]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_infer/src/traits/util.rs
New upstream version 1.59.0+dfsg1
[rustc.git] / compiler / rustc_infer / src / traits / util.rs
1 use smallvec::smallvec;
2
3 use crate::infer::outlives::components::{push_outlives_components, Component};
4 use crate::traits::{Obligation, ObligationCause, PredicateObligation};
5 use rustc_data_structures::fx::{FxHashSet, FxIndexSet};
6 use rustc_middle::ty::{self, ToPredicate, TyCtxt};
7 use rustc_span::symbol::Ident;
8 use rustc_span::Span;
9
10 pub fn anonymize_predicate<'tcx>(
11 tcx: TyCtxt<'tcx>,
12 pred: ty::Predicate<'tcx>,
13 ) -> ty::Predicate<'tcx> {
14 let new = tcx.anonymize_late_bound_regions(pred.kind());
15 tcx.reuse_or_mk_predicate(pred, new)
16 }
17
18 pub struct PredicateSet<'tcx> {
19 tcx: TyCtxt<'tcx>,
20 set: FxHashSet<ty::Predicate<'tcx>>,
21 }
22
23 impl<'tcx> PredicateSet<'tcx> {
24 pub fn new(tcx: TyCtxt<'tcx>) -> Self {
25 Self { tcx, set: Default::default() }
26 }
27
28 pub fn insert(&mut self, pred: ty::Predicate<'tcx>) -> bool {
29 // We have to be careful here because we want
30 //
31 // for<'a> Foo<&'a i32>
32 //
33 // and
34 //
35 // for<'b> Foo<&'b i32>
36 //
37 // to be considered equivalent. So normalize all late-bound
38 // regions before we throw things into the underlying set.
39 self.set.insert(anonymize_predicate(self.tcx, pred))
40 }
41 }
42
43 impl<'tcx> Extend<ty::Predicate<'tcx>> for PredicateSet<'tcx> {
44 fn extend<I: IntoIterator<Item = ty::Predicate<'tcx>>>(&mut self, iter: I) {
45 for pred in iter {
46 self.insert(pred);
47 }
48 }
49
50 fn extend_one(&mut self, pred: ty::Predicate<'tcx>) {
51 self.insert(pred);
52 }
53
54 fn extend_reserve(&mut self, additional: usize) {
55 Extend::<ty::Predicate<'tcx>>::extend_reserve(&mut self.set, additional);
56 }
57 }
58
59 ///////////////////////////////////////////////////////////////////////////
60 // `Elaboration` iterator
61 ///////////////////////////////////////////////////////////////////////////
62
63 /// "Elaboration" is the process of identifying all the predicates that
64 /// are implied by a source predicate. Currently, this basically means
65 /// walking the "supertraits" and other similar assumptions. For example,
66 /// if we know that `T: Ord`, the elaborator would deduce that `T: PartialOrd`
67 /// holds as well. Similarly, if we have `trait Foo: 'static`, and we know that
68 /// `T: Foo`, then we know that `T: 'static`.
69 pub struct Elaborator<'tcx> {
70 stack: Vec<PredicateObligation<'tcx>>,
71 visited: PredicateSet<'tcx>,
72 }
73
74 pub fn elaborate_trait_ref<'tcx>(
75 tcx: TyCtxt<'tcx>,
76 trait_ref: ty::PolyTraitRef<'tcx>,
77 ) -> Elaborator<'tcx> {
78 elaborate_predicates(tcx, std::iter::once(trait_ref.without_const().to_predicate(tcx)))
79 }
80
81 pub fn elaborate_trait_refs<'tcx>(
82 tcx: TyCtxt<'tcx>,
83 trait_refs: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
84 ) -> Elaborator<'tcx> {
85 let predicates = trait_refs.map(|trait_ref| trait_ref.without_const().to_predicate(tcx));
86 elaborate_predicates(tcx, predicates)
87 }
88
89 pub fn elaborate_predicates<'tcx>(
90 tcx: TyCtxt<'tcx>,
91 predicates: impl Iterator<Item = ty::Predicate<'tcx>>,
92 ) -> Elaborator<'tcx> {
93 let obligations = predicates
94 .map(|predicate| {
95 predicate_obligation(predicate, ty::ParamEnv::empty(), ObligationCause::dummy())
96 })
97 .collect();
98 elaborate_obligations(tcx, obligations)
99 }
100
101 pub fn elaborate_predicates_with_span<'tcx>(
102 tcx: TyCtxt<'tcx>,
103 predicates: impl Iterator<Item = (ty::Predicate<'tcx>, Span)>,
104 ) -> Elaborator<'tcx> {
105 let obligations = predicates
106 .map(|(predicate, span)| {
107 predicate_obligation(
108 predicate,
109 ty::ParamEnv::empty(),
110 ObligationCause::dummy_with_span(span),
111 )
112 })
113 .collect();
114 elaborate_obligations(tcx, obligations)
115 }
116
117 pub fn elaborate_obligations<'tcx>(
118 tcx: TyCtxt<'tcx>,
119 mut obligations: Vec<PredicateObligation<'tcx>>,
120 ) -> Elaborator<'tcx> {
121 let mut visited = PredicateSet::new(tcx);
122 obligations.retain(|obligation| visited.insert(obligation.predicate));
123 Elaborator { stack: obligations, visited }
124 }
125
126 fn predicate_obligation<'tcx>(
127 predicate: ty::Predicate<'tcx>,
128 param_env: ty::ParamEnv<'tcx>,
129 cause: ObligationCause<'tcx>,
130 ) -> PredicateObligation<'tcx> {
131 Obligation { cause, param_env, recursion_depth: 0, predicate }
132 }
133
134 impl<'tcx> Elaborator<'tcx> {
135 pub fn filter_to_traits(self) -> FilterToTraits<Self> {
136 FilterToTraits::new(self)
137 }
138
139 fn elaborate(&mut self, obligation: &PredicateObligation<'tcx>) {
140 let tcx = self.visited.tcx;
141
142 let bound_predicate = obligation.predicate.kind();
143 match bound_predicate.skip_binder() {
144 ty::PredicateKind::Trait(data) => {
145 // Get predicates declared on the trait.
