]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_codegen_llvm/src/common.rs
New upstream version 1.51.0+dfsg1
[rustc.git] / compiler / rustc_codegen_llvm / src / common.rs
1 //! Code that is useful in various codegen modules.
2
3 use crate::consts::{self, const_alloc_to_llvm};
4 pub use crate::context::CodegenCx;
5 use crate::llvm::{self, BasicBlock, Bool, ConstantInt, False, OperandBundleDef, True};
6 use crate::type_::Type;
7 use crate::type_of::LayoutLlvmExt;
8 use crate::value::Value;
9
10 use rustc_ast::Mutability;
11 use rustc_codegen_ssa::mir::place::PlaceRef;
12 use rustc_codegen_ssa::traits::*;
13 use rustc_middle::bug;
14 use rustc_middle::mir::interpret::{Allocation, GlobalAlloc, Scalar};
15 use rustc_middle::ty::{layout::TyAndLayout, ScalarInt};
16 use rustc_span::symbol::Symbol;
17 use rustc_target::abi::{self, AddressSpace, HasDataLayout, LayoutOf, Pointer, Size};
18
19 use libc::{c_char, c_uint};
20 use tracing::debug;
21
22 /*
23 * A note on nomenclature of linking: "extern", "foreign", and "upcall".
24 *
25 * An "extern" is an LLVM symbol we wind up emitting an undefined external
26 * reference to. This means "we don't have the thing in this compilation unit,
27 * please make sure you link it in at runtime". This could be a reference to
28 * C code found in a C library, or rust code found in a rust crate.
29 *
30 * Most "externs" are implicitly declared (automatically) as a result of a
31 * user declaring an extern _module_ dependency; this causes the rust driver
32 * to locate an extern crate, scan its compilation metadata, and emit extern
33 * declarations for any symbols used by the declaring crate.
34 *
35 * A "foreign" is an extern that references C (or other non-rust ABI) code.
36 * There is no metadata to scan for extern references so in these cases either
37 * a header-digester like bindgen, or manual function prototypes, have to
38 * serve as declarators. So these are usually given explicitly as prototype
39 * declarations, in rust code, with ABI attributes on them noting which ABI to
40 * link via.
41 *
42 * An "upcall" is a foreign call generated by the compiler (not corresponding
43 * to any user-written call in the code) into the runtime library, to perform
44 * some helper task such as bringing a task to life, allocating memory, etc.
45 *
46 */
47
48 /// A structure representing an active landing pad for the duration of a basic
49 /// block.
50 ///
51 /// Each `Block` may contain an instance of this, indicating whether the block
52 /// is part of a landing pad or not. This is used to make decision about whether
53 /// to emit `invoke` instructions (e.g., in a landing pad we don't continue to
54 /// use `invoke`) and also about various function call metadata.
55 ///
56 /// For GNU exceptions (`landingpad` + `resume` instructions) this structure is
57 /// just a bunch of `None` instances (not too interesting), but for MSVC
58 /// exceptions (`cleanuppad` + `cleanupret` instructions) this contains data.
59 /// When inside of a landing pad, each function call in LLVM IR needs to be
60 /// annotated with which landing pad it's a part of. This is accomplished via
61 /// the `OperandBundleDef` value created for MSVC landing pads.
62 pub struct Funclet<'ll> {
63 cleanuppad: &'ll Value,
64 operand: OperandBundleDef<'ll>,
65 }
66
67 impl Funclet<'ll> {
68 pub fn new(cleanuppad: &'ll Value) -> Self {
69 Funclet { cleanuppad, operand: OperandBundleDef::new("funclet", &[cleanuppad]) }
70 }
71
72 pub fn cleanuppad(&self) -> &'ll Value {
73 self.cleanuppad
74 }
75
76 pub fn bundle(&self) -> &OperandBundleDef<'ll> {
77 &self.operand
78 }
79 }
80
81 impl BackendTypes for CodegenCx<'ll, 'tcx> {
82 type Value = &'ll Value;
83 // FIXME(eddyb) replace this with a `Function` "subclass" of `Value`.
