]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_graphviz/src/lib.rs
New upstream version 1.63.0+dfsg1
[rustc.git] / compiler / rustc_graphviz / src / lib.rs
1 //! Generate files suitable for use with [Graphviz](https://www.graphviz.org/)
2 //!
3 //! The `render` function generates output (e.g., an `output.dot` file) for
4 //! use with [Graphviz](https://www.graphviz.org/) by walking a labeled
5 //! graph. (Graphviz can then automatically lay out the nodes and edges
6 //! of the graph, and also optionally render the graph as an image or
7 //! other [output formats](https://www.graphviz.org/docs/outputs), such as SVG.)
8 //!
9 //! Rather than impose some particular graph data structure on clients,
10 //! this library exposes two traits that clients can implement on their
11 //! own structs before handing them over to the rendering function.
12 //!
13 //! Note: This library does not yet provide access to the full
14 //! expressiveness of the [DOT language](https://www.graphviz.org/doc/info/lang.html).
15 //! For example, there are many [attributes](https://www.graphviz.org/doc/info/attrs.html)
16 //! related to providing layout hints (e.g., left-to-right versus top-down, which
17 //! algorithm to use, etc). The current intention of this library is to
18 //! emit a human-readable .dot file with very regular structure suitable
19 //! for easy post-processing.
20 //!
21 //! # Examples
22 //!
23 //! The first example uses a very simple graph representation: a list of
24 //! pairs of ints, representing the edges (the node set is implicit).
25 //! Each node label is derived directly from the int representing the node,
26 //! while the edge labels are all empty strings.
27 //!
28 //! This example also illustrates how to use `Cow<[T]>` to return
29 //! an owned vector or a borrowed slice as appropriate: we construct the
30 //! node vector from scratch, but borrow the edge list (rather than
31 //! constructing a copy of all the edges from scratch).
32 //!
33 //! The output from this example renders five nodes, with the first four
34 //! forming a diamond-shaped acyclic graph and then pointing to the fifth
35 //! which is cyclic.
36 //!
37 //! ```rust
38 //! #![feature(rustc_private)]
39 //!
40 //! use std::io::Write;
41 //! use rustc_graphviz as dot;
42 //!
43 //! type Nd = isize;
44 //! type Ed = (isize,isize);
45 //! struct Edges(Vec<Ed>);
46 //!
47 //! pub fn render_to<W: Write>(output: &mut W) {
48 //! let edges = Edges(vec![(0,1), (0,2), (1,3), (2,3), (3,4), (4,4)]);
49 //! dot::render(&edges, output).unwrap()
50 //! }
51 //!
52 //! impl<'a> dot::Labeller<'a> for Edges {
53 //! type Node = Nd;
54 //! type Edge = Ed;
55 //! fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example1").unwrap() }
56 //!
57 //! fn node_id(&'a self, n: &Nd) -> dot::Id<'a> {
58 //! dot::Id::new(format!("N{}", *n)).unwrap()
59 //! }
60 //! }
61 //!
62 //! impl<'a> dot::GraphWalk<'a> for Edges {
63 //! type Node = Nd;
64 //! type Edge = Ed;
65 //! fn nodes(&self) -> dot::Nodes<'a,Nd> {
66 //! // (assumes that |N| \approxeq |E|)
67 //! let &Edges(ref v) = self;
68 //! let mut nodes = Vec::with_capacity(v.len());
69 //! for &(s,t) in v {
70 //! nodes.push(s); nodes.push(t);
71 //! }
72 //! nodes.sort();
73 //! nodes.dedup();
74 //! nodes.into()
75 //! }
76 //!
77 //! fn edges(&'a self) -> dot::Edges<'a,Ed> {
78 //! let &Edges(ref edges) = self;
79 //! (&edges[..]).into()
80 //! }
81 //!
82 //! fn source(&self, e: &Ed) -> Nd { let &(s,_) = e; s }
83 //!
84 //! fn target(&self, e: &Ed) -> Nd { let &(_,t) = e; t }
85 //! }
86 //!
87 //! # pub fn main() { render_to(&mut Vec::new()) }
88 //! ```
89 //!
