]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_codegen_ssa/src/mir/place.rs
New upstream version 1.53.0+dfsg1
[rustc.git] / compiler / rustc_codegen_ssa / src / mir / place.rs
1 use super::operand::OperandValue;
2 use super::{FunctionCx, LocalRef};
3
4 use crate::common::IntPredicate;
5 use crate::glue;
6 use crate::traits::*;
7 use crate::MemFlags;
8
9 use rustc_middle::mir;
10 use rustc_middle::mir::tcx::PlaceTy;
11 use rustc_middle::ty::layout::{HasTyCtxt, TyAndLayout};
12 use rustc_middle::ty::{self, Ty};
13 use rustc_target::abi::{Abi, Align, FieldsShape, Int, TagEncoding};
14 use rustc_target::abi::{LayoutOf, VariantIdx, Variants};
15
16 #[derive(Copy, Clone, Debug)]
17 pub struct PlaceRef<'tcx, V> {
18 /// A pointer to the contents of the place.
19 pub llval: V,
20
21 /// This place's extra data if it is unsized, or `None` if null.
22 pub llextra: Option<V>,
23
24 /// The monomorphized type of this place, including variant information.
25 pub layout: TyAndLayout<'tcx>,
26
27 /// The alignment we know for this place.
28 pub align: Align,
29 }
30
31 impl<'a, 'tcx, V: CodegenObject> PlaceRef<'tcx, V> {
32 pub fn new_sized(llval: V, layout: TyAndLayout<'tcx>) -> PlaceRef<'tcx, V> {
33 assert!(!layout.is_unsized());
34 PlaceRef { llval, llextra: None, layout, align: layout.align.abi }
35 }
36
37 pub fn new_sized_aligned(
38 llval: V,
39 layout: TyAndLayout<'tcx>,
40 align: Align,
41 ) -> PlaceRef<'tcx, V> {
42 assert!(!layout.is_unsized());
43 PlaceRef { llval, llextra: None, layout, align }
44 }
45
46 // FIXME(eddyb) pass something else for the name so no work is done
47 // unless LLVM IR names are turned on (e.g. for `--emit=llvm-ir`).
48 pub fn alloca<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
49 bx: &mut Bx,
50 layout: TyAndLayout<'tcx>,
51 ) -> Self {
52 assert!(!layout.is_unsized(), "tried to statically allocate unsized place");
53 let tmp = bx.alloca(bx.cx().backend_type(layout), layout.align.abi);
54 Self::new_sized(tmp, layout)
55 }
56
57 /// Returns a place for an indirect reference to an unsized place.
58 // FIXME(eddyb) pass something else for the name so no work is done
59 // unless LLVM IR names are turned on (e.g. for `--emit=llvm-ir`).
60 pub fn alloca_unsized_indirect<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
61 bx: &mut Bx,
62 layout: TyAndLayout<'tcx>,
63 ) -> Self {
64 assert!(layout.is_unsized(), "tried to allocate indirect place for sized values");
65 let ptr_ty = bx.cx().tcx().mk_mut_ptr(layout.ty);
66 let ptr_layout = bx.cx().layout_of(ptr_ty);
67 Self::alloca(bx, ptr_layout)
68 }
69
70 pub fn len<Cx: ConstMethods<'tcx, Value = V>>(&self, cx: &Cx) -> V {
71 if let FieldsShape::Array { count, .. } = self.layout.fields {
72 if self.layout.is_unsized() {
73 assert_eq!(count, 0);
74 self.llextra.unwrap()
75 } else {
76 cx.const_usize(count)
77 }
78 } else {
79 bug!("unexpected layout `{:#?}` in PlaceRef::len", self.layout)
80 }
81 }
82 }
83
84 impl<'a, 'tcx, V: CodegenObject> PlaceRef<'tcx, V> {
85 /// Access a field, at a point when the value's case is known.
