]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_metadata/src/rmeta/encoder.rs
New upstream version 1.56.0~beta.4+dfsg1
[rustc.git] / compiler / rustc_metadata / src / rmeta / encoder.rs
1 use crate::rmeta::table::{FixedSizeEncoding, TableBuilder};
2 use crate::rmeta::*;
3
4 use rustc_data_structures::fx::{FxHashMap, FxIndexSet};
5 use rustc_data_structures::stable_hasher::StableHasher;
6 use rustc_data_structures::sync::{join, par_iter, Lrc, ParallelIterator};
7 use rustc_hir as hir;
8 use rustc_hir::def::{CtorOf, DefKind};
9 use rustc_hir::def_id::{
10 CrateNum, DefId, DefIndex, LocalDefId, CRATE_DEF_ID, CRATE_DEF_INDEX, LOCAL_CRATE,
11 };
12 use rustc_hir::definitions::DefPathData;
13 use rustc_hir::intravisit::{self, NestedVisitorMap, Visitor};
14 use rustc_hir::itemlikevisit::ItemLikeVisitor;
15 use rustc_hir::lang_items;
16 use rustc_hir::{AnonConst, GenericParamKind};
17 use rustc_index::bit_set::GrowableBitSet;
18 use rustc_index::vec::Idx;
19 use rustc_middle::hir::map::Map;
20 use rustc_middle::middle::cstore::{EncodedMetadata, ForeignModule, LinkagePreference, NativeLib};
21 use rustc_middle::middle::dependency_format::Linkage;
22 use rustc_middle::middle::exported_symbols::{
23 metadata_symbol_name, ExportedSymbol, SymbolExportLevel,
24 };
25 use rustc_middle::mir::interpret;
26 use rustc_middle::traits::specialization_graph;
27 use rustc_middle::ty::codec::TyEncoder;
28 use rustc_middle::ty::{self, SymbolName, Ty, TyCtxt};
29 use rustc_serialize::{opaque, Encodable, Encoder};
30 use rustc_session::config::CrateType;
31 use rustc_span::symbol::{sym, Ident, Symbol};
32 use rustc_span::{self, ExternalSource, FileName, SourceFile, Span, SyntaxContext};
33 use rustc_span::{
34 hygiene::{ExpnIndex, HygieneEncodeContext, MacroKind},
35 RealFileName,
36 };
37 use rustc_target::abi::VariantIdx;
38 use std::hash::Hash;
39 use std::num::NonZeroUsize;
40 use std::path::Path;
41 use tracing::{debug, trace};
42
43 pub(super) struct EncodeContext<'a, 'tcx> {
44 opaque: opaque::Encoder,
45 tcx: TyCtxt<'tcx>,
46 feat: &'tcx rustc_feature::Features,
47
48 tables: TableBuilders<'tcx>,
49
50 lazy_state: LazyState,
51 type_shorthands: FxHashMap<Ty<'tcx>, usize>,
52 predicate_shorthands: FxHashMap<ty::PredicateKind<'tcx>, usize>,
53
54 interpret_allocs: FxIndexSet<interpret::AllocId>,
55
56 // This is used to speed up Span encoding.
57 // The `usize` is an index into the `MonotonicVec`
58 // that stores the `SourceFile`
59 source_file_cache: (Lrc<SourceFile>, usize),
60 // The indices (into the `SourceMap`'s `MonotonicVec`)
61 // of all of the `SourceFiles` that we need to serialize.
62 // When we serialize a `Span`, we insert the index of its
63 // `SourceFile` into the `GrowableBitSet`.
64 //
65 // This needs to be a `GrowableBitSet` and not a
66 // regular `BitSet` because we may actually import new `SourceFiles`
67 // during metadata encoding, due to executing a query
68 // with a result containing a foreign `Span`.
69 required_source_files: Option<GrowableBitSet<usize>>,
70 is_proc_macro: bool,
71 hygiene_ctxt: &'a HygieneEncodeContext,
72 }
73
74 /// If the current crate is a proc-macro, returns early with `Lazy:empty()`.
75 /// This is useful for skipping the encoding of things that aren't needed
76 /// for proc-macro crates.
77 macro_rules! empty_proc_macro {
78 ($self:ident) => {
79 if $self.is_proc_macro {
80 return Lazy::empty();
81 }
82 };
83 }
84
85 macro_rules! encoder_methods {
86 ($($name:ident($ty:ty);)*) => {
87 $(fn $name(&mut self, value: $ty) -> Result<(), Self::Error> {
88 self.opaque.$name(value)
89 })*
90 }
91 }
92
93 impl<'a, 'tcx> Encoder for EncodeContext<'a, 'tcx> {
94 type Error = <opaque::Encoder as Encoder>::Error;
95
96 #[inline]
97 fn emit_unit(&mut self) -> Result<(), Self::Error> {
98 Ok(())
99 }
100
101 encoder_methods! {
102 emit_usize(usize);
103 emit_u128(u128);
104 emit_u64(u64);
105 emit_u32(u32);
106 emit_u16(u16);
107 emit_u8(u8);
108
109 emit_isize(isize);
110 emit_i128(i128);
111 emit_i64(i64);
112 emit_i32(i32);
113 emit_i16(i16);
114 emit_i8(i8);
115
116 emit_bool(bool);
117 emit_f64(f64);
118 emit_f32(f32);
119 emit_char(char);
120 emit_str(&str);
121 emit_raw_bytes(&[u8]);
122 }
123 }
124
125 impl<'a, 'tcx, T: Encodable<EncodeContext<'a, 'tcx>>> Encodable<EncodeContext<'a, 'tcx>>
126 for Lazy<T>
127 {
128 fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) -> opaque::EncodeResult {
129 e.emit_lazy_distance(*self)
130 }
131 }
132
133 impl<'a, 'tcx, T: Encodable<EncodeContext<'a, 'tcx>>> Encodable<EncodeContext<'a, 'tcx>>
134 for Lazy<[T]>
135 {
136 fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) -> opaque::EncodeResult {
137 e.emit_usize(self.meta)?;
138 if self.meta == 0 {
139 return Ok(());
140 }
141 e.emit_lazy_distance(*self)
142 }
143 }
144
145 impl<'a, 'tcx, I: Idx, T: Encodable<EncodeContext<'a, 'tcx>>> Encodable<EncodeContext<'a, 'tcx>>
146 for Lazy<Table<I, T>>
147 where
148 Option<T>: FixedSizeEncoding,
149 {
150 fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) -> opaque::EncodeResult {
151 e.emit_usize(self.meta)?;
152 e.emit_lazy_distance(*self)
153 }
154 }
155
156 impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for CrateNum {
157 fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) -> opaque::EncodeResult {
158 if *self != LOCAL_CRATE && s.is_proc_macro {
159 panic!("Attempted to encode non-local CrateNum {:?} for proc-macro crate", self);
160 }
161 s.emit_u32(self.as_u32())
162 }
163 }
164
165 impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for DefIndex {
166 fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) -> opaque::EncodeResult {
167 s.emit_u32(self.as_u32())
168 }
169 }
170
171 impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for ExpnIndex {
172 fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) -> opaque::EncodeResult {
173 s.emit_u32(self.as_u32())
174 }
175 }
176
177 impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for SyntaxContext {
178 fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) -> opaque::EncodeResult {
179 rustc_span::hygiene::raw_encode_syntax_context(*self, &s.hygiene_ctxt, s)
180 }
181 }
182
183 impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for ExpnId {
184 fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) -> opaque::EncodeResult {
185 if self.krate == LOCAL_CRATE {
186 // We will only write details for local expansions. Non-local expansions will fetch
187 // data from the corresponding crate's metadata.
