]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_metadata/src/locator.rs
New upstream version 1.55.0+dfsg1
[rustc.git] / compiler / rustc_metadata / src / locator.rs
1 //! Finds crate binaries and loads their metadata
2 //!
3 //! Might I be the first to welcome you to a world of platform differences,
4 //! version requirements, dependency graphs, conflicting desires, and fun! This
5 //! is the major guts (along with metadata::creader) of the compiler for loading
6 //! crates and resolving dependencies. Let's take a tour!
7 //!
8 //! # The problem
9 //!
10 //! Each invocation of the compiler is immediately concerned with one primary
11 //! problem, to connect a set of crates to resolved crates on the filesystem.
12 //! Concretely speaking, the compiler follows roughly these steps to get here:
13 //!
14 //! 1. Discover a set of `extern crate` statements.
15 //! 2. Transform these directives into crate names. If the directive does not
16 //! have an explicit name, then the identifier is the name.
17 //! 3. For each of these crate names, find a corresponding crate on the
18 //! filesystem.
19 //!
20 //! Sounds easy, right? Let's walk into some of the nuances.
21 //!
22 //! ## Transitive Dependencies
23 //!
24 //! Let's say we've got three crates: A, B, and C. A depends on B, and B depends
25 //! on C. When we're compiling A, we primarily need to find and locate B, but we
26 //! also end up needing to find and locate C as well.
27 //!
28 //! The reason for this is that any of B's types could be composed of C's types,
29 //! any function in B could return a type from C, etc. To be able to guarantee
30 //! that we can always type-check/translate any function, we have to have
31 //! complete knowledge of the whole ecosystem, not just our immediate
32 //! dependencies.
33 //!
34 //! So now as part of the "find a corresponding crate on the filesystem" step
35 //! above, this involves also finding all crates for *all upstream
36 //! dependencies*. This includes all dependencies transitively.
37 //!
38 //! ## Rlibs and Dylibs
39 //!
40 //! The compiler has two forms of intermediate dependencies. These are dubbed
41 //! rlibs and dylibs for the static and dynamic variants, respectively. An rlib
42 //! is a rustc-defined file format (currently just an ar archive) while a dylib
43 //! is a platform-defined dynamic library. Each library has a metadata somewhere
44 //! inside of it.
45 //!
46 //! A third kind of dependency is an rmeta file. These are metadata files and do
47 //! not contain any code, etc. To a first approximation, these are treated in the
48 //! same way as rlibs. Where there is both an rlib and an rmeta file, the rlib
49 //! gets priority (even if the rmeta file is newer). An rmeta file is only
50 //! useful for checking a downstream crate, attempting to link one will cause an
51 //! error.
52 //!
53 //! When translating a crate name to a crate on the filesystem, we all of a
54 //! sudden need to take into account both rlibs and dylibs! Linkage later on may
55 //! use either one of these files, as each has their pros/cons. The job of crate
56 //! loading is to discover what's possible by finding all candidates.
57 //!
58 //! Most parts of this loading systems keep the dylib/rlib as just separate
59 //! variables.
60 //!
61 //! ## Where to look?
62 //!
63 //! We can't exactly scan your whole hard drive when looking for dependencies,
64 //! so we need to places to look. Currently the compiler will implicitly add the
65 //! target lib search path ($prefix/lib/rustlib/$target/lib) to any compilation,
66 //! and otherwise all -L flags are added to the search paths.
67 //!
68 //! ## What criterion to select on?
69 //!
70 //! This a pretty tricky area of loading crates. Given a file, how do we know
71 //! whether it's the right crate? Currently, the rules look along these lines:
72 //!
73 //! 1. Does the filename match an rlib/dylib pattern? That is to say, does the
74 //! filename have the right prefix/suffix?
75 //! 2. Does the filename have the right prefix for the crate name being queried?
76 //! This is filtering for files like `libfoo*.rlib` and such. If the crate
77 //! we're looking for was originally compiled with -C extra-filename, the
78 //! extra filename will be included in this prefix to reduce reading
79 //! metadata from crates that would otherwise share our prefix.
80 //! 3. Is the file an actual rust library? This is done by loading the metadata
81 //! from the library and making sure it's actually there.
82 //! 4. Does the name in the metadata agree with the name of the library?
83 //! 5. Does the target in the metadata agree with the current target?
84 //! 6. Does the SVH match? (more on this later)
85 //!
86 //! If the file answers `yes` to all these questions, then the file is
87 //! considered as being *candidate* for being accepted. It is illegal to have
88 //! more than two candidates as the compiler has no method by which to resolve
89 //! this conflict. Additionally, rlib/dylib candidates are considered
90 //! separately.
91 //!
92 //! After all this has happened, we have 1 or two files as candidates. These
93 //! represent the rlib/dylib file found for a library, and they're returned as
94 //! being found.
95 //!
96 //! ### What about versions?
97 //!
98 //! A lot of effort has been put forth to remove versioning from the compiler.
99 //! There have been forays in the past to have versioning baked in, but it was
100 //! largely always deemed insufficient to the point that it was recognized that
101 //! it's probably something the compiler shouldn't do anyway due to its
102 //! complicated nature and the state of the half-baked solutions.
103 //!
104 //! With a departure from versioning, the primary criterion for loading crates
105 //! is just the name of a crate. If we stopped here, it would imply that you
106 //! could never link two crates of the same name from different sources
107 //! together, which is clearly a bad state to be in.
108 //!
109 //! To resolve this problem, we come to the next section!
110 //!
111 //! # Expert Mode
112 //!
113 //! A number of flags have been added to the compiler to solve the "version
114 //! problem" in the previous section, as well as generally enabling more
115 //! powerful usage of the crate loading system of the compiler. The goal of
116 //! these flags and options are to enable third-party tools to drive the
117 //! compiler with prior knowledge about how the world should look.