86 pub fn project_field<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
87 self,
88 bx: &mut Bx,
89 ix: usize,
90 ) -> Self {
91 let field = self.layout.field(bx.cx(), ix);
92 let offset = self.layout.fields.offset(ix);
93 let effective_field_align = self.align.restrict_for_offset(offset);
94
95 let mut simple = || {
96 let llval = match self.layout.abi {
97 _ if offset.bytes() == 0 => {
98 // Unions and newtypes only use an offset of 0.
99 // Also handles the first field of Scalar, ScalarPair, and Vector layouts.
100 self.llval
101 }
102 Abi::ScalarPair(ref a, ref b)
103 if offset == a.value.size(bx.cx()).align_to(b.value.align(bx.cx()).abi) =>
104 {
105 // Offset matches second field.
106 bx.struct_gep(self.llval, 1)
107 }
108 Abi::Scalar(_) | Abi::ScalarPair(..) | Abi::Vector { .. } if field.is_zst() => {
109 // ZST fields are not included in Scalar, ScalarPair, and Vector layouts, so manually offset the pointer.
110 let byte_ptr = bx.pointercast(self.llval, bx.cx().type_i8p());
111 bx.gep(byte_ptr, &[bx.const_usize(offset.bytes())])
112 }
113 Abi::Scalar(_) | Abi::ScalarPair(..) => {
114 // All fields of Scalar and ScalarPair layouts must have been handled by this point.
115 // Vector layouts have additional fields for each element of the vector, so don't panic in that case.
116 bug!(
117 "offset of non-ZST field `{:?}` does not match layout `{:#?}`",
118 field,
119 self.layout
120 );
121 }
122 _ => bx.struct_gep(self.llval, bx.cx().backend_field_index(self.layout, ix)),
123 };
124 PlaceRef {
125 // HACK(eddyb): have to bitcast pointers until LLVM removes pointee types.
126 llval: bx.pointercast(llval, bx.cx().type_ptr_to(bx.cx().backend_type(field))),
127 llextra: if bx.cx().type_has_metadata(field.ty) { self.llextra } else { None },
128 layout: field,
129 align: effective_field_align,
130 }
131 };
132
133 // Simple cases, which don't need DST adjustment:
134 // * no metadata available - just log the case
135 // * known alignment - sized types, `[T]`, `str` or a foreign type
136 // * packed struct - there is no alignment padding
137 match field.ty.kind() {
138 _ if self.llextra.is_none() => {
139 debug!(
140 "unsized field `{}`, of `{:?}` has no metadata for adjustment",
141 ix, self.llval
142 );
143 return simple();
144 }
145 _ if !field.is_unsized() => return simple(),
146 ty::Slice(..) | ty::Str | ty::Foreign(..) => return simple(),
147 ty::Adt(def, _) => {
148 if def.repr.packed() {
149 // FIXME(eddyb) generalize the adjustment when we
150 // start supporting packing to larger alignments.
151 assert_eq!(self.layout.align.abi.bytes(), 1);
152 return simple();
153 }
154 }
155 _ => {}
156 }
157
158 // We need to get the pointer manually now.
159 // We do this by casting to a `*i8`, then offsetting it by the appropriate amount.
160 // We do this instead of, say, simply adjusting the pointer from the result of a GEP
161 // because the field may have an arbitrary alignment in the LLVM representation
162 // anyway.
163 //
164 // To demonstrate:
165 //
166 // struct Foo<T: ?Sized> {
167 // x: u16,
168 // y: T
169 // }
170 //
171 // The type `Foo<Foo<Trait>>` is represented in LLVM as `{ u16, { u16, u8 }}`, meaning that
172 // the `y` field has 16-bit alignment.
173
174 let meta = self.llextra;
175
176 let unaligned_offset = bx.cx().const_usize(offset.bytes());
177
178 // Get the alignment of the field
179 let (_, unsized_align) = glue::size_and_align_of_dst(bx, field.ty, meta);
180
181 // Bump the unaligned offset up to the appropriate alignment
182 let offset = round_up_const_value_to_alignment(bx, unaligned_offset, unsized_align);
183
184 debug!("struct_field_ptr: DST field offset: {:?}", offset);
185
186 // Cast and adjust pointer.