188 // FIXME(#43047) FIXME(#74731) We may eventually want to avoid relying on external
189 // metadata from proc-macro crates.
190 s.hygiene_ctxt.schedule_expn_data_for_encoding(*self);
191 }
192 self.krate.encode(s)?;
193 self.local_id.encode(s)
194 }
195 }
196
197 impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for Span {
198 fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) -> opaque::EncodeResult {
199 let span = self.data();
200
201 // Don't serialize any `SyntaxContext`s from a proc-macro crate,
202 // since we don't load proc-macro dependencies during serialization.
203 // This means that any hygiene information from macros used *within*
204 // a proc-macro crate (e.g. invoking a macro that expands to a proc-macro
205 // definition) will be lost.
206 //
207 // This can show up in two ways:
208 //
209 // 1. Any hygiene information associated with identifier of
210 // a proc macro (e.g. `#[proc_macro] pub fn $name`) will be lost.
211 // Since proc-macros can only be invoked from a different crate,
212 // real code should never need to care about this.
213 //
214 // 2. Using `Span::def_site` or `Span::mixed_site` will not
215 // include any hygiene information associated with the definition
216 // site. This means that a proc-macro cannot emit a `$crate`
217 // identifier which resolves to one of its dependencies,
218 // which also should never come up in practice.
219 //
220 // Additionally, this affects `Span::parent`, and any other
221 // span inspection APIs that would otherwise allow traversing
222 // the `SyntaxContexts` associated with a span.
223 //
224 // None of these user-visible effects should result in any
225 // cross-crate inconsistencies (getting one behavior in the same
226 // crate, and a different behavior in another crate) due to the
227 // limited surface that proc-macros can expose.
228 //
229 // IMPORTANT: If this is ever changed, be sure to update
230 // `rustc_span::hygiene::raw_encode_expn_id` to handle
231 // encoding `ExpnData` for proc-macro crates.
232 if s.is_proc_macro {
233 SyntaxContext::root().encode(s)?;
234 } else {
235 span.ctxt.encode(s)?;
236 }
237
238 if self.is_dummy() {
239 return TAG_PARTIAL_SPAN.encode(s);
240 }
241
242 // The Span infrastructure should make sure that this invariant holds:
243 debug_assert!(span.lo <= span.hi);
244
245 if !s.source_file_cache.0.contains(span.lo) {
246 let source_map = s.tcx.sess.source_map();
247 let source_file_index = source_map.lookup_source_file_idx(span.lo);
248 s.source_file_cache =
249 (source_map.files()[source_file_index].clone(), source_file_index);
250 }
251
252 if !s.source_file_cache.0.contains(span.hi) {
253 // Unfortunately, macro expansion still sometimes generates Spans
254 // that malformed in this way.
255 return TAG_PARTIAL_SPAN.encode(s);
256 }
257
258 let source_files = s.required_source_files.as_mut().expect("Already encoded SourceMap!");
259 // Record the fact that we need to encode the data for this `SourceFile`
260 source_files.insert(s.source_file_cache.1);
261
262 // There are two possible cases here:
263 // 1. This span comes from a 'foreign' crate - e.g. some crate upstream of the
264 // crate we are writing metadata for. When the metadata for *this* crate gets
265 // deserialized, the deserializer will need to know which crate it originally came
266 // from. We use `TAG_VALID_SPAN_FOREIGN` to indicate that a `CrateNum` should
267 // be deserialized after the rest of the span data, which tells the deserializer
268 // which crate contains the source map information.
269 // 2. This span comes from our own crate. No special hamdling is needed - we just
270 // write `TAG_VALID_SPAN_LOCAL` to let the deserializer know that it should use
271 // our own source map information.
272 //
273 // If we're a proc-macro crate, we always treat this as a local `Span`.
274 // In `encode_source_map`, we serialize foreign `SourceFile`s into our metadata
275 // if we're a proc-macro crate.
276 // This allows us to avoid loading the dependencies of proc-macro crates: all of
277 // the information we need to decode `Span`s is stored in the proc-macro crate.
278 let (tag, lo, hi) = if s.source_file_cache.0.is_imported() && !s.is_proc_macro {
279 // To simplify deserialization, we 'rebase' this span onto the crate it originally came from
280 // (the crate that 'owns' the file it references. These rebased 'lo' and 'hi' values
281 // are relative to the source map information for the 'foreign' crate whose CrateNum
282 // we write into the metadata. This allows `imported_source_files` to binary
283 // search through the 'foreign' crate's source map information, using the
284 // deserialized 'lo' and 'hi' values directly.
285 //
286 // All of this logic ensures that the final result of deserialization is a 'normal'
287 // Span that can be used without any additional trouble.
288 let external_start_pos = {
289 // Introduce a new scope so that we drop the 'lock()' temporary
290 match &*s.source_file_cache.0.external_src.lock() {
291 ExternalSource::Foreign { original_start_pos, .. } => *original_start_pos,
292 src => panic!("Unexpected external source {:?}", src),
293 }
294 };
295 let lo = (span.lo - s.source_file_cache.0.start_pos) + external_start_pos;
296 let hi = (span.hi - s.source_file_cache.0.start_pos) + external_start_pos;
297
298 (TAG_VALID_SPAN_FOREIGN, lo, hi)
299 } else {
300 (TAG_VALID_SPAN_LOCAL, span.lo, span.hi)
301 };
302
303 tag.encode(s)?;
304 lo.encode(s)?;
305
306 // Encode length which is usually less than span.hi and profits more
307 // from the variable-length integer encoding that we use.
