]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_codegen_ssa/src/base.rs
New upstream version 1.51.0+dfsg1
[rustc.git] / compiler / rustc_codegen_ssa / src / base.rs
1 use crate::back::write::{
2 compute_per_cgu_lto_type, start_async_codegen, submit_codegened_module_to_llvm,
3 submit_post_lto_module_to_llvm, submit_pre_lto_module_to_llvm, ComputedLtoType, OngoingCodegen,
4 };
5 use crate::common::{IntPredicate, RealPredicate, TypeKind};
6 use crate::meth;
7 use crate::mir;
8 use crate::mir::operand::OperandValue;
9 use crate::mir::place::PlaceRef;
10 use crate::traits::*;
11 use crate::{CachedModuleCodegen, CrateInfo, MemFlags, ModuleCodegen, ModuleKind};
12
13 use rustc_attr as attr;
14 use rustc_data_structures::fx::FxHashMap;
15 use rustc_data_structures::profiling::{get_resident_set_size, print_time_passes_entry};
16 use rustc_data_structures::sync::{par_iter, ParallelIterator};
17 use rustc_hir as hir;
18 use rustc_hir::def_id::{LocalDefId, LOCAL_CRATE};
19 use rustc_hir::lang_items::LangItem;
20 use rustc_index::vec::Idx;
21 use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrs;
22 use rustc_middle::middle::cstore::EncodedMetadata;
23 use rustc_middle::middle::cstore::{self, LinkagePreference};
24 use rustc_middle::middle::lang_items;
25 use rustc_middle::mir::mono::{CodegenUnit, CodegenUnitNameBuilder, MonoItem};
26 use rustc_middle::ty::layout::{HasTyCtxt, TyAndLayout};
27 use rustc_middle::ty::layout::{FAT_PTR_ADDR, FAT_PTR_EXTRA};
28 use rustc_middle::ty::query::Providers;
29 use rustc_middle::ty::{self, Instance, Ty, TyCtxt};
30 use rustc_session::cgu_reuse_tracker::CguReuse;
31 use rustc_session::config::{self, EntryFnType};
32 use rustc_session::Session;
33 use rustc_target::abi::{Align, LayoutOf, VariantIdx};
34
35 use std::ops::{Deref, DerefMut};
36 use std::time::{Duration, Instant};
37
38 use itertools::Itertools;
39
40 pub fn bin_op_to_icmp_predicate(op: hir::BinOpKind, signed: bool) -> IntPredicate {
41 match op {
42 hir::BinOpKind::Eq => IntPredicate::IntEQ,
43 hir::BinOpKind::Ne => IntPredicate::IntNE,
44 hir::BinOpKind::Lt => {
45 if signed {
46 IntPredicate::IntSLT
47 } else {
48 IntPredicate::IntULT
49 }
50 }
51 hir::BinOpKind::Le => {
52 if signed {
53 IntPredicate::IntSLE
54 } else {
55 IntPredicate::IntULE
56 }
57 }
58 hir::BinOpKind::Gt => {
59 if signed {
60 IntPredicate::IntSGT
61 } else {
62 IntPredicate::IntUGT
63 }
64 }
65 hir::BinOpKind::Ge => {
66 if signed {
67 IntPredicate::IntSGE
68 } else {
69 IntPredicate::IntUGE
70 }
71 }
72 op => bug!(
73 "comparison_op_to_icmp_predicate: expected comparison operator, \
74 found {:?}",
75 op
76 ),
77 }
78 }
79
80 pub fn bin_op_to_fcmp_predicate(op: hir::BinOpKind) -> RealPredicate {
81 match op {
82 hir::BinOpKind::Eq => RealPredicate::RealOEQ,
83 hir::BinOpKind::Ne => RealPredicate::RealUNE,
84 hir::BinOpKind::Lt => RealPredicate::RealOLT,
85 hir::BinOpKind::Le => RealPredicate::RealOLE,
86 hir::BinOpKind::Gt => RealPredicate::RealOGT,
87 hir::BinOpKind::Ge => RealPredicate::RealOGE,
88 op => {
89 bug!(
90 "comparison_op_to_fcmp_predicate: expected comparison operator, \
91 found {:?}",
92 op
93 );
94 }
95 }
96 }
97
98 pub fn compare_simd_types<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
99 bx: &mut Bx,
100 lhs: Bx::Value,
101 rhs: Bx::Value,
102 t: Ty<'tcx>,
103 ret_ty: Bx::Type,
104 op: hir::BinOpKind,
105 ) -> Bx::Value {
106 let signed = match t.kind() {
107 ty::Float(_) => {
108 let cmp = bin_op_to_fcmp_predicate(op);
109 let cmp = bx.fcmp(cmp, lhs, rhs);
110 return bx.sext(cmp, ret_ty);
111 }
112 ty::Uint(_) => false,
113 ty::Int(_) => true,
114 _ => bug!("compare_simd_types: invalid SIMD type"),
115 };
116
117 let cmp = bin_op_to_icmp_predicate(op, signed);
118 let cmp = bx.icmp(cmp, lhs, rhs);
119 // LLVM outputs an `< size x i1 >`, so we need to perform a sign extension
120 // to get the correctly sized type. This will compile to a single instruction
121 // once the IR is converted to assembly if the SIMD instruction is supported
122 // by the target architecture.
