]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_expand/src/mbe/macro_rules.rs
New upstream version 1.67.1+dfsg1
[rustc.git] / compiler / rustc_expand / src / mbe / macro_rules.rs
1 use crate::base::{DummyResult, ExtCtxt, MacResult, TTMacroExpander};
2 use crate::base::{SyntaxExtension, SyntaxExtensionKind};
3 use crate::expand::{ensure_complete_parse, parse_ast_fragment, AstFragment, AstFragmentKind};
4 use crate::mbe;
5 use crate::mbe::diagnostics::{annotate_doc_comment, parse_failure_msg};
6 use crate::mbe::macro_check;
7 use crate::mbe::macro_parser::{Error, ErrorReported, Failure, Success, TtParser};
8 use crate::mbe::macro_parser::{MatchedSeq, MatchedTokenTree, MatcherLoc};
9 use crate::mbe::transcribe::transcribe;
10
11 use rustc_ast as ast;
12 use rustc_ast::token::{self, Delimiter, NonterminalKind, Token, TokenKind, TokenKind::*};
13 use rustc_ast::tokenstream::{DelimSpan, TokenStream};
14 use rustc_ast::{NodeId, DUMMY_NODE_ID};
15 use rustc_ast_pretty::pprust;
16 use rustc_attr::{self as attr, TransparencyError};
17 use rustc_data_structures::fx::{FxHashMap, FxIndexMap};
18 use rustc_errors::{Applicability, ErrorGuaranteed};
19 use rustc_feature::Features;
20 use rustc_lint_defs::builtin::{
21 RUST_2021_INCOMPATIBLE_OR_PATTERNS, SEMICOLON_IN_EXPRESSIONS_FROM_MACROS,
22 };
23 use rustc_lint_defs::BuiltinLintDiagnostics;
24 use rustc_parse::parser::{Parser, Recovery};
25 use rustc_session::parse::ParseSess;
26 use rustc_session::Session;
27 use rustc_span::edition::Edition;
28 use rustc_span::hygiene::Transparency;
29 use rustc_span::symbol::{kw, sym, Ident, MacroRulesNormalizedIdent};
30 use rustc_span::Span;
31
32 use std::borrow::Cow;
33 use std::collections::hash_map::Entry;
34 use std::{mem, slice};
35
36 use super::diagnostics;
37 use super::macro_parser::{NamedMatches, NamedParseResult};
38
39 pub(crate) struct ParserAnyMacro<'a> {
40 parser: Parser<'a>,
41
42 /// Span of the expansion site of the macro this parser is for
43 site_span: Span,
44 /// The ident of the macro we're parsing
45 macro_ident: Ident,
46 lint_node_id: NodeId,
47 is_trailing_mac: bool,
48 arm_span: Span,
49 /// Whether or not this macro is defined in the current crate
50 is_local: bool,
51 }
52
53 impl<'a> ParserAnyMacro<'a> {
54 pub(crate) fn make(mut self: Box<ParserAnyMacro<'a>>, kind: AstFragmentKind) -> AstFragment {
55 let ParserAnyMacro {
56 site_span,
57 macro_ident,
58 ref mut parser,
59 lint_node_id,
60 arm_span,
61 is_trailing_mac,
62 is_local,
63 } = *self;
64 let snapshot = &mut parser.create_snapshot_for_diagnostic();
65 let fragment = match parse_ast_fragment(parser, kind) {
66 Ok(f) => f,
67 Err(err) => {
68 diagnostics::emit_frag_parse_err(err, parser, snapshot, site_span, arm_span, kind);
69 return kind.dummy(site_span);
70 }
71 };
72
73 // We allow semicolons at the end of expressions -- e.g., the semicolon in
74 // `macro_rules! m { () => { panic!(); } }` isn't parsed by `.parse_expr()`,
75 // but `m!()` is allowed in expression positions (cf. issue #34706).
76 if kind == AstFragmentKind::Expr && parser.token == token::Semi {
77 if is_local {
78 parser.sess.buffer_lint_with_diagnostic(
79 SEMICOLON_IN_EXPRESSIONS_FROM_MACROS,
80 parser.token.span,
81 lint_node_id,
82 "trailing semicolon in macro used in expression position",
83 BuiltinLintDiagnostics::TrailingMacro(is_trailing_mac, macro_ident),
84 );
85 }
86 parser.bump();
87 }
88
89 // Make sure we don't have any tokens left to parse so we don't silently drop anything.
90 let path = ast::Path::from_ident(macro_ident.with_span_pos(site_span));
91 ensure_complete_parse(parser, &path, kind.name(), site_span);
92 fragment
93 }
94 }
95
96 struct MacroRulesMacroExpander {
97 node_id: NodeId,
98 name: Ident,
99 span: Span,
100 transparency: Transparency,
101 lhses: Vec<Vec<MatcherLoc>>,
102 rhses: Vec<mbe::TokenTree>,
103 valid: bool,
104 }
105
106 impl TTMacroExpander for MacroRulesMacroExpander {
107 fn expand<'cx>(
108 &self,
109 cx: &'cx mut ExtCtxt<'_>,
110 sp: Span,
111 input: TokenStream,
112 ) -> Box<dyn MacResult + 'cx> {
113 if !self.valid {
114 return DummyResult::any(sp);
115 }
116 expand_macro(
117 cx,
118 sp,
119 self.span,
120 self.node_id,
121 self.name,
122 self.transparency,
123 input,
124 &self.lhses,
125 &self.rhses,
126 )
127 }
128 }
129
130 fn macro_rules_dummy_expander<'cx>(
131 _: &'cx mut ExtCtxt<'_>,
132 span: Span,
133 _: TokenStream,
134 ) -> Box<dyn MacResult + 'cx> {
135 DummyResult::any(span)
136 }
137
138 fn trace_macros_note(cx_expansions: &mut FxIndexMap<Span, Vec<String>>, sp: Span, message: String) {
139 let sp = sp.macro_backtrace().last().map_or(sp, |trace| trace.call_site);
140 cx_expansions.entry(sp).or_default().push(message);
141 }
142
143 pub(super) trait Tracker<'matcher> {
144 /// This is called before trying to match next MatcherLoc on the current token.
145 fn before_match_loc(&mut self, parser: &TtParser, matcher: &'matcher MatcherLoc);
146
147 /// This is called after an arm has been parsed, either successfully or unsuccessfully. When this is called,
148 /// `before_match_loc` was called at least once (with a `MatcherLoc::Eof`).
149 fn after_arm(&mut self, result: &NamedParseResult);
150
151 /// For tracing.
152 fn description() -> &'static str;
153
154 fn recovery() -> Recovery;
155 }
156
157 /// A noop tracker that is used in the hot path of the expansion, has zero overhead thanks to monomorphization.
