T0, .., Tn)`
616 // assuming `T0` to `Tn` are all syntactically valid as types.
617 PatKind::Tuple(pats) => {
618 let mut tys = Vec::with_capacity(pats.len());
619 // FIXME(#48994) - could just be collected into an Option<Vec>
620 for pat in pats {
621 tys.push(pat.to_ty()?);
622 }
623 TyKind::Tup(tys)
624 }
625 _ => return None,
626 };
627
628 Some(P(Ty { kind, id: self.id, span: self.span, tokens: None }))
629 }
630
631 /// Walk top-down and call `it` in each place where a pattern occurs
632 /// starting with the root pattern `walk` is called on. If `it` returns
633 /// false then we will descend no further but siblings will be processed.
634 pub fn walk(&self, it: &mut impl FnMut(&Pat) -> bool) {
635 if !it(self) {
636 return;
637 }
638
639 match &self.kind {
640 // Walk into the pattern associated with `Ident` (if any).
641 PatKind::Ident(_, _, Some(p)) => p.walk(it),
642
643 // Walk into each field of struct.
644 PatKind::Struct(_, _, fields, _) => fields.iter().for_each(|field| field.pat.walk(it)),
645
646 // Sequence of patterns.
647 PatKind::TupleStruct(_, _, s)
648 | PatKind::Tuple(s)
649 | PatKind::Slice(s)
650 | PatKind::Or(s) => s.iter().for_each(|p| p.walk(it)),
651
652 // Trivial wrappers over inner patterns.
653 PatKind::Box(s) | PatKind::Ref(s, _) | PatKind::Paren(s) => s.walk(it),
654
655 // These patterns do not contain subpatterns, skip.
656 PatKind::Wild
657 | PatKind::Rest
658 | PatKind::Lit(_)
659 | PatKind::Range(..)
660 | PatKind::Ident(..)
661 | PatKind::Path(..)
662 | PatKind::MacCall(_) => {}
663 }
664 }
665
666 /// Is this a `..` pattern?
667 pub fn is_rest(&self) -> bool {
668 matches!(self.kind, PatKind::Rest)
669 }
670 }
671
672 /// A single field in a struct pattern.
673 ///
674 /// Patterns like the fields of `Foo { x, ref y, ref mut z }`
675 /// are treated the same as `x: x, y: ref y, z: ref mut z`,
676 /// except when `is_shorthand` is true.
677 #[derive(Clone, Encodable, Decodable, Debug)]
678 pub struct PatField {
679 /// The identifier for the field.
680 pub ident: Ident,
681 /// The pattern the field is destructured to.
682 pub pat: P<Pat>,
683 pub is_shorthand: bool,
684 pub attrs: AttrVec,
685 pub id: NodeId,
686 pub span: Span,
687 pub is_placeholder: bool,
688 }
689
690 #[derive(Clone, PartialEq, Encodable, Decodable, Debug, Copy)]
691 pub enum BindingMode {
692 ByRef(Mutability),
693 ByValue(Mutability),
694 }
695
696 #[derive(Clone, Encodable, Decodable, Debug)]
697 pub enum RangeEnd {
698 /// `..=` or `...`
699 Included(RangeSyntax),
700 /// `..`
701 Excluded,
702 }
703
704 #[derive(Clone, Encodable, Decodable, Debug)]
705 pub enum RangeSyntax {
706 /// `...`
707 DotDotDot,
708 /// `..=`
709 DotDotEq,
710 }
711
712 /// All the different flavors of pattern that Rust recognizes.
713 #[derive(Clone, Encodable, Decodable, Debug)]
714 pub enum PatKind {
715 /// Represents a wildcard pattern (`_`).
716 Wild,
717
718 /// A `PatKind::Ident` may either be a new bound variable (`ref mut binding @ OPT_SUBPATTERN`),
719 /// or a unit struct/variant pattern, or a const pattern (in the last two cases the third
720 /// field must be `None`). Disambiguation cannot be done with parser alone, so it happens
721 /// during name resolution.
722 Ident(BindingMode, Ident, Option<P<Pat>>),
723
724 /// A struct or struct variant pattern (e.g., `Variant {x, y, ..}`).
725 /// The `bool` is `true` in the presence of a `..`.
726 Struct(Option<QSelf>, Path, Vec<PatField>, /* recovered */ bool),
727
728 /// A tuple struct/variant pattern (`Variant(x, y, .., z)`).
729 TupleStruct(Option<QSelf>, Path, Vec<P<Pat>>),
730
731 /// An or-pattern `A | B | C`.
732 /// Invariant: `pats.len() >= 2`.
733 Or(Vec<P<Pat>>),
734
735 /// A possibly qualified path pattern.
736 /// Unqualified path patterns `A::B::C` can legally refer to variants, structs, constants
737 /// or associated constants. Qualified path patterns `<A>::B::C`/`<A as Trait>::B::C` can
738 /// only legally refer to associated constants.
739 Path(Option<QSelf>, Path),
740
741 /// A tuple pattern (`(a, b)`).
742 Tuple(Vec<P<Pat>>),
743
744 /// A `box` pattern.
745 Box(P<Pat>),
746
747 /// A reference pattern (e.g., `&mut (a, b)`).
748 Ref(P<Pat>, Mutability),
749
750 /// A literal.
751 Lit(P<Expr>),
752
753 /// A range pattern (e.g., `1...2`, `1..2`, `1..`, `..2`, `1..=2`, `..=2`).
754 Range(Option<P<Expr>>, Option<P<Expr>>, Spanned<RangeEnd>),
755
756 /// A slice pattern `[a, b, c]`.
757 Slice(Vec<P<Pat>>),
758
759 /// A rest pattern `..`.
760 ///
761 /// Syntactically it is valid anywhere.
762 ///
763 /// Semantically however, it only has meaning immediately inside:
764 /// - a slice pattern: `[a, .., b]`,
765 /// - a binding pattern immediately inside a slice pattern: `[a, r @ ..]`,
766 /// - a tuple pattern: `(a, .., b)`,
767 /// - a tuple struct/variant pattern: `$path(a, .., b)`.
768 ///
769 /// In all of these cases, an additional restriction applies,
770 /// only one rest pattern may occur in the pattern sequences.
771 Rest,
772
773 /// Parentheses in patterns used for grouping (i.e., `(PAT)`).
774 Paren(P<Pat>),
775
776 /// A macro pattern; pre-expansion.
777 MacCall(MacCall),
778 }
779
780 #[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, Copy)]
781 #[derive(HashStable_Generic, Encodable, Decodable)]
782 pub enum Mutability {
783 Mut,
784 Not,
785 }
786
787 impl Mutability {
788 pub fn invert(self) -> Self {
789 match self {
790 Mutability::Mut => Mutability::Not,
791 Mutability::Not => Mutability::Mut,
792 }
793 }
794
795 pub fn prefix_str(&self) -> &'static str {
796 match self {
797 Mutability::Mut => "mut ",
798 Mutability::Not => "",
799 }
800 }
801 }
802
803 /// The kind of borrow in an `AddrOf` expression,
804 /// e.g., `&place` or `&raw const place`.
805 #[derive(Clone, Copy, PartialEq, Eq, Debug)]
806 #[derive(Encodable, Decodable, HashStable_Generic)]
807 pub enum BorrowKind {
808 /// A normal borrow, `&$expr` or `&mut $expr`.
809 /// The resulting type is either `&'a T` or `&'a mut T`
810 /// where `T = typeof($expr)` and `'a` is some lifetime.
811 Ref,
812 /// A raw borrow, `&raw const $expr` or `&raw mut $expr`.
813 /// The resulting type is either `*const T` or `*mut T`
814 /// where `T = typeof($expr)`.
815 Raw,
816 }
817
818 #[derive(Clone, PartialEq, Encodable, Decodable, Debug, Copy)]
819 pub enum BinOpKind {
820 /// The `+` operator (addition)
821 Add,
822 /// The `-` operator (subtraction)
823 Sub,
824 /// The `*` operator (multiplication)
825 Mul,
826 /// The `/` operator (division)
827 Div,
828 /// The `%` operator (modulus)
829 Rem,
830 /// The `&&` operator (logical and)
831 And,
832 /// The `||` operator (logical or)
833 Or,
834 /// The `^` operator (bitwise xor)
835 BitXor,
836 /// The `&` operator (bitwise and)
837 BitAnd,
838 /// The `|` operator (bitwise or)
839 BitOr,
840 /// The `<<` operator (shift left)
841 Shl,
842 /// The `>>` operator (shift right)
843 Shr,
844 /// The `==` operator (equality)
845 Eq,
846 /// The `<` operator (less than)
847 Lt,
848 /// The `<=` operator (less than or equal to)
849 Le,
850 /// The `!=` operator (not equal to)
851 Ne,
852 /// The `>=` operator (greater than or equal to)
853 Ge,
854 /// The `>` operator (greater than)
855 Gt,
856 }
857
858 impl BinOpKind {
859 pub fn to_string(&self) -> &'static str {
860 use BinOpKind::*;
861 match *self {
862 Add => "+",
863 Sub => "-",
864 Mul => "*",
865 Div => "/",
866 Rem => "%",
867 And => "&&",
868 Or => "||",
869 BitXor => "^",
870 BitAnd => "&",
871 BitOr => "|",
872 Shl => "<<",
873 Shr => ">>",
874 Eq => "==",
875 Lt => "<",
876 Le => "<=",
877 Ne => "!=",
878 Ge => ">=",
879 Gt => ">",
880 }
881 }
882 pub fn lazy(&self) -> bool {
883 matches!(self, BinOpKind::And | BinOpKind::Or)
884 }
885
886 pub fn is_comparison(&self) -> bool {
887 use BinOpKind::*;
888 // Note for developers: please keep this as is;
889 // we want compilation to fail if another variant is added.
890 match *self {
891 Eq | Lt | Le | Ne | Gt | Ge => true,
892 And | Or | Add | Sub | Mul | Div | Rem | BitXor | BitAnd | BitOr | Shl | Shr => false,
893 }
894 }
895 }
896
897 pub type BinOp = Spanned<BinOpKind>;
898
899 /// Unary operator.
900 ///
901 /// Note that `&data` is not an operator, it's an `AddrOf` expression.
902 #[derive(Clone, Encodable, Decodable, Debug, Copy)]
903 pub enum UnOp {
904 /// The `*` operator for dereferencing
905 Deref,
906 /// The `!` operator for logical inversion
907 Not,
908 /// The `-` operator for negation
909 Neg,
910 }
911
912 impl UnOp {
913 pub fn to_string(op: UnOp) -> &'static str {
914 match op {
915 UnOp::Deref => "*",
916 UnOp::Not => "!",
917 UnOp::Neg => "-",
918 }
919 }
920 }
921
922 /// A statement
923 #[derive(Clone, Encodable, Decodable, Debug)]
924 pub struct Stmt {
925 pub id: NodeId,
926 pub kind: StmtKind,
927 pub span: Span,
928 }
929
930 impl Stmt {
931 pub fn tokens(&self) -> Option<&LazyTokenStream> {
932 match self.kind {
933 StmtKind::Local(ref local) => local.tokens.as_ref(),
934 StmtKind::Item(ref item) => item.tokens.as_ref(),
935 StmtKind::Expr(ref expr) | StmtKind::Semi(ref expr) => expr.tokens.as_ref(),
936 StmtKind::Empty => None,
937 StmtKind::MacCall(ref mac) => mac.tokens.as_ref(),
938 }
939 }
940
941 pub fn has_trailing_semicolon(&self) -> bool {
942 match &self.kind {
943 StmtKind::Semi(_) => true,
944 StmtKind::MacCall(mac) => matches!(mac.style, MacStmtStyle::Semicolon),
945 _ => false,
946 }
947 }
948
949 /// Converts a parsed `Stmt` to a `Stmt` with
950 /// a trailing semicolon.
