]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_index/src/bit_set.rs
aeb3f9970ab9e6a0cda3cb926d1dc54117c30818
[rustc.git] / compiler / rustc_index / src / bit_set.rs
1 use crate::vec::{Idx, IndexVec};
2 use arrayvec::ArrayVec;
3 use std::fmt;
4 use std::iter;
5 use std::marker::PhantomData;
6 use std::mem;
7 use std::ops::{BitAnd, BitAndAssign, BitOrAssign, Not, Range, Shl};
8 use std::slice;
9
10 use rustc_macros::{Decodable, Encodable};
11
12 #[cfg(test)]
13 mod tests;
14
15 pub type Word = u64;
16 pub const WORD_BYTES: usize = mem::size_of::<Word>();
17 pub const WORD_BITS: usize = WORD_BYTES * 8;
18
19 pub trait BitRelations<Rhs> {
20 fn union(&mut self, other: &Rhs) -> bool;
21 fn subtract(&mut self, other: &Rhs) -> bool;
22 fn intersect(&mut self, other: &Rhs) -> bool;
23 }
24
25 macro_rules! bit_relations_inherent_impls {
26 () => {
27 /// Sets `self = self | other` and returns `true` if `self` changed
28 /// (i.e., if new bits were added).
29 pub fn union<Rhs>(&mut self, other: &Rhs) -> bool
30 where
31 Self: BitRelations<Rhs>,
32 {
33 <Self as BitRelations<Rhs>>::union(self, other)
34 }
35
36 /// Sets `self = self - other` and returns `true` if `self` changed.
37 /// (i.e., if any bits were removed).
38 pub fn subtract<Rhs>(&mut self, other: &Rhs) -> bool
39 where
40 Self: BitRelations<Rhs>,
41 {
42 <Self as BitRelations<Rhs>>::subtract(self, other)
43 }
44
45 /// Sets `self = self & other` and return `true` if `self` changed.
46 /// (i.e., if any bits were removed).
47 pub fn intersect<Rhs>(&mut self, other: &Rhs) -> bool
48 where
49 Self: BitRelations<Rhs>,
50 {
51 <Self as BitRelations<Rhs>>::intersect(self, other)
52 }
53 };
54 }
55
56 /// A fixed-size bitset type with a dense representation.
57 ///
58 /// NOTE: Use [`GrowableBitSet`] if you need support for resizing after creation.
59 ///
60 /// `T` is an index type, typically a newtyped `usize` wrapper, but it can also
61 /// just be `usize`.
62 ///
63 /// All operations that involve an element will panic if the element is equal
64 /// to or greater than the domain size. All operations that involve two bitsets
65 /// will panic if the bitsets have differing domain sizes.
66 ///
67 #[derive(Eq, PartialEq, Decodable, Encodable)]
68 pub struct BitSet<T> {
69 domain_size: usize,
70 words: Vec<Word>,
71 marker: PhantomData<T>,
72 }
73
74 impl<T> BitSet<T> {
75 /// Gets the domain size.
76 pub fn domain_size(&self) -> usize {
77 self.domain_size
78 }
79 }
80
81 impl<T: Idx> BitSet<T> {
82 /// Creates a new, empty bitset with a given `domain_size`.
83 #[inline]
84 pub fn new_empty(domain_size: usize) -> BitSet<T> {
85 let num_words = num_words(domain_size);
86 BitSet { domain_size, words: vec![0; num_words], marker: PhantomData }
87 }
88
89 /// Creates a new, filled bitset with a given `domain_size`.
90 #[inline]
91 pub fn new_filled(domain_size: usize) -> BitSet<T> {
92 let num_words = num_words(domain_size);
93 let mut result = BitSet { domain_size, words: vec![!0; num_words], marker: PhantomData };
94 result.clear_excess_bits();
95 result
96 }
97
98 /// Clear all elements.
99 #[inline]
100 pub fn clear(&mut self) {
101 for word in &mut self.words {
102 *word = 0;
103 }
104 }
105
106 /// Clear excess bits in the final word.
107 fn clear_excess_bits(&mut self) {
108 let num_bits_in_final_word = self.domain_size % WORD_BITS;
109 if num_bits_in_final_word > 0 {
110 let mask = (1 << num_bits_in_final_word) - 1;
111 let final_word_idx = self.words.len() - 1;
112 self.words[final_word_idx] &= mask;
113 }
114 }
115
116 /// Count the number of set bits in the set.
117 pub fn count(&self) -> usize {
118 self.words.iter().map(|e| e.count_ones() as usize).sum()
119 }
120
121 /// Returns `true` if `self` contains `elem`.
122 #[inline]
123 pub fn contains(&self, elem: T) -> bool {
124 assert!(elem.index() < self.domain_size);
125 let (word_index, mask) = word_index_and_mask(elem);
126 (self.words[word_index] & mask) != 0
127 }
128
129 /// Is `self` is a (non-strict) superset of `other`?
130 #[inline]
131 pub fn superset(&self, other: &BitSet<T>) -> bool {
132 assert_eq!(self.domain_size, other.domain_size);
133 self.words.iter().zip(&other.words).all(|(a, b)| (a & b) == *b)
134 }
135
136 /// Is the set empty?
137 #[inline]
138 pub fn is_empty(&self) -> bool {
139 self.words.iter().all(|a| *a == 0)
140 }
141
142 /// Insert `elem`. Returns whether the set has changed.
143 #[inline]
144 pub fn insert(&mut self, elem: T) -> bool {
145 assert!(elem.index() < self.domain_size);
146 let (word_index, mask) = word_index_and_mask(elem);
147 let word_ref = &mut self.words[word_index];
148 let word = *word_ref;
149 let new_word = word | mask;
150 *word_ref = new_word;
151 new_word != word
152 }
153
154 /// Sets all bits to true.
155 pub fn insert_all(&mut self) {
156 for word in &mut self.words {
157 *word = !0;
158 }
159 self.clear_excess_bits();
160 }
161
162 /// Returns `true` if the set has changed.
163 #[inline]
164 pub fn remove(&mut self, elem: T) -> bool {
165 assert!(elem.index() < self.domain_size);
166 let (word_index, mask) = word_index_and_mask(elem);
167 let word_ref = &mut self.words[word_index];
168 let word = *word_ref;
169 let new_word = word & !mask;
170 *word_ref = new_word;
171 new_word != word
172 }
173
174 /// Gets a slice of the underlying words.