118 //!
119 //! ## The `--extern` flag
120 //!
121 //! The compiler accepts a flag of this form a number of times:
122 //!
123 //! ```text
124 //! --extern crate-name=path/to/the/crate.rlib
125 //! ```
126 //!
127 //! This flag is basically the following letter to the compiler:
128 //!
129 //! > Dear rustc,
130 //! >
131 //! > When you are attempting to load the immediate dependency `crate-name`, I
132 //! > would like you to assume that the library is located at
133 //! > `path/to/the/crate.rlib`, and look nowhere else. Also, please do not
134 //! > assume that the path I specified has the name `crate-name`.
135 //!
136 //! This flag basically overrides most matching logic except for validating that
137 //! the file is indeed a rust library. The same `crate-name` can be specified
138 //! twice to specify the rlib/dylib pair.
139 //!
140 //! ## Enabling "multiple versions"
141 //!
142 //! This basically boils down to the ability to specify arbitrary packages to
143 //! the compiler. For example, if crate A wanted to use Bv1 and Bv2, then it
144 //! would look something like:
145 //!
146 //! ```compile_fail,E0463
147 //! extern crate b1;
148 //! extern crate b2;
149 //!
150 //! fn main() {}
151 //! ```
152 //!
153 //! and the compiler would be invoked as:
154 //!
155 //! ```text
156 //! rustc a.rs --extern b1=path/to/libb1.rlib --extern b2=path/to/libb2.rlib
157 //! ```
158 //!
159 //! In this scenario there are two crates named `b` and the compiler must be
160 //! manually driven to be informed where each crate is.
161 //!
162 //! ## Frobbing symbols
163 //!
164 //! One of the immediate problems with linking the same library together twice
165 //! in the same problem is dealing with duplicate symbols. The primary way to
166 //! deal with this in rustc is to add hashes to the end of each symbol.
167 //!
168 //! In order to force hashes to change between versions of a library, if
169 //! desired, the compiler exposes an option `-C metadata=foo`, which is used to
170 //! initially seed each symbol hash. The string `foo` is prepended to each
171 //! string-to-hash to ensure that symbols change over time.
172 //!
173 //! ## Loading transitive dependencies
174 //!
175 //! Dealing with same-named-but-distinct crates is not just a local problem, but
176 //! one that also needs to be dealt with for transitive dependencies. Note that
177 //! in the letter above `--extern` flags only apply to the *local* set of
178 //! dependencies, not the upstream transitive dependencies. Consider this
179 //! dependency graph:
180 //!
181 //! ```text
182 //! A.1 A.2
183 //! | |
184 //! | |
185 //! B C
186 //! \ /
187 //! \ /
188 //! D
189 //! ```
190 //!
191 //! In this scenario, when we compile `D`, we need to be able to distinctly
192 //! resolve `A.1` and `A.2`, but an `--extern` flag cannot apply to these
193 //! transitive dependencies.
194 //!
195 //! Note that the key idea here is that `B` and `C` are both *already compiled*.
196 //! That is, they have already resolved their dependencies. Due to unrelated
197 //! technical reasons, when a library is compiled, it is only compatible with
198 //! the *exact same* version of the upstream libraries it was compiled against.
199 //! We use the "Strict Version Hash" to identify the exact copy of an upstream
200 //! library.
201 //!
202 //! With this knowledge, we know that `B` and `C` will depend on `A` with
203 //! different SVH values, so we crawl the normal `-L` paths looking for
204 //! `liba*.rlib` and filter based on the contained SVH.
205 //!
206 //! In the end, this ends up not needing `--extern` to specify upstream
207 //! transitive dependencies.
208 //!
209 //! # Wrapping up
210 //!
211 //! That's the general overview of loading crates in the compiler, but it's by
212 //! no means all of the necessary details. Take a look at the rest of
213 //! metadata::locator or metadata::creader for all the juicy details!
214
215 use crate::creader::Library;
216 use crate::rmeta::{rustc_version, MetadataBlob, METADATA_HEADER};
217
218 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
219 use rustc_data_structures::memmap::Mmap;
220 use rustc_data_structures::owning_ref::OwningRef;
221 use rustc_data_structures::svh::Svh;
222 use rustc_data_structures::sync::MetadataRef;
223 use rustc_errors::struct_span_err;
224 use rustc_middle::middle::cstore::{CrateSource, MetadataLoader};
225 use rustc_session::config::{self, CrateType};
226 use rustc_session::filesearch::{FileDoesntMatch, FileMatches, FileSearch};
227 use rustc_session::search_paths::PathKind;
228 use rustc_session::utils::CanonicalizedPath;
229 use rustc_session::{Session, StableCrateId};
230 use rustc_span::symbol::{sym, Symbol};
231 use rustc_span::Span;
232 use rustc_target::spec::{Target, TargetTriple};
233
234 use snap::read::FrameDecoder;
235 use std::io::{Read, Result as IoResult, Write};
236 use std::path::{Path, PathBuf};
237 use std::{cmp, fmt, fs};
238 use tracing::{debug, info, warn};
239
240 #[derive(Clone)]
241 crate struct CrateLocator<'a> {
242 // Immutable per-session configuration.
243 sess: &'a Session,
244 metadata_loader: &'a dyn MetadataLoader,
245
246 // Immutable per-search configuration.
247 crate_name: Symbol,
248 exact_paths: Vec<CanonicalizedPath>,
249 pub hash: Option<Svh>,
250 pub host_hash: Option<Svh>,
251 extra_filename: Option<&'a str>,
252 pub target: &'a Target,
253 pub triple: TargetTriple,
254 pub filesearch: FileSearch<'a>,
255 root: Option<&'a CratePaths>,
256 pub is_proc_macro: Option<bool>,
257
258 // Mutable in-progress state or output.