951 ///
952 /// This only modifies the parsed AST struct, not the attached
953 /// `LazyTokenStream`. The parser is responsible for calling
954 /// `CreateTokenStream::add_trailing_semi` when there is actually
955 /// a semicolon in the tokenstream.
956 pub fn add_trailing_semicolon(mut self) -> Self {
957 self.kind = match self.kind {
958 StmtKind::Expr(expr) => StmtKind::Semi(expr),
959 StmtKind::MacCall(mac) => {
960 StmtKind::MacCall(mac.map(|MacCallStmt { mac, style: _, attrs, tokens }| {
961 MacCallStmt { mac, style: MacStmtStyle::Semicolon, attrs, tokens }
962 }))
963 }
964 kind => kind,
965 };
966
967 self
968 }
969
970 pub fn is_item(&self) -> bool {
971 matches!(self.kind, StmtKind::Item(_))
972 }
973
974 pub fn is_expr(&self) -> bool {
975 matches!(self.kind, StmtKind::Expr(_))
976 }
977 }
978
979 #[derive(Clone, Encodable, Decodable, Debug)]
980 pub enum StmtKind {
981 /// A local (let) binding.
982 Local(P<Local>),
983 /// An item definition.
984 Item(P<Item>),
985 /// Expr without trailing semi-colon.
986 Expr(P<Expr>),
987 /// Expr with a trailing semi-colon.
988 Semi(P<Expr>),
989 /// Just a trailing semi-colon.
990 Empty,
991 /// Macro.
992 MacCall(P<MacCallStmt>),
993 }
994
995 #[derive(Clone, Encodable, Decodable, Debug)]
996 pub struct MacCallStmt {
997 pub mac: MacCall,
998 pub style: MacStmtStyle,
999 pub attrs: AttrVec,
1000 pub tokens: Option<LazyTokenStream>,
1001 }
1002
1003 #[derive(Clone, Copy, PartialEq, Encodable, Decodable, Debug)]
1004 pub enum MacStmtStyle {
1005 /// The macro statement had a trailing semicolon (e.g., `foo! { ... };`
1006 /// `foo!(...);`, `foo![...];`).
1007 Semicolon,
1008 /// The macro statement had braces (e.g., `foo! { ... }`).
1009 Braces,
1010 /// The macro statement had parentheses or brackets and no semicolon (e.g.,
1011 /// `foo!(...)`). All of these will end up being converted into macro
1012 /// expressions.
1013 NoBraces,
1014 }
1015
1016 /// Local represents a `let` statement, e.g., `let <pat>:<ty> = <expr>;`.
1017 #[derive(Clone, Encodable, Decodable, Debug)]
1018 pub struct Local {
1019 pub id: NodeId,
1020 pub pat: P<Pat>,
1021 pub ty: Option<P<Ty>>,
1022 pub kind: LocalKind,
1023 pub span: Span,
1024 pub attrs: AttrVec,
1025 pub tokens: Option<LazyTokenStream>,
1026 }
1027
1028 #[derive(Clone, Encodable, Decodable, Debug)]
1029 pub enum LocalKind {
1030 /// Local declaration.
1031 /// Example: `let x;`
1032 Decl,
1033 /// Local declaration with an initializer.
1034 /// Example: `let x = y;`
1035 Init(P<Expr>),
1036 /// Local declaration with an initializer and an `else` clause.
1037 /// Example: `let Some(x) = y else { return };`
1038 InitElse(P<Expr>, P<Block>),
1039 }
1040
1041 impl LocalKind {
1042 pub fn init(&self) -> Option<&Expr> {
1043 match self {
1044 Self::Decl => None,
1045 Self::Init(i) | Self::InitElse(i, _) => Some(i),
1046 }
1047 }
1048
1049 pub fn init_else_opt(&self) -> Option<(&Expr, Option<&Block>)> {
1050 match self {
1051 Self::Decl => None,
1052 Self::Init(init) => Some((init, None)),
1053 Self::InitElse(init, els) => Some((init, Some(els))),
1054 }
1055 }
1056 }
1057
1058 /// An arm of a 'match'.
1059 ///
1060 /// E.g., `0..=10 => { println!("match!") }` as in
1061 ///
1062 /// ```
1063 /// match 123 {
1064 /// 0..=10 => { println!("match!") },
1065 /// _ => { println!("no match!") },
1066 /// }
1067 /// ```
1068 #[derive(Clone, Encodable, Decodable, Debug)]
1069 pub struct Arm {
1070 pub attrs: AttrVec,
1071 /// Match arm pattern, e.g. `10` in `match foo { 10 => {}, _ => {} }`
1072 pub pat: P<Pat>,
1073 /// Match arm guard, e.g. `n > 10` in `match foo { n if n > 10 => {}, _ => {} }`
1074 pub guard: Option<P<Expr>>,
1075 /// Match arm body.
1076 pub body: P<Expr>,
1077 pub span: Span,
1078 pub id: NodeId,
1079 pub is_placeholder: bool,
1080 }
1081
1082 /// A single field in a struct expression, e.g. `x: value` and `y` in `Foo { x: value, y }`.
1083 #[derive(Clone, Encodable, Decodable, Debug)]
1084 pub struct ExprField {
1085 pub attrs: AttrVec,
1086 pub id: NodeId,
1087 pub span: Span,
1088 pub ident: Ident,
1089 pub expr: P<Expr>,
1090 pub is_shorthand: bool,
1091 pub is_placeholder: bool,
1092 }
1093
1094 #[derive(Clone, PartialEq, Encodable, Decodable, Debug, Copy)]
1095 pub enum BlockCheckMode {
1096 Default,
1097 Unsafe(UnsafeSource),
1098 }
1099
1100 #[derive(Clone, PartialEq, Encodable, Decodable, Debug, Copy)]
1101 pub enum UnsafeSource {
1102 CompilerGenerated,
1103 UserProvided,
1104 }
1105
1106 /// A constant (expression) that's not an item or associated item,
1107 /// but needs its own `DefId` for type-checking, const-eval, etc.
1108 /// These are usually found nested inside types (e.g., array lengths)
1109 /// or expressions (e.g., repeat counts), and also used to define
1110 /// explicit discriminant values for enum variants.
1111 #[derive(Clone, Encodable, Decodable, Debug)]
1112 pub struct AnonConst {
1113 pub id: NodeId,
1114 pub value: P<Expr>,
1115 }
1116
1117 /// An expression.
1118 #[derive(Clone, Encodable, Decodable, Debug)]
1119 pub struct Expr {
1120 pub id: NodeId,
1121 pub kind: ExprKind,
1122 pub span: Span,
1123 pub attrs: AttrVec,
1124 pub tokens: Option<LazyTokenStream>,
1125 }
1126
1127 // `Expr` is used a lot. Make sure it doesn't unintentionally get bigger.
1128 #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
1129 rustc_data_structures::static_assert_size!(Expr, 104);
1130
1131 impl Expr {
1132 /// Returns `true` if this expression would be valid somewhere that expects a value;
1133 /// for example, an `if` condition.
1134 pub fn returns(&self) -> bool {
1135 if let ExprKind::Block(ref block, _) = self.kind {
1136 match block.stmts.last().map(|last_stmt| &last_stmt.kind) {
1137 // Implicit return
1138 Some(StmtKind::Expr(_)) => true,
1139 // Last statement is an explicit return?
1140 Some(StmtKind::Semi(expr)) => matches!(expr.kind, ExprKind::Ret(_)),
1141 // This is a block that doesn't end in either an implicit or explicit return.
1142 _ => false,
1143 }
1144 } else {
1145 // This is not a block, it is a value.
1146 true
1147 }
1148 }
1149
1150 /// Is this expr either `N`, or `{ N }`.
1151 ///
1152 /// If this is not the case, name resolution does not resolve `N` when using
1153 /// `min_const_generics` as more complex expressions are not supported.
1154 pub fn is_potential_trivial_const_param(&self) -> bool {
1155 let this = if let ExprKind::Block(ref block, None) = self.kind {
1156 if block.stmts.len() == 1 {
1157 if let StmtKind::Expr(ref expr) = block.stmts[0].kind { expr } else { self }
1158 } else {
1159 self
1160 }
1161 } else {
1162 self
1163 };
1164
1165 if let ExprKind::Path(None, ref path) = this.kind {
1166 if path.segments.len() == 1 && path.segments[0].args.is_none() {
1167 return true;
1168 }
1169 }
1170
1171 false
1172 }
1173
1174 pub fn to_bound(&self) -> Option<GenericBound> {
1175 match &self.kind {
1176 ExprKind::Path(None, path) => Some(GenericBound::Trait(
1177 PolyTraitRef::new(Vec::new(), path.clone(), self.span),
1178 TraitBoundModifier::None,
1179 )),
1180 _ => None,
1181 }
1182 }
1183
1184 pub fn peel_parens(&self) -> &Expr {
1185 let mut expr = self;
1186 while let ExprKind::Paren(inner) = &expr.kind {
1187 expr = &inner;
1188 }
1189 expr
1190 }
1191
1192 /// Attempts to reparse as `Ty` (for diagnostic purposes).
1193 pub fn to_ty(&self) -> Option<P<Ty>> {
1194 let kind = match &self.kind {
1195 // Trivial conversions.
1196 ExprKind::Path(qself, path) => TyKind::Path(qself.clone(), path.clone()),
1197 ExprKind::MacCall(mac) => TyKind::MacCall(mac.clone()),
1198
1199 ExprKind::Paren(expr) => expr.to_ty().map(TyKind::Paren)?,
1200
1201 ExprKind::AddrOf(BorrowKind::Ref, mutbl, expr) => {
1202 expr.to_ty().map(|ty| TyKind::Rptr(None, MutTy { ty, mutbl: *mutbl }))?
1203 }
1204
1205 ExprKind::Repeat(expr, expr_len) => {
1206 expr.to_ty().map(|ty| TyKind::Array(ty, expr_len.clone()))?
1207 }
1208
1209 ExprKind::Array(exprs) if exprs.len() == 1 => exprs[0].to_ty().map(TyKind::Slice)?,
1210
1211 ExprKind::Tup(exprs) => {
1212 let tys = exprs.iter().map(|expr| expr.to_ty()).collect::<Option<Vec<_>>>()?;
1213 TyKind::Tup(tys)
1214 }
1215
1216 // If binary operator is `Add` and both `lhs` and `rhs` are trait bounds,
1217 // then type of result is trait object.
1218 // Otherwise we don't assume the result type.
1219 ExprKind::Binary(binop, lhs, rhs) if binop.node == BinOpKind::Add => {
1220 if let (Some(lhs), Some(rhs)) = (lhs.to_bound(), rhs.to_bound()) {
1221 TyKind::TraitObject(vec![lhs, rhs], TraitObjectSyntax::None)
1222 } else {
1223 return None;
1224 }
1225 }
1226
1227 ExprKind::Underscore => TyKind::Infer,
1228
1229 // This expression doesn't look like a type syntactically.