90 //! ```no_run
91 //! # pub fn render_to<W:std::io::Write>(output: &mut W) { unimplemented!() }
92 //! pub fn main() {
93 //! use std::fs::File;
94 //! let mut f = File::create("example1.dot").unwrap();
95 //! render_to(&mut f)
96 //! }
97 //! ```
98 //!
99 //! Output from first example (in `example1.dot`):
100 //!
101 //! ```dot
102 //! digraph example1 {
103 //! N0[label="N0"];
104 //! N1[label="N1"];
105 //! N2[label="N2"];
106 //! N3[label="N3"];
107 //! N4[label="N4"];
108 //! N0 -> N1[label=""];
109 //! N0 -> N2[label=""];
110 //! N1 -> N3[label=""];
111 //! N2 -> N3[label=""];
112 //! N3 -> N4[label=""];
113 //! N4 -> N4[label=""];
114 //! }
115 //! ```
116 //!
117 //! The second example illustrates using `node_label` and `edge_label` to
118 //! add labels to the nodes and edges in the rendered graph. The graph
119 //! here carries both `nodes` (the label text to use for rendering a
120 //! particular node), and `edges` (again a list of `(source,target)`
121 //! indices).
122 //!
123 //! This example also illustrates how to use a type (in this case the edge
124 //! type) that shares substructure with the graph: the edge type here is a
125 //! direct reference to the `(source,target)` pair stored in the graph's
126 //! internal vector (rather than passing around a copy of the pair
127 //! itself). Note that this implies that `fn edges(&'a self)` must
128 //! construct a fresh `Vec<&'a (usize,usize)>` from the `Vec<(usize,usize)>`
129 //! edges stored in `self`.
130 //!
131 //! Since both the set of nodes and the set of edges are always
132 //! constructed from scratch via iterators, we use the `collect()` method
133 //! from the `Iterator` trait to collect the nodes and edges into freshly
134 //! constructed growable `Vec` values (rather than using `Cow` as in the
135 //! first example above).
136 //!
137 //! The output from this example renders four nodes that make up the
138 //! Hasse-diagram for the subsets of the set `{x, y}`. Each edge is
139 //! labeled with the &sube; character (specified using the HTML character
140 //! entity `&sube`).
141 //!
142 //! ```rust
143 //! #![feature(rustc_private)]
144 //!
145 //! use std::io::Write;
146 //! use rustc_graphviz as dot;
147 //!
148 //! type Nd = usize;
149 //! type Ed<'a> = &'a (usize, usize);
150 //! struct Graph { nodes: Vec<&'static str>, edges: Vec<(usize,usize)> }
151 //!
152 //! pub fn render_to<W: Write>(output: &mut W) {
153 //! let nodes = vec!["{x,y}","{x}","{y}","{}"];
154 //! let edges = vec![(0,1), (0,2), (1,3), (2,3)];
155 //! let graph = Graph { nodes: nodes, edges: edges };
156 //!
157 //! dot::render(&graph, output).unwrap()
158 //! }
159 //!
160 //! impl<'a> dot::Labeller<'a> for Graph {
161 //! type Node = Nd;
162 //! type Edge = Ed<'a>;
163 //! fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example2").unwrap() }
164 //! fn node_id(&'a self, n: &Nd) -> dot::Id<'a> {
165 //! dot::Id::new(format!("N{}", n)).unwrap()
166 //! }
167 //! fn node_label<'b>(&'b self, n: &Nd) -> dot::LabelText<'b> {
168 //! dot::LabelText::LabelStr(self.nodes[*n].into())
169 //! }
170 //! fn edge_label<'b>(&'b self, _: &Ed) -> dot::LabelText<'b> {
171 //! dot::LabelText::LabelStr("&sube;".into())
172 //! }
173 //! }
174 //!
175 //! impl<'a> dot::GraphWalk<'a> for Graph {
176 //! type Node = Nd;
177 //! type Edge = Ed<'a>;
178 //! fn nodes(&self) -> dot::Nodes<'a,Nd> { (0..self.nodes.len()).collect() }
179 //! fn edges(&'a self) -> dot::Edges<'a,Ed<'a>> { self.edges.iter().collect() }
180 //! fn source(&self, e: &Ed) -> Nd { let & &(s,_) = e; s }
181 //! fn target(&self, e: &Ed) -> Nd { let & &(_,t) = e; t }
182 //! }
183 //!