308 let len = hi - lo;
309 len.encode(s)?;
310
311 if tag == TAG_VALID_SPAN_FOREIGN {
312 // This needs to be two lines to avoid holding the `s.source_file_cache`
313 // while calling `cnum.encode(s)`
314 let cnum = s.source_file_cache.0.cnum;
315 cnum.encode(s)?;
316 }
317
318 Ok(())
319 }
320 }
321
322 impl<'a, 'tcx> TyEncoder<'tcx> for EncodeContext<'a, 'tcx> {
323 const CLEAR_CROSS_CRATE: bool = true;
324
325 fn position(&self) -> usize {
326 self.opaque.position()
327 }
328
329 fn type_shorthands(&mut self) -> &mut FxHashMap<Ty<'tcx>, usize> {
330 &mut self.type_shorthands
331 }
332
333 fn predicate_shorthands(&mut self) -> &mut FxHashMap<ty::PredicateKind<'tcx>, usize> {
334 &mut self.predicate_shorthands
335 }
336
337 fn encode_alloc_id(
338 &mut self,
339 alloc_id: &rustc_middle::mir::interpret::AllocId,
340 ) -> Result<(), Self::Error> {
341 let (index, _) = self.interpret_allocs.insert_full(*alloc_id);
342
343 index.encode(self)
344 }
345 }
346
347 impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for &'tcx [mir::abstract_const::Node<'tcx>] {
348 fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) -> opaque::EncodeResult {
349 (**self).encode(s)
350 }
351 }
352
353 impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for &'tcx [(ty::Predicate<'tcx>, Span)] {
354 fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) -> opaque::EncodeResult {
355 (**self).encode(s)
356 }
357 }
358
359 /// Helper trait to allow overloading `EncodeContext::lazy` for iterators.
360 trait EncodeContentsForLazy<'a, 'tcx, T: ?Sized + LazyMeta> {
361 fn encode_contents_for_lazy(self, ecx: &mut EncodeContext<'a, 'tcx>) -> T::Meta;
362 }
363
364 impl<'a, 'tcx, T: Encodable<EncodeContext<'a, 'tcx>>> EncodeContentsForLazy<'a, 'tcx, T> for &T {
365 fn encode_contents_for_lazy(self, ecx: &mut EncodeContext<'a, 'tcx>) {
366 self.encode(ecx).unwrap()
367 }
368 }
369
370 impl<'a, 'tcx, T: Encodable<EncodeContext<'a, 'tcx>>> EncodeContentsForLazy<'a, 'tcx, T> for T {
371 fn encode_contents_for_lazy(self, ecx: &mut EncodeContext<'a, 'tcx>) {
372 self.encode(ecx).unwrap()
373 }
374 }
375
376 impl<'a, 'tcx, I, T: Encodable<EncodeContext<'a, 'tcx>>> EncodeContentsForLazy<'a, 'tcx, [T]> for I
377 where
378 I: IntoIterator,
379 I::Item: EncodeContentsForLazy<'a, 'tcx, T>,
380 {
381 fn encode_contents_for_lazy(self, ecx: &mut EncodeContext<'a, 'tcx>) -> usize {
382 self.into_iter().map(|value| value.encode_contents_for_lazy(ecx)).count()
383 }
384 }
385
386 // Shorthand for `$self.$tables.$table.set($def_id.index, $self.lazy($value))`, which would
387 // normally need extra variables to avoid errors about multiple mutable borrows.
388 macro_rules! record {
389 ($self:ident.$tables:ident.$table:ident[$def_id:expr] <- $value:expr) => {{
390 {
391 let value = $value;
392 let lazy = $self.lazy(value);
393 $self.$tables.$table.set($def_id.index, lazy);
394 }
395 }};
396 }
397
398 impl<'a, 'tcx> EncodeContext<'a, 'tcx> {
399 fn emit_lazy_distance<T: ?Sized + LazyMeta>(
400 &mut self,
401 lazy: Lazy<T>,
402 ) -> Result<(), <Self as Encoder>::Error> {
403 let min_end = lazy.position.get() + T::min_size(lazy.meta);
404 let distance = match self.lazy_state {
405 LazyState::NoNode => bug!("emit_lazy_distance: outside of a metadata node"),
406 LazyState::NodeStart(start) => {
407 let start = start.get();
408 assert!(min_end <= start);
409 start - min_end
410 }
411 LazyState::Previous(last_min_end) => {
412 assert!(
413 last_min_end <= lazy.position,
414 "make sure that the calls to `lazy*` \
415 are in the same order as the metadata fields",
416 );
417 lazy.position.get() - last_min_end.get()
418 }
419 };
420 self.lazy_state = LazyState::Previous(NonZeroUsize::new(min_end).unwrap());
421 self.emit_usize(distance)
422 }
423
424 fn lazy<T: ?Sized + LazyMeta>(
425 &mut self,
426 value: impl EncodeContentsForLazy<'a, 'tcx, T>,
427 ) -> Lazy<T> {
428 let pos = NonZeroUsize::new(self.position()).unwrap();
429
430 assert_eq!(self.lazy_state, LazyState::NoNode);
431 self.lazy_state = LazyState::NodeStart(pos);
432 let meta = value.encode_contents_for_lazy(self);
433 self.lazy_state = LazyState::NoNode;
434
435 assert!(pos.get() + <T>::min_size(meta) <= self.position());
436
437 Lazy::from_position_and_meta(pos, meta)
438 }
439
440 fn encode_info_for_items(&mut self) {
441 let krate = self.tcx.hir().krate();
442 self.encode_info_for_mod(CRATE_DEF_ID, krate.module());
443
444 // Proc-macro crates only export proc-macro items, which are looked
445 // up using `proc_macro_data`
446 if self.is_proc_macro {
447 return;
448 }
449
450 krate.visit_all_item_likes(&mut self.as_deep_visitor());
451 }
452
453 fn encode_def_path_table(&mut self) {
454 let table = self.tcx.resolutions(()).definitions.def_path_table();
455 if self.is_proc_macro {
456 for def_index in std::iter::once(CRATE_DEF_INDEX)
457 .chain(self.tcx.resolutions(()).proc_macros.iter().map(|p| p.local_def_index))
458 {
459 let def_key = self.lazy(table.def_key(def_index));
460 let def_path_hash = self.lazy(table.def_path_hash(def_index));
461 self.tables.def_keys.set(def_index, def_key);
462 self.tables.def_path_hashes.set(def_index, def_path_hash);
463 }
464 } else {
465 for (def_index, def_key, def_path_hash) in table.enumerated_keys_and_path_hashes() {
466 let def_key = self.lazy(def_key);
467 let def_path_hash = self.lazy(def_path_hash);
468 self.tables.def_keys.set(def_index, def_key);
469 self.tables.def_path_hashes.set(def_index, def_path_hash);
470 }
471 }
472 }
473
474 fn encode_source_map(&mut self) -> Lazy<[rustc_span::SourceFile]> {
475 let source_map = self.tcx.sess.source_map();
476 let all_source_files = source_map.files();
477
478 // By replacing the `Option` with `None`, we ensure that we can't
479 // accidentally serialize any more `Span`s after the source map encoding
480 // is done.