175 pub fn words(&self) -> &[Word] {
176 &self.words
177 }
178
179 /// Iterates over the indices of set bits in a sorted order.
180 #[inline]
181 pub fn iter(&self) -> BitIter<'_, T> {
182 BitIter::new(&self.words)
183 }
184
185 /// Duplicates the set as a hybrid set.
186 pub fn to_hybrid(&self) -> HybridBitSet<T> {
187 // Note: we currently don't bother trying to make a Sparse set.
188 HybridBitSet::Dense(self.to_owned())
189 }
190
191 /// Set `self = self | other`. In contrast to `union` returns `true` if the set contains at
192 /// least one bit that is not in `other` (i.e. `other` is not a superset of `self`).
193 ///
194 /// This is an optimization for union of a hybrid bitset.
195 fn reverse_union_sparse(&mut self, sparse: &SparseBitSet<T>) -> bool {
196 assert!(sparse.domain_size == self.domain_size);
197 self.clear_excess_bits();
198
199 let mut not_already = false;
200 // Index of the current word not yet merged.
201 let mut current_index = 0;
202 // Mask of bits that came from the sparse set in the current word.
203 let mut new_bit_mask = 0;
204 for (word_index, mask) in sparse.iter().map(|x| word_index_and_mask(*x)) {
205 // Next bit is in a word not inspected yet.
206 if word_index > current_index {
207 self.words[current_index] |= new_bit_mask;
208 // Were there any bits in the old word that did not occur in the sparse set?
209 not_already |= (self.words[current_index] ^ new_bit_mask) != 0;
210 // Check all words we skipped for any set bit.
211 not_already |= self.words[current_index + 1..word_index].iter().any(|&x| x != 0);
212 // Update next word.
213 current_index = word_index;
214 // Reset bit mask, no bits have been merged yet.
215 new_bit_mask = 0;
216 }
217 // Add bit and mark it as coming from the sparse set.
218 // self.words[word_index] |= mask;
219 new_bit_mask |= mask;
220 }
221 self.words[current_index] |= new_bit_mask;
222 // Any bits in the last inspected word that were not in the sparse set?
223 not_already |= (self.words[current_index] ^ new_bit_mask) != 0;
224 // Any bits in the tail? Note `clear_excess_bits` before.
225 not_already |= self.words[current_index + 1..].iter().any(|&x| x != 0);
226
227 not_already
228 }
229
230 bit_relations_inherent_impls! {}
231 }
232
233 // dense REL dense
234 impl<T: Idx> BitRelations<BitSet<T>> for BitSet<T> {
235 fn union(&mut self, other: &BitSet<T>) -> bool {
236 assert_eq!(self.domain_size, other.domain_size);
237 bitwise(&mut self.words, &other.words, |a, b| a | b)
238 }
239
240 fn subtract(&mut self, other: &BitSet<T>) -> bool {
241 assert_eq!(self.domain_size, other.domain_size);
242 bitwise(&mut self.words, &other.words, |a, b| a & !b)
243 }
244
245 fn intersect(&mut self, other: &BitSet<T>) -> bool {
246 assert_eq!(self.domain_size, other.domain_size);
247 bitwise(&mut self.words, &other.words, |a, b| a & b)
248 }
249 }
250
251 // Applies a function to mutate a bitset, and returns true if any
252 // of the applications return true
253 fn sequential_update<T: Idx>(
254 mut self_update: impl FnMut(T) -> bool,
255 it: impl Iterator<Item = T>,
256 ) -> bool {
257 let mut changed = false;
258 for elem in it {
259 changed |= self_update(elem);
260 }
261 changed
262 }
263
264 // Optimization of intersection for SparseBitSet that's generic
265 // over the RHS
266 fn sparse_intersect<T: Idx>(
267 set: &mut SparseBitSet<T>,
268 other_contains: impl Fn(&T) -> bool,
269 ) -> bool {
270 let size = set.elems.len();
271 set.elems.retain(|elem| other_contains(elem));
272 set.elems.len() != size
273 }
274
275 // Optimization of dense/sparse intersection. The resulting set is
276 // guaranteed to be at most the size of the sparse set, and hence can be
277 // represented as a sparse set. Therefore the sparse set is copied and filtered,
278 // then returned as the new set.
279 fn dense_sparse_intersect<T: Idx>(
280 dense: &BitSet<T>,
281 sparse: &SparseBitSet<T>,
282 ) -> (SparseBitSet<T>, bool) {
283 let mut sparse_copy = sparse.clone();
284 sparse_intersect(&mut sparse_copy, |el| dense.contains(*el));
285 let n = sparse_copy.len();
286 (sparse_copy, n != dense.count())
287 }
288
289 // hybrid REL dense
290 impl<T: Idx> BitRelations<BitSet<T>> for HybridBitSet<T> {
291 fn union(&mut self, other: &BitSet<T>) -> bool {
292 assert_eq!(self.domain_size(), other.domain_size);
293 match self {
294 HybridBitSet::Sparse(sparse) => {
295 // `self` is sparse and `other` is dense. To
296 // merge them, we have two available strategies:
297 // * Densify `self` then merge other
298 // * Clone other then integrate bits from `self`
299 // The second strategy requires dedicated method
300 // since the usual `union` returns the wrong
301 // result. In the dedicated case the computation
302 // is slightly faster if the bits of the sparse
303 // bitset map to only few words of the dense
304 // representation, i.e. indices are near each
305 // other.
306 //
307 // Benchmarking seems to suggest that the second
308 // option is worth it.