146 let predicates = tcx.super_predicates_of(data.def_id());
147
148 let obligations = predicates.predicates.iter().map(|&(pred, _)| {
149 predicate_obligation(
150 pred.subst_supertrait(tcx, &bound_predicate.rebind(data.trait_ref)),
151 obligation.param_env,
152 obligation.cause.clone(),
153 )
154 });
155 debug!("super_predicates: data={:?}", data);
156
157 // Only keep those bounds that we haven't already seen.
158 // This is necessary to prevent infinite recursion in some
159 // cases. One common case is when people define
160 // `trait Sized: Sized { }` rather than `trait Sized { }`.
161 let visited = &mut self.visited;
162 let obligations = obligations.filter(|o| visited.insert(o.predicate));
163
164 self.stack.extend(obligations);
165 }
166 ty::PredicateKind::WellFormed(..) => {
167 // Currently, we do not elaborate WF predicates,
168 // although we easily could.
169 }
170 ty::PredicateKind::ObjectSafe(..) => {
171 // Currently, we do not elaborate object-safe
172 // predicates.
173 }
174 ty::PredicateKind::Subtype(..) => {
175 // Currently, we do not "elaborate" predicates like `X <: Y`,
176 // though conceivably we might.
177 }
178 ty::PredicateKind::Coerce(..) => {
179 // Currently, we do not "elaborate" predicates like `X -> Y`,
180 // though conceivably we might.
181 }
182 ty::PredicateKind::Projection(..) => {
183 // Nothing to elaborate in a projection predicate.
184 }
185 ty::PredicateKind::ClosureKind(..) => {
186 // Nothing to elaborate when waiting for a closure's kind to be inferred.
187 }
188 ty::PredicateKind::ConstEvaluatable(..) => {
189 // Currently, we do not elaborate const-evaluatable
190 // predicates.
191 }
192 ty::PredicateKind::ConstEquate(..) => {
193 // Currently, we do not elaborate const-equate
194 // predicates.
195 }
196 ty::PredicateKind::RegionOutlives(..) => {
197 // Nothing to elaborate from `'a: 'b`.
198 }
199 ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(ty_max, r_min)) => {
200 // We know that `T: 'a` for some type `T`. We can
201 // often elaborate this. For example, if we know that
202 // `[U]: 'a`, that implies that `U: 'a`. Similarly, if
203 // we know `&'a U: 'b`, then we know that `'a: 'b` and
204 // `U: 'b`.
205 //
206 // We can basically ignore bound regions here. So for
207 // example `for<'c> Foo<'a,'c>: 'b` can be elaborated to
208 // `'a: 'b`.
209
210 // Ignore `for<'a> T: 'a` -- we might in the future
211 // consider this as evidence that `T: 'static`, but
212 // I'm a bit wary of such constructions and so for now
213 // I want to be conservative. --nmatsakis
214 if r_min.is_late_bound() {
215 return;
216 }
217
218 let visited = &mut self.visited;
219 let mut components = smallvec![];
220 push_outlives_components(tcx, ty_max, &mut components);
221 self.stack.extend(
222 components
223 .into_iter()
224 .filter_map(|component| match component {
225 Component::Region(r) => {
226 if r.is_late_bound() {
227 None
228 } else {
229 Some(ty::PredicateKind::RegionOutlives(ty::OutlivesPredicate(
230 r, r_min,
231 )))
232 }
233 }
234
235 Component::Param(p) => {
236 let ty = tcx.mk_ty_param(p.index, p.name);
237 Some(ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(
238 ty, r_min,
239 )))
240 }
241
242 Component::UnresolvedInferenceVariable(_) => None,
243
244 Component::Projection(_) | Component::EscapingProjection(_) => {
245 // We can probably do more here. This
246 // corresponds to a case like `<T as
247 // Foo<'a>>::U: 'b`.