1230 _ => return None,
1231 };
1232
1233 Some(P(Ty { kind, id: self.id, span: self.span, tokens: None }))
1234 }
1235
1236 pub fn precedence(&self) -> ExprPrecedence {
1237 match self.kind {
1238 ExprKind::Box(_) => ExprPrecedence::Box,
1239 ExprKind::Array(_) => ExprPrecedence::Array,
1240 ExprKind::ConstBlock(_) => ExprPrecedence::ConstBlock,
1241 ExprKind::Call(..) => ExprPrecedence::Call,
1242 ExprKind::MethodCall(..) => ExprPrecedence::MethodCall,
1243 ExprKind::Tup(_) => ExprPrecedence::Tup,
1244 ExprKind::Binary(op, ..) => ExprPrecedence::Binary(op.node),
1245 ExprKind::Unary(..) => ExprPrecedence::Unary,
1246 ExprKind::Lit(_) => ExprPrecedence::Lit,
1247 ExprKind::Type(..) | ExprKind::Cast(..) => ExprPrecedence::Cast,
1248 ExprKind::Let(..) => ExprPrecedence::Let,
1249 ExprKind::If(..) => ExprPrecedence::If,
1250 ExprKind::While(..) => ExprPrecedence::While,
1251 ExprKind::ForLoop(..) => ExprPrecedence::ForLoop,
1252 ExprKind::Loop(..) => ExprPrecedence::Loop,
1253 ExprKind::Match(..) => ExprPrecedence::Match,
1254 ExprKind::Closure(..) => ExprPrecedence::Closure,
1255 ExprKind::Block(..) => ExprPrecedence::Block,
1256 ExprKind::TryBlock(..) => ExprPrecedence::TryBlock,
1257 ExprKind::Async(..) => ExprPrecedence::Async,
1258 ExprKind::Await(..) => ExprPrecedence::Await,
1259 ExprKind::Assign(..) => ExprPrecedence::Assign,
1260 ExprKind::AssignOp(..) => ExprPrecedence::AssignOp,
1261 ExprKind::Field(..) => ExprPrecedence::Field,
1262 ExprKind::Index(..) => ExprPrecedence::Index,
1263 ExprKind::Range(..) => ExprPrecedence::Range,
1264 ExprKind::Underscore => ExprPrecedence::Path,
1265 ExprKind::Path(..) => ExprPrecedence::Path,
1266 ExprKind::AddrOf(..) => ExprPrecedence::AddrOf,
1267 ExprKind::Break(..) => ExprPrecedence::Break,
1268 ExprKind::Continue(..) => ExprPrecedence::Continue,
1269 ExprKind::Ret(..) => ExprPrecedence::Ret,
1270 ExprKind::InlineAsm(..) => ExprPrecedence::InlineAsm,
1271 ExprKind::MacCall(..) => ExprPrecedence::Mac,
1272 ExprKind::Struct(..) => ExprPrecedence::Struct,
1273 ExprKind::Repeat(..) => ExprPrecedence::Repeat,
1274 ExprKind::Paren(..) => ExprPrecedence::Paren,
1275 ExprKind::Try(..) => ExprPrecedence::Try,
1276 ExprKind::Yield(..) => ExprPrecedence::Yield,
1277 ExprKind::Err => ExprPrecedence::Err,
1278 }
1279 }
1280
1281 pub fn take(&mut self) -> Self {
1282 mem::replace(
1283 self,
1284 Expr {
1285 id: DUMMY_NODE_ID,
1286 kind: ExprKind::Err,
1287 span: DUMMY_SP,
1288 attrs: ThinVec::new(),
1289 tokens: None,
1290 },
1291 )
1292 }
1293 }
1294
1295 /// Limit types of a range (inclusive or exclusive)
1296 #[derive(Copy, Clone, PartialEq, Encodable, Decodable, Debug)]
1297 pub enum RangeLimits {
1298 /// Inclusive at the beginning, exclusive at the end
1299 HalfOpen,
1300 /// Inclusive at the beginning and end
1301 Closed,
1302 }
1303
1304 #[derive(Clone, Encodable, Decodable, Debug)]
1305 pub enum StructRest {
1306 /// `..x`.
1307 Base(P<Expr>),
1308 /// `..`.
1309 Rest(Span),
1310 /// No trailing `..` or expression.
1311 None,
1312 }
1313
1314 #[derive(Clone, Encodable, Decodable, Debug)]
1315 pub struct StructExpr {
1316 pub qself: Option<QSelf>,
1317 pub path: Path,
1318 pub fields: Vec<ExprField>,
1319 pub rest: StructRest,
1320 }
1321
1322 #[derive(Clone, Encodable, Decodable, Debug)]
1323 pub enum ExprKind {
1324 /// A `box x` expression.
1325 Box(P<Expr>),
1326 /// An array (`[a, b, c, d]`)
1327 Array(Vec<P<Expr>>),
1328 /// Allow anonymous constants from an inline `const` block
1329 ConstBlock(AnonConst),
1330 /// A function call
1331 ///
1332 /// The first field resolves to the function itself,
1333 /// and the second field is the list of arguments.
1334 /// This also represents calling the constructor of
1335 /// tuple-like ADTs such as tuple structs and enum variants.
1336 Call(P<Expr>, Vec<P<Expr>>),
1337 /// A method call (`x.foo::<'static, Bar, Baz>(a, b, c, d)`)
1338 ///
1339 /// The `PathSegment` represents the method name and its generic arguments
1340 /// (within the angle brackets).
1341 /// The first element of the vector of an `Expr` is the expression that evaluates
1342 /// to the object on which the method is being called on (the receiver),
1343 /// and the remaining elements are the rest of the arguments.
1344 /// Thus, `x.foo::<Bar, Baz>(a, b, c, d)` is represented as
1345 /// `ExprKind::MethodCall(PathSegment { foo, [Bar, Baz] }, [x, a, b, c, d])`.
1346 /// This `Span` is the span of the function, without the dot and receiver
1347 /// (e.g. `foo(a, b)` in `x.foo(a, b)`
1348 MethodCall(PathSegment, Vec<P<Expr>>, Span),
1349 /// A tuple (e.g., `(a, b, c, d)`).
1350 Tup(Vec<P<Expr>>),
1351 /// A binary operation (e.g., `a + b`, `a * b`).
1352 Binary(BinOp, P<Expr>, P<Expr>),
1353 /// A unary operation (e.g., `!x`, `*x`).
1354 Unary(UnOp, P<Expr>),
1355 /// A literal (e.g., `1`, `"foo"`).
1356 Lit(Lit),
1357 /// A cast (e.g., `foo as f64`).
1358 Cast(P<Expr>, P<Ty>),
1359 /// A type ascription (e.g., `42: usize`).
1360 Type(P<Expr>, P<Ty>),
1361 /// A `let pat = expr` expression that is only semantically allowed in the condition
1362 /// of `if` / `while` expressions. (e.g., `if let 0 = x { .. }`).
1363 ///
1364 /// `Span` represents the whole `let pat = expr` statement.
1365 Let(P<Pat>, P<Expr>, Span),
1366 /// An `if` block, with an optional `else` block.
1367 ///
1368 /// `if expr { block } else { expr }`
1369 If(P<Expr>, P<Block>, Option<P<Expr>>),
1370 /// A while loop, with an optional label.
1371 ///
1372 /// `'label: while expr { block }`
1373 While(P<Expr>, P<Block>, Option<Label>),
1374 /// A `for` loop, with an optional label.
1375 ///
1376 /// `'label: for pat in expr { block }`
1377 ///
1378 /// This is desugared to a combination of `loop` and `match` expressions.
1379 ForLoop(P<Pat>, P<Expr>, P<Block>, Option<Label>),
1380 /// Conditionless loop (can be exited with `break`, `continue`, or `return`).
1381 ///
1382 /// `'label: loop { block }`
1383 Loop(P<Block>, Option<Label>),
1384 /// A `match` block.
1385 Match(P<Expr>, Vec<Arm>),
1386 /// A closure (e.g., `move |a, b, c| a + b + c`).
1387 ///
1388 /// The final span is the span of the argument block `|...|`.
1389 Closure(CaptureBy, Async, Movability, P<FnDecl>, P<Expr>, Span),
1390 /// A block (`'label: { ... }`).
1391 Block(P<Block>, Option<Label>),
1392 /// An async block (`async move { ... }`).
1393 ///
1394 /// The `NodeId` is the `NodeId` for the closure that results from
1395 /// desugaring an async block, just like the NodeId field in the
1396 /// `Async::Yes` variant. This is necessary in order to create a def for the
1397 /// closure which can be used as a parent of any child defs. Defs
1398 /// created during lowering cannot be made the parent of any other
1399 /// preexisting defs.
1400 Async(CaptureBy, NodeId, P<Block>),
1401 /// An await expression (`my_future.await`).
1402 Await(P<Expr>),
1403
1404 /// A try block (`try { ... }`).
1405 TryBlock(P<Block>),
1406
1407 /// An assignment (`a = foo()`).
1408 /// The `Span` argument is the span of the `=` token.
1409 Assign(P<Expr>, P<Expr>, Span),
1410 /// An assignment with an operator.
1411 ///
1412 /// E.g., `a += 1`.
1413 AssignOp(BinOp, P<Expr>, P<Expr>),
1414 /// Access of a named (e.g., `obj.foo`) or unnamed (e.g., `obj.0`) struct field.
1415 Field(P<Expr>, Ident),
1416 /// An indexing operation (e.g., `foo[2]`).
1417 Index(P<Expr>, P<Expr>),
1418 /// A range (e.g., `1..2`, `1..`, `..2`, `1..=2`, `..=2`; and `..` in destructuring assignment).
1419 Range(Option<P<Expr>>, Option<P<Expr>>, RangeLimits),
1420 /// An underscore, used in destructuring assignment to ignore a value.
1421 Underscore,
1422
1423 /// Variable reference, possibly containing `::` and/or type
1424 /// parameters (e.g., `foo::bar::<baz>`).
1425 ///
1426 /// Optionally "qualified" (e.g., `<Vec<T> as SomeTrait>::SomeType`).
1427 Path(Option<QSelf>, Path),
1428
1429 /// A referencing operation (`&a`, `&mut a`, `&raw const a` or `&raw mut a`).
1430 AddrOf(BorrowKind, Mutability, P<Expr>),
1431 /// A `break`, with an optional label to break, and an optional expression.
1432 Break(Option<Label>, Option<P<Expr>>),
1433 /// A `continue`, with an optional label.
1434 Continue(Option<Label>),
1435 /// A `return`, with an optional value to be returned.
1436 Ret(Option<P<Expr>>),
1437
1438 /// Output of the `asm!()` macro.
1439 InlineAsm(P<InlineAsm>),
1440
1441 /// A macro invocation; pre-expansion.
1442 MacCall(MacCall),
1443
1444 /// A struct literal expression.
1445 ///
1446 /// E.g., `Foo {x: 1, y: 2}`, or `Foo {x: 1, .. rest}`.
1447 Struct(P<StructExpr>),
1448
1449 /// An array literal constructed from one repeated element.
1450 ///
1451 /// E.g., `[1; 5]`. The expression is the element to be
1452 /// repeated; the constant is the number of times to repeat it.
1453 Repeat(P<Expr>, AnonConst),
1454
1455 /// No-op: used solely so we can pretty-print faithfully.
1456 Paren(P<Expr>),
1457
1458 /// A try expression (`expr?`).
1459 Try(P<Expr>),
1460
1461 /// A `yield`, with an optional value to be yielded.
1462 Yield(Option<P<Expr>>),
1463
1464 /// Placeholder for an expression that wasn't syntactically well formed in some way.
1465 Err,
1466 }
1467
1468 /// The explicit `Self` type in a "qualified path". The actual
1469 /// path, including the trait and the associated item, is stored
1470 /// separately. `position` represents the index of the associated
1471 /// item qualified with this `Self` type.