481 let required_source_files = self.required_source_files.take().unwrap();
482
483 let adapted = all_source_files
484 .iter()
485 .enumerate()
486 .filter(|(idx, source_file)| {
487 // Only serialize `SourceFile`s that were used
488 // during the encoding of a `Span`
489 required_source_files.contains(*idx) &&
490 // Don't serialize imported `SourceFile`s, unless
491 // we're in a proc-macro crate.
492 (!source_file.is_imported() || self.is_proc_macro)
493 })
494 .map(|(_, source_file)| {
495 let mut adapted = match source_file.name {
496 FileName::Real(ref realname) => {
497 let mut adapted = (**source_file).clone();
498 adapted.name = FileName::Real(match realname {
499 RealFileName::LocalPath(path_to_file) => {
500 // Prepend path of working directory onto potentially
501 // relative paths, because they could become relative
502 // to a wrong directory.
503 // We include `working_dir` as part of the crate hash,
504 // so it's okay for us to use it as part of the encoded
505 // metadata.
506 let working_dir = &self.tcx.sess.opts.working_dir;
507 match working_dir {
508 RealFileName::LocalPath(absolute) => {
509 // Although neither working_dir or the file name were subject
510 // to path remapping, the concatenation between the two may
511 // be. Hence we need to do a remapping here.
512 let joined = Path::new(absolute).join(path_to_file);
513 let (joined, remapped) =
514 source_map.path_mapping().map_prefix(joined);
515 if remapped {
516 RealFileName::Remapped {
517 local_path: None,
518 virtual_name: joined,
519 }
520 } else {
521 RealFileName::LocalPath(joined)
522 }
523 }
524 RealFileName::Remapped { local_path: _, virtual_name } => {
525 // If working_dir has been remapped, then we emit
526 // Remapped variant as the expanded path won't be valid
527 RealFileName::Remapped {
528 local_path: None,
529 virtual_name: Path::new(virtual_name)
530 .join(path_to_file),
531 }
532 }
533 }
534 }
535 RealFileName::Remapped { local_path: _, virtual_name } => {
536 RealFileName::Remapped {
537 // We do not want any local path to be exported into metadata
538 local_path: None,
539 virtual_name: virtual_name.clone(),
540 }
541 }
542 });
543 adapted.name_hash = {
544 let mut hasher: StableHasher = StableHasher::new();
545 adapted.name.hash(&mut hasher);
546 hasher.finish::<u128>()
547 };
548 Lrc::new(adapted)
549 }
550
551 // expanded code, not from a file
552 _ => source_file.clone(),
553 };
554
555 // We're serializing this `SourceFile` into our crate metadata,
556 // so mark it as coming from this crate.
557 // This also ensures that we don't try to deserialize the
558 // `CrateNum` for a proc-macro dependency - since proc macro
559 // dependencies aren't loaded when we deserialize a proc-macro,
560 // trying to remap the `CrateNum` would fail.
561 if self.is_proc_macro {
562 Lrc::make_mut(&mut adapted).cnum = LOCAL_CRATE;
563 }
564 adapted
565 })
566 .collect::<Vec<_>>();
567
568 self.lazy(adapted.iter().map(|rc| &**rc))
569 }
570
571 fn encode_crate_root(&mut self) -> Lazy<CrateRoot<'tcx>> {
572 let mut i = self.position();
573
574 // Encode the crate deps
575 let crate_deps = self.encode_crate_deps();
576 let dylib_dependency_formats = self.encode_dylib_dependency_formats();
577 let dep_bytes = self.position() - i;
578
579 // Encode the lib features.
580 i = self.position();
581 let lib_features = self.encode_lib_features();
582 let lib_feature_bytes = self.position() - i;
583
584 // Encode the language items.
585 i = self.position();
586 let lang_items = self.encode_lang_items();
587 let lang_items_missing = self.encode_lang_items_missing();
588 let lang_item_bytes = self.position() - i;
589
590 // Encode the diagnostic items.
591 i = self.position();
592 let diagnostic_items = self.encode_diagnostic_items();
593 let diagnostic_item_bytes = self.position() - i;
594
595 // Encode the native libraries used
596 i = self.position();
597 let native_libraries = self.encode_native_libraries();
598 let native_lib_bytes = self.position() - i;
599
600 let foreign_modules = self.encode_foreign_modules();
601
602 // Encode DefPathTable
603 i = self.position();
604 self.encode_def_path_table();
605 let def_path_table_bytes = self.position() - i;
606
607 // Encode the def IDs of impls, for coherence checking.
608 i = self.position();
609 let impls = self.encode_impls();
610 let impl_bytes = self.position() - i;
611
612 let tcx = self.tcx;
613
614 // Encode MIR.
615 i = self.position();
616 self.encode_mir();
617 let mir_bytes = self.position() - i;
618
619 // Encode the items.
620 i = self.position();
621 self.encode_def_ids();
622 self.encode_info_for_items();
623 let item_bytes = self.position() - i;
624
625 // Encode the allocation index
626 let interpret_alloc_index = {
627 let mut interpret_alloc_index = Vec::new();
628 let mut n = 0;
629 trace!("beginning to encode alloc ids");
630 loop {
631 let new_n = self.interpret_allocs.len();
632 // if we have found new ids, serialize those, too
633 if n == new_n {
634 // otherwise, abort
635 break;
636 }
637 trace!("encoding {} further alloc ids", new_n - n);
638 for idx in n..new_n {
639 let id = self.interpret_allocs[idx];
640 let pos = self.position() as u32;
641 interpret_alloc_index.push(pos);
642 interpret::specialized_encode_alloc_id(self, tcx, id).unwrap();
643 }
644 n = new_n;
645 }
646 self.lazy(interpret_alloc_index)
647 };
648
649 // Encode the proc macro data. This affects 'tables',
650 // so we need to do this before we encode the tables
651 i = self.position();
652 let proc_macro_data = self.encode_proc_macros();
653 let proc_macro_data_bytes = self.position() - i;
654
655 i = self.position();
656 let tables = self.tables.encode(&mut self.opaque);
657 let tables_bytes = self.position() - i;
658
659 // Encode exported symbols info. This is prefetched in `encode_metadata` so we encode
660 // this as late as possible to give the prefetching as much time as possible to complete.
661 i = self.position();
662 let exported_symbols = tcx.exported_symbols(LOCAL_CRATE);
663 let exported_symbols = self.encode_exported_symbols(&exported_symbols);
664 let exported_symbols_bytes = self.position() - i;
665
666 // Encode the hygiene data,
667 // IMPORTANT: this *must* be the last thing that we encode (other than `SourceMap`). The process
668 // of encoding other items (e.g. `optimized_mir`) may cause us to load
669 // data from the incremental cache. If this causes us to deserialize a `Span`,
670 // then we may load additional `SyntaxContext`s into the global `HygieneData`.
671 // Therefore, we need to encode the hygiene data last to ensure that we encode
672 // any `SyntaxContext`s that might be used.
