]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_codegen_llvm/src/asm.rs
New upstream version 1.52.0~beta.3+dfsg1
[rustc.git] / compiler / rustc_codegen_llvm / src / asm.rs
1 use crate::builder::Builder;
2 use crate::context::CodegenCx;
3 use crate::llvm;
4 use crate::type_::Type;
5 use crate::type_of::LayoutLlvmExt;
6 use crate::value::Value;
7
8 use rustc_ast::LlvmAsmDialect;
9 use rustc_ast::{InlineAsmOptions, InlineAsmTemplatePiece};
10 use rustc_codegen_ssa::mir::operand::OperandValue;
11 use rustc_codegen_ssa::mir::place::PlaceRef;
12 use rustc_codegen_ssa::traits::*;
13 use rustc_data_structures::fx::FxHashMap;
14 use rustc_hir as hir;
15 use rustc_middle::ty::layout::TyAndLayout;
16 use rustc_middle::{bug, span_bug};
17 use rustc_span::{Pos, Span};
18 use rustc_target::abi::*;
19 use rustc_target::asm::*;
20
21 use libc::{c_char, c_uint};
22 use tracing::debug;
23
24 impl AsmBuilderMethods<'tcx> for Builder<'a, 'll, 'tcx> {
25 fn codegen_llvm_inline_asm(
26 &mut self,
27 ia: &hir::LlvmInlineAsmInner,
28 outputs: Vec<PlaceRef<'tcx, &'ll Value>>,
29 mut inputs: Vec<&'ll Value>,
30 span: Span,
31 ) -> bool {
32 let mut ext_constraints = vec![];
33 let mut output_types = vec![];
34
35 // Prepare the output operands
36 let mut indirect_outputs = vec![];
37 for (i, (out, &place)) in ia.outputs.iter().zip(&outputs).enumerate() {
38 if out.is_rw {
39 let operand = self.load_operand(place);
40 if let OperandValue::Immediate(_) = operand.val {
41 inputs.push(operand.immediate());
42 }
43 ext_constraints.push(i.to_string());
44 }
45 if out.is_indirect {
46 let operand = self.load_operand(place);
47 if let OperandValue::Immediate(_) = operand.val {
48 indirect_outputs.push(operand.immediate());
49 }
50 } else {
51 output_types.push(place.layout.llvm_type(self.cx));
52 }
53 }
54 if !indirect_outputs.is_empty() {
55 indirect_outputs.extend_from_slice(&inputs);
56 inputs = indirect_outputs;
57 }
58
59 let clobbers = ia.clobbers.iter().map(|s| format!("~{{{}}}", &s));
60
61 // Default per-arch clobbers
62 // Basically what clang does
63 let arch_clobbers = match &self.sess().target.arch[..] {
64 "x86" | "x86_64" => &["~{dirflag}", "~{fpsr}", "~{flags}"][..],
65 "mips" | "mips64" => &["~{$1}"],
66 _ => &[],
67 };
68
69 let all_constraints = ia
70 .outputs
71 .iter()
72 .map(|out| out.constraint.to_string())
73 .chain(ia.inputs.iter().map(|s| s.to_string()))
74 .chain(ext_constraints)
75 .chain(clobbers)
76 .chain(arch_clobbers.iter().map(|s| (*s).to_string()))
77 .collect::<Vec<String>>()
78 .join(",");
79
80 debug!("Asm Constraints: {}", &all_constraints);
81
82 // Depending on how many outputs we have, the return type is different
83 let num_outputs = output_types.len();
84 let output_type = match num_outputs {
85 0 => self.type_void(),
86 1 => output_types[0],
87 _ => self.type_struct(&output_types, false),
88 };
89
90 let asm = ia.asm.as_str();
91 let r = inline_asm_call(
92 self,
93 &asm,
94 &all_constraints,
95 &inputs,
96 output_type,
97 ia.volatile,
98 ia.alignstack,
99 ia.dialect,
100 &[span],
101 );
102 if r.is_none() {
103 return false;
104 }
105 let r = r.unwrap();
106
107 // Again, based on how many outputs we have
108 let outputs = ia.outputs.iter().zip(&outputs).filter(|&(ref o, _)| !o.is_indirect);
109 for (i, (_, &place)) in outputs.enumerate() {
110 let v = if num_outputs == 1 { r } else { self.extract_value(r, i as u64) };
111 OperandValue::Immediate(v).store(self, place);
112 }
113
114 true
115 }
116
117 fn codegen_inline_asm(
118 &mut self,
119 template: &[InlineAsmTemplatePiece],
120 operands: &[InlineAsmOperandRef<'tcx, Self>],
121 options: InlineAsmOptions,
122 line_spans: &[Span],
123 ) {
124 let asm_arch = self.tcx.sess.asm_arch.unwrap();
125
126 // Collect the types of output operands
127 let mut constraints = vec![];
128 let mut output_types = vec![];
129 let mut op_idx = FxHashMap::default();
130 for (idx, op) in operands.iter().enumerate() {
131 match *op {
132 InlineAsmOperandRef::Out { reg, late, place } => {
133 let mut layout = None;
134 let ty = if let Some(ref place) = place {
135 layout = Some(&place.layout);
136 llvm_fixup_output_type(self.cx, reg.reg_class(), &place.layout)
137 } else {
138 // If the output is discarded, we don't really care what
139 // type is used. We're just using this to tell LLVM to
140 // reserve the register.
