]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_codegen_ssa/src/mir/block.rs
New upstream version 1.49.0~beta.4+dfsg1
[rustc.git] / compiler / rustc_codegen_ssa / src / mir / block.rs
1 use super::operand::OperandRef;
2 use super::operand::OperandValue::{Immediate, Pair, Ref};
3 use super::place::PlaceRef;
4 use super::{FunctionCx, LocalRef};
5
6 use crate::base;
7 use crate::common::{self, IntPredicate};
8 use crate::meth;
9 use crate::traits::*;
10 use crate::MemFlags;
11
12 use rustc_ast as ast;
13 use rustc_hir::lang_items::LangItem;
14 use rustc_index::vec::Idx;
15 use rustc_middle::mir::interpret::ConstValue;
16 use rustc_middle::mir::AssertKind;
17 use rustc_middle::mir::{self, SwitchTargets};
18 use rustc_middle::ty::layout::{FnAbiExt, HasTyCtxt};
19 use rustc_middle::ty::print::with_no_trimmed_paths;
20 use rustc_middle::ty::{self, Instance, Ty, TypeFoldable};
21 use rustc_span::source_map::Span;
22 use rustc_span::{sym, Symbol};
23 use rustc_target::abi::call::{ArgAbi, FnAbi, PassMode};
24 use rustc_target::abi::{self, LayoutOf};
25 use rustc_target::spec::abi::Abi;
26
27 /// Used by `FunctionCx::codegen_terminator` for emitting common patterns
28 /// e.g., creating a basic block, calling a function, etc.
29 struct TerminatorCodegenHelper<'tcx> {
30 bb: mir::BasicBlock,
31 terminator: &'tcx mir::Terminator<'tcx>,
32 funclet_bb: Option<mir::BasicBlock>,
33 }
34
35 impl<'a, 'tcx> TerminatorCodegenHelper<'tcx> {
36 /// Returns the associated funclet from `FunctionCx::funclets` for the
37 /// `funclet_bb` member if it is not `None`.
38 fn funclet<'b, Bx: BuilderMethods<'a, 'tcx>>(
39 &self,
40 fx: &'b mut FunctionCx<'a, 'tcx, Bx>,
41 ) -> Option<&'b Bx::Funclet> {
42 match self.funclet_bb {
43 Some(funcl) => fx.funclets[funcl].as_ref(),
44 None => None,
45 }
46 }
47
48 fn lltarget<Bx: BuilderMethods<'a, 'tcx>>(
49 &self,
50 fx: &mut FunctionCx<'a, 'tcx, Bx>,
51 target: mir::BasicBlock,
52 ) -> (Bx::BasicBlock, bool) {
53 let span = self.terminator.source_info.span;
54 let lltarget = fx.blocks[target];
55 let target_funclet = fx.cleanup_kinds[target].funclet_bb(target);
56 match (self.funclet_bb, target_funclet) {
57 (None, None) => (lltarget, false),
58 (Some(f), Some(t_f)) if f == t_f || !base::wants_msvc_seh(fx.cx.tcx().sess) => {
59 (lltarget, false)
60 }
61 // jump *into* cleanup - need a landing pad if GNU
62 (None, Some(_)) => (fx.landing_pad_to(target), false),
63 (Some(_), None) => span_bug!(span, "{:?} - jump out of cleanup?", self.terminator),
64 (Some(_), Some(_)) => (fx.landing_pad_to(target), true),
65 }
66 }
67
68 /// Create a basic block.
69 fn llblock<Bx: BuilderMethods<'a, 'tcx>>(
70 &self,
71 fx: &mut FunctionCx<'a, 'tcx, Bx>,
72 target: mir::BasicBlock,
73 ) -> Bx::BasicBlock {
74 let (lltarget, is_cleanupret) = self.lltarget(fx, target);
75 if is_cleanupret {
76 // MSVC cross-funclet jump - need a trampoline
77
78 debug!("llblock: creating cleanup trampoline for {:?}", target);
79 let name = &format!("{:?}_cleanup_trampoline_{:?}", self.bb, target);
80 let mut trampoline = fx.new_block(name);
81 trampoline.cleanup_ret(self.funclet(fx).unwrap(), Some(lltarget));
82 trampoline.llbb()
83 } else {
84 lltarget
85 }
86 }
87
88 fn funclet_br<Bx: BuilderMethods<'a, 'tcx>>(
89 &self,
90 fx: &mut FunctionCx<'a, 'tcx, Bx>,
91 bx: &mut Bx,
92 target: mir::BasicBlock,
93 ) {
94 let (lltarget, is_cleanupret) = self.lltarget(fx, target);
95 if is_cleanupret {
96 // micro-optimization: generate a `ret` rather than a jump
97 // to a trampoline.
98 bx.cleanup_ret(self.funclet(fx).unwrap(), Some(lltarget));
99 } else {
100 bx.br(lltarget);
101 }
102 }
103
104 /// Call `fn_ptr` of `fn_abi` with the arguments `llargs`, the optional
105 /// return destination `destination` and the cleanup function `cleanup`.
106 fn do_call<Bx: BuilderMethods<'a, 'tcx>>(
107 &self,
108 fx: &mut FunctionCx<'a, 'tcx, Bx>,
109 bx: &mut Bx,
110 fn_abi: FnAbi<'tcx, Ty<'tcx>>,
111 fn_ptr: Bx::Value,
112 llargs: &[Bx::Value],
113 destination: Option<(ReturnDest<'tcx, Bx::Value>, mir::BasicBlock)>,
114 cleanup: Option<mir::BasicBlock>,
115 ) {
116 // If there is a cleanup block and the function we're calling can unwind, then
117 // do an invoke, otherwise do a call.
118 if let Some(cleanup) = cleanup.filter(|_| fn_abi.can_unwind) {
119 let ret_bx = if let Some((_, target)) = destination {
120 fx.blocks[target]
121 } else {
122 fx.unreachable_block()
123 };
124 let invokeret =
125 bx.invoke(fn_ptr, &llargs, ret_bx, self.llblock(fx, cleanup), self.funclet(fx));
126 bx.apply_attrs_callsite(&fn_abi, invokeret);
127
128 if let Some((ret_dest, target)) = destination {
129 let mut ret_bx = fx.build_block(target);
130 fx.set_debug_loc(&mut ret_bx, self.terminator.source_info);
131 fx.store_return(&mut ret_bx, ret_dest, &fn_abi.ret, invokeret);
132 }
133 } else {
134 let llret = bx.call(fn_ptr, &llargs, self.funclet(fx));
135 bx.apply_attrs_callsite(&fn_abi, llret);
136 if fx.mir[self.bb].is_cleanup {
137 // Cleanup is always the cold path. Don't inline
138 // drop glue. Also, when there is a deeply-nested
139 // struct, there are "symmetry" issues that cause
140 // exponential inlining - see issue #41696.
141 bx.do_not_inline(llret);
142 }
143
144 if let Some((ret_dest, target)) = destination {
145 fx.store_return(bx, ret_dest, &fn_abi.ret, llret);
146 self.funclet_br(fx, bx, target);
147 } else {
148 bx.unreachable();
149 }
150 }
151 }
152
153 // Generate sideeffect intrinsic if jumping to any of the targets can form
154 // a loop.