309 let mut new_dense = other.clone();
310 let changed = new_dense.reverse_union_sparse(sparse);
311 *self = HybridBitSet::Dense(new_dense);
312 changed
313 }
314
315 HybridBitSet::Dense(dense) => dense.union(other),
316 }
317 }
318
319 fn subtract(&mut self, other: &BitSet<T>) -> bool {
320 assert_eq!(self.domain_size(), other.domain_size);
321 match self {
322 HybridBitSet::Sparse(sparse) => {
323 sequential_update(|elem| sparse.remove(elem), other.iter())
324 }
325 HybridBitSet::Dense(dense) => dense.subtract(other),
326 }
327 }
328
329 fn intersect(&mut self, other: &BitSet<T>) -> bool {
330 assert_eq!(self.domain_size(), other.domain_size);
331 match self {
332 HybridBitSet::Sparse(sparse) => sparse_intersect(sparse, |elem| other.contains(*elem)),
333 HybridBitSet::Dense(dense) => dense.intersect(other),
334 }
335 }
336 }
337
338 // dense REL hybrid
339 impl<T: Idx> BitRelations<HybridBitSet<T>> for BitSet<T> {
340 fn union(&mut self, other: &HybridBitSet<T>) -> bool {
341 assert_eq!(self.domain_size, other.domain_size());
342 match other {
343 HybridBitSet::Sparse(sparse) => {
344 sequential_update(|elem| self.insert(elem), sparse.iter().cloned())
345 }
346 HybridBitSet::Dense(dense) => self.union(dense),
347 }
348 }
349
350 fn subtract(&mut self, other: &HybridBitSet<T>) -> bool {
351 assert_eq!(self.domain_size, other.domain_size());
352 match other {
353 HybridBitSet::Sparse(sparse) => {
354 sequential_update(|elem| self.remove(elem), sparse.iter().cloned())
355 }
356 HybridBitSet::Dense(dense) => self.subtract(dense),
357 }
358 }
359
360 fn intersect(&mut self, other: &HybridBitSet<T>) -> bool {
361 assert_eq!(self.domain_size, other.domain_size());
362 match other {
363 HybridBitSet::Sparse(sparse) => {
364 let (updated, changed) = dense_sparse_intersect(self, sparse);
365
366 // We can't directly assign the SparseBitSet to the BitSet, and
367 // doing `*self = updated.to_dense()` would cause a drop / reallocation. Instead,
368 // the BitSet is cleared and `updated` is copied into `self`.
369 self.clear();
370 for elem in updated.iter() {
371 self.insert(*elem);
372 }
373 changed
374 }
375 HybridBitSet::Dense(dense) => self.intersect(dense),
376 }
377 }
378 }
379
380 // hybrid REL hybrid
381 impl<T: Idx> BitRelations<HybridBitSet<T>> for HybridBitSet<T> {
382 fn union(&mut self, other: &HybridBitSet<T>) -> bool {
383 assert_eq!(self.domain_size(), other.domain_size());
384 match self {
385 HybridBitSet::Sparse(_) => {
386 match other {
387 HybridBitSet::Sparse(other_sparse) => {
388 // Both sets are sparse. Add the elements in
389 // `other_sparse` to `self` one at a time. This
390 // may or may not cause `self` to be densified.
391 let mut changed = false;
392 for elem in other_sparse.iter() {
393 changed |= self.insert(*elem);
394 }
395 changed
396 }
397
398 HybridBitSet::Dense(other_dense) => self.union(other_dense),
399 }
400 }
401
402 HybridBitSet::Dense(self_dense) => self_dense.union(other),
403 }
404 }
405
406 fn subtract(&mut self, other: &HybridBitSet<T>) -> bool {
407 assert_eq!(self.domain_size(), other.domain_size());
408 match self {
409 HybridBitSet::Sparse(self_sparse) => {
410 sequential_update(|elem| self_sparse.remove(elem), other.iter())
411 }
412 HybridBitSet::Dense(self_dense) => self_dense.subtract(other),
413 }
414 }
415
416 fn intersect(&mut self, other: &HybridBitSet<T>) -> bool {
417 assert_eq!(self.domain_size(), other.domain_size());
418 match self {
419 HybridBitSet::Sparse(self_sparse) => {
420 sparse_intersect(self_sparse, |elem| other.contains(*elem))
421 }
422 HybridBitSet::Dense(self_dense) => match other {
423 HybridBitSet::Sparse(other_sparse) => {
424 let (updated, changed) = dense_sparse_intersect(self_dense, other_sparse);
425 *self = HybridBitSet::Sparse(updated);
426 changed
427 }
428 HybridBitSet::Dense(other_dense) => self_dense.intersect(other_dense),
429 },
430 }
431 }
432 }
433
434 impl<T> Clone for BitSet<T> {
435 fn clone(&self) -> Self {
436 BitSet { domain_size: self.domain_size, words: self.words.clone(), marker: PhantomData }
437 }
438
439 fn clone_from(&mut self, from: &Self) {
440 if self.domain_size != from.domain_size {
441 self.words.resize(from.domain_size, 0);
442 self.domain_size = from.domain_size;
443 }
444
445 self.words.copy_from_slice(&from.words);
446 }
447 }
448
449 impl<T: Idx> fmt::Debug for BitSet<T> {
450 fn fmt(&self, w: &mut fmt::Formatter<'_>) -> fmt::Result {
451 w.debug_list().entries(self.iter()).finish()
452 }
453 }
454
455 impl<T: Idx> ToString for BitSet<T> {
456 fn to_string(&self) -> String {
457 let mut result = String::new();
458 let mut sep = '[';
459
460 // Note: this is a little endian printout of bytes.
461
462 // i tracks how many bits we have printed so far.
463 let mut i = 0;
464 for word in &self.words {
465 let mut word = *word;
466 for _ in 0..WORD_BYTES {
467 // for each byte in `word`:
468 let remain = self.domain_size - i;
469 // If less than a byte remains, then mask just that many bits.
470 let mask = if remain <= 8 { (1 << remain) - 1 } else { 0xFF };
471 assert!(mask <= 0xFF);
472 let byte = word & mask;
473
474 result.push_str(&format!("{}{:02x}", sep, byte));
475
476 if remain <= 8 {
477 break;
478 }
479 word >>= 8;
480 i += 8;
481 sep = '-';
482 }
483 sep = '|';
484 }
485 result.push(']');
486
487 result
488 }
489 }
490
491 pub struct BitIter<'a, T: Idx> {
492 /// A copy of the current word, but with any already-visited bits cleared.
493 /// (This lets us use `trailing_zeros()` to find the next set bit.) When it
494 /// is reduced to 0, we move onto the next word.
495 word: Word,
496
497 /// The offset (measured in bits) of the current word.
498 offset: usize,
499
500 /// Underlying iterator over the words.
501 iter: slice::Iter<'a, Word>,
502
503 marker: PhantomData<T>,
504 }
505
506 impl<'a, T: Idx> BitIter<'a, T> {
507 #[inline]
508 fn new(words: &'a [Word]) -> BitIter<'a, T> {
509 // We initialize `word` and `offset` to degenerate values. On the first
510 // call to `next()` we will fall through to getting the first word from
511 // `iter`, which sets `word` to the first word (if there is one) and
512 // `offset` to 0. Doing it this way saves us from having to maintain
513 // additional state about whether we have started.