123 bx.sext(cmp, ret_ty)
124 }
125
126 /// Retrieves the information we are losing (making dynamic) in an unsizing
127 /// adjustment.
128 ///
129 /// The `old_info` argument is a bit odd. It is intended for use in an upcast,
130 /// where the new vtable for an object will be derived from the old one.
131 pub fn unsized_info<'tcx, Cx: CodegenMethods<'tcx>>(
132 cx: &Cx,
133 source: Ty<'tcx>,
134 target: Ty<'tcx>,
135 old_info: Option<Cx::Value>,
136 ) -> Cx::Value {
137 let (source, target) =
138 cx.tcx().struct_lockstep_tails_erasing_lifetimes(source, target, cx.param_env());
139 match (source.kind(), target.kind()) {
140 (&ty::Array(_, len), &ty::Slice(_)) => {
141 cx.const_usize(len.eval_usize(cx.tcx(), ty::ParamEnv::reveal_all()))
142 }
143 (&ty::Dynamic(..), &ty::Dynamic(..)) => {
144 // For now, upcasts are limited to changes in marker
145 // traits, and hence never actually require an actual
146 // change to the vtable.
147 old_info.expect("unsized_info: missing old info for trait upcast")
148 }
149 (_, &ty::Dynamic(ref data, ..)) => {
150 let vtable_ptr = cx.layout_of(cx.tcx().mk_mut_ptr(target)).field(cx, FAT_PTR_EXTRA);
151 cx.const_ptrcast(
152 meth::get_vtable(cx, source, data.principal()),
153 cx.backend_type(vtable_ptr),
154 )
155 }
156 _ => bug!("unsized_info: invalid unsizing {:?} -> {:?}", source, target),
157 }
158 }
159
160 /// Coerces `src` to `dst_ty`. `src_ty` must be a thin pointer.
161 pub fn unsize_thin_ptr<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
162 bx: &mut Bx,
163 src: Bx::Value,
164 src_ty: Ty<'tcx>,
165 dst_ty: Ty<'tcx>,
166 ) -> (Bx::Value, Bx::Value) {
167 debug!("unsize_thin_ptr: {:?} => {:?}", src_ty, dst_ty);
168 match (src_ty.kind(), dst_ty.kind()) {
169 (&ty::Ref(_, a, _), &ty::Ref(_, b, _) | &ty::RawPtr(ty::TypeAndMut { ty: b, .. }))
170 | (&ty::RawPtr(ty::TypeAndMut { ty: a, .. }), &ty::RawPtr(ty::TypeAndMut { ty: b, .. })) => {
171 assert!(bx.cx().type_is_sized(a));
172 let ptr_ty = bx.cx().type_ptr_to(bx.cx().backend_type(bx.cx().layout_of(b)));
173 (bx.pointercast(src, ptr_ty), unsized_info(bx.cx(), a, b, None))
174 }
175 (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => {
176 assert_eq!(def_a, def_b);
177
178 let src_layout = bx.cx().layout_of(src_ty);
179 let dst_layout = bx.cx().layout_of(dst_ty);
180 let mut result = None;
181 for i in 0..src_layout.fields.count() {
182 let src_f = src_layout.field(bx.cx(), i);
183 assert_eq!(src_layout.fields.offset(i).bytes(), 0);
184 assert_eq!(dst_layout.fields.offset(i).bytes(), 0);
185 if src_f.is_zst() {
186 continue;
187 }
188 assert_eq!(src_layout.size, src_f.size);
189
190 let dst_f = dst_layout.field(bx.cx(), i);
191 assert_ne!(src_f.ty, dst_f.ty);
192 assert_eq!(result, None);
193 result = Some(unsize_thin_ptr(bx, src, src_f.ty, dst_f.ty));
194 }
195 let (lldata, llextra) = result.unwrap();
196 // HACK(eddyb) have to bitcast pointers until LLVM removes pointee types.
197 // FIXME(eddyb) move these out of this `match` arm, so they're always
198 // applied, uniformly, no matter the source/destination types.