158 pub(super) struct NoopTracker;
159
160 impl<'matcher> Tracker<'matcher> for NoopTracker {
161 fn before_match_loc(&mut self, _: &TtParser, _: &'matcher MatcherLoc) {}
162 fn after_arm(&mut self, _: &NamedParseResult) {}
163 fn description() -> &'static str {
164 "none"
165 }
166 fn recovery() -> Recovery {
167 Recovery::Forbidden
168 }
169 }
170
171 /// Expands the rules based macro defined by `lhses` and `rhses` for a given
172 /// input `arg`.
173 #[instrument(skip(cx, transparency, arg, lhses, rhses))]
174 fn expand_macro<'cx>(
175 cx: &'cx mut ExtCtxt<'_>,
176 sp: Span,
177 def_span: Span,
178 node_id: NodeId,
179 name: Ident,
180 transparency: Transparency,
181 arg: TokenStream,
182 lhses: &[Vec<MatcherLoc>],
183 rhses: &[mbe::TokenTree],
184 ) -> Box<dyn MacResult + 'cx> {
185 let sess = &cx.sess.parse_sess;
186 // Macros defined in the current crate have a real node id,
187 // whereas macros from an external crate have a dummy id.
188 let is_local = node_id != DUMMY_NODE_ID;
189
190 if cx.trace_macros() {
191 let msg = format!("expanding `{}! {{ {} }}`", name, pprust::tts_to_string(&arg));
192 trace_macros_note(&mut cx.expansions, sp, msg);
193 }
194
195 // Track nothing for the best performance.
196 let try_success_result = try_match_macro(sess, name, &arg, lhses, &mut NoopTracker);
197
198 match try_success_result {
199 Ok((i, named_matches)) => {
200 let (rhs, rhs_span): (&mbe::Delimited, DelimSpan) = match &rhses[i] {
201 mbe::TokenTree::Delimited(span, delimited) => (&delimited, *span),
202 _ => cx.span_bug(sp, "malformed macro rhs"),
203 };
204 let arm_span = rhses[i].span();
205
206 let rhs_spans = rhs.tts.iter().map(|t| t.span()).collect::<Vec<_>>();
207 // rhs has holes ( `$id` and `$(...)` that need filled)
208 let mut tts = match transcribe(cx, &named_matches, &rhs, rhs_span, transparency) {
209 Ok(tts) => tts,
210 Err(mut err) => {
211 err.emit();
212 return DummyResult::any(arm_span);
213 }
214 };
215
216 // Replace all the tokens for the corresponding positions in the macro, to maintain
217 // proper positions in error reporting, while maintaining the macro_backtrace.
218 if rhs_spans.len() == tts.len() {
219 tts = tts.map_enumerated(|i, tt| {
220 let mut tt = tt.clone();
221 let mut sp = rhs_spans[i];
222 sp = sp.with_ctxt(tt.span().ctxt());
223 tt.set_span(sp);
224 tt
225 });
226 }
227
228 if cx.trace_macros() {
229 let msg = format!("to `{}`", pprust::tts_to_string(&tts));
230 trace_macros_note(&mut cx.expansions, sp, msg);
231 }
232
233 let mut p = Parser::new(sess, tts, false, None);
234 p.last_type_ascription = cx.current_expansion.prior_type_ascription;
235
236 if is_local {
237 cx.resolver.record_macro_rule_usage(node_id, i);
238 }
239
240 // Let the context choose how to interpret the result.
241 // Weird, but useful for X-macros.
242 return Box::new(ParserAnyMacro {
243 parser: p,
244
245 // Pass along the original expansion site and the name of the macro
246 // so we can print a useful error message if the parse of the expanded
247 // macro leaves unparsed tokens.
248 site_span: sp,
249 macro_ident: name,
250 lint_node_id: cx.current_expansion.lint_node_id,
251 is_trailing_mac: cx.current_expansion.is_trailing_mac,
252 arm_span,
253 is_local,
254 });
255 }
256 Err(CanRetry::No(_)) => {
257 debug!("Will not retry matching as an error was emitted already");
258 return DummyResult::any(sp);
259 }
260 Err(CanRetry::Yes) => {
261 // Retry and emit a better error below.
262 }
263 }
264
265 diagnostics::failed_to_match_macro(cx, sp, def_span, name, arg, lhses)
266 }
267
268 pub(super) enum CanRetry {
269 Yes,
270 /// We are not allowed to retry macro expansion as a fatal error has been emitted already.
271 No(ErrorGuaranteed),
272 }
273
274 /// Try expanding the macro. Returns the index of the successful arm and its named_matches if it was successful,
275 /// and nothing if it failed. On failure, it's the callers job to use `track` accordingly to record all errors
276 /// correctly.
277 #[instrument(level = "debug", skip(sess, arg, lhses, track), fields(tracking = %T::description()))]
278 pub(super) fn try_match_macro<'matcher, T: Tracker<'matcher>>(
279 sess: &ParseSess,
280 name: Ident,
281 arg: &TokenStream,
282 lhses: &'matcher [Vec<MatcherLoc>],
283 track: &mut T,
284 ) -> Result<(usize, NamedMatches), CanRetry> {
285 // We create a base parser that can be used for the "black box" parts.
286 // Every iteration needs a fresh copy of that parser. However, the parser
287 // is not mutated on many of the iterations, particularly when dealing with
288 // macros like this:
289 //
290 // macro_rules! foo {
291 // ("a") => (A);
292 // ("b") => (B);
293 // ("c") => (C);
294 // // ... etc. (maybe hundreds more)
295 // }
296 //
297 // as seen in the `html5ever` benchmark. We use a `Cow` so that the base
298 // parser is only cloned when necessary (upon mutation). Furthermore, we
299 // reinitialize the `Cow` with the base parser at the start of every
300 // iteration, so that any mutated parsers are not reused. This is all quite
301 // hacky, but speeds up the `html5ever` benchmark significantly. (Issue
302 // 68836 suggests a more comprehensive but more complex change to deal with
303 // this situation.)
304 let parser = parser_from_cx(sess, arg.clone(), T::recovery());
305 // Try each arm's matchers.
306 let mut tt_parser = TtParser::new(name);
307 for (i, lhs) in lhses.iter().enumerate() {
308 let _tracing_span = trace_span!("Matching arm", %i);
309
310 // Take a snapshot of the state of pre-expansion gating at this point.
311 // This is used so that if a matcher is not `Success(..)`ful,
312 // then the spans which became gated when parsing the unsuccessful matcher
313 // are not recorded. On the first `Success(..)`ful matcher, the spans are merged.
314 let mut gated_spans_snapshot = mem::take(&mut *sess.gated_spans.spans.borrow_mut());
315
316 let result = tt_parser.parse_tt(&mut Cow::Borrowed(&parser), lhs, track);
317
318 track.after_arm(&result);
319
320 match result {
321 Success(named_matches) => {
322 debug!("Parsed arm successfully");
323 // The matcher was `Success(..)`ful.