259 rejected_via_hash: Vec<CrateMismatch>,
260 rejected_via_triple: Vec<CrateMismatch>,
261 rejected_via_kind: Vec<CrateMismatch>,
262 rejected_via_version: Vec<CrateMismatch>,
263 rejected_via_filename: Vec<CrateMismatch>,
264 }
265
266 #[derive(Clone)]
267 crate struct CratePaths {
268 name: Symbol,
269 source: CrateSource,
270 }
271
272 impl CratePaths {
273 crate fn new(name: Symbol, source: CrateSource) -> CratePaths {
274 CratePaths { name, source }
275 }
276 }
277
278 #[derive(Copy, Clone, PartialEq)]
279 crate enum CrateFlavor {
280 Rlib,
281 Rmeta,
282 Dylib,
283 }
284
285 impl fmt::Display for CrateFlavor {
286 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
287 f.write_str(match *self {
288 CrateFlavor::Rlib => "rlib",
289 CrateFlavor::Rmeta => "rmeta",
290 CrateFlavor::Dylib => "dylib",
291 })
292 }
293 }
294
295 impl<'a> CrateLocator<'a> {
296 crate fn new(
297 sess: &'a Session,
298 metadata_loader: &'a dyn MetadataLoader,
299 crate_name: Symbol,
300 hash: Option<Svh>,
301 host_hash: Option<Svh>,
302 extra_filename: Option<&'a str>,
303 is_host: bool,
304 path_kind: PathKind,
305 root: Option<&'a CratePaths>,
306 is_proc_macro: Option<bool>,
307 ) -> CrateLocator<'a> {
308 CrateLocator {
309 sess,
310 metadata_loader,
311 crate_name,
312 exact_paths: if hash.is_none() {
313 sess.opts
314 .externs
315 .get(&crate_name.as_str())
316 .into_iter()
317 .filter_map(|entry| entry.files())
318 .flatten()
319 .cloned()
320 .collect()
321 } else {
322 // SVH being specified means this is a transitive dependency,
323 // so `--extern` options do not apply.
324 Vec::new()
325 },
326 hash,
327 host_hash,
328 extra_filename,
329 target: if is_host { &sess.host } else { &sess.target },
330 triple: if is_host {
331 TargetTriple::from_triple(config::host_triple())
332 } else {
333 sess.opts.target_triple.clone()
334 },
335 filesearch: if is_host {
336 sess.host_filesearch(path_kind)
337 } else {
338 sess.target_filesearch(path_kind)
339 },
340 root,
341 is_proc_macro,
342 rejected_via_hash: Vec::new(),
343 rejected_via_triple: Vec::new(),
344 rejected_via_kind: Vec::new(),
345 rejected_via_version: Vec::new(),
346 rejected_via_filename: Vec::new(),
347 }
348 }
349
350 crate fn reset(&mut self) {
351 self.rejected_via_hash.clear();
352 self.rejected_via_triple.clear();
353 self.rejected_via_kind.clear();
354 self.rejected_via_version.clear();
355 self.rejected_via_filename.clear();
356 }
357
358 crate fn maybe_load_library_crate(&mut self) -> Result<Option<Library>, CrateError> {
359 if !self.exact_paths.is_empty() {
360 return self.find_commandline_library();
361 }
362 let mut seen_paths = FxHashSet::default();
363 if let Some(extra_filename) = self.extra_filename {
364 if let library @ Some(_) = self.find_library_crate(extra_filename, &mut seen_paths)? {
365 return Ok(library);
366 }
367 }
368 self.find_library_crate("", &mut seen_paths)
369 }
370
371 fn find_library_crate(
372 &mut self,
373 extra_prefix: &str,
374 seen_paths: &mut FxHashSet<PathBuf>,
375 ) -> Result<Option<Library>, CrateError> {
376 // want: crate_name.dir_part() + prefix + crate_name.file_part + "-"
377 let dylib_prefix = format!("{}{}{}", self.target.dll_prefix, self.crate_name, extra_prefix);
378 let rlib_prefix = format!("lib{}{}", self.crate_name, extra_prefix);
379 let staticlib_prefix =
380 format!("{}{}{}", self.target.staticlib_prefix, self.crate_name, extra_prefix);
381
382 let mut candidates: FxHashMap<_, (FxHashMap<_, _>, FxHashMap<_, _>, FxHashMap<_, _>)> =
383 Default::default();
384 let mut staticlibs = vec![];
385
386 // First, find all possible candidate rlibs and dylibs purely based on
387 // the name of the files themselves. We're trying to match against an
388 // exact crate name and a possibly an exact hash.
389 //
390 // During this step, we can filter all found libraries based on the
391 // name and id found in the crate id (we ignore the path portion for
392 // filename matching), as well as the exact hash (if specified). If we
393 // end up having many candidates, we must look at the metadata to
394 // perform exact matches against hashes/crate ids. Note that opening up
395 // the metadata is where we do an exact match against the full contents
396 // of the crate id (path/name/id).
397 //
398 // The goal of this step is to look at as little metadata as possible.