199 (
200 bx.bitcast(lldata, bx.cx().scalar_pair_element_backend_type(dst_layout, 0, true)),
201 bx.bitcast(llextra, bx.cx().scalar_pair_element_backend_type(dst_layout, 1, true)),
202 )
203 }
204 _ => bug!("unsize_thin_ptr: called on bad types"),
205 }
206 }
207
208 /// Coerces `src`, which is a reference to a value of type `src_ty`,
209 /// to a value of type `dst_ty`, and stores the result in `dst`.
210 pub fn coerce_unsized_into<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
211 bx: &mut Bx,
212 src: PlaceRef<'tcx, Bx::Value>,
213 dst: PlaceRef<'tcx, Bx::Value>,
214 ) {
215 let src_ty = src.layout.ty;
216 let dst_ty = dst.layout.ty;
217 match (src_ty.kind(), dst_ty.kind()) {
218 (&ty::Ref(..), &ty::Ref(..) | &ty::RawPtr(..)) | (&ty::RawPtr(..), &ty::RawPtr(..)) => {
219 let (base, info) = match bx.load_operand(src).val {
220 OperandValue::Pair(base, info) => {
221 // fat-ptr to fat-ptr unsize preserves the vtable
222 // i.e., &'a fmt::Debug+Send => &'a fmt::Debug
223 // So we need to pointercast the base to ensure
224 // the types match up.
225 // FIXME(eddyb) use `scalar_pair_element_backend_type` here,
226 // like `unsize_thin_ptr` does.
227 let thin_ptr = dst.layout.field(bx.cx(), FAT_PTR_ADDR);
228 (bx.pointercast(base, bx.cx().backend_type(thin_ptr)), info)
229 }
230 OperandValue::Immediate(base) => unsize_thin_ptr(bx, base, src_ty, dst_ty),
231 OperandValue::Ref(..) => bug!(),
232 };
233 OperandValue::Pair(base, info).store(bx, dst);
234 }
235
236 (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => {
237 assert_eq!(def_a, def_b);
238
239 for i in 0..def_a.variants[VariantIdx::new(0)].fields.len() {
240 let src_f = src.project_field(bx, i);
241 let dst_f = dst.project_field(bx, i);
242
243 if dst_f.layout.is_zst() {
244 continue;
245 }
246
247 if src_f.layout.ty == dst_f.layout.ty {
248 memcpy_ty(
249 bx,
250 dst_f.llval,
251 dst_f.align,
252 src_f.llval,
253 src_f.align,
254 src_f.layout,
255 MemFlags::empty(),
256 );
257 } else {
258 coerce_unsized_into(bx, src_f, dst_f);
259 }
260 }
261 }
262 _ => bug!("coerce_unsized_into: invalid coercion {:?} -> {:?}", src_ty, dst_ty,),
263 }
264 }
265
266 pub fn cast_shift_expr_rhs<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
267 bx: &mut Bx,
268 op: hir::BinOpKind,
269 lhs: Bx::Value,
270 rhs: Bx::Value,
271 ) -> Bx::Value {
272 cast_shift_rhs(bx, op, lhs, rhs)
273 }
274
275 fn cast_shift_rhs<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
276 bx: &mut Bx,
277 op: hir::BinOpKind,
278 lhs: Bx::Value,
279 rhs: Bx::Value,
280 ) -> Bx::Value {
281 // Shifts may have any size int on the rhs
282 if op.is_shift() {
283 let mut rhs_llty = bx.cx().val_ty(rhs);
284 let mut lhs_llty = bx.cx().val_ty(lhs);
285 if bx.cx().type_kind(rhs_llty) == TypeKind::Vector {
286 rhs_llty = bx.cx().element_type(rhs_llty)
287 }
288 if bx.cx().type_kind(lhs_llty) == TypeKind::Vector {
289 lhs_llty = bx.cx().element_type(lhs_llty)
290 }
291 let rhs_sz = bx.cx().int_width(rhs_llty);
292 let lhs_sz = bx.cx().int_width(lhs_llty);
293 if lhs_sz < rhs_sz {
294 bx.trunc(rhs, lhs_llty)
295 } else if lhs_sz > rhs_sz {
296 // FIXME (#1877: If in the future shifting by negative
297 // values is no longer undefined then this is wrong.
298 bx.zext(rhs, lhs_llty)
299 } else {
300 rhs
301 }
302 } else {
303 rhs
304 }
305 }
306
307 /// Returns `true` if this session's target will use SEH-based unwinding.
308 ///
309 /// This is only true for MSVC targets, and even then the 64-bit MSVC target
310 /// currently uses SEH-ish unwinding with DWARF info tables to the side (same as
311 /// 64-bit MinGW) instead of "full SEH".