184 //! # pub fn main() { render_to(&mut Vec::new()) }
185 //! ```
186 //!
187 //! ```no_run
188 //! # pub fn render_to<W:std::io::Write>(output: &mut W) { unimplemented!() }
189 //! pub fn main() {
190 //! use std::fs::File;
191 //! let mut f = File::create("example2.dot").unwrap();
192 //! render_to(&mut f)
193 //! }
194 //! ```
195 //!
196 //! The third example is similar to the second, except now each node and
197 //! edge now carries a reference to the string label for each node as well
198 //! as that node's index. (This is another illustration of how to share
199 //! structure with the graph itself, and why one might want to do so.)
200 //!
201 //! The output from this example is the same as the second example: the
202 //! Hasse-diagram for the subsets of the set `{x, y}`.
203 //!
204 //! ```rust
205 //! #![feature(rustc_private)]
206 //!
207 //! use std::io::Write;
208 //! use rustc_graphviz as dot;
209 //!
210 //! type Nd<'a> = (usize, &'a str);
211 //! type Ed<'a> = (Nd<'a>, Nd<'a>);
212 //! struct Graph { nodes: Vec<&'static str>, edges: Vec<(usize,usize)> }
213 //!
214 //! pub fn render_to<W: Write>(output: &mut W) {
215 //! let nodes = vec!["{x,y}","{x}","{y}","{}"];
216 //! let edges = vec![(0,1), (0,2), (1,3), (2,3)];
217 //! let graph = Graph { nodes: nodes, edges: edges };
218 //!
219 //! dot::render(&graph, output).unwrap()
220 //! }
221 //!
222 //! impl<'a> dot::Labeller<'a> for Graph {
223 //! type Node = Nd<'a>;
224 //! type Edge = Ed<'a>;
225 //! fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example3").unwrap() }
226 //! fn node_id(&'a self, n: &Nd<'a>) -> dot::Id<'a> {
227 //! dot::Id::new(format!("N{}", n.0)).unwrap()
228 //! }
229 //! fn node_label<'b>(&'b self, n: &Nd<'b>) -> dot::LabelText<'b> {
230 //! let &(i, _) = n;
231 //! dot::LabelText::LabelStr(self.nodes[i].into())
232 //! }
233 //! fn edge_label<'b>(&'b self, _: &Ed<'b>) -> dot::LabelText<'b> {
234 //! dot::LabelText::LabelStr("&sube;".into())
235 //! }
236 //! }
237 //!
238 //! impl<'a> dot::GraphWalk<'a> for Graph {
239 //! type Node = Nd<'a>;
240 //! type Edge = Ed<'a>;
241 //! fn nodes(&'a self) -> dot::Nodes<'a,Nd<'a>> {
242 //! self.nodes.iter().map(|s| &s[..]).enumerate().collect()
243 //! }
244 //! fn edges(&'a self) -> dot::Edges<'a,Ed<'a>> {
245 //! self.edges.iter()
246 //! .map(|&(i,j)|((i, &self.nodes[i][..]),
247 //! (j, &self.nodes[j][..])))
248 //! .collect()
249 //! }
250 //! fn source(&self, e: &Ed<'a>) -> Nd<'a> { let &(s,_) = e; s }
251 //! fn target(&self, e: &Ed<'a>) -> Nd<'a> { let &(_,t) = e; t }
252 //! }
253 //!
254 //! # pub fn main() { render_to(&mut Vec::new()) }
255 //! ```
256 //!
257 //! ```no_run
258 //! # pub fn render_to<W:std::io::Write>(output: &mut W) { unimplemented!() }
259 //! pub fn main() {
260 //! use std::fs::File;
261 //! let mut f = File::create("example3.dot").unwrap();
262 //! render_to(&mut f)
263 //! }
264 //! ```
265 //!
266 //! # References
267 //!
