]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_expand/src/mbe/macro_check.rs
New upstream version 1.48.0~beta.8+dfsg1
[rustc.git] / compiler / rustc_expand / src / mbe / macro_check.rs
1 //! Checks that meta-variables in macro definition are correctly declared and used.
2 //!
3 //! # What is checked
4 //!
5 //! ## Meta-variables must not be bound twice
6 //!
7 //! ```
8 //! macro_rules! foo { ($x:tt $x:tt) => { $x }; }
9 //! ```
10 //!
11 //! This check is sound (no false-negative) and complete (no false-positive).
12 //!
13 //! ## Meta-variables must not be free
14 //!
15 //! ```
16 //! macro_rules! foo { () => { $x }; }
17 //! ```
18 //!
19 //! This check is also done at macro instantiation but only if the branch is taken.
20 //!
21 //! ## Meta-variables must repeat at least as many times as their binder
22 //!
23 //! ```
24 //! macro_rules! foo { ($($x:tt)*) => { $x }; }
25 //! ```
26 //!
27 //! This check is also done at macro instantiation but only if the branch is taken.
28 //!
29 //! ## Meta-variables must repeat with the same Kleene operators as their binder
30 //!
31 //! ```
32 //! macro_rules! foo { ($($x:tt)+) => { $($x)* }; }
33 //! ```
34 //!
35 //! This check is not done at macro instantiation.
36 //!
37 //! # Disclaimer
38 //!
39 //! In the presence of nested macros (a macro defined in a macro), those checks may have false
40 //! positives and false negatives. We try to detect those cases by recognizing potential macro
41 //! definitions in RHSes, but nested macros may be hidden through the use of particular values of
42 //! meta-variables.
43 //!
44 //! ## Examples of false positive
45 //!
46 //! False positives can come from cases where we don't recognize a nested macro, because it depends
47 //! on particular values of meta-variables. In the following example, we think both instances of
48 //! `$x` are free, which is a correct statement if `$name` is anything but `macro_rules`. But when
49 //! `$name` is `macro_rules`, like in the instantiation below, then `$x:tt` is actually a binder of
50 //! the nested macro and `$x` is bound to it.
51 //!
52 //! ```
53 //! macro_rules! foo { ($name:ident) => { $name! bar { ($x:tt) => { $x }; } }; }
54 //! foo!(macro_rules);
55 //! ```
56 //!
57 //! False positives can also come from cases where we think there is a nested macro while there
58 //! isn't. In the following example, we think `$x` is free, which is incorrect because `bar` is not
59 //! a nested macro since it is not evaluated as code by `stringify!`.
60 //!
61 //! ```
62 //! macro_rules! foo { () => { stringify!(macro_rules! bar { () => { $x }; }) }; }
63 //! ```
64 //!
65 //! ## Examples of false negative
66 //!
67 //! False negatives can come from cases where we don't recognize a meta-variable, because it depends
68 //! on particular values of meta-variables. In the following examples, we don't see that if `$d` is
69 //! instantiated with `$` then `$d z` becomes `$z` in the nested macro definition and is thus a free
70 //! meta-variable. Note however, that if `foo` is instantiated, then we would check the definition
71 //! of `bar` and would see the issue.
72 //!
73 //! ```
74 //! macro_rules! foo { ($d:tt) => { macro_rules! bar { ($y:tt) => { $d z }; } }; }
75 //! ```
76 //!
77 //! # How it is checked
78 //!
79 //! There are 3 main functions: `check_binders`, `check_occurrences`, and `check_nested_macro`. They
80 //! all need some kind of environment.
81 //!
82 //! ## Environments
83 //!
84 //! Environments are used to pass information.
85 //!
86 //! ### From LHS to RHS
87 //!
88 //! When checking a LHS with `check_binders`, we produce (and use) an environment for binders,
89 //! namely `Binders`. This is a mapping from binder name to information about that binder: the span
90 //! of the binder for error messages and the stack of Kleene operators under which it was bound in
91 //! the LHS.
92 //!
93 //! This environment is used by both the LHS and RHS. The LHS uses it to detect duplicate binders.
94 //! The RHS uses it to detect the other errors.
95 //!
96 //! ### From outer macro to inner macro
97 //!
98 //! When checking the RHS of an outer macro and we detect a nested macro definition, we push the
99 //! current state, namely `MacroState`, to an environment of nested macro definitions. Each state
100 //! stores the LHS binders when entering the macro definition as well as the stack of Kleene
101 //! operators under which the inner macro is defined in the RHS.