141 dummy_output_type(self.cx, reg.reg_class())
142 };
143 output_types.push(ty);
144 op_idx.insert(idx, constraints.len());
145 let prefix = if late { "=" } else { "=&" };
146 constraints.push(format!("{}{}", prefix, reg_to_llvm(reg, layout)));
147 }
148 InlineAsmOperandRef::InOut { reg, late, in_value, out_place } => {
149 let layout = if let Some(ref out_place) = out_place {
150 &out_place.layout
151 } else {
152 // LLVM required tied operands to have the same type,
153 // so we just use the type of the input.
154 &in_value.layout
155 };
156 let ty = llvm_fixup_output_type(self.cx, reg.reg_class(), layout);
157 output_types.push(ty);
158 op_idx.insert(idx, constraints.len());
159 let prefix = if late { "=" } else { "=&" };
160 constraints.push(format!("{}{}", prefix, reg_to_llvm(reg, Some(layout))));
161 }
162 _ => {}
163 }
164 }
165
166 // Collect input operands
167 let mut inputs = vec![];
168 for (idx, op) in operands.iter().enumerate() {
169 match *op {
170 InlineAsmOperandRef::In { reg, value } => {
171 let llval =
172 llvm_fixup_input(self, value.immediate(), reg.reg_class(), &value.layout);
173 inputs.push(llval);
174 op_idx.insert(idx, constraints.len());
175 constraints.push(reg_to_llvm(reg, Some(&value.layout)));
176 }
177 InlineAsmOperandRef::InOut { reg, late: _, in_value, out_place: _ } => {
178 let value = llvm_fixup_input(
179 self,
180 in_value.immediate(),
181 reg.reg_class(),
182 &in_value.layout,
183 );
184 inputs.push(value);
185 constraints.push(format!("{}", op_idx[&idx]));
186 }
187 InlineAsmOperandRef::SymFn { instance } => {
188 inputs.push(self.cx.get_fn(instance));
189 op_idx.insert(idx, constraints.len());
190 constraints.push("s".to_string());
191 }
192 InlineAsmOperandRef::SymStatic { def_id } => {
193 inputs.push(self.cx.get_static(def_id));
194 op_idx.insert(idx, constraints.len());
195 constraints.push("s".to_string());
196 }
197 _ => {}
198 }
199 }
200
201 // Build the template string
202 let mut template_str = String::new();
203 for piece in template {
204 match *piece {
205 InlineAsmTemplatePiece::String(ref s) => {
206 if s.contains('$') {
207 for c in s.chars() {
208 if c == '$' {
209 template_str.push_str("$$");
210 } else {
211 template_str.push(c);
212 }
213 }
214 } else {
215 template_str.push_str(s)
216 }
217 }
218 InlineAsmTemplatePiece::Placeholder { operand_idx, modifier, span: _ } => {
219 match operands[operand_idx] {
220 InlineAsmOperandRef::In { reg, .. }
221 | InlineAsmOperandRef::Out { reg, .. }
222 | InlineAsmOperandRef::InOut { reg, .. } => {
223 let modifier = modifier_to_llvm(asm_arch, reg.reg_class(), modifier);
224 if let Some(modifier) = modifier {
225 template_str.push_str(&format!(
226 "${{{}:{}}}",
227 op_idx[&operand_idx], modifier
228 ));
229 } else {
230 template_str.push_str(&format!("${{{}}}", op_idx[&operand_idx]));
231 }
232 }
233 InlineAsmOperandRef::Const { ref string } => {
234 // Const operands get injected directly into the template
235 template_str.push_str(string);
236 }
237 InlineAsmOperandRef::SymFn { .. }
238 | InlineAsmOperandRef::SymStatic { .. } => {
239 // Only emit the raw symbol name
240 template_str.push_str(&format!("${{{}:c}}", op_idx[&operand_idx]));
241 }
242 }
243 }
244 }
245 }
246
247 if !options.contains(InlineAsmOptions::PRESERVES_FLAGS) {
248 match asm_arch {
249 InlineAsmArch::AArch64 | InlineAsmArch::Arm => {
250 constraints.push("~{cc}".to_string());
251 }
252 InlineAsmArch::X86 | InlineAsmArch::X86_64 => {
253 constraints.extend_from_slice(&[
254 "~{dirflag}".to_string(),
255 "~{fpsr}".to_string(),
256 "~{flags}".to_string(),
257 ]);
258 }
259 InlineAsmArch::RiscV32 | InlineAsmArch::RiscV64 => {}
260 InlineAsmArch::Nvptx64 => {}
261 InlineAsmArch::Hexagon => {}
262 InlineAsmArch::Mips | InlineAsmArch::Mips64 => {}
263 InlineAsmArch::SpirV => {}
264 InlineAsmArch::Wasm32 => {}
265 }
266 }
267 if !options.contains(InlineAsmOptions::NOMEM) {
268 // This is actually ignored by LLVM, but it's probably best to keep
269 // it just in case. LLVM instead uses the ReadOnly/ReadNone
270 // attributes on the call instruction to optimize.