187 let byte_ptr = bx.pointercast(self.llval, bx.cx().type_i8p());
188 let byte_ptr = bx.gep(byte_ptr, &[offset]);
189
190 // Finally, cast back to the type expected.
191 let ll_fty = bx.cx().backend_type(field);
192 debug!("struct_field_ptr: Field type is {:?}", ll_fty);
193
194 PlaceRef {
195 llval: bx.pointercast(byte_ptr, bx.cx().type_ptr_to(ll_fty)),
196 llextra: self.llextra,
197 layout: field,
198 align: effective_field_align,
199 }
200 }
201
202 /// Obtain the actual discriminant of a value.
203 pub fn codegen_get_discr<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
204 self,
205 bx: &mut Bx,
206 cast_to: Ty<'tcx>,
207 ) -> V {
208 let cast_to = bx.cx().immediate_backend_type(bx.cx().layout_of(cast_to));
209 if self.layout.abi.is_uninhabited() {
210 return bx.cx().const_undef(cast_to);
211 }
212 let (tag_scalar, tag_encoding, tag_field) = match self.layout.variants {
213 Variants::Single { index } => {
214 let discr_val = self
215 .layout
216 .ty
217 .discriminant_for_variant(bx.cx().tcx(), index)
218 .map_or(index.as_u32() as u128, |discr| discr.val);
219 return bx.cx().const_uint_big(cast_to, discr_val);
220 }
221 Variants::Multiple { ref tag, ref tag_encoding, tag_field, .. } => {
222 (tag, tag_encoding, tag_field)
223 }
224 };
225
226 // Read the tag/niche-encoded discriminant from memory.
227 let tag = self.project_field(bx, tag_field);
228 let tag = bx.load_operand(tag);
229
230 // Decode the discriminant (specifically if it's niche-encoded).
231 match *tag_encoding {
232 TagEncoding::Direct => {
233 let signed = match tag_scalar.value {
234 // We use `i1` for bytes that are always `0` or `1`,
235 // e.g., `#[repr(i8)] enum E { A, B }`, but we can't
236 // let LLVM interpret the `i1` as signed, because
237 // then `i1 1` (i.e., `E::B`) is effectively `i8 -1`.
238 Int(_, signed) => !tag_scalar.is_bool() && signed,
239 _ => false,
240 };
241 bx.intcast(tag.immediate(), cast_to, signed)
242 }
243 TagEncoding::Niche { dataful_variant, ref niche_variants, niche_start } => {
244 // Rebase from niche values to discriminants, and check
245 // whether the result is in range for the niche variants.
246 let niche_llty = bx.cx().immediate_backend_type(tag.layout);
247 let tag = tag.immediate();
248
249 // We first compute the "relative discriminant" (wrt `niche_variants`),
250 // that is, if `n = niche_variants.end() - niche_variants.start()`,
251 // we remap `niche_start..=niche_start + n` (which may wrap around)
252 // to (non-wrap-around) `0..=n`, to be able to check whether the
253 // discriminant corresponds to a niche variant with one comparison.
254 // We also can't go directly to the (variant index) discriminant
255 // and check that it is in the range `niche_variants`, because
256 // that might not fit in the same type, on top of needing an extra
257 // comparison (see also the comment on `let niche_discr`).
258 let relative_discr = if niche_start == 0 {
259 // Avoid subtracting `0`, which wouldn't work for pointers.
260 // FIXME(eddyb) check the actual primitive type here.
261 tag
262 } else {
263 bx.sub(tag, bx.cx().const_uint_big(niche_llty, niche_start))
264 };
265 let relative_max = niche_variants.end().as_u32() - niche_variants.start().as_u32();
266 let is_niche = if relative_max == 0 {
267 // Avoid calling `const_uint`, which wouldn't work for pointers.