324 // Merge the gated spans from parsing the matcher with the pre-existing ones.
325 sess.gated_spans.merge(gated_spans_snapshot);
326
327 return Ok((i, named_matches));
328 }
329 Failure(_, _) => {
330 trace!("Failed to match arm, trying the next one");
331 // Try the next arm.
332 }
333 Error(_, _) => {
334 debug!("Fatal error occurred during matching");
335 // We haven't emitted an error yet, so we can retry.
336 return Err(CanRetry::Yes);
337 }
338 ErrorReported(guarantee) => {
339 debug!("Fatal error occurred and was reported during matching");
340 // An error has been reported already, we cannot retry as that would cause duplicate errors.
341 return Err(CanRetry::No(guarantee));
342 }
343 }
344
345 // The matcher was not `Success(..)`ful.
346 // Restore to the state before snapshotting and maybe try again.
347 mem::swap(&mut gated_spans_snapshot, &mut sess.gated_spans.spans.borrow_mut());
348 }
349
350 Err(CanRetry::Yes)
351 }
352
353 // Note that macro-by-example's input is also matched against a token tree:
354 // $( $lhs:tt => $rhs:tt );+
355 //
356 // Holy self-referential!
357
358 /// Converts a macro item into a syntax extension.
359 pub fn compile_declarative_macro(
360 sess: &Session,
361 features: &Features,
362 def: &ast::Item,
363 edition: Edition,
364 ) -> (SyntaxExtension, Vec<(usize, Span)>) {
365 debug!("compile_declarative_macro: {:?}", def);
366 let mk_syn_ext = |expander| {
367 SyntaxExtension::new(
368 sess,
369 SyntaxExtensionKind::LegacyBang(expander),
370 def.span,
371 Vec::new(),
372 edition,
373 def.ident.name,
374 &def.attrs,
375 )
376 };
377 let dummy_syn_ext = || (mk_syn_ext(Box::new(macro_rules_dummy_expander)), Vec::new());
378
379 let diag = &sess.parse_sess.span_diagnostic;
380 let lhs_nm = Ident::new(sym::lhs, def.span);
381 let rhs_nm = Ident::new(sym::rhs, def.span);
382 let tt_spec = Some(NonterminalKind::TT);
383
384 // Parse the macro_rules! invocation
385 let (macro_rules, body) = match &def.kind {
386 ast::ItemKind::MacroDef(def) => (def.macro_rules, def.body.tokens.clone()),
387 _ => unreachable!(),
388 };
389
390 // The pattern that macro_rules matches.
391 // The grammar for macro_rules! is:
392 // $( $lhs:tt => $rhs:tt );+
393 // ...quasiquoting this would be nice.
394 // These spans won't matter, anyways
395 let argument_gram = vec![
396 mbe::TokenTree::Sequence(
397 DelimSpan::dummy(),
398 mbe::SequenceRepetition {
399 tts: vec![
400 mbe::TokenTree::MetaVarDecl(def.span, lhs_nm, tt_spec),
401 mbe::TokenTree::token(token::FatArrow, def.span),
402 mbe::TokenTree::MetaVarDecl(def.span, rhs_nm, tt_spec),
403 ],
404 separator: Some(Token::new(
405 if macro_rules { token::Semi } else { token::Comma },
406 def.span,
407 )),
408 kleene: mbe::KleeneToken::new(mbe::KleeneOp::OneOrMore, def.span),
409 num_captures: 2,
410 },
411 ),
412 // to phase into semicolon-termination instead of semicolon-separation
413 mbe::TokenTree::Sequence(
414 DelimSpan::dummy(),
415 mbe::SequenceRepetition {
416 tts: vec![mbe::TokenTree::token(
417 if macro_rules { token::Semi } else { token::Comma },
418 def.span,
419 )],
420 separator: None,
421 kleene: mbe::KleeneToken::new(mbe::KleeneOp::ZeroOrMore, def.span),
422 num_captures: 0,
423 },
424 ),
425 ];
426 // Convert it into `MatcherLoc` form.
427 let argument_gram = mbe::macro_parser::compute_locs(&argument_gram);
428
429 let parser = Parser::new(&sess.parse_sess, body, true, rustc_parse::MACRO_ARGUMENTS);
430 let mut tt_parser =
431 TtParser::new(Ident::with_dummy_span(if macro_rules { kw::MacroRules } else { kw::Macro }));
432 let argument_map =
433 match tt_parser.parse_tt(&mut Cow::Owned(parser), &argument_gram, &mut NoopTracker) {
434 Success(m) => m,
435 Failure(token, msg) => {
436 let s = parse_failure_msg(&token);
437 let sp = token.span.substitute_dummy(def.span);
438 let mut err = sess.parse_sess.span_diagnostic.struct_span_err(sp, &s);
439 err.span_label(sp, msg);
440 annotate_doc_comment(&mut err, sess.source_map(), sp);
441 err.emit();
442 return dummy_syn_ext();
443 }
444 Error(sp, msg) => {
445 sess.parse_sess
446 .span_diagnostic
447 .struct_span_err(sp.substitute_dummy(def.span), &msg)
448 .emit();
449 return dummy_syn_ext();
450 }
451 ErrorReported(_) => {
452 return dummy_syn_ext();
453 }
454 };
455
456 let mut valid = true;
457
458 // Extract the arguments:
459 let lhses = match argument_map[&MacroRulesNormalizedIdent::new(lhs_nm)] {
460 MatchedSeq(ref s) => s
461 .iter()
462 .map(|m| {
463 if let MatchedTokenTree(ref tt) = *m {
464 let tt = mbe::quoted::parse(
465 TokenStream::new(vec![tt.clone()]),
466 true,
467 &sess.parse_sess,
468 def.id,
469 features,
470 edition,
471 )
472 .pop()
473 .unwrap();
474 valid &= check_lhs_nt_follows(&sess.parse_sess, &def, &tt);
475 return tt;
476 }
477 sess.parse_sess.span_diagnostic.span_bug(def.span, "wrong-structured lhs")
478 })
479 .collect::<Vec<mbe::TokenTree>>(),
480 _ => sess.parse_sess.span_diagnostic.span_bug(def.span, "wrong-structured lhs"),
481 };
482
483 let rhses = match argument_map[&MacroRulesNormalizedIdent::new(rhs_nm)] {
484 MatchedSeq(ref s) => s
485 .iter()
486 .map(|m| {
487 if let MatchedTokenTree(ref tt) = *m {
488 return mbe::quoted::parse(
489 TokenStream::new(vec![tt.clone()]),
490 false,
491 &sess.parse_sess,
492 def.id,
493 features,
494 edition,
495 )
496 .pop()
497 .unwrap();
498 }
499 sess.parse_sess.span_diagnostic.span_bug(def.span, "wrong-structured lhs")
500 })
501 .collect::<Vec<mbe::TokenTree>>(),
502 _ => sess.parse_sess.span_diagnostic.span_bug(def.span, "wrong-structured rhs"),
503 };
504
505 for rhs in &rhses {
506 valid &= check_rhs(&sess.parse_sess, rhs);
507 }
508
509 // don't abort iteration early, so that errors for multiple lhses can be reported
510 for lhs in &lhses {
511 valid &= check_lhs_no_empty_seq(&sess.parse_sess, slice::from_ref(lhs));
512 }
513
514 valid &= macro_check::check_meta_variables(&sess.parse_sess, def.id, def.span, &lhses, &rhses);
515
516 let (transparency, transparency_error) = attr::find_transparency(&def.attrs, macro_rules);
517 match transparency_error {
518 Some(TransparencyError::UnknownTransparency(value, span)) => {
519 diag.span_err(span, &format!("unknown macro transparency: `{}`", value));
520 }
521 Some(TransparencyError::MultipleTransparencyAttrs(old_span, new_span)) => {
522 diag.span_err(vec![old_span, new_span], "multiple macro transparency attributes");
523 }
524 None => {}
525 }
526
527 // Compute the spans of the macro rules for unused rule linting.