271 constraints.push("~{memory}".to_string());
272 }
273 let volatile = !options.contains(InlineAsmOptions::PURE);
274 let alignstack = !options.contains(InlineAsmOptions::NOSTACK);
275 let output_type = match &output_types[..] {
276 [] => self.type_void(),
277 [ty] => ty,
278 tys => self.type_struct(&tys, false),
279 };
280 let dialect = match asm_arch {
281 InlineAsmArch::X86 | InlineAsmArch::X86_64
282 if !options.contains(InlineAsmOptions::ATT_SYNTAX) =>
283 {
284 LlvmAsmDialect::Intel
285 }
286 _ => LlvmAsmDialect::Att,
287 };
288 let result = inline_asm_call(
289 self,
290 &template_str,
291 &constraints.join(","),
292 &inputs,
293 output_type,
294 volatile,
295 alignstack,
296 dialect,
297 line_spans,
298 )
299 .unwrap_or_else(|| span_bug!(line_spans[0], "LLVM asm constraint validation failed"));
300
301 if options.contains(InlineAsmOptions::PURE) {
302 if options.contains(InlineAsmOptions::NOMEM) {
303 llvm::Attribute::ReadNone.apply_callsite(llvm::AttributePlace::Function, result);
304 } else if options.contains(InlineAsmOptions::READONLY) {
305 llvm::Attribute::ReadOnly.apply_callsite(llvm::AttributePlace::Function, result);
306 }
307 llvm::Attribute::WillReturn.apply_callsite(llvm::AttributePlace::Function, result);
308 } else if options.contains(InlineAsmOptions::NOMEM) {
309 llvm::Attribute::InaccessibleMemOnly
310 .apply_callsite(llvm::AttributePlace::Function, result);
311 } else {
312 // LLVM doesn't have an attribute to represent ReadOnly + SideEffect
313 }
314
315 // Write results to outputs
316 for (idx, op) in operands.iter().enumerate() {
317 if let InlineAsmOperandRef::Out { reg, place: Some(place), .. }
318 | InlineAsmOperandRef::InOut { reg, out_place: Some(place), .. } = *op
319 {
320 let value = if output_types.len() == 1 {
321 result
322 } else {
323 self.extract_value(result, op_idx[&idx] as u64)
324 };
325 let value = llvm_fixup_output(self, value, reg.reg_class(), &place.layout);
326 OperandValue::Immediate(value).store(self, place);
327 }
328 }
329 }
330 }
331
332 impl AsmMethods for CodegenCx<'ll, 'tcx> {
333 fn codegen_global_asm(&self, ga: &hir::GlobalAsm) {
334 let asm = ga.asm.as_str();
335 unsafe {
336 llvm::LLVMRustAppendModuleInlineAsm(self.llmod, asm.as_ptr().cast(), asm.len());
337 }
338 }
339 }
340
341 fn inline_asm_call(
342 bx: &mut Builder<'a, 'll, 'tcx>,
343 asm: &str,
344 cons: &str,
345 inputs: &[&'ll Value],
346 output: &'ll llvm::Type,
347 volatile: bool,
348 alignstack: bool,
349 dia: LlvmAsmDialect,
350 line_spans: &[Span],
351 ) -> Option<&'ll Value> {
352 let volatile = if volatile { llvm::True } else { llvm::False };
353 let alignstack = if alignstack { llvm::True } else { llvm::False };
354
355 let argtys = inputs
356 .iter()
357 .map(|v| {
358 debug!("Asm Input Type: {:?}", *v);
359 bx.cx.val_ty(*v)
360 })
361 .collect::<Vec<_>>();
362
363 debug!("Asm Output Type: {:?}", output);
364 let fty = bx.cx.type_func(&argtys[..], output);
365 unsafe {
366 // Ask LLVM to verify that the constraints are well-formed.