312 pub fn wants_msvc_seh(sess: &Session) -> bool {
313 sess.target.is_like_msvc
314 }
315
316 pub fn memcpy_ty<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
317 bx: &mut Bx,
318 dst: Bx::Value,
319 dst_align: Align,
320 src: Bx::Value,
321 src_align: Align,
322 layout: TyAndLayout<'tcx>,
323 flags: MemFlags,
324 ) {
325 let size = layout.size.bytes();
326 if size == 0 {
327 return;
328 }
329
330 bx.memcpy(dst, dst_align, src, src_align, bx.cx().const_usize(size), flags);
331 }
332
333 pub fn codegen_instance<'a, 'tcx: 'a, Bx: BuilderMethods<'a, 'tcx>>(
334 cx: &'a Bx::CodegenCx,
335 instance: Instance<'tcx>,
336 ) {
337 // this is an info! to allow collecting monomorphization statistics
338 // and to allow finding the last function before LLVM aborts from
339 // release builds.
340 info!("codegen_instance({})", instance);
341
342 mir::codegen_mir::<Bx>(cx, instance);
343 }
344
345 /// Creates the `main` function which will initialize the rust runtime and call
346 /// users main function.
347 pub fn maybe_create_entry_wrapper<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
348 cx: &'a Bx::CodegenCx,
349 ) -> Option<Bx::Function> {
350 let main_def_id = cx.tcx().entry_fn(LOCAL_CRATE).map(|(def_id, _)| def_id)?;
351 let instance = Instance::mono(cx.tcx(), main_def_id.to_def_id());
352
353 if !cx.codegen_unit().contains_item(&MonoItem::Fn(instance)) {
354 // We want to create the wrapper in the same codegen unit as Rust's main
355 // function.
356 return None;
357 }
358
359 let main_llfn = cx.get_fn_addr(instance);
360
361 return cx.tcx().entry_fn(LOCAL_CRATE).map(|(_, et)| {
362 let use_start_lang_item = EntryFnType::Start != et;
363 create_entry_fn::<Bx>(cx, main_llfn, main_def_id, use_start_lang_item)
364 });
365
366 fn create_entry_fn<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
367 cx: &'a Bx::CodegenCx,
368 rust_main: Bx::Value,
369 rust_main_def_id: LocalDefId,
370 use_start_lang_item: bool,
371 ) -> Bx::Function {
372 // The entry function is either `int main(void)` or `int main(int argc, char **argv)`,
373 // depending on whether the target needs `argc` and `argv` to be passed in.
374 let llfty = if cx.sess().target.main_needs_argc_argv {
375 cx.type_func(&[cx.type_int(), cx.type_ptr_to(cx.type_i8p())], cx.type_int())
376 } else {
377 cx.type_func(&[], cx.type_int())
378 };
379
380 let main_ret_ty = cx.tcx().fn_sig(rust_main_def_id).output();
381 // Given that `main()` has no arguments,
382 // then its return type cannot have
383 // late-bound regions, since late-bound
384 // regions must appear in the argument
385 // listing.
386 let main_ret_ty = cx.tcx().erase_regions(main_ret_ty.no_bound_vars().unwrap());
387
388 let llfn = match cx.declare_c_main(llfty) {
389 Some(llfn) => llfn,
390 None => {
391 // FIXME: We should be smart and show a better diagnostic here.
392 let span = cx.tcx().def_span(rust_main_def_id);
393 cx.sess()
394 .struct_span_err(span, "entry symbol `main` declared multiple times")
395 .help("did you use `#[no_mangle]` on `fn main`? Use `#[start]` instead")
396 .emit();
397 cx.sess().abort_if_errors();
398 bug!();
399 }
400 };
401
402 // `main` should respect same config for frame pointer elimination as rest of code
403 cx.set_frame_pointer_elimination(llfn);
404 cx.apply_target_cpu_attr(llfn);
405
406 let mut bx = Bx::new_block(&cx, llfn, "top");
407
408 bx.insert_reference_to_gdb_debug_scripts_section_global();
409
410 let (arg_argc, arg_argv) = get_argc_argv(cx, &mut bx);
411
412 let (start_fn, args) = if use_start_lang_item {
413 let start_def_id = cx.tcx().require_lang_item(LangItem::Start, None);
414 let start_fn = cx.get_fn_addr(
415 ty::Instance::resolve(
416 cx.tcx(),
417 ty::ParamEnv::reveal_all(),
418 start_def_id,
419 cx.tcx().intern_substs(&[main_ret_ty.into()]),
420 )
421 .unwrap()
422 .unwrap(),
423 );
424 (
425 start_fn,
426 vec![bx.pointercast(rust_main, cx.type_ptr_to(cx.type_i8p())), arg_argc, arg_argv],
427 )
428 } else {
429 debug!("using user-defined start fn");
430 (rust_main, vec![arg_argc, arg_argv])
431 };
432
433 let result = bx.call(start_fn, &args, None);
434 let cast = bx.intcast(result, cx.type_int(), true);
435 bx.ret(cast);
436
437 llfn
438 }
439 }
440
441 /// Obtain the `argc` and `argv` values to pass to the rust start function.