528 // To avoid warning noise, only consider the rules of this
529 // macro for the lint, if all rules are valid.
530 // Also, we are only interested in non-foreign macros.
531 let rule_spans = if valid && def.id != DUMMY_NODE_ID {
532 lhses
533 .iter()
534 .zip(rhses.iter())
535 .enumerate()
536 // If the rhs contains an invocation like compile_error!,
537 // don't consider the rule for the unused rule lint.
538 .filter(|(_idx, (_lhs, rhs))| !has_compile_error_macro(rhs))
539 // We only take the span of the lhs here,
540 // so that the spans of created warnings are smaller.
541 .map(|(idx, (lhs, _rhs))| (idx, lhs.span()))
542 .collect::<Vec<_>>()
543 } else {
544 Vec::new()
545 };
546
547 // Convert the lhses into `MatcherLoc` form, which is better for doing the
548 // actual matching. Unless the matcher is invalid.
549 let lhses = if valid {
550 lhses
551 .iter()
552 .map(|lhs| {
553 // Ignore the delimiters around the matcher.
554 match lhs {
555 mbe::TokenTree::Delimited(_, delimited) => {
556 mbe::macro_parser::compute_locs(&delimited.tts)
557 }
558 _ => sess.parse_sess.span_diagnostic.span_bug(def.span, "malformed macro lhs"),
559 }
560 })
561 .collect()
562 } else {
563 vec![]
564 };
565
566 let expander = Box::new(MacroRulesMacroExpander {
567 name: def.ident,
568 span: def.span,
569 node_id: def.id,
570 transparency,
571 lhses,
572 rhses,
573 valid,
574 });
575 (mk_syn_ext(expander), rule_spans)
576 }
577
578 fn check_lhs_nt_follows(sess: &ParseSess, def: &ast::Item, lhs: &mbe::TokenTree) -> bool {
579 // lhs is going to be like TokenTree::Delimited(...), where the
580 // entire lhs is those tts. Or, it can be a "bare sequence", not wrapped in parens.
581 if let mbe::TokenTree::Delimited(_, delimited) = lhs {
582 check_matcher(sess, def, &delimited.tts)
583 } else {
584 let msg = "invalid macro matcher; matchers must be contained in balanced delimiters";
585 sess.span_diagnostic.span_err(lhs.span(), msg);
586 false
587 }
588 // we don't abort on errors on rejection, the driver will do that for us
589 // after parsing/expansion. we can report every error in every macro this way.
590 }
591
592 /// Checks that the lhs contains no repetition which could match an empty token
593 /// tree, because then the matcher would hang indefinitely.
594 fn check_lhs_no_empty_seq(sess: &ParseSess, tts: &[mbe::TokenTree]) -> bool {
595 use mbe::TokenTree;
596 for tt in tts {
597 match *tt {
598 TokenTree::Token(..)
599 | TokenTree::MetaVar(..)
600 | TokenTree::MetaVarDecl(..)
601 | TokenTree::MetaVarExpr(..) => (),
602 TokenTree::Delimited(_, ref del) => {
603 if !check_lhs_no_empty_seq(sess, &del.tts) {
604 return false;
605 }
606 }
607 TokenTree::Sequence(span, ref seq) => {
608 if seq.separator.is_none()
609 && seq.tts.iter().all(|seq_tt| match *seq_tt {
610 TokenTree::MetaVarDecl(_, _, Some(NonterminalKind::Vis)) => true,
611 TokenTree::Sequence(_, ref sub_seq) => {
612 sub_seq.kleene.op == mbe::KleeneOp::ZeroOrMore
613 || sub_seq.kleene.op == mbe::KleeneOp::ZeroOrOne
614 }
615 _ => false,
616 })
617 {
618 let sp = span.entire();
619 sess.span_diagnostic.span_err(sp, "repetition matches empty token tree");
620 return false;
621 }
622 if !check_lhs_no_empty_seq(sess, &seq.tts) {
623 return false;
624 }
625 }
626 }
627 }
628
629 true
630 }
631
632 fn check_rhs(sess: &ParseSess, rhs: &mbe::TokenTree) -> bool {
633 match *rhs {
634 mbe::TokenTree::Delimited(..) => return true,
635 _ => {
636 sess.span_diagnostic.span_err(rhs.span(), "macro rhs must be delimited");
637 }
638 }
639 false
640 }
641
642 fn check_matcher(sess: &ParseSess, def: &ast::Item, matcher: &[mbe::TokenTree]) -> bool {
643 let first_sets = FirstSets::new(matcher);
644 let empty_suffix = TokenSet::empty();
645 let err = sess.span_diagnostic.err_count();
646 check_matcher_core(sess, def, &first_sets, matcher, &empty_suffix);
647 err == sess.span_diagnostic.err_count()
648 }
649
650 fn has_compile_error_macro(rhs: &mbe::TokenTree) -> bool {
651 match rhs {
652 mbe::TokenTree::Delimited(_sp, d) => {
653 let has_compile_error = d.tts.array_windows::<3>().any(|[ident, bang, args]| {
654 if let mbe::TokenTree::Token(ident) = ident &&
655 let TokenKind::Ident(ident, _) = ident.kind &&
656 ident == sym::compile_error &&
657 let mbe::TokenTree::Token(bang) = bang &&
658 let TokenKind::Not = bang.kind &&
659 let mbe::TokenTree::Delimited(_, del) = args &&
660 del.delim != Delimiter::Invisible
661 {
662 true
663 } else {
664 false
665 }
666 });
667 if has_compile_error { true } else { d.tts.iter().any(has_compile_error_macro) }
668 }
669 _ => false,
670 }
671 }
672
673 // `The FirstSets` for a matcher is a mapping from subsequences in the
674 // matcher to the FIRST set for that subsequence.