399 self.filesearch.search(|spf, kind| {
400 let file = match &spf.file_name_str {
401 None => return FileDoesntMatch,
402 Some(file) => file,
403 };
404 let (hash, found_kind) = if file.starts_with(&rlib_prefix) && file.ends_with(".rlib") {
405 (&file[(rlib_prefix.len())..(file.len() - ".rlib".len())], CrateFlavor::Rlib)
406 } else if file.starts_with(&rlib_prefix) && file.ends_with(".rmeta") {
407 (&file[(rlib_prefix.len())..(file.len() - ".rmeta".len())], CrateFlavor::Rmeta)
408 } else if file.starts_with(&dylib_prefix) && file.ends_with(&self.target.dll_suffix) {
409 (
410 &file[(dylib_prefix.len())..(file.len() - self.target.dll_suffix.len())],
411 CrateFlavor::Dylib,
412 )
413 } else {
414 if file.starts_with(&staticlib_prefix)
415 && file.ends_with(&self.target.staticlib_suffix)
416 {
417 staticlibs
418 .push(CrateMismatch { path: spf.path.clone(), got: "static".to_string() });
419 }
420 return FileDoesntMatch;
421 };
422
423 info!("lib candidate: {}", spf.path.display());
424
425 let (rlibs, rmetas, dylibs) = candidates.entry(hash.to_string()).or_default();
426 let path = fs::canonicalize(&spf.path).unwrap_or_else(|_| spf.path.clone());
427 if seen_paths.contains(&path) {
428 return FileDoesntMatch;
429 };
430 seen_paths.insert(path.clone());
431 match found_kind {
432 CrateFlavor::Rlib => rlibs.insert(path, kind),
433 CrateFlavor::Rmeta => rmetas.insert(path, kind),
434 CrateFlavor::Dylib => dylibs.insert(path, kind),
435 };
436 FileMatches
437 });
438 self.rejected_via_kind.extend(staticlibs);
439
440 // We have now collected all known libraries into a set of candidates
441 // keyed of the filename hash listed. For each filename, we also have a
442 // list of rlibs/dylibs that apply. Here, we map each of these lists
443 // (per hash), to a Library candidate for returning.
444 //
445 // A Library candidate is created if the metadata for the set of
446 // libraries corresponds to the crate id and hash criteria that this
447 // search is being performed for.
448 let mut libraries = FxHashMap::default();
449 for (_hash, (rlibs, rmetas, dylibs)) in candidates {
450 if let Some((svh, lib)) = self.extract_lib(rlibs, rmetas, dylibs)? {
451 libraries.insert(svh, lib);
452 }
453 }
454
455 // Having now translated all relevant found hashes into libraries, see
456 // what we've got and figure out if we found multiple candidates for
457 // libraries or not.
458 match libraries.len() {
459 0 => Ok(None),
460 1 => Ok(Some(libraries.into_iter().next().unwrap().1)),
461 _ => Err(CrateError::MultipleMatchingCrates(self.crate_name, libraries)),
462 }
463 }
464
465 fn extract_lib(
466 &mut self,
467 rlibs: FxHashMap<PathBuf, PathKind>,
468 rmetas: FxHashMap<PathBuf, PathKind>,
469 dylibs: FxHashMap<PathBuf, PathKind>,
470 ) -> Result<Option<(Svh, Library)>, CrateError> {
471 let mut slot = None;
472 // Order here matters, rmeta should come first. See comment in
473 // `extract_one` below.
474 let source = CrateSource {
475 rmeta: self.extract_one(rmetas, CrateFlavor::Rmeta, &mut slot)?,
476 rlib: self.extract_one(rlibs, CrateFlavor::Rlib, &mut slot)?,
477 dylib: self.extract_one(dylibs, CrateFlavor::Dylib, &mut slot)?,
478 };
479 Ok(slot.map(|(svh, metadata)| (svh, Library { source, metadata })))
480 }
481
482 fn needs_crate_flavor(&self, flavor: CrateFlavor) -> bool {
483 if flavor == CrateFlavor::Dylib && self.is_proc_macro == Some(true) {
484 return true;
485 }
486
487 // The all loop is because `--crate-type=rlib --crate-type=rlib` is
488 // legal and produces both inside this type.
489 let is_rlib = self.sess.crate_types().iter().all(|c| *c == CrateType::Rlib);
490 let needs_object_code = self.sess.opts.output_types.should_codegen();
491 // If we're producing an rlib, then we don't need object code.
492 // Or, if we're not producing object code, then we don't need it either
493 // (e.g., if we're a cdylib but emitting just metadata).
494 if is_rlib || !needs_object_code {
495 flavor == CrateFlavor::Rmeta
496 } else {
497 // we need all flavors (perhaps not true, but what we do for now)
498 true
499 }
500 }
501
502 // Attempts to extract *one* library from the set `m`. If the set has no
503 // elements, `None` is returned. If the set has more than one element, then
504 // the errors and notes are emitted about the set of libraries.
505 //
506 // With only one library in the set, this function will extract it, and then
507 // read the metadata from it if `*slot` is `None`. If the metadata couldn't
508 // be read, it is assumed that the file isn't a valid rust library (no
509 // errors are emitted).
510 fn extract_one(
511 &mut self,
512 m: FxHashMap<PathBuf, PathKind>,
513 flavor: CrateFlavor,
514 slot: &mut Option<(Svh, MetadataBlob)>,
515 ) -> Result<Option<(PathBuf, PathKind)>, CrateError> {
516 // If we are producing an rlib, and we've already loaded metadata, then
517 // we should not attempt to discover further crate sources (unless we're
518 // locating a proc macro; exact logic is in needs_crate_flavor). This means
519 // that under -Zbinary-dep-depinfo we will not emit a dependency edge on
520 // the *unused* rlib, and by returning `None` here immediately we
521 // guarantee that we do indeed not use it.
522 //
523 // See also #68149 which provides more detail on why emitting the
524 // dependency on the rlib is a bad thing.
525 //
526 // We currently do not verify that these other sources are even in sync,
527 // and this is arguably a bug (see #10786), but because reading metadata
528 // is quite slow (especially from dylibs) we currently do not read it
529 // from the other crate sources.