442 fn get_argc_argv<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
443 cx: &'a Bx::CodegenCx,
444 bx: &mut Bx,
445 ) -> (Bx::Value, Bx::Value) {
446 if cx.sess().target.main_needs_argc_argv {
447 // Params from native `main()` used as args for rust start function
448 let param_argc = bx.get_param(0);
449 let param_argv = bx.get_param(1);
450 let arg_argc = bx.intcast(param_argc, cx.type_isize(), true);
451 let arg_argv = param_argv;
452 (arg_argc, arg_argv)
453 } else {
454 // The Rust start function doesn't need `argc` and `argv`, so just pass zeros.
455 let arg_argc = bx.const_int(cx.type_int(), 0);
456 let arg_argv = bx.const_null(cx.type_ptr_to(cx.type_i8p()));
457 (arg_argc, arg_argv)
458 }
459 }
460
461 pub fn codegen_crate<B: ExtraBackendMethods>(
462 backend: B,
463 tcx: TyCtxt<'tcx>,
464 metadata: EncodedMetadata,
465 need_metadata_module: bool,
466 ) -> OngoingCodegen<B> {
467 // Skip crate items and just output metadata in -Z no-codegen mode.
468 if tcx.sess.opts.debugging_opts.no_codegen || !tcx.sess.opts.output_types.should_codegen() {
469 let ongoing_codegen = start_async_codegen(backend, tcx, metadata, 1);
470
471 ongoing_codegen.codegen_finished(tcx);
472
473 ongoing_codegen.check_for_errors(tcx.sess);
474
475 return ongoing_codegen;
476 }
477
478 let cgu_name_builder = &mut CodegenUnitNameBuilder::new(tcx);
479
480 // Run the monomorphization collector and partition the collected items into
481 // codegen units.
482 let codegen_units = tcx.collect_and_partition_mono_items(LOCAL_CRATE).1;
483
484 // Force all codegen_unit queries so they are already either red or green
485 // when compile_codegen_unit accesses them. We are not able to re-execute
486 // the codegen_unit query from just the DepNode, so an unknown color would
487 // lead to having to re-execute compile_codegen_unit, possibly
488 // unnecessarily.
489 if tcx.dep_graph.is_fully_enabled() {
490 for cgu in codegen_units {
491 tcx.ensure().codegen_unit(cgu.name());
492 }
493 }
494
495 let ongoing_codegen = start_async_codegen(backend.clone(), tcx, metadata, codegen_units.len());
496 let ongoing_codegen = AbortCodegenOnDrop::<B>(Some(ongoing_codegen));
497
498 // Codegen an allocator shim, if necessary.
499 //
500 // If the crate doesn't have an `allocator_kind` set then there's definitely
501 // no shim to generate. Otherwise we also check our dependency graph for all
502 // our output crate types. If anything there looks like its a `Dynamic`
503 // linkage, then it's already got an allocator shim and we'll be using that
504 // one instead. If nothing exists then it's our job to generate the
505 // allocator!
506 let any_dynamic_crate = tcx.dependency_formats(LOCAL_CRATE).iter().any(|(_, list)| {
507 use rustc_middle::middle::dependency_format::Linkage;
508 list.iter().any(|&linkage| linkage == Linkage::Dynamic)
509 });
510 let allocator_module = if any_dynamic_crate {
511 None
512 } else if let Some(kind) = tcx.allocator_kind() {
513 let llmod_id =
514 cgu_name_builder.build_cgu_name(LOCAL_CRATE, &["crate"], Some("allocator")).to_string();
515 let mut modules = backend.new_metadata(tcx, &llmod_id);
516 tcx.sess.time("write_allocator_module", || {
517 backend.codegen_allocator(tcx, &mut modules, kind, tcx.lang_items().oom().is_some())
518 });
519
520 Some(ModuleCodegen { name: llmod_id, module_llvm: modules, kind: ModuleKind::Allocator })
521 } else {
522 None
523 };
524
525 if let Some(allocator_module) = allocator_module {
526 ongoing_codegen.submit_pre_codegened_module_to_llvm(tcx, allocator_module);
527 }
528
529 if need_metadata_module {
530 // Codegen the encoded metadata.