268 // Also use canonical == 0 instead of non-canonical u<= 0.
269 // FIXME(eddyb) check the actual primitive type here.
270 bx.icmp(IntPredicate::IntEQ, relative_discr, bx.cx().const_null(niche_llty))
271 } else {
272 let relative_max = bx.cx().const_uint(niche_llty, relative_max as u64);
273 bx.icmp(IntPredicate::IntULE, relative_discr, relative_max)
274 };
275
276 // NOTE(eddyb) this addition needs to be performed on the final
277 // type, in case the niche itself can't represent all variant
278 // indices (e.g. `u8` niche with more than `256` variants,
279 // but enough uninhabited variants so that the remaining variants
280 // fit in the niche).
281 // In other words, `niche_variants.end - niche_variants.start`
282 // is representable in the niche, but `niche_variants.end`
283 // might not be, in extreme cases.
284 let niche_discr = {
285 let relative_discr = if relative_max == 0 {
286 // HACK(eddyb) since we have only one niche, we know which
287 // one it is, and we can avoid having a dynamic value here.
288 bx.cx().const_uint(cast_to, 0)
289 } else {
290 bx.intcast(relative_discr, cast_to, false)
291 };
292 bx.add(
293 relative_discr,
294 bx.cx().const_uint(cast_to, niche_variants.start().as_u32() as u64),
295 )
296 };
297
298 bx.select(
299 is_niche,
300 niche_discr,
301 bx.cx().const_uint(cast_to, dataful_variant.as_u32() as u64),
302 )
303 }
304 }
305 }
306
307 /// Sets the discriminant for a new value of the given case of the given
308 /// representation.
309 pub fn codegen_set_discr<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
310 &self,
311 bx: &mut Bx,
312 variant_index: VariantIdx,
313 ) {
314 if self.layout.for_variant(bx.cx(), variant_index).abi.is_uninhabited() {
315 // We play it safe by using a well-defined `abort`, but we could go for immediate UB
316 // if that turns out to be helpful.
317 bx.abort();
318 return;
319 }
320 match self.layout.variants {
321 Variants::Single { index } => {
322 assert_eq!(index, variant_index);
323 }
324 Variants::Multiple { tag_encoding: TagEncoding::Direct, tag_field, .. } => {
325 let ptr = self.project_field(bx, tag_field);
326 let to =
327 self.layout.ty.discriminant_for_variant(bx.tcx(), variant_index).unwrap().val;
328 bx.store(
329 bx.cx().const_uint_big(bx.cx().backend_type(ptr.layout), to),
330 ptr.llval,
331 ptr.align,
332 );
333 }
334 Variants::Multiple {
335 tag_encoding:
336 TagEncoding::Niche { dataful_variant, ref niche_variants, niche_start },
337 tag_field,
338 ..
339 } => {
340 if variant_index != dataful_variant {
341 if bx.cx().sess().target.arch == "arm"
342 || bx.cx().sess().target.arch == "aarch64"
343 {
344 // FIXME(#34427): as workaround for LLVM bug on ARM,
345 // use memset of 0 before assigning niche value.
346 let fill_byte = bx.cx().const_u8(0);
347 let size = bx.cx().const_usize(self.layout.size.bytes());
348 bx.memset(self.llval, fill_byte, size, self.align, MemFlags::empty());
349 }
350
351 let niche = self.project_field(bx, tag_field);
352 let niche_llty = bx.cx().immediate_backend_type(niche.layout);
353 let niche_value = variant_index.as_u32() - niche_variants.start().as_u32();
354 let niche_value = (niche_value as u128).wrapping_add(niche_start);
355 // FIXME(eddyb): check the actual primitive type here.
356 let niche_llval = if niche_value == 0 {
357 // HACK(eddyb): using `c_null` as it works on all types.