102 //!
103 //! This environment is a stack representing the nesting of macro definitions. As such, the stack of
104 //! Kleene operators under which a meta-variable is repeating is the concatenation of the stacks
105 //! stored when entering a macro definition starting from the state in which the meta-variable is
106 //! bound.
107 use crate::mbe::{KleeneToken, TokenTree};
108
109 use rustc_ast::token::{DelimToken, Token, TokenKind};
110 use rustc_ast::{NodeId, DUMMY_NODE_ID};
111 use rustc_data_structures::fx::FxHashMap;
112 use rustc_session::lint::builtin::META_VARIABLE_MISUSE;
113 use rustc_session::parse::ParseSess;
114 use rustc_span::symbol::kw;
115 use rustc_span::{symbol::MacroRulesNormalizedIdent, MultiSpan, Span};
116
117 use smallvec::SmallVec;
118
119 /// Stack represented as linked list.
120 ///
121 /// Those are used for environments because they grow incrementally and are not mutable.
122 enum Stack<'a, T> {
123 /// Empty stack.
124 Empty,
125 /// A non-empty stack.
126 Push {
127 /// The top element.
128 top: T,
129 /// The previous elements.
130 prev: &'a Stack<'a, T>,
131 },
132 }
133
134 impl<'a, T> Stack<'a, T> {
135 /// Returns whether a stack is empty.
136 fn is_empty(&self) -> bool {
137 match *self {
138 Stack::Empty => true,
139 _ => false,
140 }
141 }
142
143 /// Returns a new stack with an element of top.
144 fn push(&'a self, top: T) -> Stack<'a, T> {
145 Stack::Push { top, prev: self }
146 }
147 }
148
149 impl<'a, T> Iterator for &'a Stack<'a, T> {
150 type Item = &'a T;
151
152 // Iterates from top to bottom of the stack.
153 fn next(&mut self) -> Option<&'a T> {
154 match *self {
155 Stack::Empty => None,
156 Stack::Push { ref top, ref prev } => {
157 *self = prev;
158 Some(top)
159 }
160 }
161 }
162 }
163
164 impl From<&Stack<'_, KleeneToken>> for SmallVec<[KleeneToken; 1]> {
165 fn from(ops: &Stack<'_, KleeneToken>) -> SmallVec<[KleeneToken; 1]> {
166 let mut ops: SmallVec<[KleeneToken; 1]> = ops.cloned().collect();
167 // The stack is innermost on top. We want outermost first.
168 ops.reverse();
169 ops
170 }
171 }
172
173 /// Information attached to a meta-variable binder in LHS.
174 struct BinderInfo {
175 /// The span of the meta-variable in LHS.
176 span: Span,
177 /// The stack of Kleene operators (outermost first).
178 ops: SmallVec<[KleeneToken; 1]>,
179 }
180
181 /// An environment of meta-variables to their binder information.
182 type Binders = FxHashMap<MacroRulesNormalizedIdent, BinderInfo>;
183
184 /// The state at which we entered a macro definition in the RHS of another macro definition.
185 struct MacroState<'a> {
186 /// The binders of the branch where we entered the macro definition.
187 binders: &'a Binders,
188 /// The stack of Kleene operators (outermost first) where we entered the macro definition.
189 ops: SmallVec<[KleeneToken; 1]>,
190 }
191
192 /// Checks that meta-variables are used correctly in a macro definition.
193 ///
194 /// Arguments:
195 /// - `sess` is used to emit diagnostics and lints
196 /// - `node_id` is used to emit lints
197 /// - `span` is used when no spans are available
198 /// - `lhses` and `rhses` should have the same length and represent the macro definition
199 pub(super) fn check_meta_variables(
200 sess: &ParseSess,
201 node_id: NodeId,
202 span: Span,
203 lhses: &[TokenTree],
204 rhses: &[TokenTree],
205 ) -> bool {
206 if lhses.len() != rhses.len() {
207 sess.span_diagnostic.span_bug(span, "length mismatch between LHSes and RHSes")
208 }
209 let mut valid = true;
210 for (lhs, rhs) in lhses.iter().zip(rhses.iter()) {
211 let mut binders = Binders::default();
212 check_binders(sess, node_id, lhs, &Stack::Empty, &mut binders, &Stack::Empty, &mut valid);
213 check_occurrences(sess, node_id, rhs, &Stack::Empty, &binders, &Stack::Empty, &mut valid);
214 }
215 valid
216 }
217
218 /// Checks `lhs` as part of the LHS of a macro definition, extends `binders` with new binders, and
219 /// sets `valid` to false in case of errors.