530 if slot.is_some() {
531 if m.is_empty() || !self.needs_crate_flavor(flavor) {
532 return Ok(None);
533 } else if m.len() == 1 {
534 return Ok(Some(m.into_iter().next().unwrap()));
535 }
536 }
537
538 let mut ret: Option<(PathBuf, PathKind)> = None;
539 let mut err_data: Option<Vec<PathBuf>> = None;
540 for (lib, kind) in m {
541 info!("{} reading metadata from: {}", flavor, lib.display());
542 let (hash, metadata) =
543 match get_metadata_section(self.target, flavor, &lib, self.metadata_loader) {
544 Ok(blob) => {
545 if let Some(h) = self.crate_matches(&blob, &lib) {
546 (h, blob)
547 } else {
548 info!("metadata mismatch");
549 continue;
550 }
551 }
552 Err(err) => {
553 warn!("no metadata found: {}", err);
554 continue;
555 }
556 };
557 // If we see multiple hashes, emit an error about duplicate candidates.
558 if slot.as_ref().map_or(false, |s| s.0 != hash) {
559 if let Some(candidates) = err_data {
560 return Err(CrateError::MultipleCandidates(
561 self.crate_name,
562 flavor,
563 candidates,
564 ));
565 }
566 err_data = Some(vec![ret.as_ref().unwrap().0.clone()]);
567 *slot = None;
568 }
569 if let Some(candidates) = &mut err_data {
570 candidates.push(lib);
571 continue;
572 }
573
574 // Ok so at this point we've determined that `(lib, kind)` above is
575 // a candidate crate to load, and that `slot` is either none (this
576 // is the first crate of its kind) or if some the previous path has
577 // the exact same hash (e.g., it's the exact same crate).
578 //
579 // In principle these two candidate crates are exactly the same so
580 // we can choose either of them to link. As a stupidly gross hack,
581 // however, we favor crate in the sysroot.
582 //
583 // You can find more info in rust-lang/rust#39518 and various linked
584 // issues, but the general gist is that during testing libstd the
585 // compilers has two candidates to choose from: one in the sysroot
586 // and one in the deps folder. These two crates are the exact same
587 // crate but if the compiler chooses the one in the deps folder
588 // it'll cause spurious errors on Windows.
589 //
590 // As a result, we favor the sysroot crate here. Note that the
591 // candidates are all canonicalized, so we canonicalize the sysroot
592 // as well.
593 if let Some((prev, _)) = &ret {
594 let sysroot = &self.sess.sysroot;
595 let sysroot = sysroot.canonicalize().unwrap_or_else(|_| sysroot.to_path_buf());
596 if prev.starts_with(&sysroot) {
597 continue;
598 }
599 }
600 *slot = Some((hash, metadata));
601 ret = Some((lib, kind));
602 }
603
604 if let Some(candidates) = err_data {
605 Err(CrateError::MultipleCandidates(self.crate_name, flavor, candidates))
606 } else {
607 Ok(ret)
608 }
609 }
610
611 fn crate_matches(&mut self, metadata: &MetadataBlob, libpath: &Path) -> Option<Svh> {
612 let rustc_version = rustc_version();
613 let found_version = metadata.get_rustc_version();
614 if found_version != rustc_version {
615 info!("Rejecting via version: expected {} got {}", rustc_version, found_version);
616 self.rejected_via_version
617 .push(CrateMismatch { path: libpath.to_path_buf(), got: found_version });
618 return None;
619 }
620
621 let root = metadata.get_root();
622 if let Some(expected_is_proc_macro) = self.is_proc_macro {
623 let is_proc_macro = root.is_proc_macro_crate();
624 if is_proc_macro != expected_is_proc_macro {
625 info!(
626 "Rejecting via proc macro: expected {} got {}",
627 expected_is_proc_macro, is_proc_macro
628 );
629 return None;
630 }
631 }
632
633 if self.exact_paths.is_empty() && self.crate_name != root.name() {
634 info!("Rejecting via crate name");
635 return None;
636 }
637
638 if root.triple() != &self.triple {
639 info!("Rejecting via crate triple: expected {} got {}", self.triple, root.triple());
640 self.rejected_via_triple.push(CrateMismatch {
641 path: libpath.to_path_buf(),
642 got: root.triple().to_string(),
643 });
644 return None;
645 }
646
647 let hash = root.hash();
648 if let Some(expected_hash) = self.hash {
649 if hash != expected_hash {
650 info!("Rejecting via hash: expected {} got {}", expected_hash, hash);
651 self.rejected_via_hash
652 .push(CrateMismatch { path: libpath.to_path_buf(), got: hash.to_string() });
653 return None;
654 }
655 }
656
657 Some(hash)
658 }
659
660 fn find_commandline_library(&mut self) -> Result<Option<Library>, CrateError> {
661 // First, filter out all libraries that look suspicious. We only accept
662 // files which actually exist that have the correct naming scheme for
663 // rlibs/dylibs.
664 let mut rlibs = FxHashMap::default();
665 let mut rmetas = FxHashMap::default();
666 let mut dylibs = FxHashMap::default();
667 for loc in &self.exact_paths {
668 if !loc.canonicalized().exists() {
669 return Err(CrateError::ExternLocationNotExist(
670 self.crate_name,
671 loc.original().clone(),
672 ));
673 }
674 let file = match loc.original().file_name().and_then(|s| s.to_str()) {
675 Some(file) => file,
676 None => {
677 return Err(CrateError::ExternLocationNotFile(
678 self.crate_name,
679 loc.original().clone(),
680 ));
681 }
682 };
683
684 if file.starts_with("lib") && (file.ends_with(".rlib") || file.ends_with(".rmeta"))
685 || file.starts_with(&self.target.dll_prefix)
686 && file.ends_with(&self.target.dll_suffix)
687 {
688 // Make sure there's at most one rlib and at most one dylib.