531 let metadata_cgu_name =
532 cgu_name_builder.build_cgu_name(LOCAL_CRATE, &["crate"], Some("metadata")).to_string();
533 let mut metadata_llvm_module = backend.new_metadata(tcx, &metadata_cgu_name);
534 tcx.sess.time("write_compressed_metadata", || {
535 backend.write_compressed_metadata(
536 tcx,
537 &ongoing_codegen.metadata,
538 &mut metadata_llvm_module,
539 );
540 });
541
542 let metadata_module = ModuleCodegen {
543 name: metadata_cgu_name,
544 module_llvm: metadata_llvm_module,
545 kind: ModuleKind::Metadata,
546 };
547 ongoing_codegen.submit_pre_codegened_module_to_llvm(tcx, metadata_module);
548 }
549
550 // For better throughput during parallel processing by LLVM, we used to sort
551 // CGUs largest to smallest. This would lead to better thread utilization
552 // by, for example, preventing a large CGU from being processed last and
553 // having only one LLVM thread working while the rest remained idle.
554 //
555 // However, this strategy would lead to high memory usage, as it meant the
556 // LLVM-IR for all of the largest CGUs would be resident in memory at once.
557 //
558 // Instead, we can compromise by ordering CGUs such that the largest and
559 // smallest are first, second largest and smallest are next, etc. If there
560 // are large size variations, this can reduce memory usage significantly.
561 let codegen_units: Vec<_> = {
562 let mut sorted_cgus = codegen_units.iter().collect::<Vec<_>>();
563 sorted_cgus.sort_by_cached_key(|cgu| cgu.size_estimate());
564
565 let (first_half, second_half) = sorted_cgus.split_at(sorted_cgus.len() / 2);
566 second_half.iter().rev().interleave(first_half).copied().collect()
567 };
568
569 // The non-parallel compiler can only translate codegen units to LLVM IR
570 // on a single thread, leading to a staircase effect where the N LLVM
571 // threads have to wait on the single codegen threads to generate work
572 // for them. The parallel compiler does not have this restriction, so
573 // we can pre-load the LLVM queue in parallel before handing off
574 // coordination to the OnGoingCodegen scheduler.
575 //
576 // This likely is a temporary measure. Once we don't have to support the
577 // non-parallel compiler anymore, we can compile CGUs end-to-end in
578 // parallel and get rid of the complicated scheduling logic.
579 let pre_compile_cgus = |cgu_reuse: &[CguReuse]| {
580 if cfg!(parallel_compiler) {
581 tcx.sess.time("compile_first_CGU_batch", || {
582 // Try to find one CGU to compile per thread.
583 let cgus: Vec<_> = cgu_reuse
584 .iter()
585 .enumerate()
586 .filter(|&(_, reuse)| reuse == &CguReuse::No)
587 .take(tcx.sess.threads())
588 .collect();
589
590 // Compile the found CGUs in parallel.
591 let start_time = Instant::now();
592
593 let pre_compiled_cgus = par_iter(cgus)
594 .map(|(i, _)| {
595 let module = backend.compile_codegen_unit(tcx, codegen_units[i].name());
596 (i, module)
597 })
598 .collect();
599
600 (pre_compiled_cgus, start_time.elapsed())
601 })
602 } else {
603 (FxHashMap::default(), Duration::new(0, 0))
604 }
605 };
606
607 let mut cgu_reuse = Vec::new();
608 let mut pre_compiled_cgus: Option<FxHashMap<usize, _>> = None;
609 let mut total_codegen_time = Duration::new(0, 0);
610 let start_rss = tcx.sess.time_passes().then(|| get_resident_set_size());
611
612 for (i, cgu) in codegen_units.iter().enumerate() {
613 ongoing_codegen.wait_for_signal_to_codegen_item();
614 ongoing_codegen.check_for_errors(tcx.sess);
615
616 // Do some setup work in the first iteration
617 if pre_compiled_cgus.is_none() {
618 // Calculate the CGU reuse
619 cgu_reuse = tcx.sess.time("find_cgu_reuse", || {
620 codegen_units.iter().map(|cgu| determine_cgu_reuse(tcx, &cgu)).collect()
621 });
622 // Pre compile some CGUs
623 let (compiled_cgus, codegen_time) = pre_compile_cgus(&cgu_reuse);
624 pre_compiled_cgus = Some(compiled_cgus);
625 total_codegen_time += codegen_time;
626 }
627
628 let cgu_reuse = cgu_reuse[i];
629 tcx.sess.cgu_reuse_tracker.set_actual_reuse(&cgu.name().as_str(), cgu_reuse);
630
631 match cgu_reuse {
632 CguReuse::No => {
633 let (module, cost) =
634 if let Some(cgu) = pre_compiled_cgus.as_mut().unwrap().remove(&i) {
635 cgu
636 } else {
637 let start_time = Instant::now();
638 let module = backend.compile_codegen_unit(tcx, cgu.name());
639 total_codegen_time += start_time.elapsed();
640 module
641 };
642 // This will unwind if there are errors, which triggers our `AbortCodegenOnDrop`
643 // guard. Unfortunately, just skipping the `submit_codegened_module_to_llvm` makes
644 // compilation hang on post-monomorphization errors.