673 i = self.position();
674 let (syntax_contexts, expn_data, expn_hashes) = self.encode_hygiene();
675 let hygiene_bytes = self.position() - i;
676
677 // Encode source_map. This needs to be done last,
678 // since encoding `Span`s tells us which `SourceFiles` we actually
679 // need to encode.
680 i = self.position();
681 let source_map = self.encode_source_map();
682 let source_map_bytes = self.position() - i;
683
684 let attrs = tcx.hir().krate_attrs();
685 let has_default_lib_allocator = tcx.sess.contains_name(&attrs, sym::default_lib_allocator);
686
687 let root = self.lazy(CrateRoot {
688 name: tcx.crate_name(LOCAL_CRATE),
689 extra_filename: tcx.sess.opts.cg.extra_filename.clone(),
690 triple: tcx.sess.opts.target_triple.clone(),
691 hash: tcx.crate_hash(LOCAL_CRATE),
692 stable_crate_id: tcx.def_path_hash(LOCAL_CRATE.as_def_id()).stable_crate_id(),
693 panic_strategy: tcx.sess.panic_strategy(),
694 edition: tcx.sess.edition(),
695 has_global_allocator: tcx.has_global_allocator(LOCAL_CRATE),
696 has_panic_handler: tcx.has_panic_handler(LOCAL_CRATE),
697 has_default_lib_allocator,
698 proc_macro_data,
699 compiler_builtins: tcx.sess.contains_name(&attrs, sym::compiler_builtins),
700 needs_allocator: tcx.sess.contains_name(&attrs, sym::needs_allocator),
701 needs_panic_runtime: tcx.sess.contains_name(&attrs, sym::needs_panic_runtime),
702 no_builtins: tcx.sess.contains_name(&attrs, sym::no_builtins),
703 panic_runtime: tcx.sess.contains_name(&attrs, sym::panic_runtime),
704 profiler_runtime: tcx.sess.contains_name(&attrs, sym::profiler_runtime),
705 symbol_mangling_version: tcx.sess.opts.debugging_opts.get_symbol_mangling_version(),
706
707 crate_deps,
708 dylib_dependency_formats,
709 lib_features,
710 lang_items,
711 diagnostic_items,
712 lang_items_missing,
713 native_libraries,
714 foreign_modules,
715 source_map,
716 impls,
717 exported_symbols,
718 interpret_alloc_index,
719 tables,
720 syntax_contexts,
721 expn_data,
722 expn_hashes,
723 });
724
725 let total_bytes = self.position();
726
727 if tcx.sess.meta_stats() {
728 let mut zero_bytes = 0;
729 for e in self.opaque.data.iter() {
730 if *e == 0 {
731 zero_bytes += 1;
732 }
733 }
734
735 eprintln!("metadata stats:");
736 eprintln!(" dep bytes: {}", dep_bytes);
737 eprintln!(" lib feature bytes: {}", lib_feature_bytes);
738 eprintln!(" lang item bytes: {}", lang_item_bytes);
739 eprintln!(" diagnostic item bytes: {}", diagnostic_item_bytes);
740 eprintln!(" native bytes: {}", native_lib_bytes);
741 eprintln!(" source_map bytes: {}", source_map_bytes);
742 eprintln!(" impl bytes: {}", impl_bytes);
743 eprintln!(" exp. symbols bytes: {}", exported_symbols_bytes);
744 eprintln!(" def-path table bytes: {}", def_path_table_bytes);
745 eprintln!(" proc-macro-data-bytes: {}", proc_macro_data_bytes);
746 eprintln!(" mir bytes: {}", mir_bytes);
747 eprintln!(" item bytes: {}", item_bytes);
748 eprintln!(" table bytes: {}", tables_bytes);
749 eprintln!(" hygiene bytes: {}", hygiene_bytes);
750 eprintln!(" zero bytes: {}", zero_bytes);
751 eprintln!(" total bytes: {}", total_bytes);
752 }
753
754 root
755 }
756 }
757
758 fn should_encode_visibility(def_kind: DefKind) -> bool {
759 match def_kind {
760 DefKind::Mod
761 | DefKind::Struct
762 | DefKind::Union
763 | DefKind::Enum
764 | DefKind::Variant
765 | DefKind::Trait
766 | DefKind::TyAlias
767 | DefKind::ForeignTy
768 | DefKind::TraitAlias
769 | DefKind::AssocTy
770 | DefKind::Fn
771 | DefKind::Const
772 | DefKind::Static
773 | DefKind::Ctor(..)
774 | DefKind::AssocFn
775 | DefKind::AssocConst
776 | DefKind::Macro(..)
777 | DefKind::Use
778 | DefKind::ForeignMod
779 | DefKind::OpaqueTy
780 | DefKind::Impl
781 | DefKind::Field => true,
782 DefKind::TyParam
783 | DefKind::ConstParam
784 | DefKind::LifetimeParam
785 | DefKind::AnonConst
786 | DefKind::GlobalAsm
787 | DefKind::Closure
788 | DefKind::Generator
789 | DefKind::ExternCrate => false,
790 }
791 }
792
793 fn should_encode_stability(def_kind: DefKind) -> bool {
794 match def_kind {
795 DefKind::Mod
796 | DefKind::Ctor(..)
797 | DefKind::Variant
798 | DefKind::Field
799 | DefKind::Struct
800 | DefKind::AssocTy
801 | DefKind::AssocFn
802 | DefKind::AssocConst
803 | DefKind::TyParam
804 | DefKind::ConstParam
805 | DefKind::Static
806 | DefKind::Const
807 | DefKind::Fn
808 | DefKind::ForeignMod
809 | DefKind::TyAlias
810 | DefKind::OpaqueTy
811 | DefKind::Enum
812 | DefKind::Union
813 | DefKind::Impl
814 | DefKind::Trait
815 | DefKind::TraitAlias
816 | DefKind::Macro(..)
817 | DefKind::ForeignTy => true,
818 DefKind::Use
819 | DefKind::LifetimeParam
820 | DefKind::AnonConst
821 | DefKind::GlobalAsm
822 | DefKind::Closure
823 | DefKind::Generator
824 | DefKind::ExternCrate => false,
825 }
826 }
827
828 /// Whether we should encode MIR.
829 ///
830 /// Computing, optimizing and encoding the MIR is a relatively expensive operation.
831 /// We want to avoid this work when not required. Therefore:
832 /// - we only compute `mir_for_ctfe` on items with const-eval semantics;
833 /// - we skip `optimized_mir` for check runs.
834 ///
835 /// Return a pair, resp. for CTFE and for LLVM.