367 let constraints_ok = llvm::LLVMRustInlineAsmVerify(fty, cons.as_ptr().cast(), cons.len());
368 debug!("constraint verification result: {:?}", constraints_ok);
369 if constraints_ok {
370 let v = llvm::LLVMRustInlineAsm(
371 fty,
372 asm.as_ptr().cast(),
373 asm.len(),
374 cons.as_ptr().cast(),
375 cons.len(),
376 volatile,
377 alignstack,
378 llvm::AsmDialect::from_generic(dia),
379 );
380 let call = bx.call(v, inputs, None);
381
382 // Store mark in a metadata node so we can map LLVM errors
383 // back to source locations. See #17552.
384 let key = "srcloc";
385 let kind = llvm::LLVMGetMDKindIDInContext(
386 bx.llcx,
387 key.as_ptr() as *const c_char,
388 key.len() as c_uint,
389 );
390
391 // srcloc contains one integer for each line of assembly code.
392 // Unfortunately this isn't enough to encode a full span so instead
393 // we just encode the start position of each line.
394 // FIXME: Figure out a way to pass the entire line spans.
395 let mut srcloc = vec![];
396 if dia == LlvmAsmDialect::Intel && line_spans.len() > 1 {
397 // LLVM inserts an extra line to add the ".intel_syntax", so add
398 // a dummy srcloc entry for it.
399 //
400 // Don't do this if we only have 1 line span since that may be
401 // due to the asm template string coming from a macro. LLVM will
402 // default to the first srcloc for lines that don't have an
403 // associated srcloc.
404 srcloc.push(bx.const_i32(0));
405 }
406 srcloc.extend(line_spans.iter().map(|span| bx.const_i32(span.lo().to_u32() as i32)));
407 let md = llvm::LLVMMDNodeInContext(bx.llcx, srcloc.as_ptr(), srcloc.len() as u32);
408 llvm::LLVMSetMetadata(call, kind, md);
409
410 Some(call)
411 } else {
412 // LLVM has detected an issue with our constraints, bail out
413 None
414 }
415 }
416 }
417
418 /// If the register is an xmm/ymm/zmm register then return its index.
419 fn xmm_reg_index(reg: InlineAsmReg) -> Option<u32> {
420 match reg {
421 InlineAsmReg::X86(reg)
422 if reg as u32 >= X86InlineAsmReg::xmm0 as u32
423 && reg as u32 <= X86InlineAsmReg::xmm15 as u32 =>
424 {
425 Some(reg as u32 - X86InlineAsmReg::xmm0 as u32)
426 }
427 InlineAsmReg::X86(reg)
428 if reg as u32 >= X86InlineAsmReg::ymm0 as u32
429 && reg as u32 <= X86InlineAsmReg::ymm15 as u32 =>
430 {
431 Some(reg as u32 - X86InlineAsmReg::ymm0 as u32)
432 }
433 InlineAsmReg::X86(reg)
434 if reg as u32 >= X86InlineAsmReg::zmm0 as u32
435 && reg as u32 <= X86InlineAsmReg::zmm31 as u32 =>
436 {
437 Some(reg as u32 - X86InlineAsmReg::zmm0 as u32)
438 }
439 _ => None,
440 }
441 }
442
443 /// If the register is an AArch64 vector register then return its index.
444 fn a64_vreg_index(reg: InlineAsmReg) -> Option<u32> {
445 match reg {
446 InlineAsmReg::AArch64(reg)
447 if reg as u32 >= AArch64InlineAsmReg::v0 as u32
448 && reg as u32 <= AArch64InlineAsmReg::v31 as u32 =>
449 {
450 Some(reg as u32 - AArch64InlineAsmReg::v0 as u32)
451 }
452 _ => None,
453 }
454 }
455
456 /// Converts a register class to an LLVM constraint code.
457 fn reg_to_llvm(reg: InlineAsmRegOrRegClass, layout: Option<&TyAndLayout<'tcx>>) -> String {
458 match reg {
459 // For vector registers LLVM wants the register name to match the type size.