155 fn maybe_sideeffect<Bx: BuilderMethods<'a, 'tcx>>(
156 &self,
157 mir: &'tcx mir::Body<'tcx>,
158 bx: &mut Bx,
159 targets: &[mir::BasicBlock],
160 ) {
161 if bx.tcx().sess.opts.debugging_opts.insert_sideeffect {
162 if targets.iter().any(|&target| {
163 target <= self.bb
164 && target.start_location().is_predecessor_of(self.bb.start_location(), mir)
165 }) {
166 bx.sideeffect(false);
167 }
168 }
169 }
170 }
171
172 /// Codegen implementations for some terminator variants.
173 impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
174 /// Generates code for a `Resume` terminator.
175 fn codegen_resume_terminator(&mut self, helper: TerminatorCodegenHelper<'tcx>, mut bx: Bx) {
176 if let Some(funclet) = helper.funclet(self) {
177 bx.cleanup_ret(funclet, None);
178 } else {
179 let slot = self.get_personality_slot(&mut bx);
180 let lp0 = slot.project_field(&mut bx, 0);
181 let lp0 = bx.load_operand(lp0).immediate();
182 let lp1 = slot.project_field(&mut bx, 1);
183 let lp1 = bx.load_operand(lp1).immediate();
184 slot.storage_dead(&mut bx);
185
186 let mut lp = bx.const_undef(self.landing_pad_type());
187 lp = bx.insert_value(lp, lp0, 0);
188 lp = bx.insert_value(lp, lp1, 1);
189 bx.resume(lp);
190 }
191 }
192
193 fn codegen_switchint_terminator(
194 &mut self,
195 helper: TerminatorCodegenHelper<'tcx>,
196 mut bx: Bx,
197 discr: &mir::Operand<'tcx>,
198 switch_ty: Ty<'tcx>,
199 targets: &SwitchTargets,
200 ) {
201 let discr = self.codegen_operand(&mut bx, &discr);
202 // `switch_ty` is redundant, sanity-check that.
203 assert_eq!(discr.layout.ty, switch_ty);
204 helper.maybe_sideeffect(self.mir, &mut bx, targets.all_targets());
205
206 let mut target_iter = targets.iter();
207 if target_iter.len() == 1 {
208 // If there are two targets (one conditional, one fallback), emit br instead of switch
209 let (test_value, target) = target_iter.next().unwrap();
210 let lltrue = helper.llblock(self, target);
211 let llfalse = helper.llblock(self, targets.otherwise());
212 if switch_ty == bx.tcx().types.bool {
213 // Don't generate trivial icmps when switching on bool
214 match test_value {
215 0 => bx.cond_br(discr.immediate(), llfalse, lltrue),
216 1 => bx.cond_br(discr.immediate(), lltrue, llfalse),
217 _ => bug!(),
218 }
219 } else {
220 let switch_llty = bx.immediate_backend_type(bx.layout_of(switch_ty));
221 let llval = bx.const_uint_big(switch_llty, test_value);
222 let cmp = bx.icmp(IntPredicate::IntEQ, discr.immediate(), llval);
223 bx.cond_br(cmp, lltrue, llfalse);
224 }
225 } else {
226 bx.switch(
227 discr.immediate(),
228 helper.llblock(self, targets.otherwise()),
229 target_iter.map(|(value, target)| (value, helper.llblock(self, target))),
230 );
231 }
232 }
233
234 fn codegen_return_terminator(&mut self, mut bx: Bx) {
235 // Call `va_end` if this is the definition of a C-variadic function.
236 if self.fn_abi.c_variadic {
237 // The `VaList` "spoofed" argument is just after all the real arguments.
238 let va_list_arg_idx = self.fn_abi.args.len();
239 match self.locals[mir::Local::new(1 + va_list_arg_idx)] {
240 LocalRef::Place(va_list) => {
241 bx.va_end(va_list.llval);
242 }
243 _ => bug!("C-variadic function must have a `VaList` place"),
244 }
245 }
246 if self.fn_abi.ret.layout.abi.is_uninhabited() {
247 // Functions with uninhabited return values are marked `noreturn`,
248 // so we should make sure that we never actually do.
249 // We play it safe by using a well-defined `abort`, but we could go for immediate UB
250 // if that turns out to be helpful.
251 bx.abort();
252 // `abort` does not terminate the block, so we still need to generate
253 // an `unreachable` terminator after it.
254 bx.unreachable();
255 return;
256 }
257 let llval = match self.fn_abi.ret.mode {
258 PassMode::Ignore | PassMode::Indirect(..) => {
259 bx.ret_void();
260 return;
261 }
262
263 PassMode::Direct(_) | PassMode::Pair(..) => {
264 let op = self.codegen_consume(&mut bx, mir::Place::return_place().as_ref());
265 if let Ref(llval, _, align) = op.val {
266 bx.load(llval, align)
267 } else {
268 op.immediate_or_packed_pair(&mut bx)
269 }
270 }
271
272 PassMode::Cast(cast_ty) => {
273 let op = match self.locals[mir::RETURN_PLACE] {
274 LocalRef::Operand(Some(op)) => op,
275 LocalRef::Operand(None) => bug!("use of return before def"),
276 LocalRef::Place(cg_place) => OperandRef {
277 val: Ref(cg_place.llval, None, cg_place.align),
278 layout: cg_place.layout,
279 },
280 LocalRef::UnsizedPlace(_) => bug!("return type must be sized"),
281 };
282 let llslot = match op.val {
283 Immediate(_) | Pair(..) => {
284 let scratch = PlaceRef::alloca(&mut bx, self.fn_abi.ret.layout);
285 op.val.store(&mut bx, scratch);
286 scratch.llval
287 }
288 Ref(llval, _, align) => {
289 assert_eq!(align, op.layout.align.abi, "return place is unaligned!");
290 llval
291 }
292 };
293 let addr = bx.pointercast(llslot, bx.type_ptr_to(bx.cast_backend_type(&cast_ty)));
294 bx.load(addr, self.fn_abi.ret.layout.align.abi)
295 }
296 };
297 bx.ret(llval);
298 }
299
300 fn codegen_drop_terminator(
301 &mut self,
302 helper: TerminatorCodegenHelper<'tcx>,
303 mut bx: Bx,
304 location: mir::Place<'tcx>,
305 target: mir::BasicBlock,
306 unwind: Option<mir::BasicBlock>,
307 ) {
308 let ty = location.ty(self.mir, bx.tcx()).ty;
309 let ty = self.monomorphize(&ty);
310 let drop_fn = Instance::resolve_drop_in_place(bx.tcx(), ty);
311
312 if let ty::InstanceDef::DropGlue(_, None) = drop_fn.def {
313 // we don't actually need to drop anything.
314 helper.maybe_sideeffect(self.mir, &mut bx, &[target]);
315 helper.funclet_br(self, &mut bx, target);
316 return;
317 }
318
319 let place = self.codegen_place(&mut bx, location.as_ref());
320 let (args1, args2);
321 let mut args = if let Some(llextra) = place.llextra {
322 args2 = [place.llval, llextra];
323 &args2[..]
324 } else {
325 args1 = [place.llval];
326 &args1[..]
327 };
328 let (drop_fn, fn_abi) = match ty.kind() {
329 // FIXME(eddyb) perhaps move some of this logic into
330 // `Instance::resolve_drop_in_place`?