1472 ///
1473 /// ```ignore (only-for-syntax-highlight)
1474 /// <Vec<T> as a::b::Trait>::AssociatedItem
1475 /// ^~~~~ ~~~~~~~~~~~~~~^
1476 /// ty position = 3
1477 ///
1478 /// <Vec<T>>::AssociatedItem
1479 /// ^~~~~ ^
1480 /// ty position = 0
1481 /// ```
1482 #[derive(Clone, Encodable, Decodable, Debug)]
1483 pub struct QSelf {
1484 pub ty: P<Ty>,
1485
1486 /// The span of `a::b::Trait` in a path like `<Vec<T> as
1487 /// a::b::Trait>::AssociatedItem`; in the case where `position ==
1488 /// 0`, this is an empty span.
1489 pub path_span: Span,
1490 pub position: usize,
1491 }
1492
1493 /// A capture clause used in closures and `async` blocks.
1494 #[derive(Clone, Copy, PartialEq, Encodable, Decodable, Debug, HashStable_Generic)]
1495 pub enum CaptureBy {
1496 /// `move |x| y + x`.
1497 Value,
1498 /// `move` keyword was not specified.
1499 Ref,
1500 }
1501
1502 /// The movability of a generator / closure literal:
1503 /// whether a generator contains self-references, causing it to be `!Unpin`.
1504 #[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Encodable, Decodable, Debug, Copy)]
1505 #[derive(HashStable_Generic)]
1506 pub enum Movability {
1507 /// May contain self-references, `!Unpin`.
1508 Static,
1509 /// Must not contain self-references, `Unpin`.
1510 Movable,
1511 }
1512
1513 /// Represents a macro invocation. The `path` indicates which macro
1514 /// is being invoked, and the `args` are arguments passed to it.
1515 #[derive(Clone, Encodable, Decodable, Debug)]
1516 pub struct MacCall {
1517 pub path: Path,
1518 pub args: P<MacArgs>,
1519 pub prior_type_ascription: Option<(Span, bool)>,
1520 }
1521
1522 impl MacCall {
1523 pub fn span(&self) -> Span {
1524 self.path.span.to(self.args.span().unwrap_or(self.path.span))
1525 }
1526 }
1527
1528 /// Arguments passed to an attribute or a function-like macro.
1529 #[derive(Clone, Encodable, Decodable, Debug, HashStable_Generic)]
1530 pub enum MacArgs {
1531 /// No arguments - `#[attr]`.
1532 Empty,
1533 /// Delimited arguments - `#[attr()/[]/{}]` or `mac!()/[]/{}`.
1534 Delimited(DelimSpan, MacDelimiter, TokenStream),
1535 /// Arguments of a key-value attribute - `#[attr = "value"]`.
1536 Eq(
1537 /// Span of the `=` token.
1538 Span,
1539 /// "value" as a nonterminal token.
1540 Token,
1541 ),
1542 }
1543
1544 impl MacArgs {
1545 pub fn delim(&self) -> DelimToken {
1546 match self {
1547 MacArgs::Delimited(_, delim, _) => delim.to_token(),
1548 MacArgs::Empty | MacArgs::Eq(..) => token::NoDelim,
1549 }
1550 }
1551
1552 pub fn span(&self) -> Option<Span> {
1553 match self {
1554 MacArgs::Empty => None,
1555 MacArgs::Delimited(dspan, ..) => Some(dspan.entire()),
1556 MacArgs::Eq(eq_span, token) => Some(eq_span.to(token.span)),
1557 }
1558 }
1559
1560 /// Tokens inside the delimiters or after `=`.
1561 /// Proc macros see these tokens, for example.
1562 pub fn inner_tokens(&self) -> TokenStream {
1563 match self {
1564 MacArgs::Empty => TokenStream::default(),
1565 MacArgs::Delimited(.., tokens) => tokens.clone(),
1566 MacArgs::Eq(.., token) => TokenTree::Token(token.clone()).into(),
1567 }
1568 }
1569
1570 /// Whether a macro with these arguments needs a semicolon
1571 /// when used as a standalone item or statement.
1572 pub fn need_semicolon(&self) -> bool {
1573 !matches!(self, MacArgs::Delimited(_, MacDelimiter::Brace, _))
1574 }
1575 }
1576
1577 #[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug, HashStable_Generic)]
1578 pub enum MacDelimiter {
1579 Parenthesis,
1580 Bracket,
1581 Brace,
1582 }
1583
1584 impl MacDelimiter {
1585 pub fn to_token(self) -> DelimToken {
1586 match self {
1587 MacDelimiter::Parenthesis => DelimToken::Paren,
1588 MacDelimiter::Bracket => DelimToken::Bracket,
1589 MacDelimiter::Brace => DelimToken::Brace,
1590 }
1591 }
1592
1593 pub fn from_token(delim: DelimToken) -> Option<MacDelimiter> {
1594 match delim {
1595 token::Paren => Some(MacDelimiter::Parenthesis),
1596 token::Bracket => Some(MacDelimiter::Bracket),
1597 token::Brace => Some(MacDelimiter::Brace),
1598 token::NoDelim => None,
1599 }
1600 }
1601 }
1602
1603 /// Represents a macro definition.
1604 #[derive(Clone, Encodable, Decodable, Debug, HashStable_Generic)]
1605 pub struct MacroDef {
1606 pub body: P<MacArgs>,
1607 /// `true` if macro was defined with `macro_rules`.
1608 pub macro_rules: bool,
1609 }
1610
1611 #[derive(Clone, Encodable, Decodable, Debug, Copy, Hash, Eq, PartialEq)]
1612 #[derive(HashStable_Generic)]
1613 pub enum StrStyle {
1614 /// A regular string, like `"foo"`.
1615 Cooked,
1616 /// A raw string, like `r##"foo"##`.
1617 ///
1618 /// The value is the number of `#` symbols used.
1619 Raw(u8),
1620 }
1621
1622 /// An AST literal.
1623 #[derive(Clone, Encodable, Decodable, Debug, HashStable_Generic)]
1624 pub struct Lit {
1625 /// The original literal token as written in source code.
1626 pub token: token::Lit,
1627 /// The "semantic" representation of the literal lowered from the original tokens.
1628 /// Strings are unescaped, hexadecimal forms are eliminated, etc.
1629 /// FIXME: Remove this and only create the semantic representation during lowering to HIR.
1630 pub kind: LitKind,
1631 pub span: Span,
1632 }
1633
1634 /// Same as `Lit`, but restricted to string literals.
1635 #[derive(Clone, Copy, Encodable, Decodable, Debug)]
1636 pub struct StrLit {
1637 /// The original literal token as written in source code.
1638 pub style: StrStyle,
1639 pub symbol: Symbol,
1640 pub suffix: Option<Symbol>,
1641 pub span: Span,
1642 /// The unescaped "semantic" representation of the literal lowered from the original token.
1643 /// FIXME: Remove this and only create the semantic representation during lowering to HIR.
1644 pub symbol_unescaped: Symbol,
1645 }
1646
1647 impl StrLit {
1648 pub fn as_lit(&self) -> Lit {
1649 let token_kind = match self.style {
1650 StrStyle::Cooked => token::Str,
1651 StrStyle::Raw(n) => token::StrRaw(n),
1652 };
1653 Lit {
1654 token: token::Lit::new(token_kind, self.symbol, self.suffix),
1655 span: self.span,
1656 kind: LitKind::Str(self.symbol_unescaped, self.style),
1657 }
1658 }
1659 }
1660
1661 /// Type of the integer literal based on provided suffix.
1662 #[derive(Clone, Copy, Encodable, Decodable, Debug, Hash, Eq, PartialEq)]
1663 #[derive(HashStable_Generic)]
1664 pub enum LitIntType {
1665 /// e.g. `42_i32`.
1666 Signed(IntTy),
1667 /// e.g. `42_u32`.
1668 Unsigned(UintTy),
1669 /// e.g. `42`.
1670 Unsuffixed,
1671 }
1672
1673 /// Type of the float literal based on provided suffix.
1674 #[derive(Clone, Copy, Encodable, Decodable, Debug, Hash, Eq, PartialEq)]
1675 #[derive(HashStable_Generic)]
1676 pub enum LitFloatType {
1677 /// A float literal with a suffix (`1f32` or `1E10f32`).
1678 Suffixed(FloatTy),
1679 /// A float literal without a suffix (`1.0 or 1.0E10`).
1680 Unsuffixed,
1681 }
1682
1683 /// Literal kind.
1684 ///
1685 /// E.g., `"foo"`, `42`, `12.34`, or `bool`.
1686 #[derive(Clone, Encodable, Decodable, Debug, Hash, Eq, PartialEq, HashStable_Generic)]
1687 pub enum LitKind {
1688 /// A string literal (`"foo"`).
1689 Str(Symbol, StrStyle),
1690 /// A byte string (`b"foo"`).
1691 ByteStr(Lrc<[u8]>),
1692 /// A byte char (`b'f'`).
1693 Byte(u8),
1694 /// A character literal (`'a'`).
1695 Char(char),
1696 /// An integer literal (`1`).
1697 Int(u128, LitIntType),
1698 /// A float literal (`1f64` or `1E10f64`).
1699 Float(Symbol, LitFloatType),
1700 /// A boolean literal.
1701 Bool(bool),
1702 /// Placeholder for a literal that wasn't well-formed in some way.
1703 Err(Symbol),
1704 }
1705
1706 impl LitKind {
1707 /// Returns `true` if this literal is a string.
1708 pub fn is_str(&self) -> bool {
1709 matches!(self, LitKind::Str(..))
1710 }
1711
1712 /// Returns `true` if this literal is byte literal string.
1713 pub fn is_bytestr(&self) -> bool {
1714 matches!(self, LitKind::ByteStr(_))
1715 }
1716
1717 /// Returns `true` if this is a numeric literal.
1718 pub fn is_numeric(&self) -> bool {
1719 matches!(self, LitKind::Int(..) | LitKind::Float(..))
1720 }
1721
1722 /// Returns `true` if this literal has no suffix.
1723 /// Note: this will return true for literals with prefixes such as raw strings and byte strings.
1724 pub fn is_unsuffixed(&self) -> bool {
1725 !self.is_suffixed()
1726 }
1727
1728 /// Returns `true` if this literal has a suffix.
1729 pub fn is_suffixed(&self) -> bool {
1730 match *self {
1731 // suffixed variants
1732 LitKind::Int(_, LitIntType::Signed(..) | LitIntType::Unsigned(..))
1733 | LitKind::Float(_, LitFloatType::Suffixed(..)) => true,
1734 // unsuffixed variants
1735 LitKind::Str(..)
1736 | LitKind::ByteStr(..)
1737 | LitKind::Byte(..)
1738 | LitKind::Char(..)
1739 | LitKind::Int(_, LitIntType::Unsuffixed)
1740 | LitKind::Float(_, LitFloatType::Unsuffixed)
1741 | LitKind::Bool(..)
1742 | LitKind::Err(..) => false,
1743 }
1744 }
1745 }
1746
1747 // N.B., If you change this, you'll probably want to change the corresponding
1748 // type structure in `middle/ty.rs` as well.
1749 #[derive(Clone, Encodable, Decodable, Debug)]
1750 pub struct MutTy {
1751 pub ty: P<Ty>,
1752 pub mutbl: Mutability,
1753 }
1754
1755 /// Represents a function's signature in a trait declaration,
1756 /// trait implementation, or free function.