268 //! * [Graphviz](https://www.graphviz.org/)
269 //!
270 //! * [DOT language](https://www.graphviz.org/doc/info/lang.html)
271
272 #![doc(
273 html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/",
274 test(attr(allow(unused_variables), deny(warnings)))
275 )]
276
277 use LabelText::*;
278
279 use std::borrow::Cow;
280 use std::io;
281 use std::io::prelude::*;
282
283 /// The text for a graphviz label on a node or edge.
284 pub enum LabelText<'a> {
285 /// This kind of label preserves the text directly as is.
286 ///
287 /// Occurrences of backslashes (`\`) are escaped, and thus appear
288 /// as backslashes in the rendered label.
289 LabelStr(Cow<'a, str>),
290
291 /// This kind of label uses the graphviz label escString type:
292 /// <https://www.graphviz.org/docs/attr-types/escString>
293 ///
294 /// Occurrences of backslashes (`\`) are not escaped; instead they
295 /// are interpreted as initiating an escString escape sequence.
296 ///
297 /// Escape sequences of particular interest: in addition to `\n`
298 /// to break a line (centering the line preceding the `\n`), there
299 /// are also the escape sequences `\l` which left-justifies the
300 /// preceding line and `\r` which right-justifies it.
301 EscStr(Cow<'a, str>),
302
303 /// This uses a graphviz [HTML string label][html]. The string is
304 /// printed exactly as given, but between `<` and `>`. **No
305 /// escaping is performed.**
306 ///
307 /// [html]: https://www.graphviz.org/doc/info/shapes.html#html
308 HtmlStr(Cow<'a, str>),
309 }
310
311 /// The style for a node or edge.
312 /// See <https://www.graphviz.org/docs/attr-types/style/> for descriptions.
313 /// Note that some of these are not valid for edges.
314 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
315 pub enum Style {
316 None,
317 Solid,
318 Dashed,
319 Dotted,
320 Bold,
321 Rounded,
322 Diagonals,
323 Filled,
324 Striped,
325 Wedged,
326 }
327
328 impl Style {
329 pub fn as_slice(self) -> &'static str {
330 match self {
331 Style::None => "",
332 Style::Solid => "solid",
333 Style::Dashed => "dashed",
334 Style::Dotted => "dotted",
335 Style::Bold => "bold",
336 Style::Rounded => "rounded",
337 Style::Diagonals => "diagonals",
338 Style::Filled => "filled",
339 Style::Striped => "striped",
340 Style::Wedged => "wedged",
341 }
342 }
343 }
344
345 // There is a tension in the design of the labelling API.
346 //
347 // For example, I considered making a `Labeller<T>` trait that
348 // provides labels for `T`, and then making the graph type `G`
349 // implement `Labeller<Node>` and `Labeller<Edge>`. However, this is
350 // not possible without functional dependencies. (One could work
351 // around that, but I did not explore that avenue heavily.)
352 //
353 // Another approach that I actually used for a while was to make a
354 // `Label<Context>` trait that is implemented by the client-specific
355 // Node and Edge types (as well as an implementation on Graph itself
356 // for the overall name for the graph). The main disadvantage of this
357 // second approach (compared to having the `G` type parameter
358 // implement a Labelling service) that I have encountered is that it
359 // makes it impossible to use types outside of the current crate
360 // directly as Nodes/Edges; you need to wrap them in newtype'd
361 // structs. See e.g., the `No` and `Ed` structs in the examples. (In
362 // practice clients using a graph in some other crate would need to
363 // provide some sort of adapter shim over the graph anyway to
364 // interface with this library).
365 //
366 // Another approach would be to make a single `Labeller<N,E>` trait
367 // that provides three methods (graph_label, node_label, edge_label),
368 // and then make `G` implement `Labeller<N,E>`. At first this did not
369 // appeal to me, since I had thought I would need separate methods on
370 // each data variant for dot-internal identifiers versus user-visible
371 // labels. However, the identifier/label distinction only arises for
372 // nodes; graphs themselves only have identifiers, and edges only have
373 // labels.
374 //
375 // So in the end I decided to use the third approach described above.