514 BitIter {
515 word: 0,
516 offset: usize::MAX - (WORD_BITS - 1),
517 iter: words.iter(),
518 marker: PhantomData,
519 }
520 }
521 }
522
523 impl<'a, T: Idx> Iterator for BitIter<'a, T> {
524 type Item = T;
525 fn next(&mut self) -> Option<T> {
526 loop {
527 if self.word != 0 {
528 // Get the position of the next set bit in the current word,
529 // then clear the bit.
530 let bit_pos = self.word.trailing_zeros() as usize;
531 let bit = 1 << bit_pos;
532 self.word ^= bit;
533 return Some(T::new(bit_pos + self.offset));
534 }
535
536 // Move onto the next word. `wrapping_add()` is needed to handle
537 // the degenerate initial value given to `offset` in `new()`.
538 let word = self.iter.next()?;
539 self.word = *word;
540 self.offset = self.offset.wrapping_add(WORD_BITS);
541 }
542 }
543 }
544
545 #[inline]
546 fn bitwise<Op>(out_vec: &mut [Word], in_vec: &[Word], op: Op) -> bool
547 where
548 Op: Fn(Word, Word) -> Word,
549 {
550 assert_eq!(out_vec.len(), in_vec.len());
551 let mut changed = 0;
552 for (out_elem, in_elem) in iter::zip(out_vec, in_vec) {
553 let old_val = *out_elem;
554 let new_val = op(old_val, *in_elem);
555 *out_elem = new_val;
556 // This is essentially equivalent to a != with changed being a bool, but
557 // in practice this code gets auto-vectorized by the compiler for most
558 // operators. Using != here causes us to generate quite poor code as the
559 // compiler tries to go back to a boolean on each loop iteration.
560 changed |= old_val ^ new_val;
561 }
562 changed != 0
563 }
564
565 const SPARSE_MAX: usize = 8;
566
567 /// A fixed-size bitset type with a sparse representation and a maximum of
568 /// `SPARSE_MAX` elements. The elements are stored as a sorted `ArrayVec` with
569 /// no duplicates.
570 ///
571 /// This type is used by `HybridBitSet`; do not use directly.
572 #[derive(Clone, Debug)]
573 pub struct SparseBitSet<T> {
574 domain_size: usize,
575 elems: ArrayVec<T, SPARSE_MAX>,
576 }
577
578 impl<T: Idx> SparseBitSet<T> {
579 fn new_empty(domain_size: usize) -> Self {
580 SparseBitSet { domain_size, elems: ArrayVec::new() }
581 }
582
583 fn len(&self) -> usize {
584 self.elems.len()
585 }
586
587 fn is_empty(&self) -> bool {
588 self.elems.len() == 0
589 }
590
591 fn contains(&self, elem: T) -> bool {
592 assert!(elem.index() < self.domain_size);
593 self.elems.contains(&elem)
594 }
595
596 fn insert(&mut self, elem: T) -> bool {
597 assert!(elem.index() < self.domain_size);
598 let changed = if let Some(i) = self.elems.iter().position(|&e| e >= elem) {
599 if self.elems[i] == elem {
600 // `elem` is already in the set.
601 false
602 } else {
603 // `elem` is smaller than one or more existing elements.
604 self.elems.insert(i, elem);
605 true
606 }
607 } else {
608 // `elem` is larger than all existing elements.
609 self.elems.push(elem);
610 true
611 };
612 assert!(self.len() <= SPARSE_MAX);
613 changed
614 }
615
616 fn remove(&mut self, elem: T) -> bool {
617 assert!(elem.index() < self.domain_size);
618 if let Some(i) = self.elems.iter().position(|&e| e == elem) {
619 self.elems.remove(i);
620 true
621 } else {
622 false
623 }
624 }
625
626 fn to_dense(&self) -> BitSet<T> {
627 let mut dense = BitSet::new_empty(self.domain_size);
628 for elem in self.elems.iter() {
629 dense.insert(*elem);
630 }
631 dense
632 }
633
634 fn iter(&self) -> slice::Iter<'_, T> {
635 self.elems.iter()
636 }
637
638 bit_relations_inherent_impls! {}
639 }
640
641 /// A fixed-size bitset type with a hybrid representation: sparse when there
642 /// are up to a `SPARSE_MAX` elements in the set, but dense when there are more
643 /// than `SPARSE_MAX`.
644 ///
645 /// This type is especially efficient for sets that typically have a small
646 /// number of elements, but a large `domain_size`, and are cleared frequently.
647 ///
648 /// `T` is an index type, typically a newtyped `usize` wrapper, but it can also
649 /// just be `usize`.
650 ///
651 /// All operations that involve an element will panic if the element is equal
652 /// to or greater than the domain size. All operations that involve two bitsets
653 /// will panic if the bitsets have differing domain sizes.
654 #[derive(Clone)]
655 pub enum HybridBitSet<T> {
656 Sparse(SparseBitSet<T>),
657 Dense(BitSet<T>),
658 }
659
660 impl<T: Idx> fmt::Debug for HybridBitSet<T> {
661 fn fmt(&self, w: &mut fmt::Formatter<'_>) -> fmt::Result {
662 match self {
663 Self::Sparse(b) => b.fmt(w),
664 Self::Dense(b) => b.fmt(w),
665 }
666 }
667 }
668
669 impl<T: Idx> HybridBitSet<T> {
670 pub fn new_empty(domain_size: usize) -> Self {
671 HybridBitSet::Sparse(SparseBitSet::new_empty(domain_size))
672 }
673
674 pub fn domain_size(&self) -> usize {
675 match self {
676 HybridBitSet::Sparse(sparse) => sparse.domain_size,
677 HybridBitSet::Dense(dense) => dense.domain_size,
678 }
679 }
680
681 pub fn clear(&mut self) {
682 let domain_size = self.domain_size();
683 *self = HybridBitSet::new_empty(domain_size);
684 }
685
686 pub fn contains(&self, elem: T) -> bool {
687 match self {
688 HybridBitSet::Sparse(sparse) => sparse.contains(elem),
689 HybridBitSet::Dense(dense) => dense.contains(elem),
690 }
691 }
692
693 pub fn superset(&self, other: &HybridBitSet<T>) -> bool {
694 match (self, other) {
695 (HybridBitSet::Dense(self_dense), HybridBitSet::Dense(other_dense)) => {
696 self_dense.superset(other_dense)
697 }
698 _ => {
699 assert!(self.domain_size() == other.domain_size());
700 other.iter().all(|elem| self.contains(elem))
701 }
702 }
703 }
704
705 pub fn is_empty(&self) -> bool {
706 match self {
707 HybridBitSet::Sparse(sparse) => sparse.is_empty(),
708 HybridBitSet::Dense(dense) => dense.is_empty(),
709 }
710 }
711
712 pub fn insert(&mut self, elem: T) -> bool {
713 // No need to check `elem` against `self.domain_size` here because all
714 // the match cases check it, one way or another.