675 //
676 // This mapping is partially precomputed via a backwards scan over the
677 // token trees of the matcher, which provides a mapping from each
678 // repetition sequence to its *first* set.
679 //
680 // (Hypothetically, sequences should be uniquely identifiable via their
681 // spans, though perhaps that is false, e.g., for macro-generated macros
682 // that do not try to inject artificial span information. My plan is
683 // to try to catch such cases ahead of time and not include them in
684 // the precomputed mapping.)
685 struct FirstSets<'tt> {
686 // this maps each TokenTree::Sequence `$(tt ...) SEP OP` that is uniquely identified by its
687 // span in the original matcher to the First set for the inner sequence `tt ...`.
688 //
689 // If two sequences have the same span in a matcher, then map that
690 // span to None (invalidating the mapping here and forcing the code to
691 // use a slow path).
692 first: FxHashMap<Span, Option<TokenSet<'tt>>>,
693 }
694
695 impl<'tt> FirstSets<'tt> {
696 fn new(tts: &'tt [mbe::TokenTree]) -> FirstSets<'tt> {
697 use mbe::TokenTree;
698
699 let mut sets = FirstSets { first: FxHashMap::default() };
700 build_recur(&mut sets, tts);
701 return sets;
702
703 // walks backward over `tts`, returning the FIRST for `tts`
704 // and updating `sets` at the same time for all sequence
705 // substructure we find within `tts`.
706 fn build_recur<'tt>(sets: &mut FirstSets<'tt>, tts: &'tt [TokenTree]) -> TokenSet<'tt> {
707 let mut first = TokenSet::empty();
708 for tt in tts.iter().rev() {
709 match *tt {
710 TokenTree::Token(..)
711 | TokenTree::MetaVar(..)
712 | TokenTree::MetaVarDecl(..)
713 | TokenTree::MetaVarExpr(..) => {
714 first.replace_with(TtHandle::TtRef(tt));
715 }
716 TokenTree::Delimited(span, ref delimited) => {
717 build_recur(sets, &delimited.tts);
718 first.replace_with(TtHandle::from_token_kind(
719 token::OpenDelim(delimited.delim),
720 span.open,
721 ));
722 }
723 TokenTree::Sequence(sp, ref seq_rep) => {
724 let subfirst = build_recur(sets, &seq_rep.tts);
725
726 match sets.first.entry(sp.entire()) {
727 Entry::Vacant(vac) => {
728 vac.insert(Some(subfirst.clone()));
729 }
730 Entry::Occupied(mut occ) => {
731 // if there is already an entry, then a span must have collided.
732 // This should not happen with typical macro_rules macros,
733 // but syntax extensions need not maintain distinct spans,
734 // so distinct syntax trees can be assigned the same span.
735 // In such a case, the map cannot be trusted; so mark this
736 // entry as unusable.
737 occ.insert(None);
738 }
739 }
740
741 // If the sequence contents can be empty, then the first
742 // token could be the separator token itself.
743
744 if let (Some(sep), true) = (&seq_rep.separator, subfirst.maybe_empty) {
745 first.add_one_maybe(TtHandle::from_token(sep.clone()));
746 }
747
748 // Reverse scan: Sequence comes before `first`.
749 if subfirst.maybe_empty
750 || seq_rep.kleene.op == mbe::KleeneOp::ZeroOrMore
751 || seq_rep.kleene.op == mbe::KleeneOp::ZeroOrOne
752 {
753 // If sequence is potentially empty, then
754 // union them (preserving first emptiness).
755 first.add_all(&TokenSet { maybe_empty: true, ..subfirst });
756 } else {
757 // Otherwise, sequence guaranteed
758 // non-empty; replace first.
759 first = subfirst;
760 }
761 }
762 }
763 }
764
765 first
766 }
767 }
768
769 // walks forward over `tts` until all potential FIRST tokens are
770 // identified.
771 fn first(&self, tts: &'tt [mbe::TokenTree]) -> TokenSet<'tt> {
772 use mbe::TokenTree;
773
774 let mut first = TokenSet::empty();
775 for tt in tts.iter() {
776 assert!(first.maybe_empty);
777 match *tt {
778 TokenTree::Token(..)
779 | TokenTree::MetaVar(..)
780 | TokenTree::MetaVarDecl(..)
781 | TokenTree::MetaVarExpr(..) => {
782 first.add_one(TtHandle::TtRef(tt));
783 return first;
784 }
785 TokenTree::Delimited(span, ref delimited) => {
786 first.add_one(TtHandle::from_token_kind(
787 token::OpenDelim(delimited.delim),
788 span.open,
789 ));
790 return first;
791 }
792 TokenTree::Sequence(sp, ref seq_rep) => {
793 let subfirst_owned;
794 let subfirst = match self.first.get(&sp.entire()) {
795 Some(&Some(ref subfirst)) => subfirst,
796 Some(&None) => {
797 subfirst_owned = self.first(&seq_rep.tts);
798 &subfirst_owned
799 }
800 None => {
801 panic!("We missed a sequence during FirstSets construction");
802 }
803 };
804
805 // If the sequence contents can be empty, then the first
806 // token could be the separator token itself.
807 if let (Some(sep), true) = (&seq_rep.separator, subfirst.maybe_empty) {
808 first.add_one_maybe(TtHandle::from_token(sep.clone()));
809 }
810
811 assert!(first.maybe_empty);
812 first.add_all(subfirst);
813 if subfirst.maybe_empty
814 || seq_rep.kleene.op == mbe::KleeneOp::ZeroOrMore
815 || seq_rep.kleene.op == mbe::KleeneOp::ZeroOrOne
816 {
817 // Continue scanning for more first
818 // tokens, but also make sure we
819 // restore empty-tracking state.
820 first.maybe_empty = true;
821 continue;
822 } else {
823 return first;
824 }
825 }
826 }
827 }
828
829 // we only exit the loop if `tts` was empty or if every
830 // element of `tts` matches the empty sequence.
831 assert!(first.maybe_empty);
832 first
833 }
834 }
835
836 // Most `mbe::TokenTree`s are pre-existing in the matcher, but some are defined
837 // implicitly, such as opening/closing delimiters and sequence repetition ops.
838 // This type encapsulates both kinds. It implements `Clone` while avoiding the
839 // need for `mbe::TokenTree` to implement `Clone`.
840 #[derive(Debug)]
841 enum TtHandle<'tt> {
842 /// This is used in most cases.
843 TtRef(&'tt mbe::TokenTree),
844
845 /// This is only used for implicit token trees. The `mbe::TokenTree` *must*
846 /// be `mbe::TokenTree::Token`. No other variants are allowed. We store an
847 /// `mbe::TokenTree` rather than a `Token` so that `get()` can return a
848 /// `&mbe::TokenTree`.