84 type Function = &'ll Value;
85
86 type BasicBlock = &'ll BasicBlock;
87 type Type = &'ll Type;
88 type Funclet = Funclet<'ll>;
89
90 type DIScope = &'ll llvm::debuginfo::DIScope;
91 type DILocation = &'ll llvm::debuginfo::DILocation;
92 type DIVariable = &'ll llvm::debuginfo::DIVariable;
93 }
94
95 impl CodegenCx<'ll, 'tcx> {
96 pub fn const_array(&self, ty: &'ll Type, elts: &[&'ll Value]) -> &'ll Value {
97 unsafe { llvm::LLVMConstArray(ty, elts.as_ptr(), elts.len() as c_uint) }
98 }
99
100 pub fn const_vector(&self, elts: &[&'ll Value]) -> &'ll Value {
101 unsafe { llvm::LLVMConstVector(elts.as_ptr(), elts.len() as c_uint) }
102 }
103
104 pub fn const_bytes(&self, bytes: &[u8]) -> &'ll Value {
105 bytes_in_context(self.llcx, bytes)
106 }
107
108 fn const_cstr(&self, s: Symbol, null_terminated: bool) -> &'ll Value {
109 unsafe {
110 if let Some(&llval) = self.const_cstr_cache.borrow().get(&s) {
111 return llval;
112 }
113
114 let s_str = s.as_str();
115 let sc = llvm::LLVMConstStringInContext(
116 self.llcx,
117 s_str.as_ptr() as *const c_char,
118 s_str.len() as c_uint,
119 !null_terminated as Bool,
120 );
121 let sym = self.generate_local_symbol_name("str");
122 let g = self.define_global(&sym[..], self.val_ty(sc)).unwrap_or_else(|| {
123 bug!("symbol `{}` is already defined", sym);
124 });
125 llvm::LLVMSetInitializer(g, sc);
126 llvm::LLVMSetGlobalConstant(g, True);
127 llvm::LLVMRustSetLinkage(g, llvm::Linkage::InternalLinkage);
128
129 self.const_cstr_cache.borrow_mut().insert(s, g);
130 g
131 }
132 }
133
134 pub fn const_get_elt(&self, v: &'ll Value, idx: u64) -> &'ll Value {
135 unsafe {
136 assert_eq!(idx as c_uint as u64, idx);
137 let us = &[idx as c_uint];
138 let r = llvm::LLVMConstExtractValue(v, us.as_ptr(), us.len() as c_uint);
139
140 debug!("const_get_elt(v={:?}, idx={}, r={:?})", v, idx, r);
141
142 r
143 }
144 }
145 }
146
147 impl ConstMethods<'tcx> for CodegenCx<'ll, 'tcx> {
148 fn const_null(&self, t: &'ll Type) -> &'ll Value {
149 unsafe { llvm::LLVMConstNull(t) }
150 }
151
152 fn const_undef(&self, t: &'ll Type) -> &'ll Value {
153 unsafe { llvm::LLVMGetUndef(t) }
154 }
155
156 fn const_int(&self, t: &'ll Type, i: i64) -> &'ll Value {
157 unsafe { llvm::LLVMConstInt(t, i as u64, True) }
158 }
159
160 fn const_uint(&self, t: &'ll Type, i: u64) -> &'ll Value {
161 unsafe { llvm::LLVMConstInt(t, i, False) }
162 }
163
164 fn const_uint_big(&self, t: &'ll Type, u: u128) -> &'ll Value {
165 unsafe {
166 let words = [u as u64, (u >> 64) as u64];
167 llvm::LLVMConstIntOfArbitraryPrecision(t, 2, words.as_ptr())
168 }
169 }
170
171 fn const_bool(&self, val: bool) -> &'ll Value {
172 self.const_uint(self.type_i1(), val as u64)
173 }
174
175 fn const_i32(&self, i: i32) -> &'ll Value {
176 self.const_int(self.type_i32(), i as i64)
177 }
178
179 fn const_u32(&self, i: u32) -> &'ll Value {
180 self.const_uint(self.type_i32(), i as u64)
181 }
182
183 fn const_u64(&self, i: u64) -> &'ll Value {
184 self.const_uint(self.type_i64(), i)
185 }
186
187 fn const_usize(&self, i: u64) -> &'ll Value {
188 let bit_size = self.data_layout().pointer_size.bits();
189 if bit_size < 64 {
190 // make sure it doesn't overflow
191 assert!(i < (1 << bit_size));
192 }
193
194 self.const_uint(self.isize_ty, i)
195 }
196
197 fn const_u8(&self, i: u8) -> &'ll Value {
198 self.const_uint(self.type_i8(), i as u64)
199 }
200
201 fn const_real(&self, t: &'ll Type, val: f64) -> &'ll Value {
202 unsafe { llvm::LLVMConstReal(t, val) }
203 }
204
205 fn const_str(&self, s: Symbol) -> (&'ll Value, &'ll Value) {
206 let len = s.as_str().len();
207 let cs = consts::ptrcast(
208 self.const_cstr(s, false),
209 self.type_ptr_to(self.layout_of(self.tcx.types.str_).llvm_type(self)),
210 );
211 (cs, self.const_usize(len as u64))
212 }
213
214 fn const_struct(&self, elts: &[&'ll Value], packed: bool) -> &'ll Value {
215 struct_in_context(self.llcx, elts, packed)
216 }
217
218 fn const_to_opt_uint(&self, v: &'ll Value) -> Option<u64> {