1757 #[derive(Clone, Encodable, Decodable, Debug)]
1758 pub struct FnSig {
1759 pub header: FnHeader,
1760 pub decl: P<FnDecl>,
1761 pub span: Span,
1762 }
1763
1764 #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
1765 #[derive(Encodable, Decodable, HashStable_Generic)]
1766 pub enum FloatTy {
1767 F32,
1768 F64,
1769 }
1770
1771 impl FloatTy {
1772 pub fn name_str(self) -> &'static str {
1773 match self {
1774 FloatTy::F32 => "f32",
1775 FloatTy::F64 => "f64",
1776 }
1777 }
1778
1779 pub fn name(self) -> Symbol {
1780 match self {
1781 FloatTy::F32 => sym::f32,
1782 FloatTy::F64 => sym::f64,
1783 }
1784 }
1785 }
1786
1787 #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
1788 #[derive(Encodable, Decodable, HashStable_Generic)]
1789 pub enum IntTy {
1790 Isize,
1791 I8,
1792 I16,
1793 I32,
1794 I64,
1795 I128,
1796 }
1797
1798 impl IntTy {
1799 pub fn name_str(&self) -> &'static str {
1800 match *self {
1801 IntTy::Isize => "isize",
1802 IntTy::I8 => "i8",
1803 IntTy::I16 => "i16",
1804 IntTy::I32 => "i32",
1805 IntTy::I64 => "i64",
1806 IntTy::I128 => "i128",
1807 }
1808 }
1809
1810 pub fn name(&self) -> Symbol {
1811 match *self {
1812 IntTy::Isize => sym::isize,
1813 IntTy::I8 => sym::i8,
1814 IntTy::I16 => sym::i16,
1815 IntTy::I32 => sym::i32,
1816 IntTy::I64 => sym::i64,
1817 IntTy::I128 => sym::i128,
1818 }
1819 }
1820 }
1821
1822 #[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Copy, Debug)]
1823 #[derive(Encodable, Decodable, HashStable_Generic)]
1824 pub enum UintTy {
1825 Usize,
1826 U8,
1827 U16,
1828 U32,
1829 U64,
1830 U128,
1831 }
1832
1833 impl UintTy {
1834 pub fn name_str(&self) -> &'static str {
1835 match *self {
1836 UintTy::Usize => "usize",
1837 UintTy::U8 => "u8",
1838 UintTy::U16 => "u16",
1839 UintTy::U32 => "u32",
1840 UintTy::U64 => "u64",
1841 UintTy::U128 => "u128",
1842 }
1843 }
1844
1845 pub fn name(&self) -> Symbol {
1846 match *self {
1847 UintTy::Usize => sym::usize,
1848 UintTy::U8 => sym::u8,
1849 UintTy::U16 => sym::u16,
1850 UintTy::U32 => sym::u32,
1851 UintTy::U64 => sym::u64,
1852 UintTy::U128 => sym::u128,
1853 }
1854 }
1855 }
1856
1857 /// A constraint on an associated type (e.g., `A = Bar` in `Foo<A = Bar>` or
1858 /// `A: TraitA + TraitB` in `Foo<A: TraitA + TraitB>`).
1859 #[derive(Clone, Encodable, Decodable, Debug)]
1860 pub struct AssocConstraint {
1861 pub id: NodeId,
1862 pub ident: Ident,
1863 pub gen_args: Option<GenericArgs>,
1864 pub kind: AssocConstraintKind,
1865 pub span: Span,
1866 }
1867
1868 /// The kinds of an `AssocConstraint`.
1869 #[derive(Clone, Encodable, Decodable, Debug)]
1870 pub enum Term {
1871 Ty(P<Ty>),
1872 Const(AnonConst),
1873 }
1874
1875 impl From<P<Ty>> for Term {
1876 fn from(v: P<Ty>) -> Self {
1877 Term::Ty(v)
1878 }
1879 }
1880
1881 impl From<AnonConst> for Term {
1882 fn from(v: AnonConst) -> Self {
1883 Term::Const(v)
1884 }
1885 }
1886
1887 /// The kinds of an `AssocConstraint`.
1888 #[derive(Clone, Encodable, Decodable, Debug)]
1889 pub enum AssocConstraintKind {
1890 /// E.g., `A = Bar`, `A = 3` in `Foo<A = Bar>` where A is an associated type.
1891 Equality { term: Term },
1892 /// E.g. `A: TraitA + TraitB` in `Foo<A: TraitA + TraitB>`.
1893 Bound { bounds: GenericBounds },
1894 }
1895
1896 #[derive(Encodable, Decodable, Debug)]
1897 pub struct Ty {
1898 pub id: NodeId,
1899 pub kind: TyKind,
1900 pub span: Span,
1901 pub tokens: Option<LazyTokenStream>,
1902 }
1903
1904 impl Clone for Ty {
1905 fn clone(&self) -> Self {
1906 ensure_sufficient_stack(|| Self {
1907 id: self.id,
1908 kind: self.kind.clone(),
1909 span: self.span,
1910 tokens: self.tokens.clone(),
1911 })
1912 }
1913 }
1914
1915 impl Ty {
1916 pub fn peel_refs(&self) -> &Self {
1917 let mut final_ty = self;
1918 while let TyKind::Rptr(_, MutTy { ty, .. }) = &final_ty.kind {
1919 final_ty = &ty;
1920 }
1921 final_ty
1922 }
1923 }
1924
1925 #[derive(Clone, Encodable, Decodable, Debug)]
1926 pub struct BareFnTy {
1927 pub unsafety: Unsafe,
1928 pub ext: Extern,
1929 pub generic_params: Vec<GenericParam>,
1930 pub decl: P<FnDecl>,
1931 }
1932
1933 /// The various kinds of type recognized by the compiler.
1934 #[derive(Clone, Encodable, Decodable, Debug)]
1935 pub enum TyKind {
1936 /// A variable-length slice (`[T]`).
1937 Slice(P<Ty>),
1938 /// A fixed length array (`[T; n]`).
1939 Array(P<Ty>, AnonConst),
1940 /// A raw pointer (`*const T` or `*mut T`).
1941 Ptr(MutTy),
1942 /// A reference (`&'a T` or `&'a mut T`).
1943 Rptr(Option<Lifetime>, MutTy),
1944 /// A bare function (e.g., `fn(usize) -> bool`).
1945 BareFn(P<BareFnTy>),
1946 /// The never type (`!`).
1947 Never,
1948 /// A tuple (`(A, B, C, D,...)`).
1949 Tup(Vec<P<Ty>>),
1950 /// A path (`module::module::...::Type`), optionally
1951 /// "qualified", e.g., `<Vec<T> as SomeTrait>::SomeType`.
1952 ///
1953 /// Type parameters are stored in the `Path` itself.
1954 Path(Option<QSelf>, Path),
1955 /// A trait object type `Bound1 + Bound2 + Bound3`
1956 /// where `Bound` is a trait or a lifetime.
1957 TraitObject(GenericBounds, TraitObjectSyntax),
1958 /// An `impl Bound1 + Bound2 + Bound3` type
1959 /// where `Bound` is a trait or a lifetime.
1960 ///
1961 /// The `NodeId` exists to prevent lowering from having to
1962 /// generate `NodeId`s on the fly, which would complicate
1963 /// the generation of opaque `type Foo = impl Trait` items significantly.
1964 ImplTrait(NodeId, GenericBounds),
1965 /// No-op; kept solely so that we can pretty-print faithfully.
1966 Paren(P<Ty>),
1967 /// Unused for now.
1968 Typeof(AnonConst),
1969 /// This means the type should be inferred instead of it having been
1970 /// specified. This can appear anywhere in a type.
1971 Infer,
1972 /// Inferred type of a `self` or `&self` argument in a method.
1973 ImplicitSelf,
1974 /// A macro in the type position.
1975 MacCall(MacCall),
1976 /// Placeholder for a kind that has failed to be defined.
1977 Err,
1978 /// Placeholder for a `va_list`.
1979 CVarArgs,
1980 }
1981
1982 impl TyKind {
1983 pub fn is_implicit_self(&self) -> bool {
1984 matches!(self, TyKind::ImplicitSelf)
1985 }
1986
1987 pub fn is_unit(&self) -> bool {
1988 matches!(self, TyKind::Tup(tys) if tys.is_empty())
1989 }
1990 }
1991
1992 /// Syntax used to declare a trait object.
1993 #[derive(Clone, Copy, PartialEq, Encodable, Decodable, Debug, HashStable_Generic)]
1994 pub enum TraitObjectSyntax {
1995 Dyn,
1996 None,
1997 }
1998
1999 /// Inline assembly operand explicit register or register class.
2000 ///
2001 /// E.g., `"eax"` as in `asm!("mov eax, 2", out("eax") result)`.
2002 #[derive(Clone, Copy, Encodable, Decodable, Debug)]
2003 pub enum InlineAsmRegOrRegClass {
2004 Reg(Symbol),
2005 RegClass(Symbol),
2006 }
2007
2008 bitflags::bitflags! {
2009 #[derive(Encodable, Decodable, HashStable_Generic)]
2010 pub struct InlineAsmOptions: u16 {
2011 const PURE = 1 << 0;
2012 const NOMEM = 1 << 1;
2013 const READONLY = 1 << 2;
2014 const PRESERVES_FLAGS = 1 << 3;
2015 const NORETURN = 1 << 4;
2016 const NOSTACK = 1 << 5;
2017 const ATT_SYNTAX = 1 << 6;
2018 const RAW = 1 << 7;
2019 const MAY_UNWIND = 1 << 8;
2020 }
2021 }
2022
2023 #[derive(Clone, PartialEq, Encodable, Decodable, Debug, Hash, HashStable_Generic)]
2024 pub enum InlineAsmTemplatePiece {
2025 String(String),
2026 Placeholder { operand_idx: usize, modifier: Option<char>, span: Span },
2027 }
2028
2029 impl fmt::Display for InlineAsmTemplatePiece {
2030 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2031 match self {
2032 Self::String(s) => {
2033 for c in s.chars() {
2034 match c {
2035 '{' => f.write_str("{{")?,
2036 '}' => f.write_str("}}")?,
2037 _ => c.fmt(f)?,
2038 }
2039 }
2040 Ok(())
2041 }
2042 Self::Placeholder { operand_idx, modifier: Some(modifier), .. } => {
2043 write!(f, "{{{}:{}}}", operand_idx, modifier)
2044 }
2045 Self::Placeholder { operand_idx, modifier: None, .. } => {
2046 write!(f, "{{{}}}", operand_idx)
2047 }
2048 }
2049 }
2050 }
2051
2052 impl InlineAsmTemplatePiece {
2053 /// Rebuilds the asm template string from its pieces.
2054 pub fn to_string(s: &[Self]) -> String {
2055 use fmt::Write;
2056 let mut out = String::new();
2057 for p in s.iter() {
2058 let _ = write!(out, "{}", p);
2059 }
2060 out
2061 }
2062 }
2063
2064 /// Inline assembly operand.
2065 ///
2066 /// E.g., `out("eax") result` as in `asm!("mov eax, 2", out("eax") result)`.
2067 #[derive(Clone, Encodable, Decodable, Debug)]
2068 pub enum InlineAsmOperand {
2069 In {
2070 reg: InlineAsmRegOrRegClass,
2071 expr: P<Expr>,
2072 },
2073 Out {
2074 reg: InlineAsmRegOrRegClass,
2075 late: bool,
2076 expr: Option<P<Expr>>,
2077 },
2078 InOut {
2079 reg: InlineAsmRegOrRegClass,
2080 late: bool,
2081 expr: P<Expr>,
2082 },
2083 SplitInOut {
2084 reg: InlineAsmRegOrRegClass,
2085 late: bool,
2086 in_expr: P<Expr>,
2087 out_expr: Option<P<Expr>>,
2088 },
2089 Const {
2090 anon_const: AnonConst,
2091 },
2092 Sym {
2093 expr: P<Expr>,
2094 },
2095 }
2096
2097 /// Inline assembly.
2098 ///
2099 /// E.g., `asm!("NOP");`.