836 fn should_encode_mir(tcx: TyCtxt<'_>, def_id: LocalDefId) -> (bool, bool) {
837 match tcx.def_kind(def_id) {
838 // Constructors
839 DefKind::Ctor(_, _) => {
840 let mir_opt_base = tcx.sess.opts.output_types.should_codegen()
841 || tcx.sess.opts.debugging_opts.always_encode_mir;
842 (true, mir_opt_base)
843 }
844 // Constants
845 DefKind::AnonConst | DefKind::AssocConst | DefKind::Static | DefKind::Const => {
846 (true, false)
847 }
848 // Full-fledged functions
849 DefKind::AssocFn | DefKind::Fn => {
850 let generics = tcx.generics_of(def_id);
851 let needs_inline = (generics.requires_monomorphization(tcx)
852 || tcx.codegen_fn_attrs(def_id).requests_inline())
853 && tcx.sess.opts.output_types.should_codegen();
854 // Only check the presence of the `const` modifier.
855 let is_const_fn = tcx.is_const_fn_raw(def_id.to_def_id());
856 let always_encode_mir = tcx.sess.opts.debugging_opts.always_encode_mir;
857 (is_const_fn, needs_inline || always_encode_mir)
858 }
859 // Closures can't be const fn.
860 DefKind::Closure => {
861 let generics = tcx.generics_of(def_id);
862 let needs_inline = (generics.requires_monomorphization(tcx)
863 || tcx.codegen_fn_attrs(def_id).requests_inline())
864 && tcx.sess.opts.output_types.should_codegen();
865 let always_encode_mir = tcx.sess.opts.debugging_opts.always_encode_mir;
866 (false, needs_inline || always_encode_mir)
867 }
868 // Generators require optimized MIR to compute layout.
869 DefKind::Generator => (false, true),
870 // The others don't have MIR.
871 _ => (false, false),
872 }
873 }
874
875 fn should_encode_variances(def_kind: DefKind) -> bool {
876 match def_kind {
877 DefKind::Struct
878 | DefKind::Union
879 | DefKind::Enum
880 | DefKind::Variant
881 | DefKind::Fn
882 | DefKind::Ctor(..)
883 | DefKind::AssocFn => true,
884 DefKind::Mod
885 | DefKind::Field
886 | DefKind::AssocTy
887 | DefKind::AssocConst
888 | DefKind::TyParam
889 | DefKind::ConstParam
890 | DefKind::Static
891 | DefKind::Const
892 | DefKind::ForeignMod
893 | DefKind::TyAlias
894 | DefKind::OpaqueTy
895 | DefKind::Impl
896 | DefKind::Trait
897 | DefKind::TraitAlias
898 | DefKind::Macro(..)
899 | DefKind::ForeignTy
900 | DefKind::Use
901 | DefKind::LifetimeParam
902 | DefKind::AnonConst
903 | DefKind::GlobalAsm
904 | DefKind::Closure
905 | DefKind::Generator
906 | DefKind::ExternCrate => false,
907 }
908 }
909
910 fn should_encode_generics(def_kind: DefKind) -> bool {
911 match def_kind {
912 DefKind::Struct
913 | DefKind::Union
914 | DefKind::Enum
915 | DefKind::Variant
916 | DefKind::Trait
917 | DefKind::TyAlias
918 | DefKind::ForeignTy
919 | DefKind::TraitAlias
920 | DefKind::AssocTy
921 | DefKind::Fn
922 | DefKind::Const
923 | DefKind::Static
924 | DefKind::Ctor(..)
925 | DefKind::AssocFn
926 | DefKind::AssocConst
927 | DefKind::AnonConst
928 | DefKind::OpaqueTy
929 | DefKind::Impl
930 | DefKind::Field
931 | DefKind::TyParam
932 | DefKind::Closure
933 | DefKind::Generator => true,
934 DefKind::Mod
935 | DefKind::ForeignMod
936 | DefKind::ConstParam
937 | DefKind::Macro(..)
938 | DefKind::Use
939 | DefKind::LifetimeParam
940 | DefKind::GlobalAsm
941 | DefKind::ExternCrate => false,
942 }
943 }
944
945 impl EncodeContext<'a, 'tcx> {
946 fn encode_def_ids(&mut self) {
947 if self.is_proc_macro {
948 return;
949 }
950 let tcx = self.tcx;
951 let hir = tcx.hir();
952 for local_id in hir.iter_local_def_id() {
953 let def_id = local_id.to_def_id();
954 let def_kind = tcx.opt_def_kind(local_id);
955 let def_kind = if let Some(def_kind) = def_kind { def_kind } else { continue };
956 record!(self.tables.def_kind[def_id] <- match def_kind {
957 // Replace Ctor by the enclosing object to avoid leaking details in children crates.
958 DefKind::Ctor(CtorOf::Struct, _) => DefKind::Struct,
959 DefKind::Ctor(CtorOf::Variant, _) => DefKind::Variant,
960 def_kind => def_kind,
961 });
962 record!(self.tables.span[def_id] <- tcx.def_span(def_id));
963 record!(self.tables.attributes[def_id] <- tcx.get_attrs(def_id));
964 record!(self.tables.expn_that_defined[def_id] <- self.tcx.expn_that_defined(def_id));
965 if should_encode_visibility(def_kind) {
966 record!(self.tables.visibility[def_id] <- self.tcx.visibility(def_id));
967 }
968 if should_encode_stability(def_kind) {
969 self.encode_stability(def_id);
970 self.encode_const_stability(def_id);
971 self.encode_deprecation(def_id);
972 }
973 if should_encode_variances(def_kind) {
974 let v = self.tcx.variances_of(def_id);
975 record!(self.tables.variances[def_id] <- v);
976 }
977 if should_encode_generics(def_kind) {
978 let g = tcx.generics_of(def_id);
979 record!(self.tables.generics[def_id] <- g);
980 record!(self.tables.explicit_predicates[def_id] <- self.tcx.explicit_predicates_of(def_id));
981 let inferred_outlives = self.tcx.inferred_outlives_of(def_id);
982 if !inferred_outlives.is_empty() {
983 record!(self.tables.inferred_outlives[def_id] <- inferred_outlives);
984 }
985 }
986 if let DefKind::Trait | DefKind::TraitAlias = def_kind {
987 record!(self.tables.super_predicates[def_id] <- self.tcx.super_predicates_of(def_id));
988 }
989 }
990 let inherent_impls = tcx.crate_inherent_impls(());
991 for (def_id, implementations) in inherent_impls.inherent_impls.iter() {
992 if implementations.is_empty() {
993 continue;
994 }
995 record!(self.tables.inherent_impls[def_id.to_def_id()] <- implementations.iter().map(|&def_id| {
996 assert!(def_id.is_local());
997 def_id.index
998 }));
999 }
1000 }
1001
1002 fn encode_item_type(&mut self, def_id: DefId) {
1003 debug!("EncodeContext::encode_item_type({:?})", def_id);
1004 record!(self.tables.ty[def_id] <- self.tcx.type_of(def_id));
1005 }
1006
1007 fn encode_enum_variant_info(&mut self, def: &ty::AdtDef, index: VariantIdx) {
1008 let tcx = self.tcx;
1009 let variant = &def.variants[index];
1010 let def_id = variant.def_id;
1011 debug!("EncodeContext::encode_enum_variant_info({:?})", def_id);
1012
1013 let data = VariantData {
1014 ctor_kind: variant.ctor_kind,
1015 discr: variant.discr,
1016 ctor: variant.ctor_def_id.map(|did| did.index),
1017 is_non_exhaustive: variant.is_field_list_non_exhaustive(),
1018 };
1019
1020 record!(self.tables.kind[def_id] <- EntryKind::Variant(self.lazy(data)));
1021 record!(self.tables.children[def_id] <- variant.fields.iter().map(|f| {
1022 assert!(f.did.is_local());
1023 f.did.index
1024 }));
1025 self.encode_ident_span(def_id, variant.ident);
1026 self.encode_item_type(def_id);
1027 if variant.ctor_kind == CtorKind::Fn {
1028 // FIXME(eddyb) encode signature only in `encode_enum_variant_ctor`.