460 InlineAsmRegOrRegClass::Reg(reg) => {
461 if let Some(idx) = xmm_reg_index(reg) {
462 let class = if let Some(layout) = layout {
463 match layout.size.bytes() {
464 64 => 'z',
465 32 => 'y',
466 _ => 'x',
467 }
468 } else {
469 // We use f32 as the type for discarded outputs
470 'x'
471 };
472 format!("{{{}mm{}}}", class, idx)
473 } else if let Some(idx) = a64_vreg_index(reg) {
474 let class = if let Some(layout) = layout {
475 match layout.size.bytes() {
476 16 => 'q',
477 8 => 'd',
478 4 => 's',
479 2 => 'h',
480 1 => 'd', // We fixup i8 to i8x8
481 _ => unreachable!(),
482 }
483 } else {
484 // We use i64x2 as the type for discarded outputs
485 'q'
486 };
487 format!("{{{}{}}}", class, idx)
488 } else if reg == InlineAsmReg::AArch64(AArch64InlineAsmReg::x30) {
489 // LLVM doesn't recognize x30
490 "{lr}".to_string()
491 } else if reg == InlineAsmReg::Arm(ArmInlineAsmReg::r14) {
492 // LLVM doesn't recognize r14
493 "{lr}".to_string()
494 } else {
495 format!("{{{}}}", reg.name())
496 }
497 }
498 InlineAsmRegOrRegClass::RegClass(reg) => match reg {
499 InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::reg) => "r",
500 InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg) => "w",
501 InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16) => "x",
502 InlineAsmRegClass::Arm(ArmInlineAsmRegClass::reg) => "r",
503 InlineAsmRegClass::Arm(ArmInlineAsmRegClass::reg_thumb) => "l",
504 InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg)
505 | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg_low16)
506 | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg_low8) => "t",
507 InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg_low16)
508 | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg_low8)
509 | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg_low4) => "x",
510 InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg)
511 | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg) => "w",
512 InlineAsmRegClass::Hexagon(HexagonInlineAsmRegClass::reg) => "r",
513 InlineAsmRegClass::Mips(MipsInlineAsmRegClass::reg) => "r",
514 InlineAsmRegClass::Mips(MipsInlineAsmRegClass::freg) => "f",
515 InlineAsmRegClass::Nvptx(NvptxInlineAsmRegClass::reg16) => "h",
516 InlineAsmRegClass::Nvptx(NvptxInlineAsmRegClass::reg32) => "r",
517 InlineAsmRegClass::Nvptx(NvptxInlineAsmRegClass::reg64) => "l",
518 InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::reg) => "r",
519 InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::freg) => "f",
520 InlineAsmRegClass::X86(X86InlineAsmRegClass::reg) => "r",
521 InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_abcd) => "Q",
522 InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_byte) => "q",
523 InlineAsmRegClass::X86(X86InlineAsmRegClass::xmm_reg)
524 | InlineAsmRegClass::X86(X86InlineAsmRegClass::ymm_reg) => "x",
525 InlineAsmRegClass::X86(X86InlineAsmRegClass::zmm_reg) => "v",
526 InlineAsmRegClass::X86(X86InlineAsmRegClass::kreg) => "^Yk",
527 InlineAsmRegClass::Wasm(WasmInlineAsmRegClass::local) => "r",
528 InlineAsmRegClass::SpirV(SpirVInlineAsmRegClass::reg) => {
529 bug!("LLVM backend does not support SPIR-V")
530 }
531 InlineAsmRegClass::Err => unreachable!(),
532 }
533 .to_string(),
534 }
535 }
536
537 /// Converts a modifier into LLVM's equivalent modifier.
538 fn modifier_to_llvm(
539 arch: InlineAsmArch,
540 reg: InlineAsmRegClass,
541 modifier: Option<char>,
542 ) -> Option<char> {
543 match reg {
544 InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::reg) => modifier,
545 InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg)
546 | InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16) => {
547 if modifier == Some('v') { None } else { modifier }
548 }
549 InlineAsmRegClass::Arm(ArmInlineAsmRegClass::reg)
550 | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::reg_thumb) => None,
551 InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg)
552 | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg_low16) => None,
553 InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg)
554 | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg_low16)
555 | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg_low8) => Some('P'),
556 InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg)
557 | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg_low8)
558 | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg_low4) => {
559 if modifier.is_none() {
560 Some('q')
561 } else {
562 modifier
563 }
564 }
565 InlineAsmRegClass::Hexagon(_) => None,
566 InlineAsmRegClass::Mips(_) => None,
567 InlineAsmRegClass::Nvptx(_) => None,
568 InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::reg)
569 | InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::freg) => None,
570 InlineAsmRegClass::X86(X86InlineAsmRegClass::reg)
571 | InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_abcd) => match modifier {
572 None if arch == InlineAsmArch::X86_64 => Some('q'),
573 None => Some('k'),
574 Some('l') => Some('b'),
575 Some('h') => Some('h'),
576 Some('x') => Some('w'),
577 Some('e') => Some('k'),
578 Some('r') => Some('q'),
579 _ => unreachable!(),
580 },
581 InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_byte) => None,
582 InlineAsmRegClass::X86(reg @ X86InlineAsmRegClass::xmm_reg)
583 | InlineAsmRegClass::X86(reg @ X86InlineAsmRegClass::ymm_reg)
584 | InlineAsmRegClass::X86(reg @ X86InlineAsmRegClass::zmm_reg) => match (reg, modifier) {
585 (X86InlineAsmRegClass::xmm_reg, None) => Some('x'),
586 (X86InlineAsmRegClass::ymm_reg, None) => Some('t'),
587 (X86InlineAsmRegClass::zmm_reg, None) => Some('g'),
588 (_, Some('x')) => Some('x'),
589 (_, Some('y')) => Some('t'),
590 (_, Some('z')) => Some('g'),
591 _ => unreachable!(),
592 },
593 InlineAsmRegClass::X86(X86InlineAsmRegClass::kreg) => None,
594 InlineAsmRegClass::Wasm(WasmInlineAsmRegClass::local) => None,
595 InlineAsmRegClass::SpirV(SpirVInlineAsmRegClass::reg) => {
596 bug!("LLVM backend does not support SPIR-V")
597 }
598 InlineAsmRegClass::Err => unreachable!(),
599 }
600 }
601
602 /// Type to use for outputs that are discarded. It doesn't really matter what
603 /// the type is, as long as it is valid for the constraint code.