376
377 /// `Id` is a Graphviz `ID`.
378 pub struct Id<'a> {
379 name: Cow<'a, str>,
380 }
381
382 impl<'a> Id<'a> {
383 /// Creates an `Id` named `name`.
384 ///
385 /// The caller must ensure that the input conforms to an
386 /// identifier format: it must be a non-empty string made up of
387 /// alphanumeric or underscore characters, not beginning with a
388 /// digit (i.e., the regular expression `[a-zA-Z_][a-zA-Z_0-9]*`).
389 ///
390 /// (Note: this format is a strict subset of the `ID` format
391 /// defined by the DOT language. This function may change in the
392 /// future to accept a broader subset, or the entirety, of DOT's
393 /// `ID` format.)
394 ///
395 /// Passing an invalid string (containing spaces, brackets,
396 /// quotes, ...) will return an empty `Err` value.
397 pub fn new<Name: Into<Cow<'a, str>>>(name: Name) -> Result<Id<'a>, ()> {
398 let name = name.into();
399 match name.chars().next() {
400 Some(c) if c.is_ascii_alphabetic() || c == '_' => {}
401 _ => return Err(()),
402 }
403 if !name.chars().all(|c| c.is_ascii_alphanumeric() || c == '_') {
404 return Err(());
405 }
406
407 Ok(Id { name })
408 }
409
410 pub fn as_slice(&'a self) -> &'a str {
411 &*self.name
412 }
413 }
414
415 /// Each instance of a type that implements `Label<C>` maps to a
416 /// unique identifier with respect to `C`, which is used to identify
417 /// it in the generated .dot file. They can also provide more
418 /// elaborate (and non-unique) label text that is used in the graphviz
419 /// rendered output.
420
421 /// The graph instance is responsible for providing the DOT compatible
422 /// identifiers for the nodes and (optionally) rendered labels for the nodes and
423 /// edges, as well as an identifier for the graph itself.
424 pub trait Labeller<'a> {
425 type Node;
426 type Edge;
427
428 /// Must return a DOT compatible identifier naming the graph.
429 fn graph_id(&'a self) -> Id<'a>;
430
431 /// Maps `n` to a unique identifier with respect to `self`. The
432 /// implementor is responsible for ensuring that the returned name
433 /// is a valid DOT identifier.
434 fn node_id(&'a self, n: &Self::Node) -> Id<'a>;
435
436 /// Maps `n` to one of the [graphviz `shape` names][1]. If `None`
437 /// is returned, no `shape` attribute is specified.
438 ///
439 /// [1]: https://www.graphviz.org/doc/info/shapes.html
440 fn node_shape(&'a self, _node: &Self::Node) -> Option<LabelText<'a>> {
441 None
442 }
443
444 /// Maps `n` to a label that will be used in the rendered output.
445 /// The label need not be unique, and may be the empty string; the
446 /// default is just the output from `node_id`.
447 fn node_label(&'a self, n: &Self::Node) -> LabelText<'a> {
448 LabelStr(self.node_id(n).name)
449 }
450
451 /// Maps `e` to a label that will be used in the rendered output.
452 /// The label need not be unique, and may be the empty string; the
453 /// default is in fact the empty string.
454 fn edge_label(&'a self, _e: &Self::Edge) -> LabelText<'a> {
455 LabelStr("".into())
456 }
457
458 /// Maps `n` to a style that will be used in the rendered output.
459 fn node_style(&'a self, _n: &Self::Node) -> Style {
460 Style::None
461 }
462
463 /// Maps `e` to a style that will be used in the rendered output.
464 fn edge_style(&'a self, _e: &Self::Edge) -> Style {
465 Style::None
466 }
467 }
468
469 /// Escape tags in such a way that it is suitable for inclusion in a
470 /// Graphviz HTML label.