220 ///
221 /// Arguments:
222 /// - `sess` is used to emit diagnostics and lints
223 /// - `node_id` is used to emit lints
224 /// - `lhs` is checked as part of a LHS
225 /// - `macros` is the stack of possible outer macros
226 /// - `binders` contains the binders of the LHS
227 /// - `ops` is the stack of Kleene operators from the LHS
228 /// - `valid` is set in case of errors
229 fn check_binders(
230 sess: &ParseSess,
231 node_id: NodeId,
232 lhs: &TokenTree,
233 macros: &Stack<'_, MacroState<'_>>,
234 binders: &mut Binders,
235 ops: &Stack<'_, KleeneToken>,
236 valid: &mut bool,
237 ) {
238 match *lhs {
239 TokenTree::Token(..) => {}
240 // This can only happen when checking a nested macro because this LHS is then in the RHS of
241 // the outer macro. See ui/macros/macro-of-higher-order.rs where $y:$fragment in the
242 // LHS of the nested macro (and RHS of the outer macro) is parsed as MetaVar(y) Colon
243 // MetaVar(fragment) and not as MetaVarDecl(y, fragment).
244 TokenTree::MetaVar(span, name) => {
245 if macros.is_empty() {
246 sess.span_diagnostic.span_bug(span, "unexpected MetaVar in lhs");
247 }
248 let name = MacroRulesNormalizedIdent::new(name);
249 // There are 3 possibilities:
250 if let Some(prev_info) = binders.get(&name) {
251 // 1. The meta-variable is already bound in the current LHS: This is an error.
252 let mut span = MultiSpan::from_span(span);
253 span.push_span_label(prev_info.span, "previous declaration".into());
254 buffer_lint(sess, span, node_id, "duplicate matcher binding");
255 } else if get_binder_info(macros, binders, name).is_none() {
256 // 2. The meta-variable is free: This is a binder.
257 binders.insert(name, BinderInfo { span, ops: ops.into() });
258 } else {
259 // 3. The meta-variable is bound: This is an occurrence.
260 check_occurrences(sess, node_id, lhs, macros, binders, ops, valid);
261 }
262 }
263 // Similarly, this can only happen when checking a toplevel macro.
264 TokenTree::MetaVarDecl(span, name, _kind) => {
265 if !macros.is_empty() {
266 sess.span_diagnostic.span_bug(span, "unexpected MetaVarDecl in nested lhs");
267 }
268 let name = MacroRulesNormalizedIdent::new(name);
269 if let Some(prev_info) = get_binder_info(macros, binders, name) {
270 // Duplicate binders at the top-level macro definition are errors. The lint is only
271 // for nested macro definitions.
272 sess.span_diagnostic
273 .struct_span_err(span, "duplicate matcher binding")
274 .span_label(span, "duplicate binding")
275 .span_label(prev_info.span, "previous binding")
276 .emit();
277 *valid = false;
278 } else {
279 binders.insert(name, BinderInfo { span, ops: ops.into() });
280 }
281 }
282 TokenTree::Delimited(_, ref del) => {
283 for tt in &del.tts {
284 check_binders(sess, node_id, tt, macros, binders, ops, valid);
285 }
286 }
287 TokenTree::Sequence(_, ref seq) => {
288 let ops = ops.push(seq.kleene);
289 for tt in &seq.tts {
290 check_binders(sess, node_id, tt, macros, binders, &ops, valid);
291 }
292 }
293 }
294 }
295
296 /// Returns the binder information of a meta-variable.
297 ///
298 /// Arguments:
299 /// - `macros` is the stack of possible outer macros
300 /// - `binders` contains the current binders
301 /// - `name` is the name of the meta-variable we are looking for
302 fn get_binder_info<'a>(
303 mut macros: &'a Stack<'a, MacroState<'a>>,
304 binders: &'a Binders,
305 name: MacroRulesNormalizedIdent,
306 ) -> Option<&'a BinderInfo> {
307 binders.get(&name).or_else(|| macros.find_map(|state| state.binders.get(&name)))
308 }
309
310 /// Checks `rhs` as part of the RHS of a macro definition and sets `valid` to false in case of
311 /// errors.