331 ty::Dynamic(..) => {
332 let virtual_drop = Instance {
333 def: ty::InstanceDef::Virtual(drop_fn.def_id(), 0),
334 substs: drop_fn.substs,
335 };
336 let fn_abi = FnAbi::of_instance(&bx, virtual_drop, &[]);
337 let vtable = args[1];
338 args = &args[..1];
339 (meth::DESTRUCTOR.get_fn(&mut bx, vtable, &fn_abi), fn_abi)
340 }
341 _ => (bx.get_fn_addr(drop_fn), FnAbi::of_instance(&bx, drop_fn, &[])),
342 };
343 helper.maybe_sideeffect(self.mir, &mut bx, &[target]);
344 helper.do_call(
345 self,
346 &mut bx,
347 fn_abi,
348 drop_fn,
349 args,
350 Some((ReturnDest::Nothing, target)),
351 unwind,
352 );
353 }
354
355 fn codegen_assert_terminator(
356 &mut self,
357 helper: TerminatorCodegenHelper<'tcx>,
358 mut bx: Bx,
359 terminator: &mir::Terminator<'tcx>,
360 cond: &mir::Operand<'tcx>,
361 expected: bool,
362 msg: &mir::AssertMessage<'tcx>,
363 target: mir::BasicBlock,
364 cleanup: Option<mir::BasicBlock>,
365 ) {
366 let span = terminator.source_info.span;
367 let cond = self.codegen_operand(&mut bx, cond).immediate();
368 let mut const_cond = bx.const_to_opt_u128(cond, false).map(|c| c == 1);
369
370 // This case can currently arise only from functions marked
371 // with #[rustc_inherit_overflow_checks] and inlined from
372 // another crate (mostly core::num generic/#[inline] fns),
373 // while the current crate doesn't use overflow checks.
374 // NOTE: Unlike binops, negation doesn't have its own
375 // checked operation, just a comparison with the minimum
376 // value, so we have to check for the assert message.
377 if !bx.check_overflow() {
378 if let AssertKind::OverflowNeg(_) = *msg {
379 const_cond = Some(expected);
380 }
381 }
382
383 // Don't codegen the panic block if success if known.
384 if const_cond == Some(expected) {
385 helper.maybe_sideeffect(self.mir, &mut bx, &[target]);
386 helper.funclet_br(self, &mut bx, target);
387 return;
388 }
389
390 // Pass the condition through llvm.expect for branch hinting.
391 let cond = bx.expect(cond, expected);
392
393 // Create the failure block and the conditional branch to it.
394 let lltarget = helper.llblock(self, target);
395 let panic_block = self.new_block("panic");
396 helper.maybe_sideeffect(self.mir, &mut bx, &[target]);
397 if expected {
398 bx.cond_br(cond, lltarget, panic_block.llbb());
399 } else {
400 bx.cond_br(cond, panic_block.llbb(), lltarget);
401 }
402
403 // After this point, bx is the block for the call to panic.
404 bx = panic_block;
405 self.set_debug_loc(&mut bx, terminator.source_info);
406
407 // Get the location information.
408 let location = self.get_caller_location(&mut bx, terminator.source_info).immediate();
409
410 // Put together the arguments to the panic entry point.
411 let (lang_item, args) = match msg {
412 AssertKind::BoundsCheck { ref len, ref index } => {
413 let len = self.codegen_operand(&mut bx, len).immediate();
414 let index = self.codegen_operand(&mut bx, index).immediate();
415 // It's `fn panic_bounds_check(index: usize, len: usize)`,
416 // and `#[track_caller]` adds an implicit third argument.
417 (LangItem::PanicBoundsCheck, vec![index, len, location])
418 }
419 _ => {
420 let msg_str = Symbol::intern(msg.description());
421 let msg = bx.const_str(msg_str);
422 // It's `pub fn panic(expr: &str)`, with the wide reference being passed
423 // as two arguments, and `#[track_caller]` adds an implicit third argument.
424 (LangItem::Panic, vec![msg.0, msg.1, location])
425 }
426 };
427
428 // Obtain the panic entry point.
429 let def_id = common::langcall(bx.tcx(), Some(span), "", lang_item);
430 let instance = ty::Instance::mono(bx.tcx(), def_id);
431 let fn_abi = FnAbi::of_instance(&bx, instance, &[]);
432 let llfn = bx.get_fn_addr(instance);
433
434 // Codegen the actual panic invoke/call.
435 helper.do_call(self, &mut bx, fn_abi, llfn, &args, None, cleanup);
436 }
437
438 /// Returns `true` if this is indeed a panic intrinsic and codegen is done.
439 fn codegen_panic_intrinsic(
440 &mut self,
441 helper: &TerminatorCodegenHelper<'tcx>,
442 bx: &mut Bx,
443 intrinsic: Option<Symbol>,
444 instance: Option<Instance<'tcx>>,
445 source_info: mir::SourceInfo,
446 destination: &Option<(mir::Place<'tcx>, mir::BasicBlock)>,
447 cleanup: Option<mir::BasicBlock>,
448 ) -> bool {
449 // Emit a panic or a no-op for `assert_*` intrinsics.
450 // These are intrinsics that compile to panics so that we can get a message
451 // which mentions the offending type, even from a const context.
452 #[derive(Debug, PartialEq)]
453 enum AssertIntrinsic {
454 Inhabited,
455 ZeroValid,
456 UninitValid,
457 };
458 let panic_intrinsic = intrinsic.and_then(|i| match i {
459 sym::assert_inhabited => Some(AssertIntrinsic::Inhabited),
460 sym::assert_zero_valid => Some(AssertIntrinsic::ZeroValid),
461 sym::assert_uninit_valid => Some(AssertIntrinsic::UninitValid),
462 _ => None,
463 });
464 if let Some(intrinsic) = panic_intrinsic {
465 use AssertIntrinsic::*;
466 let ty = instance.unwrap().substs.type_at(0);
467 let layout = bx.layout_of(ty);
468 let do_panic = match intrinsic {
469 Inhabited => layout.abi.is_uninhabited(),
470 // We unwrap as the error type is `!`.
471 ZeroValid => !layout.might_permit_raw_init(bx, /*zero:*/ true).unwrap(),
472 // We unwrap as the error type is `!`.
473 UninitValid => !layout.might_permit_raw_init(bx, /*zero:*/ false).unwrap(),
474 };
475 if do_panic {
476 let msg_str = with_no_trimmed_paths(|| {
477 if layout.abi.is_uninhabited() {
478 // Use this error even for the other intrinsics as it is more precise.
479 format!("attempted to instantiate uninhabited type `{}`", ty)
480 } else if intrinsic == ZeroValid {
481 format!("attempted to zero-initialize type `{}`, which is invalid", ty)
482 } else {
483 format!("attempted to leave type `{}` uninitialized, which is invalid", ty)
484 }
485 });
486 let msg = bx.const_str(Symbol::intern(&msg_str));
487 let location = self.get_caller_location(bx, source_info).immediate();
488
489 // Obtain the panic entry point.
490 // FIXME: dedup this with `codegen_assert_terminator` above.
491 let def_id =
492 common::langcall(bx.tcx(), Some(source_info.span), "", LangItem::Panic);
493 let instance = ty::Instance::mono(bx.tcx(), def_id);
494 let fn_abi = FnAbi::of_instance(bx, instance, &[]);
495 let llfn = bx.get_fn_addr(instance);
496
497 if let Some((_, target)) = destination.as_ref() {
498 helper.maybe_sideeffect(self.mir, bx, &[*target]);
499 }
500 // Codegen the actual panic invoke/call.