645 tcx.sess.abort_if_errors();
646
647 submit_codegened_module_to_llvm(
648 &backend,
649 &ongoing_codegen.coordinator_send,
650 module,
651 cost,
652 );
653 false
654 }
655 CguReuse::PreLto => {
656 submit_pre_lto_module_to_llvm(
657 &backend,
658 tcx,
659 &ongoing_codegen.coordinator_send,
660 CachedModuleCodegen {
661 name: cgu.name().to_string(),
662 source: cgu.work_product(tcx),
663 },
664 );
665 true
666 }
667 CguReuse::PostLto => {
668 submit_post_lto_module_to_llvm(
669 &backend,
670 &ongoing_codegen.coordinator_send,
671 CachedModuleCodegen {
672 name: cgu.name().to_string(),
673 source: cgu.work_product(tcx),
674 },
675 );
676 true
677 }
678 };
679 }
680
681 ongoing_codegen.codegen_finished(tcx);
682
683 // Since the main thread is sometimes blocked during codegen, we keep track
684 // -Ztime-passes output manually.
685 if tcx.sess.time_passes() {
686 let end_rss = get_resident_set_size();
687
688 print_time_passes_entry(
689 "codegen_to_LLVM_IR",
690 total_codegen_time,
691 start_rss.unwrap(),
692 end_rss,
693 );
694 }
695
696 ongoing_codegen.check_for_errors(tcx.sess);
697
698 ongoing_codegen.into_inner()
699 }
700
701 /// A curious wrapper structure whose only purpose is to call `codegen_aborted`
702 /// when it's dropped abnormally.
703 ///
704 /// In the process of working on rust-lang/rust#55238 a mysterious segfault was
705 /// stumbled upon. The segfault was never reproduced locally, but it was
706 /// suspected to be related to the fact that codegen worker threads were
707 /// sticking around by the time the main thread was exiting, causing issues.
708 ///
709 /// This structure is an attempt to fix that issue where the `codegen_aborted`
710 /// message will block until all workers have finished. This should ensure that
711 /// even if the main codegen thread panics we'll wait for pending work to
712 /// complete before returning from the main thread, hopefully avoiding
713 /// segfaults.
714 ///
715 /// If you see this comment in the code, then it means that this workaround
716 /// worked! We may yet one day track down the mysterious cause of that
717 /// segfault...
718 struct AbortCodegenOnDrop<B: ExtraBackendMethods>(Option<OngoingCodegen<B>>);
719
720 impl<B: ExtraBackendMethods> AbortCodegenOnDrop<B> {
721 fn into_inner(mut self) -> OngoingCodegen<B> {
722 self.0.take().unwrap()
723 }
724 }
725
726 impl<B: ExtraBackendMethods> Deref for AbortCodegenOnDrop<B> {
727 type Target = OngoingCodegen<B>;
728
729 fn deref(&self) -> &OngoingCodegen<B> {
730 self.0.as_ref().unwrap()
731 }
732 }
733
734 impl<B: ExtraBackendMethods> DerefMut for AbortCodegenOnDrop<B> {
735 fn deref_mut(&mut self) -> &mut OngoingCodegen<B> {
736 self.0.as_mut().unwrap()
737 }
738 }
739
740 impl<B: ExtraBackendMethods> Drop for AbortCodegenOnDrop<B> {
741 fn drop(&mut self) {
742 if let Some(codegen) = self.0.take() {
743 codegen.codegen_aborted();
744 }
745 }
746 }
747
748 impl CrateInfo {
749 pub fn new(tcx: TyCtxt<'_>) -> CrateInfo {
750 let mut info = CrateInfo {
751 panic_runtime: None,
752 compiler_builtins: None,
753 profiler_runtime: None,
754 is_no_builtins: Default::default(),
755 native_libraries: Default::default(),
756 used_libraries: tcx.native_libraries(LOCAL_CRATE).iter().map(Into::into).collect(),
757 link_args: tcx.link_args(LOCAL_CRATE),
758 crate_name: Default::default(),
759 used_crates_dynamic: cstore::used_crates(tcx, LinkagePreference::RequireDynamic),
760 used_crates_static: cstore::used_crates(tcx, LinkagePreference::RequireStatic),
761 used_crate_source: Default::default(),
762 lang_item_to_crate: Default::default(),
763 missing_lang_items: Default::default(),
764 dependency_formats: tcx.dependency_formats(LOCAL_CRATE),
765 };
766 let lang_items = tcx.lang_items();
767
768 let crates = tcx.crates();
769
770 let n_crates = crates.len();
771 info.native_libraries.reserve(n_crates);
772 info.crate_name.reserve(n_crates);
773 info.used_crate_source.reserve(n_crates);
774 info.missing_lang_items.reserve(n_crates);
775
776 for &cnum in crates.iter() {
777 info.native_libraries
778 .insert(cnum, tcx.native_libraries(cnum).iter().map(Into::into).collect());
779 info.crate_name.insert(cnum, tcx.crate_name(cnum).to_string());
780 info.used_crate_source.insert(cnum, tcx.used_crate_source(cnum));
781 if tcx.is_panic_runtime(cnum) {
782 info.panic_runtime = Some(cnum);
783 }
784 if tcx.is_compiler_builtins(cnum) {
785 info.compiler_builtins = Some(cnum);
786 }
787 if tcx.is_profiler_runtime(cnum) {
788 info.profiler_runtime = Some(cnum);
789 }
790 if tcx.is_no_builtins(cnum) {
791 info.is_no_builtins.insert(cnum);
792 }
793 let missing = tcx.missing_lang_items(cnum);
794 for &item in missing.iter() {
795 if let Ok(id) = lang_items.require(item) {
796 info.lang_item_to_crate.insert(item, id.krate);
797 }
798 }
799
800 // No need to look for lang items that don't actually need to exist.