689 // Note to take care and match against the non-canonicalized name:
690 // some systems save build artifacts into content-addressed stores
691 // that do not preserve extensions, and then link to them using
692 // e.g. symbolic links. If we canonicalize too early, we resolve
693 // the symlink, the file type is lost and we might treat rlibs and
694 // rmetas as dylibs.
695 let loc_canon = loc.canonicalized().clone();
696 let loc = loc.original();
697 if loc.file_name().unwrap().to_str().unwrap().ends_with(".rlib") {
698 rlibs.insert(loc_canon, PathKind::ExternFlag);
699 } else if loc.file_name().unwrap().to_str().unwrap().ends_with(".rmeta") {
700 rmetas.insert(loc_canon, PathKind::ExternFlag);
701 } else {
702 dylibs.insert(loc_canon, PathKind::ExternFlag);
703 }
704 } else {
705 self.rejected_via_filename
706 .push(CrateMismatch { path: loc.original().clone(), got: String::new() });
707 }
708 }
709
710 // Extract the dylib/rlib/rmeta triple.
711 Ok(self.extract_lib(rlibs, rmetas, dylibs)?.map(|(_, lib)| lib))
712 }
713
714 crate fn into_error(self) -> CrateError {
715 CrateError::LocatorCombined(CombinedLocatorError {
716 crate_name: self.crate_name,
717 root: self.root.cloned(),
718 triple: self.triple,
719 dll_prefix: self.target.dll_prefix.clone(),
720 dll_suffix: self.target.dll_suffix.clone(),
721 rejected_via_hash: self.rejected_via_hash,
722 rejected_via_triple: self.rejected_via_triple,
723 rejected_via_kind: self.rejected_via_kind,
724 rejected_via_version: self.rejected_via_version,
725 rejected_via_filename: self.rejected_via_filename,
726 })
727 }
728 }
729
730 fn get_metadata_section(
731 target: &Target,
732 flavor: CrateFlavor,
733 filename: &Path,
734 loader: &dyn MetadataLoader,
735 ) -> Result<MetadataBlob, String> {
736 if !filename.exists() {
737 return Err(format!("no such file: '{}'", filename.display()));
738 }
739 let raw_bytes: MetadataRef = match flavor {
740 CrateFlavor::Rlib => loader.get_rlib_metadata(target, filename)?,
741 CrateFlavor::Dylib => {
742 let buf = loader.get_dylib_metadata(target, filename)?;
743 // The header is uncompressed
744 let header_len = METADATA_HEADER.len();
745 debug!("checking {} bytes of metadata-version stamp", header_len);
746 let header = &buf[..cmp::min(header_len, buf.len())];
747 if header != METADATA_HEADER {
748 return Err(format!(
749 "incompatible metadata version found: '{}'",
750 filename.display()
751 ));
752 }
753
754 // Header is okay -> inflate the actual metadata
755 let compressed_bytes = &buf[header_len..];
756 debug!("inflating {} bytes of compressed metadata", compressed_bytes.len());
757 let mut inflated = Vec::new();
758 match FrameDecoder::new(compressed_bytes).read_to_end(&mut inflated) {
759 Ok(_) => rustc_erase_owner!(OwningRef::new(inflated).map_owner_box()),
760 Err(_) => {
761 return Err(format!("failed to decompress metadata: {}", filename.display()));
762 }
763 }
764 }
765 CrateFlavor::Rmeta => {
766 // mmap the file, because only a small fraction of it is read.
767 let file = std::fs::File::open(filename)
768 .map_err(|_| format!("failed to open rmeta metadata: '{}'", filename.display()))?;
769 let mmap = unsafe { Mmap::map(file) };
770 let mmap = mmap
771 .map_err(|_| format!("failed to mmap rmeta metadata: '{}'", filename.display()))?;
772
773 rustc_erase_owner!(OwningRef::new(mmap).map_owner_box())
774 }
775 };
776 let blob = MetadataBlob::new(raw_bytes);
777 if blob.is_compatible() {
778 Ok(blob)
779 } else {
780 Err(format!("incompatible metadata version found: '{}'", filename.display()))
781 }
782 }
783
784 /// Look for a plugin registrar. Returns its library path and crate disambiguator.
785 pub fn find_plugin_registrar(
786 sess: &Session,
787 metadata_loader: &dyn MetadataLoader,
788 span: Span,
789 name: Symbol,
790 ) -> (PathBuf, StableCrateId) {
791 match find_plugin_registrar_impl(sess, metadata_loader, name) {
792 Ok(res) => res,
793 // `core` is always available if we got as far as loading plugins.
794 Err(err) => err.report(sess, span, false),
795 }
796 }
797
798 fn find_plugin_registrar_impl<'a>(
799 sess: &'a Session,
800 metadata_loader: &dyn MetadataLoader,
801 name: Symbol,
802 ) -> Result<(PathBuf, StableCrateId), CrateError> {
803 info!("find plugin registrar `{}`", name);
804 let mut locator = CrateLocator::new(
805 sess,
806 metadata_loader,
807 name,
808 None, // hash
809 None, // host_hash
810 None, // extra_filename
811 true, // is_host
812 PathKind::Crate,
813 None, // root
814 None, // is_proc_macro
815 );
816
817 match locator.maybe_load_library_crate()? {
818 Some(library) => match library.source.dylib {
819 Some(dylib) => Ok((dylib.0, library.metadata.get_root().stable_crate_id())),
820 None => Err(CrateError::NonDylibPlugin(name)),
821 },
822 None => Err(locator.into_error()),
823 }
824 }
825
826 /// A diagnostic function for dumping crate metadata to an output stream.