312 ///
313 /// Arguments:
314 /// - `sess` is used to emit diagnostics and lints
315 /// - `node_id` is used to emit lints
316 /// - `rhs` is checked as part of a RHS
317 /// - `macros` is the stack of possible outer macros
318 /// - `binders` contains the binders of the associated LHS
319 /// - `ops` is the stack of Kleene operators from the RHS
320 /// - `valid` is set in case of errors
321 fn check_occurrences(
322 sess: &ParseSess,
323 node_id: NodeId,
324 rhs: &TokenTree,
325 macros: &Stack<'_, MacroState<'_>>,
326 binders: &Binders,
327 ops: &Stack<'_, KleeneToken>,
328 valid: &mut bool,
329 ) {
330 match *rhs {
331 TokenTree::Token(..) => {}
332 TokenTree::MetaVarDecl(span, _name, _kind) => {
333 sess.span_diagnostic.span_bug(span, "unexpected MetaVarDecl in rhs")
334 }
335 TokenTree::MetaVar(span, name) => {
336 let name = MacroRulesNormalizedIdent::new(name);
337 check_ops_is_prefix(sess, node_id, macros, binders, ops, span, name);
338 }
339 TokenTree::Delimited(_, ref del) => {
340 check_nested_occurrences(sess, node_id, &del.tts, macros, binders, ops, valid);
341 }
342 TokenTree::Sequence(_, ref seq) => {
343 let ops = ops.push(seq.kleene);
344 check_nested_occurrences(sess, node_id, &seq.tts, macros, binders, &ops, valid);
345 }
346 }
347 }
348
349 /// Represents the processed prefix of a nested macro.
350 #[derive(Clone, Copy, PartialEq, Eq)]
351 enum NestedMacroState {
352 /// Nothing that matches a nested macro definition was processed yet.
353 Empty,
354 /// The token `macro_rules` was processed.
355 MacroRules,
356 /// The tokens `macro_rules!` were processed.
357 MacroRulesNot,
358 /// The tokens `macro_rules!` followed by a name were processed. The name may be either directly
359 /// an identifier or a meta-variable (that hopefully would be instantiated by an identifier).
360 MacroRulesNotName,
361 /// The keyword `macro` was processed.
362 Macro,
363 /// The keyword `macro` followed by a name was processed.
364 MacroName,
365 /// The keyword `macro` followed by a name and a token delimited by parentheses was processed.
366 MacroNameParen,
367 }
368
369 /// Checks `tts` as part of the RHS of a macro definition, tries to recognize nested macro
370 /// definitions, and sets `valid` to false in case of errors.
371 ///
372 /// Arguments:
373 /// - `sess` is used to emit diagnostics and lints
374 /// - `node_id` is used to emit lints
375 /// - `tts` is checked as part of a RHS and may contain macro definitions
376 /// - `macros` is the stack of possible outer macros
377 /// - `binders` contains the binders of the associated LHS
378 /// - `ops` is the stack of Kleene operators from the RHS
379 /// - `valid` is set in case of errors
380 fn check_nested_occurrences(
381 sess: &ParseSess,
382 node_id: NodeId,
383 tts: &[TokenTree],
384 macros: &Stack<'_, MacroState<'_>>,
385 binders: &Binders,
386 ops: &Stack<'_, KleeneToken>,
387 valid: &mut bool,
388 ) {
389 let mut state = NestedMacroState::Empty;
390 let nested_macros = macros.push(MacroState { binders, ops: ops.into() });
391 let mut nested_binders = Binders::default();
392 for tt in tts {
393 match (state, tt) {
394 (
395 NestedMacroState::Empty,
396 &TokenTree::Token(Token { kind: TokenKind::Ident(name, false), .. }),
397 ) => {
398 if name == kw::MacroRules {
399 state = NestedMacroState::MacroRules;
400 } else if name == kw::Macro {
401 state = NestedMacroState::Macro;
402 }
403 }
404 (
405 NestedMacroState::MacroRules,
406 &TokenTree::Token(Token { kind: TokenKind::Not, .. }),
407 ) => {
408 state = NestedMacroState::MacroRulesNot;
409 }
410 (
411 NestedMacroState::MacroRulesNot,
412 &TokenTree::Token(Token { kind: TokenKind::Ident(..), .. }),
413 ) => {
414 state = NestedMacroState::MacroRulesNotName;
415 }
416 (NestedMacroState::MacroRulesNot, &TokenTree::MetaVar(..)) => {
417 state = NestedMacroState::MacroRulesNotName;
418 // We check that the meta-variable is correctly used.