1029 if let Some(ctor_def_id) = variant.ctor_def_id {
1030 record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(ctor_def_id));
1031 }
1032 }
1033 }
1034
1035 fn encode_enum_variant_ctor(&mut self, def: &ty::AdtDef, index: VariantIdx) {
1036 let tcx = self.tcx;
1037 let variant = &def.variants[index];
1038 let def_id = variant.ctor_def_id.unwrap();
1039 debug!("EncodeContext::encode_enum_variant_ctor({:?})", def_id);
1040
1041 // FIXME(eddyb) encode only the `CtorKind` for constructors.
1042 let data = VariantData {
1043 ctor_kind: variant.ctor_kind,
1044 discr: variant.discr,
1045 ctor: Some(def_id.index),
1046 is_non_exhaustive: variant.is_field_list_non_exhaustive(),
1047 };
1048
1049 record!(self.tables.kind[def_id] <- EntryKind::Variant(self.lazy(data)));
1050 self.encode_item_type(def_id);
1051 if variant.ctor_kind == CtorKind::Fn {
1052 record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(def_id));
1053 }
1054 }
1055
1056 fn encode_info_for_mod(&mut self, local_def_id: LocalDefId, md: &hir::Mod<'_>) {
1057 let tcx = self.tcx;
1058 let def_id = local_def_id.to_def_id();
1059 debug!("EncodeContext::encode_info_for_mod({:?})", def_id);
1060
1061 // If we are encoding a proc-macro crates, `encode_info_for_mod` will
1062 // only ever get called for the crate root. We still want to encode
1063 // the crate root for consistency with other crates (some of the resolver
1064 // code uses it). However, we skip encoding anything relating to child
1065 // items - we encode information about proc-macros later on.
1066 let reexports = if !self.is_proc_macro {
1067 match tcx.module_exports(local_def_id) {
1068 Some(exports) => {
1069 let hir = self.tcx.hir();
1070 self.lazy(
1071 exports
1072 .iter()
1073 .map(|export| export.map_id(|id| hir.local_def_id_to_hir_id(id))),
1074 )
1075 }
1076 _ => Lazy::empty(),
1077 }
1078 } else {
1079 Lazy::empty()
1080 };
1081
1082 let data = ModData { reexports, expansion: tcx.expn_that_defined(local_def_id) };
1083
1084 record!(self.tables.kind[def_id] <- EntryKind::Mod(self.lazy(data)));
1085 if self.is_proc_macro {
1086 record!(self.tables.children[def_id] <- &[]);
1087 } else {
1088 record!(self.tables.children[def_id] <- md.item_ids.iter().map(|item_id| {
1089 item_id.def_id.local_def_index
1090 }));
1091 }
1092 }
1093
1094 fn encode_field(
1095 &mut self,
1096 adt_def: &ty::AdtDef,
1097 variant_index: VariantIdx,
1098 field_index: usize,
1099 ) {
1100 let variant = &adt_def.variants[variant_index];
1101 let field = &variant.fields[field_index];
1102
1103 let def_id = field.did;
1104 debug!("EncodeContext::encode_field({:?})", def_id);
1105
1106 record!(self.tables.kind[def_id] <- EntryKind::Field);
1107 self.encode_ident_span(def_id, field.ident);
1108 self.encode_item_type(def_id);
1109 }
1110
1111 fn encode_struct_ctor(&mut self, adt_def: &ty::AdtDef, def_id: DefId) {
1112 debug!("EncodeContext::encode_struct_ctor({:?})", def_id);
1113 let tcx = self.tcx;
1114 let variant = adt_def.non_enum_variant();
1115
1116 let data = VariantData {
1117 ctor_kind: variant.ctor_kind,
1118 discr: variant.discr,
1119 ctor: Some(def_id.index),
1120 is_non_exhaustive: variant.is_field_list_non_exhaustive(),
1121 };
1122
1123 record!(self.tables.kind[def_id] <- EntryKind::Struct(self.lazy(data), adt_def.repr));
1124 self.encode_item_type(def_id);
1125 if variant.ctor_kind == CtorKind::Fn {
1126 record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(def_id));
1127 }
1128 }
1129
1130 fn encode_explicit_item_bounds(&mut self, def_id: DefId) {
1131 debug!("EncodeContext::encode_explicit_item_bounds({:?})", def_id);
1132 let bounds = self.tcx.explicit_item_bounds(def_id);
1133 if !bounds.is_empty() {
1134 record!(self.tables.explicit_item_bounds[def_id] <- bounds);
1135 }
1136 }
1137
1138 fn encode_info_for_trait_item(&mut self, def_id: DefId) {
1139 debug!("EncodeContext::encode_info_for_trait_item({:?})", def_id);
1140 let tcx = self.tcx;
1141
1142 let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
1143 let ast_item = tcx.hir().expect_trait_item(hir_id);
1144 let trait_item = tcx.associated_item(def_id);
1145
1146 let container = match trait_item.defaultness {
1147 hir::Defaultness::Default { has_value: true } => AssocContainer::TraitWithDefault,
1148 hir::Defaultness::Default { has_value: false } => AssocContainer::TraitRequired,
1149 hir::Defaultness::Final => span_bug!(ast_item.span, "traits cannot have final items"),
1150 };
1151
1152 match trait_item.kind {
1153 ty::AssocKind::Const => {
1154 let rendered = rustc_hir_pretty::to_string(
1155 &(&self.tcx.hir() as &dyn intravisit::Map<'_>),
1156 |s| s.print_trait_item(ast_item),
1157 );
1158 let rendered_const = self.lazy(RenderedConst(rendered));
1159
1160 record!(self.tables.kind[def_id] <- EntryKind::AssocConst(
1161 container,
1162 Default::default(),
1163 rendered_const,
1164 ));
1165 }
1166 ty::AssocKind::Fn => {
1167 let fn_data = if let hir::TraitItemKind::Fn(m_sig, m) = &ast_item.kind {
1168 let param_names = match *m {
1169 hir::TraitFn::Required(ref names) => self.encode_fn_param_names(names),
1170 hir::TraitFn::Provided(body) => self.encode_fn_param_names_for_body(body),
1171 };
1172 FnData {
1173 asyncness: m_sig.header.asyncness,
1174 constness: hir::Constness::NotConst,
1175 param_names,
1176 }