358 bx.cx().const_null(niche_llty)
359 } else {
360 bx.cx().const_uint_big(niche_llty, niche_value)
361 };
362 OperandValue::Immediate(niche_llval).store(bx, niche);
363 }
364 }
365 }
366 }
367
368 pub fn project_index<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
369 &self,
370 bx: &mut Bx,
371 llindex: V,
372 ) -> Self {
373 // Statically compute the offset if we can, otherwise just use the element size,
374 // as this will yield the lowest alignment.
375 let layout = self.layout.field(bx, 0);
376 let offset = if let Some(llindex) = bx.const_to_opt_uint(llindex) {
377 layout.size.checked_mul(llindex, bx).unwrap_or(layout.size)
378 } else {
379 layout.size
380 };
381
382 PlaceRef {
383 llval: bx.inbounds_gep(self.llval, &[bx.cx().const_usize(0), llindex]),
384 llextra: None,
385 layout,
386 align: self.align.restrict_for_offset(offset),
387 }
388 }
389
390 pub fn project_downcast<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
391 &self,
392 bx: &mut Bx,
393 variant_index: VariantIdx,
394 ) -> Self {
395 let mut downcast = *self;
396 downcast.layout = self.layout.for_variant(bx.cx(), variant_index);
397
398 // Cast to the appropriate variant struct type.
399 let variant_ty = bx.cx().backend_type(downcast.layout);
400 downcast.llval = bx.pointercast(downcast.llval, bx.cx().type_ptr_to(variant_ty));
401
402 downcast
403 }
404
405 pub fn project_deref<Bx: BuilderMethods<'a, 'tcx, Value = V>>(&self, bx: &mut Bx) -> Self {
406 let target_ty = self.layout.ty.builtin_deref(true).expect("failed to deref");
407 let layout = bx.layout_of(target_ty.ty);
408
409 PlaceRef {
410 llval: bx.load(self.llval, self.align),
411 llextra: None,
412 layout,
413 align: layout.align.abi,
414 }
415 }
416
417 pub fn storage_live<Bx: BuilderMethods<'a, 'tcx, Value = V>>(&self, bx: &mut Bx) {
418 bx.lifetime_start(self.llval, self.layout.size);
419 }
420
421 pub fn storage_dead<Bx: BuilderMethods<'a, 'tcx, Value = V>>(&self, bx: &mut Bx) {
422 bx.lifetime_end(self.llval, self.layout.size);
423 }
424 }
425
426 impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
427 pub fn codegen_place(
428 &mut self,
429 bx: &mut Bx,
430 place_ref: mir::PlaceRef<'tcx>,
431 ) -> PlaceRef<'tcx, Bx::Value> {
432 debug!("codegen_place(place_ref={:?})", place_ref);
433 let cx = self.cx;
434 let tcx = self.cx.tcx();
435
436 let result = match place_ref {
437 mir::PlaceRef { local, projection: [] } => match self.locals[local] {
438 LocalRef::Place(place) => {
439 return place;
440 }
441 LocalRef::UnsizedPlace(place) => {
442 return bx.load_operand(place).deref(cx);
443 }
444 LocalRef::Operand(..) => {
445 bug!("using operand local {:?} as place", place_ref);
446 }
447 },
448 mir::PlaceRef { local, projection: [proj_base @ .., mir::ProjectionElem::Deref] } => {
449 // Load the pointer from its location.