501 helper.do_call(
502 self,
503 bx,
504 fn_abi,
505 llfn,
506 &[msg.0, msg.1, location],
507 destination.as_ref().map(|(_, bb)| (ReturnDest::Nothing, *bb)),
508 cleanup,
509 );
510 } else {
511 // a NOP
512 let target = destination.as_ref().unwrap().1;
513 helper.maybe_sideeffect(self.mir, bx, &[target]);
514 helper.funclet_br(self, bx, target)
515 }
516 true
517 } else {
518 false
519 }
520 }
521
522 fn codegen_call_terminator(
523 &mut self,
524 helper: TerminatorCodegenHelper<'tcx>,
525 mut bx: Bx,
526 terminator: &mir::Terminator<'tcx>,
527 func: &mir::Operand<'tcx>,
528 args: &Vec<mir::Operand<'tcx>>,
529 destination: &Option<(mir::Place<'tcx>, mir::BasicBlock)>,
530 cleanup: Option<mir::BasicBlock>,
531 fn_span: Span,
532 ) {
533 let source_info = terminator.source_info;
534 let span = source_info.span;
535
536 // Create the callee. This is a fn ptr or zero-sized and hence a kind of scalar.
537 let callee = self.codegen_operand(&mut bx, func);
538
539 let (instance, mut llfn) = match *callee.layout.ty.kind() {
540 ty::FnDef(def_id, substs) => (
541 Some(
542 ty::Instance::resolve(bx.tcx(), ty::ParamEnv::reveal_all(), def_id, substs)
543 .unwrap()
544 .unwrap()
545 .polymorphize(bx.tcx()),
546 ),
547 None,
548 ),
549 ty::FnPtr(_) => (None, Some(callee.immediate())),
550 _ => bug!("{} is not callable", callee.layout.ty),
551 };
552 let def = instance.map(|i| i.def);
553
554 if let Some(ty::InstanceDef::DropGlue(_, None)) = def {
555 // Empty drop glue; a no-op.
556 let &(_, target) = destination.as_ref().unwrap();
557 helper.maybe_sideeffect(self.mir, &mut bx, &[target]);
558 helper.funclet_br(self, &mut bx, target);
559 return;
560 }
561
562 // FIXME(eddyb) avoid computing this if possible, when `instance` is
563 // available - right now `sig` is only needed for getting the `abi`
564 // and figuring out how many extra args were passed to a C-variadic `fn`.
565 let sig = callee.layout.ty.fn_sig(bx.tcx());
566 let abi = sig.abi();
567
568 // Handle intrinsics old codegen wants Expr's for, ourselves.
569 let intrinsic = match def {
570 Some(ty::InstanceDef::Intrinsic(def_id)) => Some(bx.tcx().item_name(def_id)),
571 _ => None,
572 };
573
574 let extra_args = &args[sig.inputs().skip_binder().len()..];
575 let extra_args = extra_args
576 .iter()
577 .map(|op_arg| {
578 let op_ty = op_arg.ty(self.mir, bx.tcx());
579 self.monomorphize(&op_ty)
580 })
581 .collect::<Vec<_>>();
582
583 let fn_abi = match instance {
584 Some(instance) => FnAbi::of_instance(&bx, instance, &extra_args),
585 None => FnAbi::of_fn_ptr(&bx, sig, &extra_args),
586 };
587
588 if intrinsic == Some(sym::transmute) {
589 if let Some(destination_ref) = destination.as_ref() {
590 let &(dest, target) = destination_ref;
591 self.codegen_transmute(&mut bx, &args[0], dest);
592 helper.maybe_sideeffect(self.mir, &mut bx, &[target]);
593 helper.funclet_br(self, &mut bx, target);
594 } else {
595 // If we are trying to transmute to an uninhabited type,
596 // it is likely there is no allotted destination. In fact,
597 // transmuting to an uninhabited type is UB, which means
598 // we can do what we like. Here, we declare that transmuting
599 // into an uninhabited type is impossible, so anything following
600 // it must be unreachable.
601 assert_eq!(fn_abi.ret.layout.abi, abi::Abi::Uninhabited);
602 bx.unreachable();
603 }
604 return;
605 }
606
607 if self.codegen_panic_intrinsic(
608 &helper,
609 &mut bx,
610 intrinsic,
611 instance,
612 source_info,
613 destination,
614 cleanup,
615 ) {
616 return;
617 }
618
619 // The arguments we'll be passing. Plus one to account for outptr, if used.
620 let arg_count = fn_abi.args.len() + fn_abi.ret.is_indirect() as usize;
621 let mut llargs = Vec::with_capacity(arg_count);
622
623 // Prepare the return value destination
624 let ret_dest = if let Some((dest, _)) = *destination {
625 let is_intrinsic = intrinsic.is_some();
626 self.make_return_dest(&mut bx, dest, &fn_abi.ret, &mut llargs, is_intrinsic)
627 } else {
628 ReturnDest::Nothing
629 };
630
631 if intrinsic == Some(sym::caller_location) {
632 if let Some((_, target)) = destination.as_ref() {
633 let location = self
634 .get_caller_location(&mut bx, mir::SourceInfo { span: fn_span, ..source_info });
635
636 if let ReturnDest::IndirectOperand(tmp, _) = ret_dest {
637 location.val.store(&mut bx, tmp);
638 }
639 self.store_return(&mut bx, ret_dest, &fn_abi.ret, location.immediate());
640
641 helper.maybe_sideeffect(self.mir, &mut bx, &[*target]);
642 helper.funclet_br(self, &mut bx, *target);
643 }
644 return;
645 }
646
647 if intrinsic.is_some() && intrinsic != Some(sym::drop_in_place) {
648 let intrinsic = intrinsic.unwrap();
649 let dest = match ret_dest {
650 _ if fn_abi.ret.is_indirect() => llargs[0],
651 ReturnDest::Nothing => {
652 bx.const_undef(bx.type_ptr_to(bx.arg_memory_ty(&fn_abi.ret)))
653 }
654 ReturnDest::IndirectOperand(dst, _) | ReturnDest::Store(dst) => dst.llval,
655 ReturnDest::DirectOperand(_) => {
656 bug!("Cannot use direct operand with an intrinsic call")
657 }
658 };
659
660 let args: Vec<_> = args
661 .iter()
662 .enumerate()
663 .map(|(i, arg)| {
664 // The indices passed to simd_shuffle* in the
665 // third argument must be constant. This is
666 // checked by const-qualification, which also
667 // promotes any complex rvalues to constants.
668 if i == 2 && intrinsic.as_str().starts_with("simd_shuffle") {
669 if let mir::Operand::Constant(constant) = arg {
670 let c = self.eval_mir_constant(constant);
671 let (llval, ty) = self.simd_shuffle_indices(
672 &bx,
673 constant.span,
674 constant.literal.ty,
675 c,
676 );
677 return OperandRef { val: Immediate(llval), layout: bx.layout_of(ty) };
678 } else {
679 span_bug!(span, "shuffle indices must be constant");
680 }
681 }
682
683 self.codegen_operand(&mut bx, arg)
684 })
685 .collect();
686
687 Self::codegen_intrinsic_call(
688 &mut bx,
689 *instance.as_ref().unwrap(),
690 &fn_abi,
691 &args,
692 dest,
693 span,
694 );
695
696 if let ReturnDest::IndirectOperand(dst, _) = ret_dest {
697 self.store_return(&mut bx, ret_dest, &fn_abi.ret, dst.llval);
698 }
699
700 if let Some((_, target)) = *destination {
701 helper.maybe_sideeffect(self.mir, &mut bx, &[target]);
702 helper.funclet_br(self, &mut bx, target);
703 } else {
704 bx.unreachable();
705 }
706
707 return;
708 }
709
710 // Split the rust-call tupled arguments off.