715 match self {
716 HybridBitSet::Sparse(sparse) if sparse.len() < SPARSE_MAX => {
717 // The set is sparse and has space for `elem`.
718 sparse.insert(elem)
719 }
720 HybridBitSet::Sparse(sparse) if sparse.contains(elem) => {
721 // The set is sparse and does not have space for `elem`, but
722 // that doesn't matter because `elem` is already present.
723 false
724 }
725 HybridBitSet::Sparse(sparse) => {
726 // The set is sparse and full. Convert to a dense set.
727 let mut dense = sparse.to_dense();
728 let changed = dense.insert(elem);
729 assert!(changed);
730 *self = HybridBitSet::Dense(dense);
731 changed
732 }
733 HybridBitSet::Dense(dense) => dense.insert(elem),
734 }
735 }
736
737 pub fn insert_all(&mut self) {
738 let domain_size = self.domain_size();
739 match self {
740 HybridBitSet::Sparse(_) => {
741 *self = HybridBitSet::Dense(BitSet::new_filled(domain_size));
742 }
743 HybridBitSet::Dense(dense) => dense.insert_all(),
744 }
745 }
746
747 pub fn remove(&mut self, elem: T) -> bool {
748 // Note: we currently don't bother going from Dense back to Sparse.
749 match self {
750 HybridBitSet::Sparse(sparse) => sparse.remove(elem),
751 HybridBitSet::Dense(dense) => dense.remove(elem),
752 }
753 }
754
755 /// Converts to a dense set, consuming itself in the process.
756 pub fn to_dense(self) -> BitSet<T> {
757 match self {
758 HybridBitSet::Sparse(sparse) => sparse.to_dense(),
759 HybridBitSet::Dense(dense) => dense,
760 }
761 }
762
763 pub fn iter(&self) -> HybridIter<'_, T> {
764 match self {
765 HybridBitSet::Sparse(sparse) => HybridIter::Sparse(sparse.iter()),
766 HybridBitSet::Dense(dense) => HybridIter::Dense(dense.iter()),
767 }
768 }
769
770 bit_relations_inherent_impls! {}
771 }
772
773 pub enum HybridIter<'a, T: Idx> {
774 Sparse(slice::Iter<'a, T>),
775 Dense(BitIter<'a, T>),
776 }
777
778 impl<'a, T: Idx> Iterator for HybridIter<'a, T> {
779 type Item = T;
780
781 fn next(&mut self) -> Option<T> {
782 match self {
783 HybridIter::Sparse(sparse) => sparse.next().copied(),
784 HybridIter::Dense(dense) => dense.next(),
785 }
786 }
787 }
788
789 /// A resizable bitset type with a dense representation.
790 ///
791 /// `T` is an index type, typically a newtyped `usize` wrapper, but it can also
792 /// just be `usize`.
793 ///
794 /// All operations that involve an element will panic if the element is equal
795 /// to or greater than the domain size.
796 #[derive(Clone, Debug, PartialEq)]
797 pub struct GrowableBitSet<T: Idx> {
798 bit_set: BitSet<T>,
799 }
800
801 impl<T: Idx> GrowableBitSet<T> {
802 /// Ensure that the set can hold at least `min_domain_size` elements.
803 pub fn ensure(&mut self, min_domain_size: usize) {
804 if self.bit_set.domain_size < min_domain_size {
805 self.bit_set.domain_size = min_domain_size;
806 }
807
808 let min_num_words = num_words(min_domain_size);
809 if self.bit_set.words.len() < min_num_words {
810 self.bit_set.words.resize(min_num_words, 0)
811 }
812 }
813
814 pub fn new_empty() -> GrowableBitSet<T> {
815 GrowableBitSet { bit_set: BitSet::new_empty(0) }
816 }
817
818 pub fn with_capacity(capacity: usize) -> GrowableBitSet<T> {
819 GrowableBitSet { bit_set: BitSet::new_empty(capacity) }
820 }
821
822 /// Returns `true` if the set has changed.
823 #[inline]
824 pub fn insert(&mut self, elem: T) -> bool {
825 self.ensure(elem.index() + 1);
826 self.bit_set.insert(elem)
827 }
828
829 /// Returns `true` if the set has changed.
830 #[inline]
831 pub fn remove(&mut self, elem: T) -> bool {
832 self.ensure(elem.index() + 1);
833 self.bit_set.remove(elem)
834 }
835
836 #[inline]
837 pub fn is_empty(&self) -> bool {
838 self.bit_set.is_empty()
839 }
840
841 #[inline]
842 pub fn contains(&self, elem: T) -> bool {
843 let (word_index, mask) = word_index_and_mask(elem);
844 if let Some(word) = self.bit_set.words.get(word_index) { (word & mask) != 0 } else { false }
845 }
846 }
847
848 /// A fixed-size 2D bit matrix type with a dense representation.
849 ///
850 /// `R` and `C` are index types used to identify rows and columns respectively;
851 /// typically newtyped `usize` wrappers, but they can also just be `usize`.
852 ///
853 /// All operations that involve a row and/or column index will panic if the
854 /// index exceeds the relevant bound.
855 #[derive(Clone, Eq, PartialEq, Decodable, Encodable)]
856 pub struct BitMatrix<R: Idx, C: Idx> {
857 num_rows: usize,
858 num_columns: usize,
859 words: Vec<Word>,
860 marker: PhantomData<(R, C)>,
861 }
862
863 impl<R: Idx, C: Idx> BitMatrix<R, C> {
864 /// Creates a new `rows x columns` matrix, initially empty.
865 pub fn new(num_rows: usize, num_columns: usize) -> BitMatrix<R, C> {
866 // For every element, we need one bit for every other
867 // element. Round up to an even number of words.
868 let words_per_row = num_words(num_columns);
869 BitMatrix {
870 num_rows,
871 num_columns,
872 words: vec![0; num_rows * words_per_row],
873 marker: PhantomData,
874 }
875 }
876
877 /// Creates a new matrix, with `row` used as the value for every row.