248 None
249 }
250 })
251 .map(ty::Binder::dummy)
252 .map(|predicate_kind| predicate_kind.to_predicate(tcx))
253 .filter(|&predicate| visited.insert(predicate))
254 .map(|predicate| {
255 predicate_obligation(
256 predicate,
257 obligation.param_env,
258 obligation.cause.clone(),
259 )
260 }),
261 );
262 }
263 ty::PredicateKind::TypeWellFormedFromEnv(..) => {
264 // Nothing to elaborate
265 }
266 }
267 }
268 }
269
270 impl<'tcx> Iterator for Elaborator<'tcx> {
271 type Item = PredicateObligation<'tcx>;
272
273 fn size_hint(&self) -> (usize, Option<usize>) {
274 (self.stack.len(), None)
275 }
276
277 fn next(&mut self) -> Option<Self::Item> {
278 // Extract next item from top-most stack frame, if any.
279 if let Some(obligation) = self.stack.pop() {
280 self.elaborate(&obligation);
281 Some(obligation)
282 } else {
283 None
284 }
285 }
286 }
287
288 ///////////////////////////////////////////////////////////////////////////
289 // Supertrait iterator
290 ///////////////////////////////////////////////////////////////////////////
291
292 pub type Supertraits<'tcx> = FilterToTraits<Elaborator<'tcx>>;
293
294 pub fn supertraits<'tcx>(
295 tcx: TyCtxt<'tcx>,
296 trait_ref: ty::PolyTraitRef<'tcx>,
297 ) -> Supertraits<'tcx> {
298 elaborate_trait_ref(tcx, trait_ref).filter_to_traits()
299 }
300
301 pub fn transitive_bounds<'tcx>(
302 tcx: TyCtxt<'tcx>,
303 bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
304 ) -> Supertraits<'tcx> {
305 elaborate_trait_refs(tcx, bounds).filter_to_traits()
306 }
307
308 /// A specialized variant of `elaborate_trait_refs` that only elaborates trait references that may
309 /// define the given associated type `assoc_name`. It uses the
310 /// `super_predicates_that_define_assoc_type` query to avoid enumerating super-predicates that
311 /// aren't related to `assoc_item`. This is used when resolving types like `Self::Item` or
312 /// `T::Item` and helps to avoid cycle errors (see e.g. #35237).
313 pub fn transitive_bounds_that_define_assoc_type<'tcx>(
314 tcx: TyCtxt<'tcx>,
315 bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
316 assoc_name: Ident,
317 ) -> impl Iterator<Item = ty::PolyTraitRef<'tcx>> {
318 let mut stack: Vec<_> = bounds.collect();
319 let mut visited = FxIndexSet::default();
320
321 std::iter::from_fn(move || {
322 while let Some(trait_ref) = stack.pop() {
323 let anon_trait_ref = tcx.anonymize_late_bound_regions(trait_ref);
324 if visited.insert(anon_trait_ref) {
325 let super_predicates = tcx.super_predicates_that_define_assoc_type((
326 trait_ref.def_id(),
327 Some(assoc_name),
328 ));
329 for (super_predicate, _) in super_predicates.predicates {
330 let subst_predicate = super_predicate.subst_supertrait(tcx, &trait_ref);
331 if let Some(binder) = subst_predicate.to_opt_poly_trait_pred() {
332 stack.push(binder.map_bound(|t| t.trait_ref));
333 }
334 }
335
336 return Some(trait_ref);
337 }
338 }
339
340 return None;
341 })
342 }
343
344 ///////////////////////////////////////////////////////////////////////////
345 // Other
346 ///////////////////////////////////////////////////////////////////////////
347
348 /// A filter around an iterator of predicates that makes it yield up
349 /// just trait references.
350 pub struct FilterToTraits<I> {
351 base_iterator: I,
352 }
353
354 impl<I> FilterToTraits<I> {
355 fn new(base: I) -> FilterToTraits<I> {
356 FilterToTraits { base_iterator: base }
357 }
358 }
359
360 impl<'tcx, I: Iterator<Item = PredicateObligation<'tcx>>> Iterator for FilterToTraits<I> {
361 type Item = ty::PolyTraitRef<'tcx>;
362
363 fn next(&mut self) -> Option<ty::PolyTraitRef<'tcx>> {
364 while let Some(obligation) = self.base_iterator.next() {
365 if let Some(data) = obligation.predicate.to_opt_poly_trait_pred() {
366 return Some(data.map_bound(|t| t.trait_ref));
367 }
368 }
369 None
370 }
371
372 fn size_hint(&self) -> (usize, Option<usize>) {
373 let (_, upper) = self.base_iterator.size_hint();
374 (0, upper)
375 }
376 }