849 Token(mbe::TokenTree),
850 }
851
852 impl<'tt> TtHandle<'tt> {
853 fn from_token(tok: Token) -> Self {
854 TtHandle::Token(mbe::TokenTree::Token(tok))
855 }
856
857 fn from_token_kind(kind: TokenKind, span: Span) -> Self {
858 TtHandle::from_token(Token::new(kind, span))
859 }
860
861 // Get a reference to a token tree.
862 fn get(&'tt self) -> &'tt mbe::TokenTree {
863 match self {
864 TtHandle::TtRef(tt) => tt,
865 TtHandle::Token(token_tt) => &token_tt,
866 }
867 }
868 }
869
870 impl<'tt> PartialEq for TtHandle<'tt> {
871 fn eq(&self, other: &TtHandle<'tt>) -> bool {
872 self.get() == other.get()
873 }
874 }
875
876 impl<'tt> Clone for TtHandle<'tt> {
877 fn clone(&self) -> Self {
878 match self {
879 TtHandle::TtRef(tt) => TtHandle::TtRef(tt),
880
881 // This variant *must* contain a `mbe::TokenTree::Token`, and not
882 // any other variant of `mbe::TokenTree`.
883 TtHandle::Token(mbe::TokenTree::Token(tok)) => {
884 TtHandle::Token(mbe::TokenTree::Token(tok.clone()))
885 }
886
887 _ => unreachable!(),
888 }
889 }
890 }
891
892 // A set of `mbe::TokenTree`s, which may include `TokenTree::Match`s
893 // (for macro-by-example syntactic variables). It also carries the
894 // `maybe_empty` flag; that is true if and only if the matcher can
895 // match an empty token sequence.
896 //
897 // The First set is computed on submatchers like `$($a:expr b),* $(c)* d`,
898 // which has corresponding FIRST = {$a:expr, c, d}.
899 // Likewise, `$($a:expr b),* $(c)+ d` has FIRST = {$a:expr, c}.
900 //
901 // (Notably, we must allow for *-op to occur zero times.)
902 #[derive(Clone, Debug)]
903 struct TokenSet<'tt> {
904 tokens: Vec<TtHandle<'tt>>,
905 maybe_empty: bool,
906 }
907
908 impl<'tt> TokenSet<'tt> {
909 // Returns a set for the empty sequence.
910 fn empty() -> Self {
911 TokenSet { tokens: Vec::new(), maybe_empty: true }
912 }
913
914 // Returns the set `{ tok }` for the single-token (and thus
915 // non-empty) sequence [tok].
916 fn singleton(tt: TtHandle<'tt>) -> Self {
917 TokenSet { tokens: vec![tt], maybe_empty: false }
918 }
919
920 // Changes self to be the set `{ tok }`.
921 // Since `tok` is always present, marks self as non-empty.
922 fn replace_with(&mut self, tt: TtHandle<'tt>) {
923 self.tokens.clear();
924 self.tokens.push(tt);
925 self.maybe_empty = false;
926 }
927
928 // Changes self to be the empty set `{}`; meant for use when
929 // the particular token does not matter, but we want to
930 // record that it occurs.
931 fn replace_with_irrelevant(&mut self) {
932 self.tokens.clear();
933 self.maybe_empty = false;
934 }
935
936 // Adds `tok` to the set for `self`, marking sequence as non-empty.
937 fn add_one(&mut self, tt: TtHandle<'tt>) {
938 if !self.tokens.contains(&tt) {
939 self.tokens.push(tt);
940 }
941 self.maybe_empty = false;
942 }
943
944 // Adds `tok` to the set for `self`. (Leaves `maybe_empty` flag alone.)
945 fn add_one_maybe(&mut self, tt: TtHandle<'tt>) {
946 if !self.tokens.contains(&tt) {
947 self.tokens.push(tt);
948 }
949 }
950
951 // Adds all elements of `other` to this.
952 //
953 // (Since this is a set, we filter out duplicates.)
954 //
955 // If `other` is potentially empty, then preserves the previous
956 // setting of the empty flag of `self`. If `other` is guaranteed
957 // non-empty, then `self` is marked non-empty.
958 fn add_all(&mut self, other: &Self) {
959 for tt in &other.tokens {
960 if !self.tokens.contains(tt) {
961 self.tokens.push(tt.clone());
962 }
963 }
964 if !other.maybe_empty {
965 self.maybe_empty = false;
966 }
967 }
968 }
969
970 // Checks that `matcher` is internally consistent and that it
971 // can legally be followed by a token `N`, for all `N` in `follow`.
972 // (If `follow` is empty, then it imposes no constraint on
973 // the `matcher`.)
974 //
975 // Returns the set of NT tokens that could possibly come last in
976 // `matcher`. (If `matcher` matches the empty sequence, then
977 // `maybe_empty` will be set to true.)
978 //
979 // Requires that `first_sets` is pre-computed for `matcher`;
980 // see `FirstSets::new`.
981 fn check_matcher_core<'tt>(
982 sess: &ParseSess,
983 def: &ast::Item,
984 first_sets: &FirstSets<'tt>,
985 matcher: &'tt [mbe::TokenTree],
986 follow: &TokenSet<'tt>,
987 ) -> TokenSet<'tt> {
988 use mbe::TokenTree;
989
990 let mut last = TokenSet::empty();
991
992 // 2. For each token and suffix [T, SUFFIX] in M:
993 // ensure that T can be followed by SUFFIX, and if SUFFIX may be empty,
994 // then ensure T can also be followed by any element of FOLLOW.
995 'each_token: for i in 0..matcher.len() {
996 let token = &matcher[i];
997 let suffix = &matcher[i + 1..];
998
999 let build_suffix_first = || {
1000 let mut s = first_sets.first(suffix);
1001 if s.maybe_empty {
1002 s.add_all(follow);
1003 }
1004 s
1005 };
1006
1007 // (we build `suffix_first` on demand below; you can tell
1008 // which cases are supposed to fall through by looking for the
1009 // initialization of this variable.)
1010 let suffix_first;
1011
1012 // First, update `last` so that it corresponds to the set
1013 // of NT tokens that might end the sequence `... token`.
1014 match *token {
1015 TokenTree::Token(..)
1016 | TokenTree::MetaVar(..)
1017 | TokenTree::MetaVarDecl(..)
1018 | TokenTree::MetaVarExpr(..) => {
1019 if token_can_be_followed_by_any(token) {
1020 // don't need to track tokens that work with any,
1021 last.replace_with_irrelevant();
1022 // ... and don't need to check tokens that can be
1023 // followed by anything against SUFFIX.