711 let (first_args, untuple) = if abi == Abi::RustCall && !args.is_empty() {
712 let (tup, args) = args.split_last().unwrap();
713 (args, Some(tup))
714 } else {
715 (&args[..], None)
716 };
717
718 'make_args: for (i, arg) in first_args.iter().enumerate() {
719 let mut op = self.codegen_operand(&mut bx, arg);
720
721 if let (0, Some(ty::InstanceDef::Virtual(_, idx))) = (i, def) {
722 if let Pair(..) = op.val {
723 // In the case of Rc<Self>, we need to explicitly pass a
724 // *mut RcBox<Self> with a Scalar (not ScalarPair) ABI. This is a hack
725 // that is understood elsewhere in the compiler as a method on
726 // `dyn Trait`.
727 // To get a `*mut RcBox<Self>`, we just keep unwrapping newtypes until
728 // we get a value of a built-in pointer type
729 'descend_newtypes: while !op.layout.ty.is_unsafe_ptr()
730 && !op.layout.ty.is_region_ptr()
731 {
732 for i in 0..op.layout.fields.count() {
733 let field = op.extract_field(&mut bx, i);
734 if !field.layout.is_zst() {
735 // we found the one non-zero-sized field that is allowed
736 // now find *its* non-zero-sized field, or stop if it's a
737 // pointer
738 op = field;
739 continue 'descend_newtypes;
740 }
741 }
742
743 span_bug!(span, "receiver has no non-zero-sized fields {:?}", op);
744 }
745
746 // now that we have `*dyn Trait` or `&dyn Trait`, split it up into its
747 // data pointer and vtable. Look up the method in the vtable, and pass
748 // the data pointer as the first argument
749 match op.val {
750 Pair(data_ptr, meta) => {
751 llfn = Some(
752 meth::VirtualIndex::from_index(idx).get_fn(&mut bx, meta, &fn_abi),
753 );
754 llargs.push(data_ptr);
755 continue 'make_args;
756 }
757 other => bug!("expected a Pair, got {:?}", other),
758 }
759 } else if let Ref(data_ptr, Some(meta), _) = op.val {
760 // by-value dynamic dispatch
761 llfn = Some(meth::VirtualIndex::from_index(idx).get_fn(&mut bx, meta, &fn_abi));
762 llargs.push(data_ptr);
763 continue;
764 } else {
765 span_bug!(span, "can't codegen a virtual call on {:?}", op);
766 }
767 }
768
769 // The callee needs to own the argument memory if we pass it
770 // by-ref, so make a local copy of non-immediate constants.
771 match (arg, op.val) {
772 (&mir::Operand::Copy(_), Ref(_, None, _))
773 | (&mir::Operand::Constant(_), Ref(_, None, _)) => {
774 let tmp = PlaceRef::alloca(&mut bx, op.layout);
775 op.val.store(&mut bx, tmp);
776 op.val = Ref(tmp.llval, None, tmp.align);
777 }
778 _ => {}
779 }
780
781 self.codegen_argument(&mut bx, op, &mut llargs, &fn_abi.args[i]);
782 }
783 if let Some(tup) = untuple {
784 self.codegen_arguments_untupled(
785 &mut bx,
786 tup,
787 &mut llargs,
788 &fn_abi.args[first_args.len()..],
789 )
790 }
791
792 let needs_location =
793 instance.map_or(false, |i| i.def.requires_caller_location(self.cx.tcx()));
794 if needs_location {
795 assert_eq!(
796 fn_abi.args.len(),
797 args.len() + 1,
798 "#[track_caller] fn's must have 1 more argument in their ABI than in their MIR",
799 );
800 let location =
801 self.get_caller_location(&mut bx, mir::SourceInfo { span: fn_span, ..source_info });
802 debug!(
803 "codegen_call_terminator({:?}): location={:?} (fn_span {:?})",
804 terminator, location, fn_span
805 );
806
807 let last_arg = fn_abi.args.last().unwrap();
808 self.codegen_argument(&mut bx, location, &mut llargs, last_arg);
809 }
810
811 let fn_ptr = match (llfn, instance) {
812 (Some(llfn), _) => llfn,
813 (None, Some(instance)) => bx.get_fn_addr(instance),
814 _ => span_bug!(span, "no llfn for call"),
815 };
816
817 if let Some((_, target)) = destination.as_ref() {
818 helper.maybe_sideeffect(self.mir, &mut bx, &[*target]);
819 }
820 helper.do_call(
821 self,
822 &mut bx,
823 fn_abi,
824 fn_ptr,
825 &llargs,
826 destination.as_ref().map(|&(_, target)| (ret_dest, target)),
827 cleanup,
828 );
829 }
830
831 fn codegen_asm_terminator(
832 &mut self,
833 helper: TerminatorCodegenHelper<'tcx>,
834 mut bx: Bx,
835 terminator: &mir::Terminator<'tcx>,
836 template: &[ast::InlineAsmTemplatePiece],
837 operands: &[mir::InlineAsmOperand<'tcx>],
838 options: ast::InlineAsmOptions,
839 line_spans: &[Span],
840 destination: Option<mir::BasicBlock>,
841 ) {
842 let span = terminator.source_info.span;
843
844 let operands: Vec<_> = operands
845 .iter()
846 .map(|op| match *op {
847 mir::InlineAsmOperand::In { reg, ref value } => {
848 let value = self.codegen_operand(&mut bx, value);
849 InlineAsmOperandRef::In { reg, value }
850 }
851 mir::InlineAsmOperand::Out { reg, late, ref place } => {
852 let place = place.map(|place| self.codegen_place(&mut bx, place.as_ref()));
853 InlineAsmOperandRef::Out { reg, late, place }
854 }
855 mir::InlineAsmOperand::InOut { reg, late, ref in_value, ref out_place } => {
856 let in_value = self.codegen_operand(&mut bx, in_value);
857 let out_place =
858 out_place.map(|out_place| self.codegen_place(&mut bx, out_place.as_ref()));
859 InlineAsmOperandRef::InOut { reg, late, in_value, out_place }
860 }
861 mir::InlineAsmOperand::Const { ref value } => {
862 if let mir::Operand::Constant(constant) = value {
863 let const_value = self
864 .eval_mir_constant(constant)
865 .unwrap_or_else(|_| span_bug!(span, "asm const cannot be resolved"));
866 let ty = constant.literal.ty;
867 let size = bx.layout_of(ty).size;
868 let scalar = match const_value {
869 ConstValue::Scalar(s) => s,
870 _ => span_bug!(
871 span,
872 "expected Scalar for promoted asm const, but got {:#?}",
873 const_value
874 ),
875 };
876 let value = scalar.assert_bits(size);
877 let string = match ty.kind() {
878 ty::Uint(_) => value.to_string(),
879 ty::Int(int_ty) => {
880 match int_ty.normalize(bx.tcx().sess.target.pointer_width) {
881 ast::IntTy::I8 => (value as i8).to_string(),
882 ast::IntTy::I16 => (value as i16).to_string(),
883 ast::IntTy::I32 => (value as i32).to_string(),
884 ast::IntTy::I64 => (value as i64).to_string(),
885 ast::IntTy::I128 => (value as i128).to_string(),