827 pub fn list_file_metadata(
828 target: &Target,
829 path: &Path,
830 metadata_loader: &dyn MetadataLoader,
831 out: &mut dyn Write,
832 ) -> IoResult<()> {
833 let filename = path.file_name().unwrap().to_str().unwrap();
834 let flavor = if filename.ends_with(".rlib") {
835 CrateFlavor::Rlib
836 } else if filename.ends_with(".rmeta") {
837 CrateFlavor::Rmeta
838 } else {
839 CrateFlavor::Dylib
840 };
841 match get_metadata_section(target, flavor, path, metadata_loader) {
842 Ok(metadata) => metadata.list_crate_metadata(out),
843 Err(msg) => write!(out, "{}\n", msg),
844 }
845 }
846
847 // ------------------------------------------ Error reporting -------------------------------------
848
849 #[derive(Clone)]
850 struct CrateMismatch {
851 path: PathBuf,
852 got: String,
853 }
854
855 /// Candidate rejection reasons collected during crate search.
856 /// If no candidate is accepted, then these reasons are presented to the user,
857 /// otherwise they are ignored.
858 crate struct CombinedLocatorError {
859 crate_name: Symbol,
860 root: Option<CratePaths>,
861 triple: TargetTriple,
862 dll_prefix: String,
863 dll_suffix: String,
864 rejected_via_hash: Vec<CrateMismatch>,
865 rejected_via_triple: Vec<CrateMismatch>,
866 rejected_via_kind: Vec<CrateMismatch>,
867 rejected_via_version: Vec<CrateMismatch>,
868 rejected_via_filename: Vec<CrateMismatch>,
869 }
870
871 crate enum CrateError {
872 NonAsciiName(Symbol),
873 ExternLocationNotExist(Symbol, PathBuf),
874 ExternLocationNotFile(Symbol, PathBuf),
875 MultipleCandidates(Symbol, CrateFlavor, Vec<PathBuf>),
876 MultipleMatchingCrates(Symbol, FxHashMap<Svh, Library>),
877 SymbolConflictsCurrent(Symbol),
878 SymbolConflictsOthers(Symbol),
879 StableCrateIdCollision(Symbol, Symbol),
880 DlOpen(String),
881 DlSym(String),
882 LocatorCombined(CombinedLocatorError),
883 NonDylibPlugin(Symbol),
884 }
885
886 impl CrateError {
887 crate fn report(self, sess: &Session, span: Span, missing_core: bool) -> ! {
888 let mut err = match self {
889 CrateError::NonAsciiName(crate_name) => sess.struct_span_err(
890 span,
891 &format!("cannot load a crate with a non-ascii name `{}`", crate_name),
892 ),
893 CrateError::ExternLocationNotExist(crate_name, loc) => sess.struct_span_err(
894 span,
895 &format!("extern location for {} does not exist: {}", crate_name, loc.display()),
896 ),
897 CrateError::ExternLocationNotFile(crate_name, loc) => sess.struct_span_err(
898 span,
899 &format!("extern location for {} is not a file: {}", crate_name, loc.display()),
900 ),
901 CrateError::MultipleCandidates(crate_name, flavor, candidates) => {
902 let mut err = struct_span_err!(
903 sess,
904 span,
905 E0465,
906 "multiple {} candidates for `{}` found",
907 flavor,
908 crate_name,
909 );
910 for (i, candidate) in candidates.iter().enumerate() {
911 err.span_note(span, &format!("candidate #{}: {}", i + 1, candidate.display()));
912 }
913 err
914 }
915 CrateError::MultipleMatchingCrates(crate_name, libraries) => {
916 let mut err = struct_span_err!(
917 sess,
918 span,
919 E0464,
920 "multiple matching crates for `{}`",
921 crate_name
922 );
923 let candidates = libraries
924 .iter()
925 .filter_map(|(_, lib)| {
926 let crate_name = &lib.metadata.get_root().name().as_str();
927 match (&lib.source.dylib, &lib.source.rlib) {
928 (Some((pd, _)), Some((pr, _))) => Some(format!(
929 "\ncrate `{}`: {}\n{:>padding$}",
930 crate_name,
931 pd.display(),
932 pr.display(),
933 padding = 8 + crate_name.len()
934 )),
935 (Some((p, _)), None) | (None, Some((p, _))) => {
936 Some(format!("\ncrate `{}`: {}", crate_name, p.display()))
937 }
938 (None, None) => None,
939 }
940 })
941 .collect::<String>();
942 err.note(&format!("candidates:{}", candidates));
943 err
944 }
945 CrateError::SymbolConflictsCurrent(root_name) => struct_span_err!(
946 sess,
947 span,
948 E0519,
949 "the current crate is indistinguishable from one of its dependencies: it has the \
950 same crate-name `{}` and was compiled with the same `-C metadata` arguments. \
951 This will result in symbol conflicts between the two.",
952 root_name,
953 ),
954 CrateError::SymbolConflictsOthers(root_name) => struct_span_err!(
955 sess,
956 span,
957 E0523,
958 "found two different crates with name `{}` that are not distinguished by differing \
959 `-C metadata`. This will result in symbol conflicts between the two.",
960 root_name,
961 ),
962 CrateError::StableCrateIdCollision(crate_name0, crate_name1) => {
963 let msg = format!(
964 "found crates (`{}` and `{}`) with colliding StableCrateId values.",
965 crate_name0, crate_name1
966 );
967 sess.struct_span_err(span, &msg)
968 }
969 CrateError::DlOpen(s) | CrateError::DlSym(s) => sess.struct_span_err(span, &s),
970 CrateError::LocatorCombined(locator) => {
971 let crate_name = locator.crate_name;
972 let add = match &locator.root {
973 None => String::new(),
974 Some(r) => format!(" which `{}` depends on", r.name),