2100 #[derive(Clone, Encodable, Decodable, Debug)]
2101 pub struct InlineAsm {
2102 pub template: Vec<InlineAsmTemplatePiece>,
2103 pub template_strs: Box<[(Symbol, Option<Symbol>, Span)]>,
2104 pub operands: Vec<(InlineAsmOperand, Span)>,
2105 pub clobber_abis: Vec<(Symbol, Span)>,
2106 pub options: InlineAsmOptions,
2107 pub line_spans: Vec<Span>,
2108 }
2109
2110 /// A parameter in a function header.
2111 ///
2112 /// E.g., `bar: usize` as in `fn foo(bar: usize)`.
2113 #[derive(Clone, Encodable, Decodable, Debug)]
2114 pub struct Param {
2115 pub attrs: AttrVec,
2116 pub ty: P<Ty>,
2117 pub pat: P<Pat>,
2118 pub id: NodeId,
2119 pub span: Span,
2120 pub is_placeholder: bool,
2121 }
2122
2123 /// Alternative representation for `Arg`s describing `self` parameter of methods.
2124 ///
2125 /// E.g., `&mut self` as in `fn foo(&mut self)`.
2126 #[derive(Clone, Encodable, Decodable, Debug)]
2127 pub enum SelfKind {
2128 /// `self`, `mut self`
2129 Value(Mutability),
2130 /// `&'lt self`, `&'lt mut self`
2131 Region(Option<Lifetime>, Mutability),
2132 /// `self: TYPE`, `mut self: TYPE`
2133 Explicit(P<Ty>, Mutability),
2134 }
2135
2136 pub type ExplicitSelf = Spanned<SelfKind>;
2137
2138 impl Param {
2139 /// Attempts to cast parameter to `ExplicitSelf`.
2140 pub fn to_self(&self) -> Option<ExplicitSelf> {
2141 if let PatKind::Ident(BindingMode::ByValue(mutbl), ident, _) = self.pat.kind {
2142 if ident.name == kw::SelfLower {
2143 return match self.ty.kind {
2144 TyKind::ImplicitSelf => Some(respan(self.pat.span, SelfKind::Value(mutbl))),
2145 TyKind::Rptr(lt, MutTy { ref ty, mutbl }) if ty.kind.is_implicit_self() => {
2146 Some(respan(self.pat.span, SelfKind::Region(lt, mutbl)))
2147 }
2148 _ => Some(respan(
2149 self.pat.span.to(self.ty.span),
2150 SelfKind::Explicit(self.ty.clone(), mutbl),
2151 )),
2152 };
2153 }
2154 }
2155 None
2156 }
2157
2158 /// Returns `true` if parameter is `self`.
2159 pub fn is_self(&self) -> bool {
2160 if let PatKind::Ident(_, ident, _) = self.pat.kind {
2161 ident.name == kw::SelfLower
2162 } else {
2163 false
2164 }
2165 }
2166
2167 /// Builds a `Param` object from `ExplicitSelf`.
2168 pub fn from_self(attrs: AttrVec, eself: ExplicitSelf, eself_ident: Ident) -> Param {
2169 let span = eself.span.to(eself_ident.span);
2170 let infer_ty = P(Ty { id: DUMMY_NODE_ID, kind: TyKind::ImplicitSelf, span, tokens: None });
2171 let param = |mutbl, ty| Param {
2172 attrs,
2173 pat: P(Pat {
2174 id: DUMMY_NODE_ID,
2175 kind: PatKind::Ident(BindingMode::ByValue(mutbl), eself_ident, None),
2176 span,
2177 tokens: None,
2178 }),
2179 span,
2180 ty,
2181 id: DUMMY_NODE_ID,
2182 is_placeholder: false,
2183 };
2184 match eself.node {
2185 SelfKind::Explicit(ty, mutbl) => param(mutbl, ty),
2186 SelfKind::Value(mutbl) => param(mutbl, infer_ty),
2187 SelfKind::Region(lt, mutbl) => param(
2188 Mutability::Not,
2189 P(Ty {
2190 id: DUMMY_NODE_ID,
2191 kind: TyKind::Rptr(lt, MutTy { ty: infer_ty, mutbl }),
2192 span,
2193 tokens: None,
2194 }),
2195 ),
2196 }
2197 }
2198 }
2199
2200 /// A signature (not the body) of a function declaration.
2201 ///
2202 /// E.g., `fn foo(bar: baz)`.
2203 ///
2204 /// Please note that it's different from `FnHeader` structure
2205 /// which contains metadata about function safety, asyncness, constness and ABI.
2206 #[derive(Clone, Encodable, Decodable, Debug)]
2207 pub struct FnDecl {
2208 pub inputs: Vec<Param>,
2209 pub output: FnRetTy,
2210 }
2211
2212 impl FnDecl {
2213 pub fn has_self(&self) -> bool {
2214 self.inputs.get(0).map_or(false, Param::is_self)
2215 }
2216 pub fn c_variadic(&self) -> bool {
2217 self.inputs.last().map_or(false, |arg| matches!(arg.ty.kind, TyKind::CVarArgs))
2218 }
2219 }
2220
2221 /// Is the trait definition an auto trait?
2222 #[derive(Copy, Clone, PartialEq, Encodable, Decodable, Debug, HashStable_Generic)]
2223 pub enum IsAuto {
2224 Yes,
2225 No,
2226 }
2227
2228 #[derive(Copy, Clone, PartialEq, Eq, Hash, Encodable, Decodable, Debug)]
2229 #[derive(HashStable_Generic)]
2230 pub enum Unsafe {
2231 Yes(Span),
2232 No,
2233 }
2234
2235 #[derive(Copy, Clone, Encodable, Decodable, Debug)]
2236 pub enum Async {
2237 Yes { span: Span, closure_id: NodeId, return_impl_trait_id: NodeId },
2238 No,
2239 }
2240
2241 impl Async {
2242 pub fn is_async(self) -> bool {
2243 matches!(self, Async::Yes { .. })
2244 }
2245
2246 /// In this case this is an `async` return, the `NodeId` for the generated `impl Trait` item.
2247 pub fn opt_return_id(self) -> Option<NodeId> {
2248 match self {
2249 Async::Yes { return_impl_trait_id, .. } => Some(return_impl_trait_id),
2250 Async::No => None,
2251 }
2252 }
2253 }
2254
2255 #[derive(Copy, Clone, PartialEq, Eq, Hash, Encodable, Decodable, Debug)]
2256 #[derive(HashStable_Generic)]
2257 pub enum Const {
2258 Yes(Span),
2259 No,
2260 }
2261
2262 /// Item defaultness.
2263 /// For details see the [RFC #2532](https://github.com/rust-lang/rfcs/pull/2532).
2264 #[derive(Copy, Clone, PartialEq, Encodable, Decodable, Debug, HashStable_Generic)]
2265 pub enum Defaultness {
2266 Default(Span),
2267 Final,
2268 }
2269
2270 #[derive(Copy, Clone, PartialEq, Encodable, Decodable, HashStable_Generic)]
2271 pub enum ImplPolarity {
2272 /// `impl Trait for Type`
2273 Positive,
2274 /// `impl !Trait for Type`
2275 Negative(Span),
2276 }
2277
2278 impl fmt::Debug for ImplPolarity {
2279 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2280 match *self {
2281 ImplPolarity::Positive => "positive".fmt(f),
2282 ImplPolarity::Negative(_) => "negative".fmt(f),
2283 }
2284 }
2285 }
2286
2287 #[derive(Clone, Encodable, Decodable, Debug)]
2288 pub enum FnRetTy {
2289 /// Returns type is not specified.
2290 ///
2291 /// Functions default to `()` and closures default to inference.
2292 /// Span points to where return type would be inserted.
2293 Default(Span),
2294 /// Everything else.
2295 Ty(P<Ty>),
2296 }
2297
2298 impl FnRetTy {
2299 pub fn span(&self) -> Span {
2300 match *self {
2301 FnRetTy::Default(span) => span,
2302 FnRetTy::Ty(ref ty) => ty.span,
2303 }
2304 }
2305 }
2306
2307 #[derive(Clone, Copy, PartialEq, Encodable, Decodable, Debug)]
2308 pub enum Inline {
2309 Yes,
2310 No,
2311 }
2312
2313 /// Module item kind.
2314 #[derive(Clone, Encodable, Decodable, Debug)]
2315 pub enum ModKind {
2316 /// Module with inlined definition `mod foo { ... }`,
2317 /// or with definition outlined to a separate file `mod foo;` and already loaded from it.
2318 /// The inner span is from the first token past `{` to the last token until `}`,
2319 /// or from the first to the last token in the loaded file.
2320 Loaded(Vec<P<Item>>, Inline, ModSpans),
2321 /// Module with definition outlined to a separate file `mod foo;` but not yet loaded from it.
2322 Unloaded,
2323 }
2324
2325 #[derive(Copy, Clone, Encodable, Decodable, Debug)]
2326 pub struct ModSpans {
2327 /// `inner_span` covers the body of the module; for a file module, its the whole file.
2328 /// For an inline module, its the span inside the `{ ... }`, not including the curly braces.
2329 pub inner_span: Span,
2330 pub inject_use_span: Span,
2331 }
2332
2333 impl Default for ModSpans {
2334 fn default() -> ModSpans {
2335 ModSpans { inner_span: Default::default(), inject_use_span: Default::default() }
2336 }
2337 }
2338
2339 /// Foreign module declaration.
2340 ///
2341 /// E.g., `extern { .. }` or `extern "C" { .. }`.
2342 #[derive(Clone, Encodable, Decodable, Debug)]
2343 pub struct ForeignMod {
2344 /// `unsafe` keyword accepted syntactically for macro DSLs, but not
2345 /// semantically by Rust.
2346 pub unsafety: Unsafe,
2347 pub abi: Option<StrLit>,
2348 pub items: Vec<P<ForeignItem>>,
2349 }
2350
2351 #[derive(Clone, Encodable, Decodable, Debug)]
2352 pub struct EnumDef {
2353 pub variants: Vec<Variant>,
2354 }
2355 /// Enum variant.
2356 #[derive(Clone, Encodable, Decodable, Debug)]
2357 pub struct Variant {
2358 /// Attributes of the variant.
2359 pub attrs: AttrVec,
2360 /// Id of the variant (not the constructor, see `VariantData::ctor_id()`).
2361 pub id: NodeId,
2362 /// Span
2363 pub span: Span,
2364 /// The visibility of the variant. Syntactically accepted but not semantically.
2365 pub vis: Visibility,
2366 /// Name of the variant.
2367 pub ident: Ident,
2368
2369 /// Fields and constructor id of the variant.
2370 pub data: VariantData,
2371 /// Explicit discriminant, e.g., `Foo = 1`.
2372 pub disr_expr: Option<AnonConst>,
2373 /// Is a macro placeholder
2374 pub is_placeholder: bool,
2375 }
2376
2377 /// Part of `use` item to the right of its prefix.
2378 #[derive(Clone, Encodable, Decodable, Debug)]
2379 pub enum UseTreeKind {
2380 /// `use prefix` or `use prefix as rename`
2381 ///
2382 /// The extra `NodeId`s are for HIR lowering, when additional statements are created for each
2383 /// namespace.
2384 Simple(Option<Ident>, NodeId, NodeId),
2385 /// `use prefix::{...}`
2386 Nested(Vec<(UseTree, NodeId)>),
2387 /// `use prefix::*`
2388 Glob,
2389 }
2390
2391 /// A tree of paths sharing common prefixes.
2392 /// Used in `use` items both at top-level and inside of braces in import groups.