878 pub fn from_row_n(row: &BitSet<C>, num_rows: usize) -> BitMatrix<R, C> {
879 let num_columns = row.domain_size();
880 let words_per_row = num_words(num_columns);
881 assert_eq!(words_per_row, row.words().len());
882 BitMatrix {
883 num_rows,
884 num_columns,
885 words: iter::repeat(row.words()).take(num_rows).flatten().cloned().collect(),
886 marker: PhantomData,
887 }
888 }
889
890 pub fn rows(&self) -> impl Iterator<Item = R> {
891 (0..self.num_rows).map(R::new)
892 }
893
894 /// The range of bits for a given row.
895 fn range(&self, row: R) -> (usize, usize) {
896 let words_per_row = num_words(self.num_columns);
897 let start = row.index() * words_per_row;
898 (start, start + words_per_row)
899 }
900
901 /// Sets the cell at `(row, column)` to true. Put another way, insert
902 /// `column` to the bitset for `row`.
903 ///
904 /// Returns `true` if this changed the matrix.
905 pub fn insert(&mut self, row: R, column: C) -> bool {
906 assert!(row.index() < self.num_rows && column.index() < self.num_columns);
907 let (start, _) = self.range(row);
908 let (word_index, mask) = word_index_and_mask(column);
909 let words = &mut self.words[..];
910 let word = words[start + word_index];
911 let new_word = word | mask;
912 words[start + word_index] = new_word;
913 word != new_word
914 }
915
916 /// Do the bits from `row` contain `column`? Put another way, is
917 /// the matrix cell at `(row, column)` true? Put yet another way,
918 /// if the matrix represents (transitive) reachability, can
919 /// `row` reach `column`?
920 pub fn contains(&self, row: R, column: C) -> bool {
921 assert!(row.index() < self.num_rows && column.index() < self.num_columns);
922 let (start, _) = self.range(row);
923 let (word_index, mask) = word_index_and_mask(column);
924 (self.words[start + word_index] & mask) != 0
925 }
926
927 /// Returns those indices that are true in rows `a` and `b`. This
928 /// is an *O*(*n*) operation where *n* is the number of elements
929 /// (somewhat independent from the actual size of the
930 /// intersection, in particular).
931 pub fn intersect_rows(&self, row1: R, row2: R) -> Vec<C> {
932 assert!(row1.index() < self.num_rows && row2.index() < self.num_rows);
933 let (row1_start, row1_end) = self.range(row1);
934 let (row2_start, row2_end) = self.range(row2);
935 let mut result = Vec::with_capacity(self.num_columns);
936 for (base, (i, j)) in (row1_start..row1_end).zip(row2_start..row2_end).enumerate() {
937 let mut v = self.words[i] & self.words[j];
938 for bit in 0..WORD_BITS {
939 if v == 0 {
940 break;
941 }
942 if v & 0x1 != 0 {
943 result.push(C::new(base * WORD_BITS + bit));
944 }
945 v >>= 1;
946 }
947 }
948 result
949 }
950
951 /// Adds the bits from row `read` to the bits from row `write`, and
952 /// returns `true` if anything changed.
953 ///
954 /// This is used when computing transitive reachability because if
955 /// you have an edge `write -> read`, because in that case
956 /// `write` can reach everything that `read` can (and
957 /// potentially more).
958 pub fn union_rows(&mut self, read: R, write: R) -> bool {
959 assert!(read.index() < self.num_rows && write.index() < self.num_rows);
960 let (read_start, read_end) = self.range(read);
961 let (write_start, write_end) = self.range(write);
962 let words = &mut self.words[..];
963 let mut changed = false;
964 for (read_index, write_index) in iter::zip(read_start..read_end, write_start..write_end) {
965 let word = words[write_index];
966 let new_word = word | words[read_index];
967 words[write_index] = new_word;
968 changed |= word != new_word;
969 }
970 changed
971 }
972
973 /// Adds the bits from `with` to the bits from row `write`, and
974 /// returns `true` if anything changed.
975 pub fn union_row_with(&mut self, with: &BitSet<C>, write: R) -> bool {
976 assert!(write.index() < self.num_rows);
977 assert_eq!(with.domain_size(), self.num_columns);
978 let (write_start, write_end) = self.range(write);
979 let mut changed = false;
980 for (read_index, write_index) in iter::zip(0..with.words().len(), write_start..write_end) {
981 let word = self.words[write_index];
982 let new_word = word | with.words()[read_index];
983 self.words[write_index] = new_word;
984 changed |= word != new_word;
985 }
986 changed
987 }
988
989 /// Sets every cell in `row` to true.
990 pub fn insert_all_into_row(&mut self, row: R) {
991 assert!(row.index() < self.num_rows);
992 let (start, end) = self.range(row);
993 let words = &mut self.words[..];
994 for index in start..end {
995 words[index] = !0;
996 }
997 self.clear_excess_bits(row);
998 }
999
1000 /// Clear excess bits in the final word of the row.
1001 fn clear_excess_bits(&mut self, row: R) {
1002 let num_bits_in_final_word = self.num_columns % WORD_BITS;
1003 if num_bits_in_final_word > 0 {
1004 let mask = (1 << num_bits_in_final_word) - 1;
1005 let (_, end) = self.range(row);
1006 let final_word_idx = end - 1;
1007 self.words[final_word_idx] &= mask;
1008 }
1009 }
1010
1011 /// Gets a slice of the underlying words.
1012 pub fn words(&self) -> &[Word] {
1013 &self.words
1014 }
1015
1016 /// Iterates through all the columns set to true in a given row of
1017 /// the matrix.
1018 pub fn iter(&self, row: R) -> BitIter<'_, C> {
1019 assert!(row.index() < self.num_rows);
1020 let (start, end) = self.range(row);
1021 BitIter::new(&self.words[start..end])
1022 }
1023
1024 /// Returns the number of elements in `row`.
1025 pub fn count(&self, row: R) -> usize {
1026 let (start, end) = self.range(row);
1027 self.words[start..end].iter().map(|e| e.count_ones() as usize).sum()
1028 }
1029 }
1030
1031 impl<R: Idx, C: Idx> fmt::Debug for BitMatrix<R, C> {
1032 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1033 /// Forces its contents to print in regular mode instead of alternate mode.