1024 continue 'each_token;
1025 } else {
1026 last.replace_with(TtHandle::TtRef(token));
1027 suffix_first = build_suffix_first();
1028 }
1029 }
1030 TokenTree::Delimited(span, ref d) => {
1031 let my_suffix = TokenSet::singleton(TtHandle::from_token_kind(
1032 token::CloseDelim(d.delim),
1033 span.close,
1034 ));
1035 check_matcher_core(sess, def, first_sets, &d.tts, &my_suffix);
1036 // don't track non NT tokens
1037 last.replace_with_irrelevant();
1038
1039 // also, we don't need to check delimited sequences
1040 // against SUFFIX
1041 continue 'each_token;
1042 }
1043 TokenTree::Sequence(_, ref seq_rep) => {
1044 suffix_first = build_suffix_first();
1045 // The trick here: when we check the interior, we want
1046 // to include the separator (if any) as a potential
1047 // (but not guaranteed) element of FOLLOW. So in that
1048 // case, we make a temp copy of suffix and stuff
1049 // delimiter in there.
1050 //
1051 // FIXME: Should I first scan suffix_first to see if
1052 // delimiter is already in it before I go through the
1053 // work of cloning it? But then again, this way I may
1054 // get a "tighter" span?
1055 let mut new;
1056 let my_suffix = if let Some(sep) = &seq_rep.separator {
1057 new = suffix_first.clone();
1058 new.add_one_maybe(TtHandle::from_token(sep.clone()));
1059 &new
1060 } else {
1061 &suffix_first
1062 };
1063
1064 // At this point, `suffix_first` is built, and
1065 // `my_suffix` is some TokenSet that we can use
1066 // for checking the interior of `seq_rep`.
1067 let next = check_matcher_core(sess, def, first_sets, &seq_rep.tts, my_suffix);
1068 if next.maybe_empty {
1069 last.add_all(&next);
1070 } else {
1071 last = next;
1072 }
1073
1074 // the recursive call to check_matcher_core already ran the 'each_last
1075 // check below, so we can just keep going forward here.
1076 continue 'each_token;
1077 }
1078 }
1079
1080 // (`suffix_first` guaranteed initialized once reaching here.)
1081
1082 // Now `last` holds the complete set of NT tokens that could
1083 // end the sequence before SUFFIX. Check that every one works with `suffix`.
1084 for tt in &last.tokens {
1085 if let &TokenTree::MetaVarDecl(span, name, Some(kind)) = tt.get() {
1086 for next_token in &suffix_first.tokens {
1087 let next_token = next_token.get();
1088
1089 // Check if the old pat is used and the next token is `|`
1090 // to warn about incompatibility with Rust 2021.
1091 // We only emit this lint if we're parsing the original
1092 // definition of this macro_rules, not while (re)parsing
1093 // the macro when compiling another crate that is using the
1094 // macro. (See #86567.)
1095 // Macros defined in the current crate have a real node id,
1096 // whereas macros from an external crate have a dummy id.
1097 if def.id != DUMMY_NODE_ID
1098 && matches!(kind, NonterminalKind::PatParam { inferred: true })
1099 && matches!(next_token, TokenTree::Token(token) if token.kind == BinOp(token::BinOpToken::Or))
1100 {
1101 // It is suggestion to use pat_param, for example: $x:pat -> $x:pat_param.
1102 let suggestion = quoted_tt_to_string(&TokenTree::MetaVarDecl(
1103 span,
1104 name,
1105 Some(NonterminalKind::PatParam { inferred: false }),
1106 ));
1107 sess.buffer_lint_with_diagnostic(
1108 &RUST_2021_INCOMPATIBLE_OR_PATTERNS,
1109 span,
1110 ast::CRATE_NODE_ID,
1111 "the meaning of the `pat` fragment specifier is changing in Rust 2021, which may affect this macro",
1112 BuiltinLintDiagnostics::OrPatternsBackCompat(span, suggestion),
1113 );
1114 }
1115 match is_in_follow(next_token, kind) {
1116 IsInFollow::Yes => {}
1117 IsInFollow::No(possible) => {
1118 let may_be = if last.tokens.len() == 1 && suffix_first.tokens.len() == 1
1119 {
1120 "is"
1121 } else {
1122 "may be"
1123 };
1124
1125 let sp = next_token.span();
1126 let mut err = sess.span_diagnostic.struct_span_err(
1127 sp,
1128 &format!(
1129 "`${name}:{frag}` {may_be} followed by `{next}`, which \
1130 is not allowed for `{frag}` fragments",
1131 name = name,
1132 frag = kind,
1133 next = quoted_tt_to_string(next_token),
1134 may_be = may_be
1135 ),
1136 );
1137 err.span_label(sp, format!("not allowed after `{}` fragments", kind));
1138
1139 if kind == NonterminalKind::PatWithOr
1140 && sess.edition.rust_2021()
1141 && next_token.is_token(&BinOp(token::BinOpToken::Or))
1142 {
1143 let suggestion = quoted_tt_to_string(&TokenTree::MetaVarDecl(
1144 span,
1145 name,
1146 Some(NonterminalKind::PatParam { inferred: false }),
1147 ));
1148 err.span_suggestion(
1149 span,
1150 "try a `pat_param` fragment specifier instead",
1151 suggestion,
1152 Applicability::MaybeIncorrect,
1153 );
1154 }
1155
1156 let msg = "allowed there are: ";
1157 match possible {
1158 &[] => {}
1159 &[t] => {
1160 err.note(&format!(
1161 "only {} is allowed after `{}` fragments",
1162 t, kind,
1163 ));
1164 }
1165 ts => {
1166 err.note(&format!(
1167 "{}{} or {}",
1168 msg,
1169 ts[..ts.len() - 1]
1170 .iter()
1171 .copied()
1172 .collect::<Vec<_>>()
1173 .join(", "),
1174 ts[ts.len() - 1],
1175 ));
1176 }
1177 }
1178 err.emit();
1179 }
1180 }
1181 }
1182 }
1183 }
1184 }
1185 last
1186 }
1187
1188 fn token_can_be_followed_by_any(tok: &mbe::TokenTree) -> bool {
1189 if let mbe::TokenTree::MetaVarDecl(_, _, Some(kind)) = *tok {
1190 frag_can_be_followed_by_any(kind)
1191 } else {
1192 // (Non NT's can always be followed by anything in matchers.)
1193 true
1194 }
1195 }
1196
1197 /// Returns `true` if a fragment of type `frag` can be followed by any sort of
1198 /// token. We use this (among other things) as a useful approximation
1199 /// for when `frag` can be followed by a repetition like `$(...)*` or
1200 /// `$(...)+`. In general, these can be a bit tricky to reason about,
1201 /// so we adopt a conservative position that says that any fragment
1202 /// specifier which consumes at most one token tree can be followed by
1203 /// a fragment specifier (indeed, these fragments can be followed by
1204 /// ANYTHING without fear of future compatibility hazards).