801 let missing =
802 missing.iter().cloned().filter(|&l| lang_items::required(tcx, l)).collect();
803 info.missing_lang_items.insert(cnum, missing);
804 }
805
806 info
807 }
808 }
809
810 pub fn provide(providers: &mut Providers) {
811 providers.backend_optimization_level = |tcx, cratenum| {
812 let for_speed = match tcx.sess.opts.optimize {
813 // If globally no optimisation is done, #[optimize] has no effect.
814 //
815 // This is done because if we ended up "upgrading" to `-O2` here, we’d populate the
816 // pass manager and it is likely that some module-wide passes (such as inliner or
817 // cross-function constant propagation) would ignore the `optnone` annotation we put
818 // on the functions, thus necessarily involving these functions into optimisations.
819 config::OptLevel::No => return config::OptLevel::No,
820 // If globally optimise-speed is already specified, just use that level.
821 config::OptLevel::Less => return config::OptLevel::Less,
822 config::OptLevel::Default => return config::OptLevel::Default,
823 config::OptLevel::Aggressive => return config::OptLevel::Aggressive,
824 // If globally optimize-for-size has been requested, use -O2 instead (if optimize(size)
825 // are present).
826 config::OptLevel::Size => config::OptLevel::Default,
827 config::OptLevel::SizeMin => config::OptLevel::Default,
828 };
829
830 let (defids, _) = tcx.collect_and_partition_mono_items(cratenum);
831 for id in &*defids {
832 let CodegenFnAttrs { optimize, .. } = tcx.codegen_fn_attrs(*id);
833 match optimize {
834 attr::OptimizeAttr::None => continue,
835 attr::OptimizeAttr::Size => continue,
836 attr::OptimizeAttr::Speed => {
837 return for_speed;
838 }
839 }
840 }
841 tcx.sess.opts.optimize
842 };
843 }
844
845 fn determine_cgu_reuse<'tcx>(tcx: TyCtxt<'tcx>, cgu: &CodegenUnit<'tcx>) -> CguReuse {
846 if !tcx.dep_graph.is_fully_enabled() {
847 return CguReuse::No;
848 }
849
850 let work_product_id = &cgu.work_product_id();
851 if tcx.dep_graph.previous_work_product(work_product_id).is_none() {
852 // We don't have anything cached for this CGU. This can happen
853 // if the CGU did not exist in the previous session.
854 return CguReuse::No;
855 }
856
857 // Try to mark the CGU as green. If it we can do so, it means that nothing
858 // affecting the LLVM module has changed and we can re-use a cached version.
859 // If we compile with any kind of LTO, this means we can re-use the bitcode
860 // of the Pre-LTO stage (possibly also the Post-LTO version but we'll only
861 // know that later). If we are not doing LTO, there is only one optimized
862 // version of each module, so we re-use that.
863 let dep_node = cgu.codegen_dep_node(tcx);
864 assert!(
865 !tcx.dep_graph.dep_node_exists(&dep_node),
866 "CompileCodegenUnit dep-node for CGU `{}` already exists before marking.",
867 cgu.name()
868 );
869
870 if tcx.dep_graph.try_mark_green(tcx, &dep_node).is_some() {
871 // We can re-use either the pre- or the post-thinlto state. If no LTO is
872 // being performed then we can use post-LTO artifacts, otherwise we must
873 // reuse pre-LTO artifacts
874 match compute_per_cgu_lto_type(
875 &tcx.sess.lto(),
876 &tcx.sess.opts,
877 &tcx.sess.crate_types(),
878 ModuleKind::Regular,
879 ) {
880 ComputedLtoType::No => CguReuse::PostLto,
881 _ => CguReuse::PreLto,
882 }
883 } else {
884 CguReuse::No
885 }
886 }