886 ast::IntTy::Isize => unreachable!(),
887 }
888 }
889 ty::Float(ast::FloatTy::F32) => {
890 f32::from_bits(value as u32).to_string()
891 }
892 ty::Float(ast::FloatTy::F64) => {
893 f64::from_bits(value as u64).to_string()
894 }
895 _ => span_bug!(span, "asm const has bad type {}", ty),
896 };
897 InlineAsmOperandRef::Const { string }
898 } else {
899 span_bug!(span, "asm const is not a constant");
900 }
901 }
902 mir::InlineAsmOperand::SymFn { ref value } => {
903 let literal = self.monomorphize(&value.literal);
904 if let ty::FnDef(def_id, substs) = *literal.ty.kind() {
905 let instance = ty::Instance::resolve_for_fn_ptr(
906 bx.tcx(),
907 ty::ParamEnv::reveal_all(),
908 def_id,
909 substs,
910 )
911 .unwrap();
912 InlineAsmOperandRef::SymFn { instance }
913 } else {
914 span_bug!(span, "invalid type for asm sym (fn)");
915 }
916 }
917 mir::InlineAsmOperand::SymStatic { def_id } => {
918 InlineAsmOperandRef::SymStatic { def_id }
919 }
920 })
921 .collect();
922
923 bx.codegen_inline_asm(template, &operands, options, line_spans);
924
925 if let Some(target) = destination {
926 helper.funclet_br(self, &mut bx, target);
927 } else {
928 bx.unreachable();
929 }
930 }
931 }
932
933 impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
934 pub fn codegen_block(&mut self, bb: mir::BasicBlock) {
935 let mut bx = self.build_block(bb);
936 let mir = self.mir;
937 let data = &mir[bb];
938
939 debug!("codegen_block({:?}={:?})", bb, data);
940
941 for statement in &data.statements {
942 bx = self.codegen_statement(bx, statement);
943 }
944
945 self.codegen_terminator(bx, bb, data.terminator());
946 }
947
948 fn codegen_terminator(
949 &mut self,
950 mut bx: Bx,
951 bb: mir::BasicBlock,
952 terminator: &'tcx mir::Terminator<'tcx>,
953 ) {
954 debug!("codegen_terminator: {:?}", terminator);
955
956 // Create the cleanup bundle, if needed.
957 let funclet_bb = self.cleanup_kinds[bb].funclet_bb(bb);
958 let helper = TerminatorCodegenHelper { bb, terminator, funclet_bb };
959
960 self.set_debug_loc(&mut bx, terminator.source_info);
961 match terminator.kind {
962 mir::TerminatorKind::Resume => self.codegen_resume_terminator(helper, bx),
963
964 mir::TerminatorKind::Abort => {
965 bx.abort();
966 // `abort` does not terminate the block, so we still need to generate
967 // an `unreachable` terminator after it.
968 bx.unreachable();
969 }
970
971 mir::TerminatorKind::Goto { target } => {
972 if bb == target {
973 // This is an unconditional branch back to this same basic
974 // block. That means we have something like a `loop {}`
975 // statement. Currently LLVM miscompiles this because it
976 // assumes forward progress. We want to prevent this in all
977 // cases, but that has a fairly high cost to compile times
978 // currently. Instead, try to handle this specific case
979 // which comes up commonly in practice (e.g., in embedded
980 // code).
981 //
982 // The `true` here means we insert side effects regardless
983 // of -Zinsert-sideeffect being passed on unconditional
984 // branching to the same basic block.
985 bx.sideeffect(true);
986 } else {
987 helper.maybe_sideeffect(self.mir, &mut bx, &[target]);
988 }
989 helper.funclet_br(self, &mut bx, target);
990 }
991
992 mir::TerminatorKind::SwitchInt { ref discr, switch_ty, ref targets } => {
993 self.codegen_switchint_terminator(helper, bx, discr, switch_ty, targets);
994 }
995
996 mir::TerminatorKind::Return => {
997 self.codegen_return_terminator(bx);
998 }
999
1000 mir::TerminatorKind::Unreachable => {
1001 bx.unreachable();
1002 }
1003
1004 mir::TerminatorKind::Drop { place, target, unwind } => {
1005 self.codegen_drop_terminator(helper, bx, place, target, unwind);
1006 }
1007
1008 mir::TerminatorKind::Assert { ref cond, expected, ref msg, target, cleanup } => {
1009 self.codegen_assert_terminator(
1010 helper, bx, terminator, cond, expected, msg, target, cleanup,
1011 );
1012 }
1013
1014 mir::TerminatorKind::DropAndReplace { .. } => {
1015 bug!("undesugared DropAndReplace in codegen: {:?}", terminator);
1016 }
1017
1018 mir::TerminatorKind::Call {
1019 ref func,
1020 ref args,
1021 ref destination,
1022 cleanup,
1023 from_hir_call: _,
1024 fn_span,
1025 } => {
1026 self.codegen_call_terminator(
1027 helper,
1028 bx,
1029 terminator,
1030 func,
1031 args,
1032 destination,
1033 cleanup,
1034 fn_span,
1035 );
1036 }
1037 mir::TerminatorKind::GeneratorDrop | mir::TerminatorKind::Yield { .. } => {
1038 bug!("generator ops in codegen")
1039 }
1040 mir::TerminatorKind::FalseEdge { .. } | mir::TerminatorKind::FalseUnwind { .. } => {
1041 bug!("borrowck false edges in codegen")
1042 }
1043
1044 mir::TerminatorKind::InlineAsm {
1045 template,
1046 ref operands,
1047 options,
1048 line_spans,
1049 destination,
1050 } => {
1051 self.codegen_asm_terminator(
1052 helper,
1053 bx,
1054 terminator,
1055 template,
1056 operands,
1057 options,
1058 line_spans,
1059 destination,
1060 );
1061 }
1062 }
1063 }
1064
1065 fn codegen_argument(
1066 &mut self,
1067 bx: &mut Bx,
1068 op: OperandRef<'tcx, Bx::Value>,
1069 llargs: &mut Vec<Bx::Value>,
1070 arg: &ArgAbi<'tcx, Ty<'tcx>>,
1071 ) {
1072 // Fill padding with undef value, where applicable.
1073 if let Some(ty) = arg.pad {
1074 llargs.push(bx.const_undef(bx.reg_backend_type(&ty)))
1075 }
1076
1077 if arg.is_ignore() {
1078 return;
1079 }
1080
1081 if let PassMode::Pair(..) = arg.mode {
1082 match op.val {
1083 Pair(a, b) => {
1084 llargs.push(a);
1085 llargs.push(b);
1086 return;
1087 }
1088 _ => bug!("codegen_argument: {:?} invalid for pair argument", op),
1089 }
1090 } else if arg.is_unsized_indirect() {
1091 match op.val {
1092 Ref(a, Some(b), _) => {
1093 llargs.push(a);
1094 llargs.push(b);
1095 return;
1096 }
1097 _ => bug!("codegen_argument: {:?} invalid for unsized indirect argument", op),
1098 }
1099 }
1100
1101 // Force by-ref if we have to load through a cast pointer.