2393 #[derive(Clone, Encodable, Decodable, Debug)]
2394 pub struct UseTree {
2395 pub prefix: Path,
2396 pub kind: UseTreeKind,
2397 pub span: Span,
2398 }
2399
2400 impl UseTree {
2401 pub fn ident(&self) -> Ident {
2402 match self.kind {
2403 UseTreeKind::Simple(Some(rename), ..) => rename,
2404 UseTreeKind::Simple(None, ..) => {
2405 self.prefix.segments.last().expect("empty prefix in a simple import").ident
2406 }
2407 _ => panic!("`UseTree::ident` can only be used on a simple import"),
2408 }
2409 }
2410 }
2411
2412 /// Distinguishes between `Attribute`s that decorate items and Attributes that
2413 /// are contained as statements within items. These two cases need to be
2414 /// distinguished for pretty-printing.
2415 #[derive(Clone, PartialEq, Encodable, Decodable, Debug, Copy, HashStable_Generic)]
2416 pub enum AttrStyle {
2417 Outer,
2418 Inner,
2419 }
2420
2421 rustc_index::newtype_index! {
2422 pub struct AttrId {
2423 ENCODABLE = custom
2424 DEBUG_FORMAT = "AttrId({})"
2425 }
2426 }
2427
2428 impl<S: Encoder> rustc_serialize::Encodable<S> for AttrId {
2429 fn encode(&self, s: &mut S) -> Result<(), S::Error> {
2430 s.emit_unit()
2431 }
2432 }
2433
2434 impl<D: Decoder> rustc_serialize::Decodable<D> for AttrId {
2435 fn decode(_: &mut D) -> AttrId {
2436 crate::attr::mk_attr_id()
2437 }
2438 }
2439
2440 #[derive(Clone, Encodable, Decodable, Debug, HashStable_Generic)]
2441 pub struct AttrItem {
2442 pub path: Path,
2443 pub args: MacArgs,
2444 pub tokens: Option<LazyTokenStream>,
2445 }
2446
2447 /// A list of attributes.
2448 pub type AttrVec = ThinVec<Attribute>;
2449
2450 /// Metadata associated with an item.
2451 #[derive(Clone, Encodable, Decodable, Debug)]
2452 pub struct Attribute {
2453 pub kind: AttrKind,
2454 pub id: AttrId,
2455 /// Denotes if the attribute decorates the following construct (outer)
2456 /// or the construct this attribute is contained within (inner).
2457 pub style: AttrStyle,
2458 pub span: Span,
2459 }
2460
2461 #[derive(Clone, Encodable, Decodable, Debug)]
2462 pub enum AttrKind {
2463 /// A normal attribute.
2464 Normal(AttrItem, Option<LazyTokenStream>),
2465
2466 /// A doc comment (e.g. `/// ...`, `//! ...`, `/** ... */`, `/*! ... */`).
2467 /// Doc attributes (e.g. `#[doc="..."]`) are represented with the `Normal`
2468 /// variant (which is much less compact and thus more expensive).
2469 DocComment(CommentKind, Symbol),
2470 }
2471
2472 /// `TraitRef`s appear in impls.
2473 ///
2474 /// Resolution maps each `TraitRef`'s `ref_id` to its defining trait; that's all
2475 /// that the `ref_id` is for. The `impl_id` maps to the "self type" of this impl.
2476 /// If this impl is an `ItemKind::Impl`, the `impl_id` is redundant (it could be the
2477 /// same as the impl's `NodeId`).
2478 #[derive(Clone, Encodable, Decodable, Debug)]
2479 pub struct TraitRef {
2480 pub path: Path,
2481 pub ref_id: NodeId,
2482 }
2483
2484 #[derive(Clone, Encodable, Decodable, Debug)]
2485 pub struct PolyTraitRef {
2486 /// The `'a` in `<'a> Foo<&'a T>`.
2487 pub bound_generic_params: Vec<GenericParam>,
2488
2489 /// The `Foo<&'a T>` in `<'a> Foo<&'a T>`.
2490 pub trait_ref: TraitRef,
2491
2492 pub span: Span,
2493 }
2494
2495 impl PolyTraitRef {
2496 pub fn new(generic_params: Vec<GenericParam>, path: Path, span: Span) -> Self {
2497 PolyTraitRef {
2498 bound_generic_params: generic_params,
2499 trait_ref: TraitRef { path, ref_id: DUMMY_NODE_ID },
2500 span,
2501 }
2502 }
2503 }
2504
2505 #[derive(Copy, Clone, Encodable, Decodable, Debug, HashStable_Generic)]
2506 pub enum CrateSugar {
2507 /// Source is `pub(crate)`.
2508 PubCrate,
2509
2510 /// Source is (just) `crate`.
2511 JustCrate,
2512 }
2513
2514 #[derive(Clone, Encodable, Decodable, Debug)]
2515 pub struct Visibility {
2516 pub kind: VisibilityKind,
2517 pub span: Span,
2518 pub tokens: Option<LazyTokenStream>,
2519 }
2520
2521 #[derive(Clone, Encodable, Decodable, Debug)]
2522 pub enum VisibilityKind {
2523 Public,
2524 Crate(CrateSugar),
2525 Restricted { path: P<Path>, id: NodeId },
2526 Inherited,
2527 }
2528
2529 impl VisibilityKind {
2530 pub fn is_pub(&self) -> bool {
2531 matches!(self, VisibilityKind::Public)
2532 }
2533 }
2534
2535 /// Field definition in a struct, variant or union.
2536 ///
2537 /// E.g., `bar: usize` as in `struct Foo { bar: usize }`.
2538 #[derive(Clone, Encodable, Decodable, Debug)]
2539 pub struct FieldDef {
2540 pub attrs: AttrVec,
2541 pub id: NodeId,
2542 pub span: Span,
2543 pub vis: Visibility,
2544 pub ident: Option<Ident>,
2545
2546 pub ty: P<Ty>,
2547 pub is_placeholder: bool,
2548 }
2549
2550 /// Fields and constructor ids of enum variants and structs.
2551 #[derive(Clone, Encodable, Decodable, Debug)]
2552 pub enum VariantData {
2553 /// Struct variant.
2554 ///
2555 /// E.g., `Bar { .. }` as in `enum Foo { Bar { .. } }`.
2556 Struct(Vec<FieldDef>, bool),
2557 /// Tuple variant.
2558 ///
2559 /// E.g., `Bar(..)` as in `enum Foo { Bar(..) }`.
2560 Tuple(Vec<FieldDef>, NodeId),
2561 /// Unit variant.
2562 ///
2563 /// E.g., `Bar = ..` as in `enum Foo { Bar = .. }`.
2564 Unit(NodeId),
2565 }
2566
2567 impl VariantData {
2568 /// Return the fields of this variant.
2569 pub fn fields(&self) -> &[FieldDef] {
2570 match *self {
2571 VariantData::Struct(ref fields, ..) | VariantData::Tuple(ref fields, _) => fields,
2572 _ => &[],
2573 }
2574 }
2575
2576 /// Return the `NodeId` of this variant's constructor, if it has one.
2577 pub fn ctor_id(&self) -> Option<NodeId> {
2578 match *self {
2579 VariantData::Struct(..) => None,
2580 VariantData::Tuple(_, id) | VariantData::Unit(id) => Some(id),
2581 }
2582 }
2583 }
2584
2585 /// An item definition.
2586 #[derive(Clone, Encodable, Decodable, Debug)]
2587 pub struct Item<K = ItemKind> {
2588 pub attrs: Vec<Attribute>,
2589 pub id: NodeId,
2590 pub span: Span,
2591 pub vis: Visibility,
2592 /// The name of the item.
2593 /// It might be a dummy name in case of anonymous items.
2594 pub ident: Ident,
2595
2596 pub kind: K,
2597
2598 /// Original tokens this item was parsed from. This isn't necessarily
2599 /// available for all items, although over time more and more items should
2600 /// have this be `Some`. Right now this is primarily used for procedural
2601 /// macros, notably custom attributes.
2602 ///
2603 /// Note that the tokens here do not include the outer attributes, but will
2604 /// include inner attributes.
2605 pub tokens: Option<LazyTokenStream>,
2606 }
2607
2608 impl Item {
2609 /// Return the span that encompasses the attributes.
2610 pub fn span_with_attributes(&self) -> Span {
2611 self.attrs.iter().fold(self.span, |acc, attr| acc.to(attr.span))
2612 }
2613 }
2614
2615 impl<K: Into<ItemKind>> Item<K> {
2616 pub fn into_item(self) -> Item {
2617 let Item { attrs, id, span, vis, ident, kind, tokens } = self;
2618 Item { attrs, id, span, vis, ident, kind: kind.into(), tokens }
2619 }
2620 }
2621
2622 /// `extern` qualifier on a function item or function type.
2623 #[derive(Clone, Copy, Encodable, Decodable, Debug)]
2624 pub enum Extern {
2625 None,
2626 Implicit,
2627 Explicit(StrLit),
2628 }
2629
2630 impl Extern {
2631 pub fn from_abi(abi: Option<StrLit>) -> Extern {
2632 abi.map_or(Extern::Implicit, Extern::Explicit)
2633 }
2634 }
2635
2636 /// A function header.
2637 ///
2638 /// All the information between the visibility and the name of the function is
2639 /// included in this struct (e.g., `async unsafe fn` or `const extern "C" fn`).
2640 #[derive(Clone, Copy, Encodable, Decodable, Debug)]
2641 pub struct FnHeader {
2642 pub unsafety: Unsafe,
2643 pub asyncness: Async,
2644 pub constness: Const,
2645 pub ext: Extern,
2646 }
2647
2648 impl FnHeader {
2649 /// Does this function header have any qualifiers or is it empty?
2650 pub fn has_qualifiers(&self) -> bool {
2651 let Self { unsafety, asyncness, constness, ext } = self;
2652 matches!(unsafety, Unsafe::Yes(_))
2653 || asyncness.is_async()
2654 || matches!(constness, Const::Yes(_))
2655 || !matches!(ext, Extern::None)
2656 }
2657 }
2658
2659 impl Default for FnHeader {
2660 fn default() -> FnHeader {
2661 FnHeader {
2662 unsafety: Unsafe::No,
2663 asyncness: Async::No,
2664 constness: Const::No,
2665 ext: Extern::None,
2666 }
2667 }
2668 }
2669
2670 #[derive(Clone, Encodable, Decodable, Debug)]
2671 pub struct Trait {
2672 pub unsafety: Unsafe,
2673 pub is_auto: IsAuto,
2674 pub generics: Generics,
2675 pub bounds: GenericBounds,
2676 pub items: Vec<P<AssocItem>>,
2677 }
2678
2679 /// The location of a where clause on a `TyAlias` (`Span`) and whether there was
2680 /// a `where` keyword (`bool`). This is split out from `WhereClause`, since there
2681 /// are two locations for where clause on type aliases, but their predicates
2682 /// are concatenated together.
2683 ///
2684 /// Take this example:
2685 /// ```ignore (only-for-syntax-highlight)
2686 /// trait Foo {
2687 /// type Assoc<'a, 'b> where Self: 'a, Self: 'b;
2688 /// }
2689 /// impl Foo for () {
2690 /// type Assoc<'a, 'b> where Self: 'a = () where Self: 'b;
2691 /// // ^^^^^^^^^^^^^^ first where clause
2692 /// // ^^^^^^^^^^^^^^ second where clause
2693 /// }
2694 /// ```
2695 ///
2696 /// If there is no where clause, then this is `false` with `DUMMY_SP`.