1205 fn frag_can_be_followed_by_any(kind: NonterminalKind) -> bool {
1206 matches!(
1207 kind,
1208 NonterminalKind::Item // always terminated by `}` or `;`
1209 | NonterminalKind::Block // exactly one token tree
1210 | NonterminalKind::Ident // exactly one token tree
1211 | NonterminalKind::Literal // exactly one token tree
1212 | NonterminalKind::Meta // exactly one token tree
1213 | NonterminalKind::Lifetime // exactly one token tree
1214 | NonterminalKind::TT // exactly one token tree
1215 )
1216 }
1217
1218 enum IsInFollow {
1219 Yes,
1220 No(&'static [&'static str]),
1221 }
1222
1223 /// Returns `true` if `frag` can legally be followed by the token `tok`. For
1224 /// fragments that can consume an unbounded number of tokens, `tok`
1225 /// must be within a well-defined follow set. This is intended to
1226 /// guarantee future compatibility: for example, without this rule, if
1227 /// we expanded `expr` to include a new binary operator, we might
1228 /// break macros that were relying on that binary operator as a
1229 /// separator.
1230 // when changing this do not forget to update doc/book/macros.md!
1231 fn is_in_follow(tok: &mbe::TokenTree, kind: NonterminalKind) -> IsInFollow {
1232 use mbe::TokenTree;
1233
1234 if let TokenTree::Token(Token { kind: token::CloseDelim(_), .. }) = *tok {
1235 // closing a token tree can never be matched by any fragment;
1236 // iow, we always require that `(` and `)` match, etc.
1237 IsInFollow::Yes
1238 } else {
1239 match kind {
1240 NonterminalKind::Item => {
1241 // since items *must* be followed by either a `;` or a `}`, we can
1242 // accept anything after them
1243 IsInFollow::Yes
1244 }
1245 NonterminalKind::Block => {
1246 // anything can follow block, the braces provide an easy boundary to
1247 // maintain
1248 IsInFollow::Yes
1249 }
1250 NonterminalKind::Stmt | NonterminalKind::Expr => {
1251 const TOKENS: &[&str] = &["`=>`", "`,`", "`;`"];
1252 match tok {
1253 TokenTree::Token(token) => match token.kind {
1254 FatArrow | Comma | Semi => IsInFollow::Yes,
1255 _ => IsInFollow::No(TOKENS),
1256 },
1257 _ => IsInFollow::No(TOKENS),
1258 }
1259 }
1260 NonterminalKind::PatParam { .. } => {
1261 const TOKENS: &[&str] = &["`=>`", "`,`", "`=`", "`|`", "`if`", "`in`"];
1262 match tok {
1263 TokenTree::Token(token) => match token.kind {
1264 FatArrow | Comma | Eq | BinOp(token::Or) => IsInFollow::Yes,
1265 Ident(name, false) if name == kw::If || name == kw::In => IsInFollow::Yes,
1266 _ => IsInFollow::No(TOKENS),
1267 },
1268 _ => IsInFollow::No(TOKENS),
1269 }
1270 }
1271 NonterminalKind::PatWithOr { .. } => {
1272 const TOKENS: &[&str] = &["`=>`", "`,`", "`=`", "`if`", "`in`"];
1273 match tok {
1274 TokenTree::Token(token) => match token.kind {
1275 FatArrow | Comma | Eq => IsInFollow::Yes,
1276 Ident(name, false) if name == kw::If || name == kw::In => IsInFollow::Yes,
1277 _ => IsInFollow::No(TOKENS),
1278 },
1279 _ => IsInFollow::No(TOKENS),
1280 }
1281 }
1282 NonterminalKind::Path | NonterminalKind::Ty => {
1283 const TOKENS: &[&str] = &[
1284 "`{`", "`[`", "`=>`", "`,`", "`>`", "`=`", "`:`", "`;`", "`|`", "`as`",
1285 "`where`",
1286 ];
1287 match tok {
1288 TokenTree::Token(token) => match token.kind {
1289 OpenDelim(Delimiter::Brace)
1290 | OpenDelim(Delimiter::Bracket)
1291 | Comma
1292 | FatArrow
1293 | Colon
1294 | Eq
1295 | Gt
1296 | BinOp(token::Shr)
1297 | Semi
1298 | BinOp(token::Or) => IsInFollow::Yes,
1299 Ident(name, false) if name == kw::As || name == kw::Where => {
1300 IsInFollow::Yes
1301 }
1302 _ => IsInFollow::No(TOKENS),
1303 },
1304 TokenTree::MetaVarDecl(_, _, Some(NonterminalKind::Block)) => IsInFollow::Yes,
1305 _ => IsInFollow::No(TOKENS),
1306 }
1307 }
1308 NonterminalKind::Ident | NonterminalKind::Lifetime => {
1309 // being a single token, idents and lifetimes are harmless
1310 IsInFollow::Yes
1311 }
1312 NonterminalKind::Literal => {
1313 // literals may be of a single token, or two tokens (negative numbers)
1314 IsInFollow::Yes
1315 }
1316 NonterminalKind::Meta | NonterminalKind::TT => {
1317 // being either a single token or a delimited sequence, tt is
1318 // harmless
1319 IsInFollow::Yes
1320 }
1321 NonterminalKind::Vis => {
1322 // Explicitly disallow `priv`, on the off chance it comes back.
1323 const TOKENS: &[&str] = &["`,`", "an ident", "a type"];
1324 match tok {
1325 TokenTree::Token(token) => match token.kind {
1326 Comma => IsInFollow::Yes,
1327 Ident(name, is_raw) if is_raw || name != kw::Priv => IsInFollow::Yes,
1328 _ => {
1329 if token.can_begin_type() {
1330 IsInFollow::Yes
1331 } else {
1332 IsInFollow::No(TOKENS)
1333 }
1334 }
1335 },
1336 TokenTree::MetaVarDecl(
1337 _,
1338 _,
1339 Some(NonterminalKind::Ident | NonterminalKind::Ty | NonterminalKind::Path),
1340 ) => IsInFollow::Yes,
1341 _ => IsInFollow::No(TOKENS),
1342 }
1343 }
1344 }
1345 }
1346 }
1347
1348 fn quoted_tt_to_string(tt: &mbe::TokenTree) -> String {
1349 match *tt {
1350 mbe::TokenTree::Token(ref token) => pprust::token_to_string(&token).into(),
1351 mbe::TokenTree::MetaVar(_, name) => format!("${}", name),
1352 mbe::TokenTree::MetaVarDecl(_, name, Some(kind)) => format!("${}:{}", name, kind),
1353 mbe::TokenTree::MetaVarDecl(_, name, None) => format!("${}:", name),
1354 _ => panic!(
1355 "{}",
1356 "unexpected mbe::TokenTree::{Sequence or Delimited} \
1357 in follow set checker"
1358 ),
1359 }
1360 }
1361
1362 pub(super) fn parser_from_cx(sess: &ParseSess, tts: TokenStream, recovery: Recovery) -> Parser<'_> {
1363 Parser::new(sess, tts, true, rustc_parse::MACRO_ARGUMENTS).recovery(recovery)
1364 }