471 pub fn escape_html(s: &str) -> String {
472 s.replace('&', "&amp;").replace('\"', "&quot;").replace('<', "&lt;").replace('>', "&gt;")
473 }
474
475 impl<'a> LabelText<'a> {
476 pub fn label<S: Into<Cow<'a, str>>>(s: S) -> LabelText<'a> {
477 LabelStr(s.into())
478 }
479
480 pub fn html<S: Into<Cow<'a, str>>>(s: S) -> LabelText<'a> {
481 HtmlStr(s.into())
482 }
483
484 fn escape_char<F>(c: char, mut f: F)
485 where
486 F: FnMut(char),
487 {
488 match c {
489 // not escaping \\, since Graphviz escString needs to
490 // interpret backslashes; see EscStr above.
491 '\\' => f(c),
492 _ => {
493 for c in c.escape_default() {
494 f(c)
495 }
496 }
497 }
498 }
499 fn escape_str(s: &str) -> String {
500 let mut out = String::with_capacity(s.len());
501 for c in s.chars() {
502 LabelText::escape_char(c, |c| out.push(c));
503 }
504 out
505 }
506
507 /// Renders text as string suitable for a label in a .dot file.
508 /// This includes quotes or suitable delimiters.
509 pub fn to_dot_string(&self) -> String {
510 match *self {
511 LabelStr(ref s) => format!("\"{}\"", s.escape_default()),
512 EscStr(ref s) => format!("\"{}\"", LabelText::escape_str(&s)),
513 HtmlStr(ref s) => format!("<{}>", s),
514 }
515 }
516
517 /// Decomposes content into string suitable for making EscStr that
518 /// yields same content as self. The result obeys the law
519 /// render(`lt`) == render(`EscStr(lt.pre_escaped_content())`) for
520 /// all `lt: LabelText`.
521 fn pre_escaped_content(self) -> Cow<'a, str> {
522 match self {
523 EscStr(s) => s,
524 LabelStr(s) => {
525 if s.contains('\\') {
526 (&*s).escape_default().to_string().into()
527 } else {
528 s
529 }
530 }
531 HtmlStr(s) => s,
532 }
533 }
534
535 /// Puts `suffix` on a line below this label, with a blank line separator.
536 pub fn suffix_line(self, suffix: LabelText<'_>) -> LabelText<'static> {
537 let mut prefix = self.pre_escaped_content().into_owned();
538 let suffix = suffix.pre_escaped_content();
539 prefix.push_str(r"\n\n");
540 prefix.push_str(&suffix);
541 EscStr(prefix.into())
542 }
543 }
544
545 pub type Nodes<'a, N> = Cow<'a, [N]>;
546 pub type Edges<'a, E> = Cow<'a, [E]>;
547
548 // (The type parameters in GraphWalk should be associated items,
549 // when/if Rust supports such.)
550
551 /// GraphWalk is an abstraction over a directed graph = (nodes,edges)
552 /// made up of node handles `N` and edge handles `E`, where each `E`
553 /// can be mapped to its source and target nodes.
554 ///
555 /// The lifetime parameter `'a` is exposed in this trait (rather than
556 /// introduced as a generic parameter on each method declaration) so
557 /// that a client impl can choose `N` and `E` that have substructure
558 /// that is bound by the self lifetime `'a`.
559 ///
560 /// The `nodes` and `edges` method each return instantiations of
561 /// `Cow<[T]>` to leave implementors the freedom to create
562 /// entirely new vectors or to pass back slices into internally owned
563 /// vectors.
564 pub trait GraphWalk<'a> {
565 type Node: Clone;
566 type Edge: Clone;
567
568 /// Returns all the nodes in this graph.
569 fn nodes(&'a self) -> Nodes<'a, Self::Node>;
570 /// Returns all of the edges in this graph.
571 fn edges(&'a self) -> Edges<'a, Self::Edge>;
572 /// The source node for `edge`.
573 fn source(&'a self, edge: &Self::Edge) -> Self::Node;
574 /// The target node for `edge`.
575 fn target(&'a self, edge: &Self::Edge) -> Self::Node;
576 }
577
578 #[derive(Clone, PartialEq, Eq, Debug)]
579 pub enum RenderOption {
580 NoEdgeLabels,
581 NoNodeLabels,
582 NoEdgeStyles,
583 NoNodeStyles,
584
585 Fontname(String),
586 DarkTheme,
587 }
588
589 /// Renders directed graph `g` into the writer `w` in DOT syntax.