975 };
976 let mut msg = "the following crate versions were found:".to_string();
977 let mut err = if !locator.rejected_via_hash.is_empty() {
978 let mut err = struct_span_err!(
979 sess,
980 span,
981 E0460,
982 "found possibly newer version of crate `{}`{}",
983 crate_name,
984 add,
985 );
986 err.note("perhaps that crate needs to be recompiled?");
987 let mismatches = locator.rejected_via_hash.iter();
988 for CrateMismatch { path, .. } in mismatches {
989 msg.push_str(&format!("\ncrate `{}`: {}", crate_name, path.display()));
990 }
991 if let Some(r) = locator.root {
992 for path in r.source.paths() {
993 msg.push_str(&format!("\ncrate `{}`: {}", r.name, path.display()));
994 }
995 }
996 err.note(&msg);
997 err
998 } else if !locator.rejected_via_triple.is_empty() {
999 let mut err = struct_span_err!(
1000 sess,
1001 span,
1002 E0461,
1003 "couldn't find crate `{}` with expected target triple {}{}",
1004 crate_name,
1005 locator.triple,
1006 add,
1007 );
1008 let mismatches = locator.rejected_via_triple.iter();
1009 for CrateMismatch { path, got } in mismatches {
1010 msg.push_str(&format!(
1011 "\ncrate `{}`, target triple {}: {}",
1012 crate_name,
1013 got,
1014 path.display(),
1015 ));
1016 }
1017 err.note(&msg);
1018 err
1019 } else if !locator.rejected_via_kind.is_empty() {
1020 let mut err = struct_span_err!(
1021 sess,
1022 span,
1023 E0462,
1024 "found staticlib `{}` instead of rlib or dylib{}",
1025 crate_name,
1026 add,
1027 );
1028 err.help("please recompile that crate using --crate-type lib");
1029 let mismatches = locator.rejected_via_kind.iter();
1030 for CrateMismatch { path, .. } in mismatches {
1031 msg.push_str(&format!("\ncrate `{}`: {}", crate_name, path.display()));
1032 }
1033 err.note(&msg);
1034 err
1035 } else if !locator.rejected_via_version.is_empty() {
1036 let mut err = struct_span_err!(
1037 sess,
1038 span,
1039 E0514,
1040 "found crate `{}` compiled by an incompatible version of rustc{}",
1041 crate_name,
1042 add,
1043 );
1044 err.help(&format!(
1045 "please recompile that crate using this compiler ({})",
1046 rustc_version(),
1047 ));
1048 let mismatches = locator.rejected_via_version.iter();
1049 for CrateMismatch { path, got } in mismatches {
1050 msg.push_str(&format!(
1051 "\ncrate `{}` compiled by {}: {}",
1052 crate_name,
1053 got,
1054 path.display(),
1055 ));
1056 }
1057 err.note(&msg);
1058 err
1059 } else {
1060 let mut err = struct_span_err!(
1061 sess,
1062 span,
1063 E0463,
1064 "can't find crate for `{}`{}",
1065 crate_name,
1066 add,
1067 );
1068
1069 if (crate_name == sym::std || crate_name == sym::core)
1070 && locator.triple != TargetTriple::from_triple(config::host_triple())
1071 {
1072 if missing_core {
1073 err.note(&format!(
1074 "the `{}` target may not be installed",
1075 locator.triple
1076 ));
1077 } else {
1078 err.note(&format!(
1079 "the `{}` target may not support the standard library",
1080 locator.triple
1081 ));
1082 }
1083 if missing_core && std::env::var("RUSTUP_HOME").is_ok() {
1084 err.help(&format!(
1085 "consider downloading the target with `rustup target add {}`",
1086 locator.triple
1087 ));
1088 }
1089 // Suggest using #![no_std]. #[no_core] is unstable and not really supported anyway.
1090 // NOTE: this is a dummy span if `extern crate std` was injected by the compiler.
1091 // If it's not a dummy, that means someone added `extern crate std` explicitly and `#![no_std]` won't help.
1092 if !missing_core && span.is_dummy() {
1093 let current_crate =
1094 sess.opts.crate_name.as_deref().unwrap_or("<unknown>");
1095 err.note(&format!(
1096 "`std` is required by `{}` because it does not declare `#![no_std]`",
1097 current_crate
1098 ));
1099 }
1100 if sess.is_nightly_build() && std::env::var("CARGO").is_ok() {
1101 err.help("consider building the standard library from source with `cargo build -Zbuild-std`");
1102 }
1103 } else if Some(crate_name)
1104 == sess.opts.debugging_opts.profiler_runtime.as_deref().map(Symbol::intern)
1105 {
1106 err.note(&"the compiler may have been built without the profiler runtime");
1107 }
1108 err.span_label(span, "can't find crate");
1109 err
1110 };
1111
1112 if !locator.rejected_via_filename.is_empty() {
1113 let mismatches = locator.rejected_via_filename.iter();
1114 for CrateMismatch { path, .. } in mismatches {
1115 err.note(&format!(
1116 "extern location for {} is of an unknown type: {}",
1117 crate_name,
1118 path.display(),
1119 ))
1120 .help(&format!(
1121 "file name should be lib*.rlib or {}*.{}",
1122 locator.dll_prefix, locator.dll_suffix
1123 ));
1124 }
1125 }
1126 err
1127 }
1128 CrateError::NonDylibPlugin(crate_name) => struct_span_err!(
1129 sess,
1130 span,
1131 E0457,
1132 "plugin `{}` only found in rlib format, but must be available in dylib format",
1133 crate_name,
1134 ),
1135 };
1136
1137 err.emit();
1138 sess.abort_if_errors();
1139 unreachable!();
1140 }
1141 }