1034 struct OneLinePrinter<T>(T);
1035 impl<T: fmt::Debug> fmt::Debug for OneLinePrinter<T> {
1036 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1037 write!(fmt, "{:?}", self.0)
1038 }
1039 }
1040
1041 write!(fmt, "BitMatrix({}x{}) ", self.num_rows, self.num_columns)?;
1042 let items = self.rows().flat_map(|r| self.iter(r).map(move |c| (r, c)));
1043 fmt.debug_set().entries(items.map(OneLinePrinter)).finish()
1044 }
1045 }
1046
1047 /// A fixed-column-size, variable-row-size 2D bit matrix with a moderately
1048 /// sparse representation.
1049 ///
1050 /// Initially, every row has no explicit representation. If any bit within a
1051 /// row is set, the entire row is instantiated as `Some(<HybridBitSet>)`.
1052 /// Furthermore, any previously uninstantiated rows prior to it will be
1053 /// instantiated as `None`. Those prior rows may themselves become fully
1054 /// instantiated later on if any of their bits are set.
1055 ///
1056 /// `R` and `C` are index types used to identify rows and columns respectively;
1057 /// typically newtyped `usize` wrappers, but they can also just be `usize`.
1058 #[derive(Clone, Debug)]
1059 pub struct SparseBitMatrix<R, C>
1060 where
1061 R: Idx,
1062 C: Idx,
1063 {
1064 num_columns: usize,
1065 rows: IndexVec<R, Option<HybridBitSet<C>>>,
1066 }
1067
1068 impl<R: Idx, C: Idx> SparseBitMatrix<R, C> {
1069 /// Creates a new empty sparse bit matrix with no rows or columns.
1070 pub fn new(num_columns: usize) -> Self {
1071 Self { num_columns, rows: IndexVec::new() }
1072 }
1073
1074 fn ensure_row(&mut self, row: R) -> &mut HybridBitSet<C> {
1075 // Instantiate any missing rows up to and including row `row` with an
1076 // empty HybridBitSet.
1077 self.rows.ensure_contains_elem(row, || None);
1078
1079 // Then replace row `row` with a full HybridBitSet if necessary.
1080 let num_columns = self.num_columns;
1081 self.rows[row].get_or_insert_with(|| HybridBitSet::new_empty(num_columns))
1082 }
1083
1084 /// Sets the cell at `(row, column)` to true. Put another way, insert
1085 /// `column` to the bitset for `row`.
1086 ///
1087 /// Returns `true` if this changed the matrix.
1088 pub fn insert(&mut self, row: R, column: C) -> bool {
1089 self.ensure_row(row).insert(column)
1090 }
1091
1092 /// Sets the cell at `(row, column)` to false. Put another way, delete
1093 /// `column` from the bitset for `row`. Has no effect if `row` does not
1094 /// exist.
1095 ///
1096 /// Returns `true` if this changed the matrix.
1097 pub fn remove(&mut self, row: R, column: C) -> bool {
1098 match self.rows.get_mut(row) {
1099 Some(Some(row)) => row.remove(column),
1100 _ => false,
1101 }
1102 }
1103
1104 /// Sets all columns at `row` to false. Has no effect if `row` does
1105 /// not exist.
1106 pub fn clear(&mut self, row: R) {
1107 if let Some(Some(row)) = self.rows.get_mut(row) {
1108 row.clear();
1109 }
1110 }
1111
1112 /// Do the bits from `row` contain `column`? Put another way, is
1113 /// the matrix cell at `(row, column)` true? Put yet another way,
1114 /// if the matrix represents (transitive) reachability, can
1115 /// `row` reach `column`?
1116 pub fn contains(&self, row: R, column: C) -> bool {
1117 self.row(row).map_or(false, |r| r.contains(column))
1118 }
1119
1120 /// Adds the bits from row `read` to the bits from row `write`, and
1121 /// returns `true` if anything changed.
1122 ///
1123 /// This is used when computing transitive reachability because if
1124 /// you have an edge `write -> read`, because in that case
1125 /// `write` can reach everything that `read` can (and
1126 /// potentially more).
1127 pub fn union_rows(&mut self, read: R, write: R) -> bool {
1128 if read == write || self.row(read).is_none() {
1129 return false;
1130 }
1131
1132 self.ensure_row(write);
1133 if let (Some(read_row), Some(write_row)) = self.rows.pick2_mut(read, write) {
1134 write_row.union(read_row)
1135 } else {
1136 unreachable!()
1137 }
1138 }
1139
1140 /// Insert all bits in the given row.
1141 pub fn insert_all_into_row(&mut self, row: R) {
1142 self.ensure_row(row).insert_all();
1143 }
1144
1145 pub fn rows(&self) -> impl Iterator<Item = R> {
1146 self.rows.indices()
1147 }
1148
1149 /// Iterates through all the columns set to true in a given row of
1150 /// the matrix.
1151 pub fn iter<'a>(&'a self, row: R) -> impl Iterator<Item = C> + 'a {
1152 self.row(row).into_iter().flat_map(|r| r.iter())
1153 }
1154
1155 pub fn row(&self, row: R) -> Option<&HybridBitSet<C>> {
1156 if let Some(Some(row)) = self.rows.get(row) { Some(row) } else { None }
1157 }
1158
1159 /// Interescts `row` with `set`. `set` can be either `BitSet` or
1160 /// `HybridBitSet`. Has no effect if `row` does not exist.
1161 ///
1162 /// Returns true if the row was changed.
1163 pub fn intersect_row<Set>(&mut self, row: R, set: &Set) -> bool
1164 where
1165 HybridBitSet<C>: BitRelations<Set>,
1166 {
1167 match self.rows.get_mut(row) {
1168 Some(Some(row)) => row.intersect(set),
1169 _ => false,
1170 }
1171 }
1172
1173 /// Subtracts `set from `row`. `set` can be either `BitSet` or
1174 /// `HybridBitSet`. Has no effect if `row` does not exist.
1175 ///
1176 /// Returns true if the row was changed.
1177 pub fn subtract_row<Set>(&mut self, row: R, set: &Set) -> bool
1178 where
1179 HybridBitSet<C>: BitRelations<Set>,
1180 {
1181 match self.rows.get_mut(row) {
1182 Some(Some(row)) => row.subtract(set),
1183 _ => false,
1184 }
1185 }
1186
1187 /// Unions `row` with `set`. `set` can be either `BitSet` or
1188 /// `HybridBitSet`.