419 check_occurrences(sess, node_id, tt, macros, binders, ops, valid);
420 }
421 (NestedMacroState::MacroRulesNotName, &TokenTree::Delimited(_, ref del))
422 | (NestedMacroState::MacroName, &TokenTree::Delimited(_, ref del))
423 if del.delim == DelimToken::Brace =>
424 {
425 let macro_rules = state == NestedMacroState::MacroRulesNotName;
426 state = NestedMacroState::Empty;
427 let rest =
428 check_nested_macro(sess, node_id, macro_rules, &del.tts, &nested_macros, valid);
429 // If we did not check the whole macro definition, then check the rest as if outside
430 // the macro definition.
431 check_nested_occurrences(
432 sess,
433 node_id,
434 &del.tts[rest..],
435 macros,
436 binders,
437 ops,
438 valid,
439 );
440 }
441 (
442 NestedMacroState::Macro,
443 &TokenTree::Token(Token { kind: TokenKind::Ident(..), .. }),
444 ) => {
445 state = NestedMacroState::MacroName;
446 }
447 (NestedMacroState::Macro, &TokenTree::MetaVar(..)) => {
448 state = NestedMacroState::MacroName;
449 // We check that the meta-variable is correctly used.
450 check_occurrences(sess, node_id, tt, macros, binders, ops, valid);
451 }
452 (NestedMacroState::MacroName, &TokenTree::Delimited(_, ref del))
453 if del.delim == DelimToken::Paren =>
454 {
455 state = NestedMacroState::MacroNameParen;
456 nested_binders = Binders::default();
457 check_binders(
458 sess,
459 node_id,
460 tt,
461 &nested_macros,
462 &mut nested_binders,
463 &Stack::Empty,
464 valid,
465 );
466 }
467 (NestedMacroState::MacroNameParen, &TokenTree::Delimited(_, ref del))
468 if del.delim == DelimToken::Brace =>
469 {
470 state = NestedMacroState::Empty;
471 check_occurrences(
472 sess,
473 node_id,
474 tt,
475 &nested_macros,
476 &nested_binders,
477 &Stack::Empty,
478 valid,
479 );
480 }
481 (_, ref tt) => {
482 state = NestedMacroState::Empty;
483 check_occurrences(sess, node_id, tt, macros, binders, ops, valid);
484 }
485 }
486 }
487 }
488
489 /// Checks the body of nested macro, returns where the check stopped, and sets `valid` to false in
490 /// case of errors.
491 ///
492 /// The token trees are checked as long as they look like a list of (LHS) => {RHS} token trees. This
493 /// check is a best-effort to detect a macro definition. It returns the position in `tts` where we
494 /// stopped checking because we detected we were not in a macro definition anymore.
495 ///
496 /// Arguments:
497 /// - `sess` is used to emit diagnostics and lints
498 /// - `node_id` is used to emit lints
499 /// - `macro_rules` specifies whether the macro is `macro_rules`
500 /// - `tts` is checked as a list of (LHS) => {RHS}
501 /// - `macros` is the stack of outer macros
502 /// - `valid` is set in case of errors
503 fn check_nested_macro(
504 sess: &ParseSess,
505 node_id: NodeId,
506 macro_rules: bool,
507 tts: &[TokenTree],
508 macros: &Stack<'_, MacroState<'_>>,
509 valid: &mut bool,
510 ) -> usize {
511 let n = tts.len();
512 let mut i = 0;
513 let separator = if macro_rules { TokenKind::Semi } else { TokenKind::Comma };
514 loop {
515 // We expect 3 token trees: `(LHS) => {RHS}`. The separator is checked after.
516 if i + 2 >= n
517 || !tts[i].is_delimited()
518 || !tts[i + 1].is_token(&TokenKind::FatArrow)
519 || !tts[i + 2].is_delimited()
520 {
521 break;
522 }
523 let lhs = &tts[i];
524 let rhs = &tts[i + 2];
525 let mut binders = Binders::default();
526 check_binders(sess, node_id, lhs, macros, &mut binders, &Stack::Empty, valid);
527 check_occurrences(sess, node_id, rhs, macros, &binders, &Stack::Empty, valid);
528 // Since the last semicolon is optional for `macro_rules` macros and decl_macro are not terminated,
529 // we increment our checked position by how many token trees we already checked (the 3
530 // above) before checking for the separator.