604 fn dummy_output_type(cx: &CodegenCx<'ll, 'tcx>, reg: InlineAsmRegClass) -> &'ll Type {
605 match reg {
606 InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::reg) => cx.type_i32(),
607 InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg)
608 | InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16) => {
609 cx.type_vector(cx.type_i64(), 2)
610 }
611 InlineAsmRegClass::Arm(ArmInlineAsmRegClass::reg)
612 | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::reg_thumb) => cx.type_i32(),
613 InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg)
614 | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg_low16) => cx.type_f32(),
615 InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg)
616 | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg_low16)
617 | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg_low8) => cx.type_f64(),
618 InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg)
619 | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg_low8)
620 | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg_low4) => {
621 cx.type_vector(cx.type_i64(), 2)
622 }
623 InlineAsmRegClass::Hexagon(HexagonInlineAsmRegClass::reg) => cx.type_i32(),
624 InlineAsmRegClass::Mips(MipsInlineAsmRegClass::reg) => cx.type_i32(),
625 InlineAsmRegClass::Mips(MipsInlineAsmRegClass::freg) => cx.type_f32(),
626 InlineAsmRegClass::Nvptx(NvptxInlineAsmRegClass::reg16) => cx.type_i16(),
627 InlineAsmRegClass::Nvptx(NvptxInlineAsmRegClass::reg32) => cx.type_i32(),
628 InlineAsmRegClass::Nvptx(NvptxInlineAsmRegClass::reg64) => cx.type_i64(),
629 InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::reg) => cx.type_i32(),
630 InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::freg) => cx.type_f32(),
631 InlineAsmRegClass::X86(X86InlineAsmRegClass::reg)
632 | InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_abcd) => cx.type_i32(),
633 InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_byte) => cx.type_i8(),
634 InlineAsmRegClass::X86(X86InlineAsmRegClass::xmm_reg)
635 | InlineAsmRegClass::X86(X86InlineAsmRegClass::ymm_reg)
636 | InlineAsmRegClass::X86(X86InlineAsmRegClass::zmm_reg) => cx.type_f32(),
637 InlineAsmRegClass::X86(X86InlineAsmRegClass::kreg) => cx.type_i16(),
638 InlineAsmRegClass::Wasm(WasmInlineAsmRegClass::local) => cx.type_i32(),
639 InlineAsmRegClass::SpirV(SpirVInlineAsmRegClass::reg) => {
640 bug!("LLVM backend does not support SPIR-V")
641 }
642 InlineAsmRegClass::Err => unreachable!(),
643 }
644 }
645
646 /// Helper function to get the LLVM type for a Scalar. Pointers are returned as
647 /// the equivalent integer type.
648 fn llvm_asm_scalar_type(cx: &CodegenCx<'ll, 'tcx>, scalar: &Scalar) -> &'ll Type {
649 match scalar.value {
650 Primitive::Int(Integer::I8, _) => cx.type_i8(),
651 Primitive::Int(Integer::I16, _) => cx.type_i16(),
652 Primitive::Int(Integer::I32, _) => cx.type_i32(),
653 Primitive::Int(Integer::I64, _) => cx.type_i64(),
654 Primitive::F32 => cx.type_f32(),
655 Primitive::F64 => cx.type_f64(),
656 Primitive::Pointer => cx.type_isize(),
657 _ => unreachable!(),
658 }
659 }
660
661 /// Fix up an input value to work around LLVM bugs.