1189 ///
1190 /// Returns true if the row was changed.
1191 pub fn union_row<Set>(&mut self, row: R, set: &Set) -> bool
1192 where
1193 HybridBitSet<C>: BitRelations<Set>,
1194 {
1195 self.ensure_row(row).union(set)
1196 }
1197 }
1198
1199 #[inline]
1200 fn num_words<T: Idx>(domain_size: T) -> usize {
1201 (domain_size.index() + WORD_BITS - 1) / WORD_BITS
1202 }
1203
1204 #[inline]
1205 fn word_index_and_mask<T: Idx>(elem: T) -> (usize, Word) {
1206 let elem = elem.index();
1207 let word_index = elem / WORD_BITS;
1208 let mask = 1 << (elem % WORD_BITS);
1209 (word_index, mask)
1210 }
1211
1212 /// Integral type used to represent the bit set.
1213 pub trait FiniteBitSetTy:
1214 BitAnd<Output = Self>
1215 + BitAndAssign
1216 + BitOrAssign
1217 + Clone
1218 + Copy
1219 + Shl
1220 + Not<Output = Self>
1221 + PartialEq
1222 + Sized
1223 {
1224 /// Size of the domain representable by this type, e.g. 64 for `u64`.
1225 const DOMAIN_SIZE: u32;
1226
1227 /// Value which represents the `FiniteBitSet` having every bit set.
1228 const FILLED: Self;
1229 /// Value which represents the `FiniteBitSet` having no bits set.
1230 const EMPTY: Self;
1231
1232 /// Value for one as the integral type.
1233 const ONE: Self;
1234 /// Value for zero as the integral type.
1235 const ZERO: Self;
1236
1237 /// Perform a checked left shift on the integral type.
1238 fn checked_shl(self, rhs: u32) -> Option<Self>;
1239 /// Perform a checked right shift on the integral type.
1240 fn checked_shr(self, rhs: u32) -> Option<Self>;
1241 }
1242
1243 impl FiniteBitSetTy for u32 {
1244 const DOMAIN_SIZE: u32 = 32;
1245
1246 const FILLED: Self = Self::MAX;
1247 const EMPTY: Self = Self::MIN;
1248
1249 const ONE: Self = 1u32;
1250 const ZERO: Self = 0u32;
1251
1252 fn checked_shl(self, rhs: u32) -> Option<Self> {
1253 self.checked_shl(rhs)
1254 }
1255
1256 fn checked_shr(self, rhs: u32) -> Option<Self> {
1257 self.checked_shr(rhs)
1258 }
1259 }
1260
1261 impl std::fmt::Debug for FiniteBitSet<u32> {
1262 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1263 write!(f, "{:032b}", self.0)
1264 }
1265 }
1266
1267 impl FiniteBitSetTy for u64 {
1268 const DOMAIN_SIZE: u32 = 64;
1269
1270 const FILLED: Self = Self::MAX;
1271 const EMPTY: Self = Self::MIN;
1272
1273 const ONE: Self = 1u64;
1274 const ZERO: Self = 0u64;
1275
1276 fn checked_shl(self, rhs: u32) -> Option<Self> {
1277 self.checked_shl(rhs)
1278 }
1279
1280 fn checked_shr(self, rhs: u32) -> Option<Self> {
1281 self.checked_shr(rhs)
1282 }
1283 }
1284
1285 impl std::fmt::Debug for FiniteBitSet<u64> {
1286 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1287 write!(f, "{:064b}", self.0)
1288 }
1289 }
1290
1291 impl FiniteBitSetTy for u128 {
1292 const DOMAIN_SIZE: u32 = 128;
1293
1294 const FILLED: Self = Self::MAX;
1295 const EMPTY: Self = Self::MIN;
1296
1297 const ONE: Self = 1u128;
1298 const ZERO: Self = 0u128;
1299
1300 fn checked_shl(self, rhs: u32) -> Option<Self> {
1301 self.checked_shl(rhs)
1302 }
1303
1304 fn checked_shr(self, rhs: u32) -> Option<Self> {
1305 self.checked_shr(rhs)
1306 }
1307 }
1308
1309 impl std::fmt::Debug for FiniteBitSet<u128> {
1310 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1311 write!(f, "{:0128b}", self.0)
1312 }
1313 }
1314
1315 /// A fixed-sized bitset type represented by an integer type. Indices outwith than the range
1316 /// representable by `T` are considered set.
1317 #[derive(Copy, Clone, Eq, PartialEq, Decodable, Encodable)]
1318 pub struct FiniteBitSet<T: FiniteBitSetTy>(pub T);
1319
1320 impl<T: FiniteBitSetTy> FiniteBitSet<T> {
1321 /// Creates a new, empty bitset.
1322 pub fn new_empty() -> Self {
1323 Self(T::EMPTY)
1324 }
1325
1326 /// Sets the `index`th bit.
1327 pub fn set(&mut self, index: u32) {
1328 self.0 |= T::ONE.checked_shl(index).unwrap_or(T::ZERO);
1329 }
1330
1331 /// Unsets the `index`th bit.
1332 pub fn clear(&mut self, index: u32) {
1333 self.0 &= !T::ONE.checked_shl(index).unwrap_or(T::ZERO);
1334 }
1335
1336 /// Sets the `i`th to `j`th bits.
1337 pub fn set_range(&mut self, range: Range<u32>) {
1338 let bits = T::FILLED
1339 .checked_shl(range.end - range.start)
1340 .unwrap_or(T::ZERO)
1341 .not()
1342 .checked_shl(range.start)
1343 .unwrap_or(T::ZERO);
1344 self.0 |= bits;
1345 }
1346
1347 /// Is the set empty?
1348 pub fn is_empty(&self) -> bool {
1349 self.0 == T::EMPTY
1350 }
1351
1352 /// Returns the domain size of the bitset.
1353 pub fn within_domain(&self, index: u32) -> bool {
1354 index < T::DOMAIN_SIZE
1355 }
1356
1357 /// Returns if the `index`th bit is set.
1358 pub fn contains(&self, index: u32) -> Option<bool> {
1359 self.within_domain(index)
1360 .then(|| ((self.0.checked_shr(index).unwrap_or(T::ONE)) & T::ONE) == T::ONE)
1361 }
1362 }
1363
1364 impl<T: FiniteBitSetTy> Default for FiniteBitSet<T> {
1365 fn default() -> Self {
1366 Self::new_empty()
1367 }
1368 }