219 try_as_const_integral(v).map(|v| unsafe { llvm::LLVMConstIntGetZExtValue(v) })
220 }
221
222 fn const_to_opt_u128(&self, v: &'ll Value, sign_ext: bool) -> Option<u128> {
223 try_as_const_integral(v).and_then(|v| unsafe {
224 let (mut lo, mut hi) = (0u64, 0u64);
225 let success = llvm::LLVMRustConstInt128Get(v, sign_ext, &mut hi, &mut lo);
226 success.then_some(hi_lo_to_u128(lo, hi))
227 })
228 }
229
230 fn scalar_to_backend(&self, cv: Scalar, layout: &abi::Scalar, llty: &'ll Type) -> &'ll Value {
231 let bitsize = if layout.is_bool() { 1 } else { layout.value.size(self).bits() };
232 match cv {
233 Scalar::Int(ScalarInt::ZST) => {
234 assert_eq!(0, layout.value.size(self).bytes());
235 self.const_undef(self.type_ix(0))
236 }
237 Scalar::Int(int) => {
238 let data = int.assert_bits(layout.value.size(self));
239 let llval = self.const_uint_big(self.type_ix(bitsize), data);
240 if layout.value == Pointer {
241 unsafe { llvm::LLVMConstIntToPtr(llval, llty) }
242 } else {
243 self.const_bitcast(llval, llty)
244 }
245 }
246 Scalar::Ptr(ptr) => {
247 let (base_addr, base_addr_space) = match self.tcx.global_alloc(ptr.alloc_id) {
248 GlobalAlloc::Memory(alloc) => {
249 let init = const_alloc_to_llvm(self, alloc);
250 let value = match alloc.mutability {
251 Mutability::Mut => self.static_addr_of_mut(init, alloc.align, None),
252 _ => self.static_addr_of(init, alloc.align, None),
253 };
254 if !self.sess().fewer_names() {
255 llvm::set_value_name(value, format!("{:?}", ptr.alloc_id).as_bytes());
256 }
257 (value, AddressSpace::DATA)
258 }
259 GlobalAlloc::Function(fn_instance) => (
260 self.get_fn_addr(fn_instance.polymorphize(self.tcx)),
261 self.data_layout().instruction_address_space,
262 ),
263 GlobalAlloc::Static(def_id) => {
264 assert!(self.tcx.is_static(def_id));
265 assert!(!self.tcx.is_thread_local_static(def_id));
266 (self.get_static(def_id), AddressSpace::DATA)
267 }
268 };
269 let llval = unsafe {
270 llvm::LLVMConstInBoundsGEP(
271 self.const_bitcast(base_addr, self.type_i8p_ext(base_addr_space)),
272 &self.const_usize(ptr.offset.bytes()),
273 1,
274 )
275 };
276 if layout.value != Pointer {
277 unsafe { llvm::LLVMConstPtrToInt(llval, llty) }
278 } else {
279 self.const_bitcast(llval, llty)
280 }
281 }
282 }
283 }
284
285 fn from_const_alloc(
286 &self,
287 layout: TyAndLayout<'tcx>,
288 alloc: &Allocation,
289 offset: Size,
290 ) -> PlaceRef<'tcx, &'ll Value> {
291 assert_eq!(alloc.align, layout.align.abi);
292 let llty = self.type_ptr_to(layout.llvm_type(self));
293 let llval = if layout.size == Size::ZERO {
294 let llval = self.const_usize(alloc.align.bytes());
295 unsafe { llvm::LLVMConstIntToPtr(llval, llty) }
296 } else {
297 let init = const_alloc_to_llvm(self, alloc);
298 let base_addr = self.static_addr_of(init, alloc.align, None);
299
300 let llval = unsafe {
301 llvm::LLVMConstInBoundsGEP(
302 self.const_bitcast(base_addr, self.type_i8p()),
303 &self.const_usize(offset.bytes()),
304 1,
305 )
306 };
307 self.const_bitcast(llval, llty)
308 };
309 PlaceRef::new_sized(llval, layout)
310 }
311
312 fn const_ptrcast(&self, val: &'ll Value, ty: &'ll Type) -> &'ll Value {
313 consts::ptrcast(val, ty)
314 }
315 }
316
317 /// Get the [LLVM type][Type] of a [`Value`].
318 pub fn val_ty(v: &Value) -> &Type {
319 unsafe { llvm::LLVMTypeOf(v) }
320 }
321
322 pub fn bytes_in_context(llcx: &'ll llvm::Context, bytes: &[u8]) -> &'ll Value {
323 unsafe {
324 let ptr = bytes.as_ptr() as *const c_char;
325 llvm::LLVMConstStringInContext(llcx, ptr, bytes.len() as c_uint, True)
326 }
327 }
328
329 pub fn struct_in_context(llcx: &'a llvm::Context, elts: &[&'a Value], packed: bool) -> &'a Value {
330 unsafe {
331 llvm::LLVMConstStructInContext(llcx, elts.as_ptr(), elts.len() as c_uint, packed as Bool)
332 }
333 }
334
335 #[inline]
336 fn hi_lo_to_u128(lo: u64, hi: u64) -> u128 {
337 ((hi as u128) << 64) | (lo as u128)
338 }
339
340 fn try_as_const_integral(v: &Value) -> Option<&ConstantInt> {
341 unsafe { llvm::LLVMIsAConstantInt(v) }
342 }