1102 let (mut llval, align, by_ref) = match op.val {
1103 Immediate(_) | Pair(..) => match arg.mode {
1104 PassMode::Indirect(..) | PassMode::Cast(_) => {
1105 let scratch = PlaceRef::alloca(bx, arg.layout);
1106 op.val.store(bx, scratch);
1107 (scratch.llval, scratch.align, true)
1108 }
1109 _ => (op.immediate_or_packed_pair(bx), arg.layout.align.abi, false),
1110 },
1111 Ref(llval, _, align) => {
1112 if arg.is_indirect() && align < arg.layout.align.abi {
1113 // `foo(packed.large_field)`. We can't pass the (unaligned) field directly. I
1114 // think that ATM (Rust 1.16) we only pass temporaries, but we shouldn't
1115 // have scary latent bugs around.
1116
1117 let scratch = PlaceRef::alloca(bx, arg.layout);
1118 base::memcpy_ty(
1119 bx,
1120 scratch.llval,
1121 scratch.align,
1122 llval,
1123 align,
1124 op.layout,
1125 MemFlags::empty(),
1126 );
1127 (scratch.llval, scratch.align, true)
1128 } else {
1129 (llval, align, true)
1130 }
1131 }
1132 };
1133
1134 if by_ref && !arg.is_indirect() {
1135 // Have to load the argument, maybe while casting it.
1136 if let PassMode::Cast(ty) = arg.mode {
1137 let addr = bx.pointercast(llval, bx.type_ptr_to(bx.cast_backend_type(&ty)));
1138 llval = bx.load(addr, align.min(arg.layout.align.abi));
1139 } else {
1140 // We can't use `PlaceRef::load` here because the argument
1141 // may have a type we don't treat as immediate, but the ABI
1142 // used for this call is passing it by-value. In that case,
1143 // the load would just produce `OperandValue::Ref` instead
1144 // of the `OperandValue::Immediate` we need for the call.
1145 llval = bx.load(llval, align);
1146 if let abi::Abi::Scalar(ref scalar) = arg.layout.abi {
1147 if scalar.is_bool() {
1148 bx.range_metadata(llval, 0..2);
1149 }
1150 }
1151 // We store bools as `i8` so we need to truncate to `i1`.
1152 llval = bx.to_immediate(llval, arg.layout);
1153 }
1154 }
1155
1156 llargs.push(llval);
1157 }
1158
1159 fn codegen_arguments_untupled(
1160 &mut self,
1161 bx: &mut Bx,
1162 operand: &mir::Operand<'tcx>,
1163 llargs: &mut Vec<Bx::Value>,
1164 args: &[ArgAbi<'tcx, Ty<'tcx>>],
1165 ) {
1166 let tuple = self.codegen_operand(bx, operand);
1167
1168 // Handle both by-ref and immediate tuples.
1169 if let Ref(llval, None, align) = tuple.val {
1170 let tuple_ptr = PlaceRef::new_sized_aligned(llval, tuple.layout, align);
1171 for i in 0..tuple.layout.fields.count() {
1172 let field_ptr = tuple_ptr.project_field(bx, i);
1173 let field = bx.load_operand(field_ptr);
1174 self.codegen_argument(bx, field, llargs, &args[i]);
1175 }
1176 } else if let Ref(_, Some(_), _) = tuple.val {
1177 bug!("closure arguments must be sized")
1178 } else {
1179 // If the tuple is immediate, the elements are as well.
1180 for i in 0..tuple.layout.fields.count() {
1181 let op = tuple.extract_field(bx, i);
1182 self.codegen_argument(bx, op, llargs, &args[i]);
1183 }
1184 }
1185 }
1186
1187 fn get_caller_location(
1188 &mut self,
1189 bx: &mut Bx,
1190 mut source_info: mir::SourceInfo,
1191 ) -> OperandRef<'tcx, Bx::Value> {
1192 let tcx = bx.tcx();
1193
1194 let mut span_to_caller_location = |span: Span| {
1195 let topmost = span.ctxt().outer_expn().expansion_cause().unwrap_or(span);
1196 let caller = tcx.sess.source_map().lookup_char_pos(topmost.lo());
1197 let const_loc = tcx.const_caller_location((
1198 Symbol::intern(&caller.file.name.to_string()),
1199 caller.line as u32,
1200 caller.col_display as u32 + 1,
1201 ));
1202 OperandRef::from_const(bx, const_loc, bx.tcx().caller_location_ty())
1203 };
1204
1205 // Walk up the `SourceScope`s, in case some of them are from MIR inlining.
1206 // If so, the starting `source_info.span` is in the innermost inlined
1207 // function, and will be replaced with outer callsite spans as long
1208 // as the inlined functions were `#[track_caller]`.
1209 loop {
1210 let scope_data = &self.mir.source_scopes[source_info.scope];
1211
1212 if let Some((callee, callsite_span)) = scope_data.inlined {
1213 // Stop inside the most nested non-`#[track_caller]` function,
1214 // before ever reaching its caller (which is irrelevant).
1215 if !callee.def.requires_caller_location(tcx) {
1216 return span_to_caller_location(source_info.span);
1217 }
1218 source_info.span = callsite_span;
1219 }
1220
1221 // Skip past all of the parents with `inlined: None`.
1222 match scope_data.inlined_parent_scope {
1223 Some(parent) => source_info.scope = parent,
1224 None => break,
1225 }
1226 }
1227
1228 // No inlined `SourceScope`s, or all of them were `#[track_caller]`.
1229 self.caller_location.unwrap_or_else(|| span_to_caller_location(source_info.span))
1230 }
1231
1232 fn get_personality_slot(&mut self, bx: &mut Bx) -> PlaceRef<'tcx, Bx::Value> {
1233 let cx = bx.cx();
1234 if let Some(slot) = self.personality_slot {
1235 slot
1236 } else {
1237 let layout = cx.layout_of(
1238 cx.tcx().intern_tup(&[cx.tcx().mk_mut_ptr(cx.tcx().types.u8), cx.tcx().types.i32]),
1239 );
1240 let slot = PlaceRef::alloca(bx, layout);
1241 self.personality_slot = Some(slot);
1242 slot
1243 }
1244 }
1245
1246 /// Returns the landing-pad wrapper around the given basic block.
1247 ///
1248 /// No-op in MSVC SEH scheme.
1249 fn landing_pad_to(&mut self, target_bb: mir::BasicBlock) -> Bx::BasicBlock {
1250 if let Some(block) = self.landing_pads[target_bb] {
1251 return block;
1252 }
1253
1254 let block = self.blocks[target_bb];
1255 let landing_pad = self.landing_pad_uncached(block);
1256 self.landing_pads[target_bb] = Some(landing_pad);
1257 landing_pad
1258 }
1259
1260 fn landing_pad_uncached(&mut self, target_bb: Bx::BasicBlock) -> Bx::BasicBlock {
1261 if base::wants_msvc_seh(self.cx.sess()) {
1262 span_bug!(self.mir.span, "landing pad was not inserted?")