662 fn llvm_fixup_input(
663 bx: &mut Builder<'a, 'll, 'tcx>,
664 mut value: &'ll Value,
665 reg: InlineAsmRegClass,
666 layout: &TyAndLayout<'tcx>,
667 ) -> &'ll Value {
668 match (reg, &layout.abi) {
669 (InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg), Abi::Scalar(s)) => {
670 if let Primitive::Int(Integer::I8, _) = s.value {
671 let vec_ty = bx.cx.type_vector(bx.cx.type_i8(), 8);
672 bx.insert_element(bx.const_undef(vec_ty), value, bx.const_i32(0))
673 } else {
674 value
675 }
676 }
677 (InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16), Abi::Scalar(s)) => {
678 let elem_ty = llvm_asm_scalar_type(bx.cx, s);
679 let count = 16 / layout.size.bytes();
680 let vec_ty = bx.cx.type_vector(elem_ty, count);
681 if let Primitive::Pointer = s.value {
682 value = bx.ptrtoint(value, bx.cx.type_isize());
683 }
684 bx.insert_element(bx.const_undef(vec_ty), value, bx.const_i32(0))
685 }
686 (
687 InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16),
688 Abi::Vector { element, count },
689 ) if layout.size.bytes() == 8 => {
690 let elem_ty = llvm_asm_scalar_type(bx.cx, element);
691 let vec_ty = bx.cx.type_vector(elem_ty, *count);
692 let indices: Vec<_> = (0..count * 2).map(|x| bx.const_i32(x as i32)).collect();
693 bx.shuffle_vector(value, bx.const_undef(vec_ty), bx.const_vector(&indices))
694 }
695 (InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_abcd), Abi::Scalar(s))
696 if s.value == Primitive::F64 =>
697 {
698 bx.bitcast(value, bx.cx.type_i64())
699 }
700 (
701 InlineAsmRegClass::X86(X86InlineAsmRegClass::xmm_reg | X86InlineAsmRegClass::zmm_reg),
702 Abi::Vector { .. },
703 ) if layout.size.bytes() == 64 => bx.bitcast(value, bx.cx.type_vector(bx.cx.type_f64(), 8)),
704 (
705 InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg | ArmInlineAsmRegClass::sreg_low16),
706 Abi::Scalar(s),
707 ) => {
708 if let Primitive::Int(Integer::I32, _) = s.value {
709 bx.bitcast(value, bx.cx.type_f32())
710 } else {
711 value
712 }
713 }
714 (
715 InlineAsmRegClass::Arm(
716 ArmInlineAsmRegClass::dreg
717 | ArmInlineAsmRegClass::dreg_low8
718 | ArmInlineAsmRegClass::dreg_low16,
719 ),
720 Abi::Scalar(s),
721 ) => {
722 if let Primitive::Int(Integer::I64, _) = s.value {
723 bx.bitcast(value, bx.cx.type_f64())
724 } else {
725 value
726 }
727 }
728 (InlineAsmRegClass::Mips(MipsInlineAsmRegClass::reg), Abi::Scalar(s)) => match s.value {
729 // MIPS only supports register-length arithmetics.
730 Primitive::Int(Integer::I8 | Integer::I16, _) => bx.zext(value, bx.cx.type_i32()),
731 Primitive::F32 => bx.bitcast(value, bx.cx.type_i32()),
732 Primitive::F64 => bx.bitcast(value, bx.cx.type_i64()),
733 _ => value,
734 },
735 _ => value,
736 }
737 }
738
739 /// Fix up an output value to work around LLVM bugs.