590 /// (Simple wrapper around `render_opts` that passes a default set of options.)
591 pub fn render<'a, N, E, G, W>(g: &'a G, w: &mut W) -> io::Result<()>
592 where
593 N: Clone + 'a,
594 E: Clone + 'a,
595 G: Labeller<'a, Node = N, Edge = E> + GraphWalk<'a, Node = N, Edge = E>,
596 W: Write,
597 {
598 render_opts(g, w, &[])
599 }
600
601 /// Renders directed graph `g` into the writer `w` in DOT syntax.
602 /// (Main entry point for the library.)
603 pub fn render_opts<'a, N, E, G, W>(g: &'a G, w: &mut W, options: &[RenderOption]) -> io::Result<()>
604 where
605 N: Clone + 'a,
606 E: Clone + 'a,
607 G: Labeller<'a, Node = N, Edge = E> + GraphWalk<'a, Node = N, Edge = E>,
608 W: Write,
609 {
610 writeln!(w, "digraph {} {{", g.graph_id().as_slice())?;
611
612 // Global graph properties
613 let mut graph_attrs = Vec::new();
614 let mut content_attrs = Vec::new();
615 let font;
616 if let Some(fontname) = options.iter().find_map(|option| {
617 if let RenderOption::Fontname(fontname) = option { Some(fontname) } else { None }
618 }) {
619 font = format!(r#"fontname="{}""#, fontname);
620 graph_attrs.push(&font[..]);
621 content_attrs.push(&font[..]);
622 }
623 if options.contains(&RenderOption::DarkTheme) {
624 graph_attrs.push(r#"bgcolor="black""#);
625 graph_attrs.push(r#"fontcolor="white""#);
626 content_attrs.push(r#"color="white""#);
627 content_attrs.push(r#"fontcolor="white""#);
628 }
629 if !(graph_attrs.is_empty() && content_attrs.is_empty()) {
630 writeln!(w, r#" graph[{}];"#, graph_attrs.join(" "))?;
631 let content_attrs_str = content_attrs.join(" ");
632 writeln!(w, r#" node[{}];"#, content_attrs_str)?;
633 writeln!(w, r#" edge[{}];"#, content_attrs_str)?;
634 }
635
636 let mut text = Vec::new();
637 for n in g.nodes().iter() {
638 write!(w, " ")?;
639 let id = g.node_id(n);
640
641 let escaped = &g.node_label(n).to_dot_string();
642
643 write!(text, "{}", id.as_slice()).unwrap();
644
645 if !options.contains(&RenderOption::NoNodeLabels) {
646 write!(text, "[label={}]", escaped).unwrap();
647 }
648
649 let style = g.node_style(n);
650 if !options.contains(&RenderOption::NoNodeStyles) && style != Style::None {
651 write!(text, "[style=\"{}\"]", style.as_slice()).unwrap();
652 }
653
654 if let Some(s) = g.node_shape(n) {
655 write!(text, "[shape={}]", &s.to_dot_string()).unwrap();
656 }
657
658 writeln!(text, ";").unwrap();
659 w.write_all(&text)?;
660
661 text.clear();
662 }
663
664 for e in g.edges().iter() {
665 let escaped_label = &g.edge_label(e).to_dot_string();
666 write!(w, " ")?;
667 let source = g.source(e);
668 let target = g.target(e);
669 let source_id = g.node_id(&source);
670 let target_id = g.node_id(&target);
671
672 write!(text, "{} -> {}", source_id.as_slice(), target_id.as_slice()).unwrap();
673
674 if !options.contains(&RenderOption::NoEdgeLabels) {
675 write!(text, "[label={}]", escaped_label).unwrap();
676 }
677
678 let style = g.edge_style(e);
679 if !options.contains(&RenderOption::NoEdgeStyles) && style != Style::None {
680 write!(text, "[style=\"{}\"]", style.as_slice()).unwrap();
681 }
682
683 writeln!(text, ";").unwrap();
684 w.write_all(&text)?;
685
686 text.clear();
687 }
688
689 writeln!(w, "}}")
690 }
691
692 #[cfg(test)]
693 mod tests;