2697 #[derive(Copy, Clone, Encodable, Decodable, Debug, Default)]
2698 pub struct TyAliasWhereClause(pub bool, pub Span);
2699
2700 #[derive(Clone, Encodable, Decodable, Debug)]
2701 pub struct TyAlias {
2702 pub defaultness: Defaultness,
2703 pub generics: Generics,
2704 /// The span information for the two where clauses (before equals, after equals)
2705 pub where_clauses: (TyAliasWhereClause, TyAliasWhereClause),
2706 /// The index in `generics.where_clause.predicates` that would split into
2707 /// predicates from the where clause before the equals and the predicates
2708 /// from the where clause after the equals
2709 pub where_predicates_split: usize,
2710 pub bounds: GenericBounds,
2711 pub ty: Option<P<Ty>>,
2712 }
2713
2714 #[derive(Clone, Encodable, Decodable, Debug)]
2715 pub struct Impl {
2716 pub defaultness: Defaultness,
2717 pub unsafety: Unsafe,
2718 pub generics: Generics,
2719 pub constness: Const,
2720 pub polarity: ImplPolarity,
2721 /// The trait being implemented, if any.
2722 pub of_trait: Option<TraitRef>,
2723 pub self_ty: P<Ty>,
2724 pub items: Vec<P<AssocItem>>,
2725 }
2726
2727 #[derive(Clone, Encodable, Decodable, Debug)]
2728 pub struct Fn {
2729 pub defaultness: Defaultness,
2730 pub generics: Generics,
2731 pub sig: FnSig,
2732 pub body: Option<P<Block>>,
2733 }
2734
2735 #[derive(Clone, Encodable, Decodable, Debug)]
2736 pub enum ItemKind {
2737 /// An `extern crate` item, with the optional *original* crate name if the crate was renamed.
2738 ///
2739 /// E.g., `extern crate foo` or `extern crate foo_bar as foo`.
2740 ExternCrate(Option<Symbol>),
2741 /// A use declaration item (`use`).
2742 ///
2743 /// E.g., `use foo;`, `use foo::bar;` or `use foo::bar as FooBar;`.
2744 Use(UseTree),
2745 /// A static item (`static`).
2746 ///
2747 /// E.g., `static FOO: i32 = 42;` or `static FOO: &'static str = "bar";`.
2748 Static(P<Ty>, Mutability, Option<P<Expr>>),
2749 /// A constant item (`const`).
2750 ///
2751 /// E.g., `const FOO: i32 = 42;`.
2752 Const(Defaultness, P<Ty>, Option<P<Expr>>),
2753 /// A function declaration (`fn`).
2754 ///
2755 /// E.g., `fn foo(bar: usize) -> usize { .. }`.
2756 Fn(Box<Fn>),
2757 /// A module declaration (`mod`).
2758 ///
2759 /// E.g., `mod foo;` or `mod foo { .. }`.
2760 /// `unsafe` keyword on modules is accepted syntactically for macro DSLs, but not
2761 /// semantically by Rust.
2762 Mod(Unsafe, ModKind),
2763 /// An external module (`extern`).
2764 ///
2765 /// E.g., `extern {}` or `extern "C" {}`.
2766 ForeignMod(ForeignMod),
2767 /// Module-level inline assembly (from `global_asm!()`).
2768 GlobalAsm(Box<InlineAsm>),
2769 /// A type alias (`type`).
2770 ///
2771 /// E.g., `type Foo = Bar<u8>;`.
2772 TyAlias(Box<TyAlias>),
2773 /// An enum definition (`enum`).
2774 ///
2775 /// E.g., `enum Foo<A, B> { C<A>, D<B> }`.
2776 Enum(EnumDef, Generics),
2777 /// A struct definition (`struct`).
2778 ///
2779 /// E.g., `struct Foo<A> { x: A }`.
2780 Struct(VariantData, Generics),
2781 /// A union definition (`union`).
2782 ///
2783 /// E.g., `union Foo<A, B> { x: A, y: B }`.
2784 Union(VariantData, Generics),
2785 /// A trait declaration (`trait`).
2786 ///
2787 /// E.g., `trait Foo { .. }`, `trait Foo<T> { .. }` or `auto trait Foo {}`.
2788 Trait(Box<Trait>),
2789 /// Trait alias
2790 ///
2791 /// E.g., `trait Foo = Bar + Quux;`.
2792 TraitAlias(Generics, GenericBounds),
2793 /// An implementation.
2794 ///
2795 /// E.g., `impl<A> Foo<A> { .. }` or `impl<A> Trait for Foo<A> { .. }`.
2796 Impl(Box<Impl>),
2797 /// A macro invocation.
2798 ///
2799 /// E.g., `foo!(..)`.
2800 MacCall(MacCall),
2801
2802 /// A macro definition.
2803 MacroDef(MacroDef),
2804 }
2805
2806 #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
2807 rustc_data_structures::static_assert_size!(ItemKind, 112);
2808
2809 impl ItemKind {
2810 pub fn article(&self) -> &str {
2811 use ItemKind::*;
2812 match self {
2813 Use(..) | Static(..) | Const(..) | Fn(..) | Mod(..) | GlobalAsm(..) | TyAlias(..)
2814 | Struct(..) | Union(..) | Trait(..) | TraitAlias(..) | MacroDef(..) => "a",
2815 ExternCrate(..) | ForeignMod(..) | MacCall(..) | Enum(..) | Impl { .. } => "an",
2816 }
2817 }
2818
2819 pub fn descr(&self) -> &str {
2820 match self {
2821 ItemKind::ExternCrate(..) => "extern crate",
2822 ItemKind::Use(..) => "`use` import",
2823 ItemKind::Static(..) => "static item",
2824 ItemKind::Const(..) => "constant item",
2825 ItemKind::Fn(..) => "function",
2826 ItemKind::Mod(..) => "module",
2827 ItemKind::ForeignMod(..) => "extern block",
2828 ItemKind::GlobalAsm(..) => "global asm item",
2829 ItemKind::TyAlias(..) => "type alias",
2830 ItemKind::Enum(..) => "enum",
2831 ItemKind::Struct(..) => "struct",
2832 ItemKind::Union(..) => "union",
2833 ItemKind::Trait(..) => "trait",
2834 ItemKind::TraitAlias(..) => "trait alias",
2835 ItemKind::MacCall(..) => "item macro invocation",
2836 ItemKind::MacroDef(..) => "macro definition",
2837 ItemKind::Impl { .. } => "implementation",
2838 }
2839 }
2840
2841 pub fn generics(&self) -> Option<&Generics> {
2842 match self {
2843 Self::Fn(box Fn { generics, .. })
2844 | Self::TyAlias(box TyAlias { generics, .. })
2845 | Self::Enum(_, generics)
2846 | Self::Struct(_, generics)
2847 | Self::Union(_, generics)
2848 | Self::Trait(box Trait { generics, .. })
2849 | Self::TraitAlias(generics, _)
2850 | Self::Impl(box Impl { generics, .. }) => Some(generics),
2851 _ => None,
2852 }
2853 }
2854 }
2855
2856 /// Represents associated items.
2857 /// These include items in `impl` and `trait` definitions.
2858 pub type AssocItem = Item<AssocItemKind>;
2859
2860 /// Represents associated item kinds.
2861 ///
2862 /// The term "provided" in the variants below refers to the item having a default
2863 /// definition / body. Meanwhile, a "required" item lacks a definition / body.
2864 /// In an implementation, all items must be provided.
2865 /// The `Option`s below denote the bodies, where `Some(_)`
2866 /// means "provided" and conversely `None` means "required".
2867 #[derive(Clone, Encodable, Decodable, Debug)]
2868 pub enum AssocItemKind {
2869 /// An associated constant, `const $ident: $ty $def?;` where `def ::= "=" $expr? ;`.
2870 /// If `def` is parsed, then the constant is provided, and otherwise required.
2871 Const(Defaultness, P<Ty>, Option<P<Expr>>),
2872 /// An associated function.
2873 Fn(Box<Fn>),
2874 /// An associated type.
2875 TyAlias(Box<TyAlias>),
2876 /// A macro expanding to associated items.
2877 MacCall(MacCall),
2878 }
2879
2880 #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
2881 rustc_data_structures::static_assert_size!(AssocItemKind, 72);
2882
2883 impl AssocItemKind {
2884 pub fn defaultness(&self) -> Defaultness {
2885 match *self {
2886 Self::Const(defaultness, ..)
2887 | Self::Fn(box Fn { defaultness, .. })
2888 | Self::TyAlias(box TyAlias { defaultness, .. }) => defaultness,
2889 Self::MacCall(..) => Defaultness::Final,
2890 }
2891 }
2892 }
2893
2894 impl From<AssocItemKind> for ItemKind {
2895 fn from(assoc_item_kind: AssocItemKind) -> ItemKind {
2896 match assoc_item_kind {
2897 AssocItemKind::Const(a, b, c) => ItemKind::Const(a, b, c),
2898 AssocItemKind::Fn(fn_kind) => ItemKind::Fn(fn_kind),
2899 AssocItemKind::TyAlias(ty_alias_kind) => ItemKind::TyAlias(ty_alias_kind),
2900 AssocItemKind::MacCall(a) => ItemKind::MacCall(a),
2901 }
2902 }
2903 }
2904
2905 impl TryFrom<ItemKind> for AssocItemKind {
2906 type Error = ItemKind;
2907
2908 fn try_from(item_kind: ItemKind) -> Result<AssocItemKind, ItemKind> {
2909 Ok(match item_kind {
2910 ItemKind::Const(a, b, c) => AssocItemKind::Const(a, b, c),
2911 ItemKind::Fn(fn_kind) => AssocItemKind::Fn(fn_kind),
2912 ItemKind::TyAlias(ty_alias_kind) => AssocItemKind::TyAlias(ty_alias_kind),
2913 ItemKind::MacCall(a) => AssocItemKind::MacCall(a),
2914 _ => return Err(item_kind),
2915 })
2916 }
2917 }
2918
2919 /// An item in `extern` block.
2920 #[derive(Clone, Encodable, Decodable, Debug)]
2921 pub enum ForeignItemKind {
2922 /// A foreign static item (`static FOO: u8`).
2923 Static(P<Ty>, Mutability, Option<P<Expr>>),
2924 /// An foreign function.
2925 Fn(Box<Fn>),
2926 /// An foreign type.
2927 TyAlias(Box<TyAlias>),
2928 /// A macro expanding to foreign items.
2929 MacCall(MacCall),
2930 }
2931
2932 #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
2933 rustc_data_structures::static_assert_size!(ForeignItemKind, 72);
2934
2935 impl From<ForeignItemKind> for ItemKind {
2936 fn from(foreign_item_kind: ForeignItemKind) -> ItemKind {
2937 match foreign_item_kind {
2938 ForeignItemKind::Static(a, b, c) => ItemKind::Static(a, b, c),
2939 ForeignItemKind::Fn(fn_kind) => ItemKind::Fn(fn_kind),
2940 ForeignItemKind::TyAlias(ty_alias_kind) => ItemKind::TyAlias(ty_alias_kind),
2941 ForeignItemKind::MacCall(a) => ItemKind::MacCall(a),
2942 }
2943 }
2944 }
2945
2946 impl TryFrom<ItemKind> for ForeignItemKind {
2947 type Error = ItemKind;
2948
2949 fn try_from(item_kind: ItemKind) -> Result<ForeignItemKind, ItemKind> {
2950 Ok(match item_kind {
2951 ItemKind::Static(a, b, c) => ForeignItemKind::Static(a, b, c),
2952 ItemKind::Fn(fn_kind) => ForeignItemKind::Fn(fn_kind),
2953 ItemKind::TyAlias(ty_alias_kind) => ForeignItemKind::TyAlias(ty_alias_kind),
2954 ItemKind::MacCall(a) => ForeignItemKind::MacCall(a),
2955 _ => return Err(item_kind),
2956 })
2957 }
2958 }
2959
2960 pub type ForeignItem = Item<ForeignItemKind>;