450 self.codegen_consume(bx, mir::PlaceRef { local, projection: proj_base })
451 .deref(bx.cx())
452 }
453 mir::PlaceRef { local, projection: &[ref proj_base @ .., elem] } => {
454 // FIXME turn this recursion into iteration
455 let cg_base =
456 self.codegen_place(bx, mir::PlaceRef { local, projection: proj_base });
457
458 match elem {
459 mir::ProjectionElem::Deref => bug!(),
460 mir::ProjectionElem::Field(ref field, _) => {
461 cg_base.project_field(bx, field.index())
462 }
463 mir::ProjectionElem::Index(index) => {
464 let index = &mir::Operand::Copy(mir::Place::from(index));
465 let index = self.codegen_operand(bx, index);
466 let llindex = index.immediate();
467 cg_base.project_index(bx, llindex)
468 }
469 mir::ProjectionElem::ConstantIndex {
470 offset,
471 from_end: false,
472 min_length: _,
473 } => {
474 let lloffset = bx.cx().const_usize(offset as u64);
475 cg_base.project_index(bx, lloffset)
476 }
477 mir::ProjectionElem::ConstantIndex {
478 offset,
479 from_end: true,
480 min_length: _,
481 } => {
482 let lloffset = bx.cx().const_usize(offset as u64);
483 let lllen = cg_base.len(bx.cx());
484 let llindex = bx.sub(lllen, lloffset);
485 cg_base.project_index(bx, llindex)
486 }
487 mir::ProjectionElem::Subslice { from, to, from_end } => {
488 let mut subslice =
489 cg_base.project_index(bx, bx.cx().const_usize(from as u64));
490 let projected_ty =
491 PlaceTy::from_ty(cg_base.layout.ty).projection_ty(tcx, elem).ty;
492 subslice.layout = bx.cx().layout_of(self.monomorphize(projected_ty));
493
494 if subslice.layout.is_unsized() {
495 assert!(from_end, "slice subslices should be `from_end`");
496 subslice.llextra = Some(bx.sub(
497 cg_base.llextra.unwrap(),
498 bx.cx().const_usize((from as u64) + (to as u64)),
499 ));
500 }
501
502 // Cast the place pointer type to the new
503 // array or slice type (`*[%_; new_len]`).
504 subslice.llval = bx.pointercast(
505 subslice.llval,
506 bx.cx().type_ptr_to(bx.cx().backend_type(subslice.layout)),
507 );
508
509 subslice
510 }
511 mir::ProjectionElem::Downcast(_, v) => cg_base.project_downcast(bx, v),
512 }
513 }
514 };
515 debug!("codegen_place(place={:?}) => {:?}", place_ref, result);
516 result
517 }
518
519 pub fn monomorphized_place_ty(&self, place_ref: mir::PlaceRef<'tcx>) -> Ty<'tcx> {
520 let tcx = self.cx.tcx();
521 let place_ty = place_ref.ty(self.mir, tcx);
522 self.monomorphize(place_ty.ty)
523 }
524 }
525
526 fn round_up_const_value_to_alignment<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
527 bx: &mut Bx,
528 value: Bx::Value,
529 align: Bx::Value,
530 ) -> Bx::Value {
531 // In pseudo code:
532 //
533 // if value & (align - 1) == 0 {
534 // value
535 // } else {
536 // (value & !(align - 1)) + align
537 // }
538 //
539 // Usually this is written without branches as
540 //
541 // (value + align - 1) & !(align - 1)
542 //
543 // But this formula cannot take advantage of constant `value`. E.g. if `value` is known
544 // at compile time to be `1`, this expression should be optimized to `align`. However,
545 // optimization only holds if `align` is a power of two. Since the optimizer doesn't know
546 // that `align` is a power of two, it cannot perform this optimization.
547 //
548 // Instead we use
549 //
550 // value + (-value & (align - 1))
551 //
552 // Since `align` is used only once, the expression can be optimized. For `value = 0`
553 // its optimized to `0` even in debug mode.
554 //
555 // NB: The previous version of this code used
556 //
557 // (value + align - 1) & -align
558 //
559 // Even though `-align == !(align - 1)`, LLVM failed to optimize this even for
560 // `value = 0`. Bug report: https://bugs.llvm.org/show_bug.cgi?id=48559
561 let one = bx.const_usize(1);
562 let align_minus_1 = bx.sub(align, one);
563 let neg_value = bx.neg(value);
564 let offset = bx.and(neg_value, align_minus_1);
565 bx.add(value, offset)
566 }