1263 }
1264
1265 let mut bx = self.new_block("cleanup");
1266
1267 let llpersonality = self.cx.eh_personality();
1268 let llretty = self.landing_pad_type();
1269 let lp = bx.landing_pad(llretty, llpersonality, 1);
1270 bx.set_cleanup(lp);
1271
1272 let slot = self.get_personality_slot(&mut bx);
1273 slot.storage_live(&mut bx);
1274 Pair(bx.extract_value(lp, 0), bx.extract_value(lp, 1)).store(&mut bx, slot);
1275
1276 bx.br(target_bb);
1277 bx.llbb()
1278 }
1279
1280 fn landing_pad_type(&self) -> Bx::Type {
1281 let cx = self.cx;
1282 cx.type_struct(&[cx.type_i8p(), cx.type_i32()], false)
1283 }
1284
1285 fn unreachable_block(&mut self) -> Bx::BasicBlock {
1286 self.unreachable_block.unwrap_or_else(|| {
1287 let mut bx = self.new_block("unreachable");
1288 bx.unreachable();
1289 self.unreachable_block = Some(bx.llbb());
1290 bx.llbb()
1291 })
1292 }
1293
1294 pub fn new_block(&self, name: &str) -> Bx {
1295 Bx::new_block(self.cx, self.llfn, name)
1296 }
1297
1298 pub fn build_block(&self, bb: mir::BasicBlock) -> Bx {
1299 let mut bx = Bx::with_cx(self.cx);
1300 bx.position_at_end(self.blocks[bb]);
1301 bx
1302 }
1303
1304 fn make_return_dest(
1305 &mut self,
1306 bx: &mut Bx,
1307 dest: mir::Place<'tcx>,
1308 fn_ret: &ArgAbi<'tcx, Ty<'tcx>>,
1309 llargs: &mut Vec<Bx::Value>,
1310 is_intrinsic: bool,
1311 ) -> ReturnDest<'tcx, Bx::Value> {
1312 // If the return is ignored, we can just return a do-nothing `ReturnDest`.
1313 if fn_ret.is_ignore() {
1314 return ReturnDest::Nothing;
1315 }
1316 let dest = if let Some(index) = dest.as_local() {
1317 match self.locals[index] {
1318 LocalRef::Place(dest) => dest,
1319 LocalRef::UnsizedPlace(_) => bug!("return type must be sized"),
1320 LocalRef::Operand(None) => {
1321 // Handle temporary places, specifically `Operand` ones, as
1322 // they don't have `alloca`s.
1323 return if fn_ret.is_indirect() {
1324 // Odd, but possible, case, we have an operand temporary,
1325 // but the calling convention has an indirect return.
1326 let tmp = PlaceRef::alloca(bx, fn_ret.layout);
1327 tmp.storage_live(bx);
1328 llargs.push(tmp.llval);
1329 ReturnDest::IndirectOperand(tmp, index)
1330 } else if is_intrinsic {
1331 // Currently, intrinsics always need a location to store
1332 // the result, so we create a temporary `alloca` for the
1333 // result.
1334 let tmp = PlaceRef::alloca(bx, fn_ret.layout);
1335 tmp.storage_live(bx);
1336 ReturnDest::IndirectOperand(tmp, index)
1337 } else {
1338 ReturnDest::DirectOperand(index)
1339 };
1340 }
1341 LocalRef::Operand(Some(_)) => {
1342 bug!("place local already assigned to");
1343 }
1344 }
1345 } else {
1346 self.codegen_place(
1347 bx,
1348 mir::PlaceRef { local: dest.local, projection: &dest.projection },
1349 )
1350 };
1351 if fn_ret.is_indirect() {
1352 if dest.align < dest.layout.align.abi {
1353 // Currently, MIR code generation does not create calls
1354 // that store directly to fields of packed structs (in
1355 // fact, the calls it creates write only to temps).
1356 //
1357 // If someone changes that, please update this code path
1358 // to create a temporary.
1359 span_bug!(self.mir.span, "can't directly store to unaligned value");
1360 }
1361 llargs.push(dest.llval);
1362 ReturnDest::Nothing
1363 } else {
1364 ReturnDest::Store(dest)
1365 }
1366 }
1367
1368 fn codegen_transmute(&mut self, bx: &mut Bx, src: &mir::Operand<'tcx>, dst: mir::Place<'tcx>) {
1369 if let Some(index) = dst.as_local() {
1370 match self.locals[index] {
1371 LocalRef::Place(place) => self.codegen_transmute_into(bx, src, place),
1372 LocalRef::UnsizedPlace(_) => bug!("transmute must not involve unsized locals"),
1373 LocalRef::Operand(None) => {
1374 let dst_layout = bx.layout_of(self.monomorphized_place_ty(dst.as_ref()));
1375 assert!(!dst_layout.ty.has_erasable_regions());
1376 let place = PlaceRef::alloca(bx, dst_layout);
1377 place.storage_live(bx);
1378 self.codegen_transmute_into(bx, src, place);
1379 let op = bx.load_operand(place);
1380 place.storage_dead(bx);
1381 self.locals[index] = LocalRef::Operand(Some(op));
1382 self.debug_introduce_local(bx, index);
1383 }
1384 LocalRef::Operand(Some(op)) => {
1385 assert!(op.layout.is_zst(), "assigning to initialized SSAtemp");
1386 }
1387 }
1388 } else {
1389 let dst = self.codegen_place(bx, dst.as_ref());
1390 self.codegen_transmute_into(bx, src, dst);
1391 }
1392 }
1393
1394 fn codegen_transmute_into(
1395 &mut self,
1396 bx: &mut Bx,
1397 src: &mir::Operand<'tcx>,
1398 dst: PlaceRef<'tcx, Bx::Value>,
1399 ) {
1400 let src = self.codegen_operand(bx, src);
1401 let llty = bx.backend_type(src.layout);
1402 let cast_ptr = bx.pointercast(dst.llval, bx.type_ptr_to(llty));
1403 let align = src.layout.align.abi.min(dst.align);
1404 src.val.store(bx, PlaceRef::new_sized_aligned(cast_ptr, src.layout, align));
1405 }
1406
1407 // Stores the return value of a function call into it's final location.
1408 fn store_return(
1409 &mut self,
1410 bx: &mut Bx,
1411 dest: ReturnDest<'tcx, Bx::Value>,
1412 ret_abi: &ArgAbi<'tcx, Ty<'tcx>>,
1413 llval: Bx::Value,
1414 ) {
1415 use self::ReturnDest::*;
1416
1417 match dest {
1418 Nothing => (),
1419 Store(dst) => bx.store_arg(&ret_abi, llval, dst),
1420 IndirectOperand(tmp, index) => {
1421 let op = bx.load_operand(tmp);
1422 tmp.storage_dead(bx);
1423 self.locals[index] = LocalRef::Operand(Some(op));
1424 self.debug_introduce_local(bx, index);
1425 }
1426 DirectOperand(index) => {
1427 // If there is a cast, we have to store and reload.
1428 let op = if let PassMode::Cast(_) = ret_abi.mode {
1429 let tmp = PlaceRef::alloca(bx, ret_abi.layout);
1430 tmp.storage_live(bx);
1431 bx.store_arg(&ret_abi, llval, tmp);
1432 let op = bx.load_operand(tmp);
1433 tmp.storage_dead(bx);
1434 op
1435 } else {
1436 OperandRef::from_immediate_or_packed_pair(bx, llval, ret_abi.layout)
1437 };
1438 self.locals[index] = LocalRef::Operand(Some(op));
1439 self.debug_introduce_local(bx, index);
1440 }
1441 }
1442 }
1443 }
1444
1445 enum ReturnDest<'tcx, V> {
1446 // Do nothing; the return value is indirect or ignored.
1447 Nothing,
1448 // Store the return value to the pointer.
1449 Store(PlaceRef<'tcx, V>),
1450 // Store an indirect return value to an operand local place.
1451 IndirectOperand(PlaceRef<'tcx, V>, mir::Local),
1452 // Store a direct return value to an operand local place.
1453 DirectOperand(mir::Local),
1454 }