740 fn llvm_fixup_output(
741 bx: &mut Builder<'a, 'll, 'tcx>,
742 mut value: &'ll Value,
743 reg: InlineAsmRegClass,
744 layout: &TyAndLayout<'tcx>,
745 ) -> &'ll Value {
746 match (reg, &layout.abi) {
747 (InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg), Abi::Scalar(s)) => {
748 if let Primitive::Int(Integer::I8, _) = s.value {
749 bx.extract_element(value, bx.const_i32(0))
750 } else {
751 value
752 }
753 }
754 (InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16), Abi::Scalar(s)) => {
755 value = bx.extract_element(value, bx.const_i32(0));
756 if let Primitive::Pointer = s.value {
757 value = bx.inttoptr(value, layout.llvm_type(bx.cx));
758 }
759 value
760 }
761 (
762 InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16),
763 Abi::Vector { element, count },
764 ) if layout.size.bytes() == 8 => {
765 let elem_ty = llvm_asm_scalar_type(bx.cx, element);
766 let vec_ty = bx.cx.type_vector(elem_ty, *count * 2);
767 let indices: Vec<_> = (0..*count).map(|x| bx.const_i32(x as i32)).collect();
768 bx.shuffle_vector(value, bx.const_undef(vec_ty), bx.const_vector(&indices))
769 }
770 (InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_abcd), Abi::Scalar(s))
771 if s.value == Primitive::F64 =>
772 {
773 bx.bitcast(value, bx.cx.type_f64())
774 }
775 (
776 InlineAsmRegClass::X86(X86InlineAsmRegClass::xmm_reg | X86InlineAsmRegClass::zmm_reg),
777 Abi::Vector { .. },
778 ) if layout.size.bytes() == 64 => bx.bitcast(value, layout.llvm_type(bx.cx)),
779 (
780 InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg | ArmInlineAsmRegClass::sreg_low16),
781 Abi::Scalar(s),
782 ) => {
783 if let Primitive::Int(Integer::I32, _) = s.value {
784 bx.bitcast(value, bx.cx.type_i32())
785 } else {
786 value
787 }
788 }
789 (
790 InlineAsmRegClass::Arm(
791 ArmInlineAsmRegClass::dreg
792 | ArmInlineAsmRegClass::dreg_low8
793 | ArmInlineAsmRegClass::dreg_low16,
794 ),
795 Abi::Scalar(s),
796 ) => {
797 if let Primitive::Int(Integer::I64, _) = s.value {
798 bx.bitcast(value, bx.cx.type_i64())
799 } else {
800 value
801 }
802 }
803 (InlineAsmRegClass::Mips(MipsInlineAsmRegClass::reg), Abi::Scalar(s)) => match s.value {
804 // MIPS only supports register-length arithmetics.
805 Primitive::Int(Integer::I8, _) => bx.trunc(value, bx.cx.type_i8()),
806 Primitive::Int(Integer::I16, _) => bx.trunc(value, bx.cx.type_i16()),
807 Primitive::F32 => bx.bitcast(value, bx.cx.type_f32()),
808 Primitive::F64 => bx.bitcast(value, bx.cx.type_f64()),
809 _ => value,
810 },
811 _ => value,
812 }
813 }
814
815 /// Output type to use for llvm_fixup_output.
816 fn llvm_fixup_output_type(
817 cx: &CodegenCx<'ll, 'tcx>,
818 reg: InlineAsmRegClass,
819 layout: &TyAndLayout<'tcx>,
820 ) -> &'ll Type {
821 match (reg, &layout.abi) {
822 (InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg), Abi::Scalar(s)) => {
823 if let Primitive::Int(Integer::I8, _) = s.value {
824 cx.type_vector(cx.type_i8(), 8)
825 } else {
826 layout.llvm_type(cx)
827 }
828 }
829 (InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16), Abi::Scalar(s)) => {
830 let elem_ty = llvm_asm_scalar_type(cx, s);
831 let count = 16 / layout.size.bytes();
832 cx.type_vector(elem_ty, count)
833 }
834 (
835 InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16),
836 Abi::Vector { element, count },
837 ) if layout.size.bytes() == 8 => {
838 let elem_ty = llvm_asm_scalar_type(cx, element);
839 cx.type_vector(elem_ty, count * 2)
840 }
841 (InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_abcd), Abi::Scalar(s))
842 if s.value == Primitive::F64 =>
843 {
844 cx.type_i64()
845 }
846 (
847 InlineAsmRegClass::X86(X86InlineAsmRegClass::xmm_reg | X86InlineAsmRegClass::zmm_reg),
848 Abi::Vector { .. },
849 ) if layout.size.bytes() == 64 => cx.type_vector(cx.type_f64(), 8),
850 (
851 InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg | ArmInlineAsmRegClass::sreg_low16),
852 Abi::Scalar(s),
853 ) => {
854 if let Primitive::Int(Integer::I32, _) = s.value {
855 cx.type_f32()
856 } else {
857 layout.llvm_type(cx)
858 }
859 }
860 (
861 InlineAsmRegClass::Arm(
862 ArmInlineAsmRegClass::dreg
863 | ArmInlineAsmRegClass::dreg_low8
864 | ArmInlineAsmRegClass::dreg_low16,
865 ),
866 Abi::Scalar(s),
867 ) => {
868 if let Primitive::Int(Integer::I64, _) = s.value {
869 cx.type_f64()
870 } else {
871 layout.llvm_type(cx)
872 }
873 }
874 (InlineAsmRegClass::Mips(MipsInlineAsmRegClass::reg), Abi::Scalar(s)) => match s.value {
875 // MIPS only supports register-length arithmetics.
876 Primitive::Int(Integer::I8 | Integer::I16, _) => cx.type_i32(),
877 Primitive::F32 => cx.type_i32(),
878 Primitive::F64 => cx.type_i64(),
879 _ => layout.llvm_type(cx),
880 },
881 _ => layout.llvm_type(cx),
882 }
883 }