531 i += 3;
532 if i == n || !tts[i].is_token(&separator) {
533 break;
534 }
535 // We increment our checked position for the semicolon.
536 i += 1;
537 }
538 i
539 }
540
541 /// Checks that a meta-variable occurrence is valid.
542 ///
543 /// Arguments:
544 /// - `sess` is used to emit diagnostics and lints
545 /// - `node_id` is used to emit lints
546 /// - `macros` is the stack of possible outer macros
547 /// - `binders` contains the binders of the associated LHS
548 /// - `ops` is the stack of Kleene operators from the RHS
549 /// - `span` is the span of the meta-variable to check
550 /// - `name` is the name of the meta-variable to check
551 fn check_ops_is_prefix(
552 sess: &ParseSess,
553 node_id: NodeId,
554 macros: &Stack<'_, MacroState<'_>>,
555 binders: &Binders,
556 ops: &Stack<'_, KleeneToken>,
557 span: Span,
558 name: MacroRulesNormalizedIdent,
559 ) {
560 let macros = macros.push(MacroState { binders, ops: ops.into() });
561 // Accumulates the stacks the operators of each state until (and including when) the
562 // meta-variable is found. The innermost stack is first.
563 let mut acc: SmallVec<[&SmallVec<[KleeneToken; 1]>; 1]> = SmallVec::new();
564 for state in &macros {
565 acc.push(&state.ops);
566 if let Some(binder) = state.binders.get(&name) {
567 // This variable concatenates the stack of operators from the RHS of the LHS where the
568 // meta-variable was defined to where it is used (in possibly nested macros). The
569 // outermost operator is first.
570 let mut occurrence_ops: SmallVec<[KleeneToken; 2]> = SmallVec::new();
571 // We need to iterate from the end to start with outermost stack.
572 for ops in acc.iter().rev() {
573 occurrence_ops.extend_from_slice(ops);
574 }
575 ops_is_prefix(sess, node_id, span, name, &binder.ops, &occurrence_ops);
576 return;
577 }
578 }
579 buffer_lint(sess, span.into(), node_id, &format!("unknown macro variable `{}`", name));
580 }
581
582 /// Returns whether `binder_ops` is a prefix of `occurrence_ops`.
583 ///
584 /// The stack of Kleene operators of a meta-variable occurrence just needs to have the stack of
585 /// Kleene operators of its binder as a prefix.
586 ///
587 /// Consider $i in the following example:
588 ///
589 /// ( $( $i:ident = $($j:ident),+ );* ) => { $($( $i += $j; )+)* }
590 ///
591 /// It occurs under the Kleene stack ["*", "+"] and is bound under ["*"] only.
592 ///
593 /// Arguments:
594 /// - `sess` is used to emit diagnostics and lints
595 /// - `node_id` is used to emit lints
596 /// - `span` is the span of the meta-variable being check
597 /// - `name` is the name of the meta-variable being check
598 /// - `binder_ops` is the stack of Kleene operators for the binder
599 /// - `occurrence_ops` is the stack of Kleene operators for the occurrence
600 fn ops_is_prefix(
601 sess: &ParseSess,
602 node_id: NodeId,
603 span: Span,
604 name: MacroRulesNormalizedIdent,
605 binder_ops: &[KleeneToken],
606 occurrence_ops: &[KleeneToken],
607 ) {
608 for (i, binder) in binder_ops.iter().enumerate() {
609 if i >= occurrence_ops.len() {
610 let mut span = MultiSpan::from_span(span);
611 span.push_span_label(binder.span, "expected repetition".into());
612 let message = &format!("variable '{}' is still repeating at this depth", name);
613 buffer_lint(sess, span, node_id, message);
614 return;
615 }
616 let occurrence = &occurrence_ops[i];
617 if occurrence.op != binder.op {
618 let mut span = MultiSpan::from_span(span);
619 span.push_span_label(binder.span, "expected repetition".into());
620 span.push_span_label(occurrence.span, "conflicting repetition".into());
621 let message = "meta-variable repeats with different Kleene operator";
622 buffer_lint(sess, span, node_id, message);
623 return;
624 }
625 }
626 }
627
628 fn buffer_lint(sess: &ParseSess, span: MultiSpan, node_id: NodeId, message: &str) {
629 // Macros loaded from other crates have dummy node ids.
630 if node_id != DUMMY_NODE_ID {
631 sess.buffer_lint(&META_VARIABLE_MISUSE, span, node_id, message);
632 }
633 }