1177 } else {
1178 bug!()
1179 };
1180 record!(self.tables.kind[def_id] <- EntryKind::AssocFn(self.lazy(AssocFnData {
1181 fn_data,
1182 container,
1183 has_self: trait_item.fn_has_self_parameter,
1184 })));
1185 }
1186 ty::AssocKind::Type => {
1187 self.encode_explicit_item_bounds(def_id);
1188 record!(self.tables.kind[def_id] <- EntryKind::AssocType(container));
1189 }
1190 }
1191 self.encode_ident_span(def_id, ast_item.ident);
1192 match trait_item.kind {
1193 ty::AssocKind::Const | ty::AssocKind::Fn => {
1194 self.encode_item_type(def_id);
1195 }
1196 ty::AssocKind::Type => {
1197 if trait_item.defaultness.has_value() {
1198 self.encode_item_type(def_id);
1199 }
1200 }
1201 }
1202 if trait_item.kind == ty::AssocKind::Fn {
1203 record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(def_id));
1204 }
1205 }
1206
1207 fn encode_info_for_impl_item(&mut self, def_id: DefId) {
1208 debug!("EncodeContext::encode_info_for_impl_item({:?})", def_id);
1209 let tcx = self.tcx;
1210
1211 let hir_id = self.tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
1212 let ast_item = self.tcx.hir().expect_impl_item(hir_id);
1213 let impl_item = self.tcx.associated_item(def_id);
1214
1215 let container = match impl_item.defaultness {
1216 hir::Defaultness::Default { has_value: true } => AssocContainer::ImplDefault,
1217 hir::Defaultness::Final => AssocContainer::ImplFinal,
1218 hir::Defaultness::Default { has_value: false } => {
1219 span_bug!(ast_item.span, "impl items always have values (currently)")
1220 }
1221 };
1222
1223 match impl_item.kind {
1224 ty::AssocKind::Const => {
1225 if let hir::ImplItemKind::Const(_, body_id) = ast_item.kind {
1226 let qualifs = self.tcx.at(ast_item.span).mir_const_qualif(def_id);
1227
1228 record!(self.tables.kind[def_id] <- EntryKind::AssocConst(
1229 container,
1230 qualifs,
1231 self.encode_rendered_const_for_body(body_id))
1232 );
1233 } else {
1234 bug!()
1235 }
1236 }
1237 ty::AssocKind::Fn => {
1238 let fn_data = if let hir::ImplItemKind::Fn(ref sig, body) = ast_item.kind {
1239 FnData {
1240 asyncness: sig.header.asyncness,
1241 // Can be inside `impl const Trait`, so using sig.header.constness is not reliable
1242 constness: if self.tcx.is_const_fn_raw(def_id) {
1243 hir::Constness::Const
1244 } else {
1245 hir::Constness::NotConst
1246 },
1247 param_names: self.encode_fn_param_names_for_body(body),
1248 }
1249 } else {
1250 bug!()
1251 };
1252 record!(self.tables.kind[def_id] <- EntryKind::AssocFn(self.lazy(AssocFnData {
1253 fn_data,
1254 container,
1255 has_self: impl_item.fn_has_self_parameter,
1256 })));
1257 }
1258 ty::AssocKind::Type => {
1259 record!(self.tables.kind[def_id] <- EntryKind::AssocType(container));
1260 }
1261 }
1262 self.encode_ident_span(def_id, impl_item.ident);
1263 self.encode_item_type(def_id);
1264 if impl_item.kind == ty::AssocKind::Fn {
1265 record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(def_id));
1266 }
1267 }
1268
1269 fn encode_fn_param_names_for_body(&mut self, body_id: hir::BodyId) -> Lazy<[Ident]> {
1270 self.lazy(self.tcx.hir().body_param_names(body_id))
1271 }
1272
1273 fn encode_fn_param_names(&mut self, param_names: &[Ident]) -> Lazy<[Ident]> {
1274 self.lazy(param_names.iter())
1275 }
1276
1277 fn encode_mir(&mut self) {
1278 if self.is_proc_macro {
1279 return;
1280 }
1281
1282 let mut keys_and_jobs = self
1283 .tcx
1284 .mir_keys(())
1285 .iter()
1286 .filter_map(|&def_id| {
1287 let (encode_const, encode_opt) = should_encode_mir(self.tcx, def_id);
1288 if encode_const || encode_opt {
1289 Some((def_id, encode_const, encode_opt))
1290 } else {
1291 None
1292 }
1293 })
1294 .collect::<Vec<_>>();
1295 // Sort everything to ensure a stable order for diagnotics.
1296 keys_and_jobs.sort_by_key(|&(def_id, _, _)| def_id);
1297 for (def_id, encode_const, encode_opt) in keys_and_jobs.into_iter() {
1298 debug_assert!(encode_const || encode_opt);
1299
1300 debug!("EntryBuilder::encode_mir({:?})", def_id);
1301 if encode_opt {
1302 record!(self.tables.mir[def_id.to_def_id()] <- self.tcx.optimized_mir(def_id));
1303 }
1304 if encode_const {
1305 record!(self.tables.mir_for_ctfe[def_id.to_def_id()] <- self.tcx.mir_for_ctfe(def_id));
1306
1307 let abstract_const = self.tcx.mir_abstract_const(def_id);
1308 if let Ok(Some(abstract_const)) = abstract_const {
1309 record!(self.tables.mir_abstract_consts[def_id.to_def_id()] <- abstract_const);
1310 }
1311 }
1312 record!(self.tables.promoted_mir[def_id.to_def_id()] <- self.tcx.promoted_mir(def_id));
1313
1314 let unused = self.tcx.unused_generic_params(def_id);
1315 if !unused.is_empty() {
1316 record!(self.tables.unused_generic_params[def_id.to_def_id()] <- unused);
1317 }
1318 }
1319 }
1320
1321 fn encode_stability(&mut self, def_id: DefId) {
1322 debug!("EncodeContext::encode_stability({:?})", def_id);
1323
1324 // The query lookup can take a measurable amount of time in crates with many items. Check if
1325 // the stability attributes are even enabled before using their queries.
1326 if self.feat.staged_api || self.tcx.sess.opts.debugging_opts.force_unstable_if_unmarked {
1327 if let Some(stab) = self.tcx.lookup_stability(def_id) {
1328 record!(self.tables.stability[def_id] <- stab)
1329 }
1330 }
1331 }
1332
1333 fn encode_const_stability(&mut self, def_id: DefId) {
1334 debug!("EncodeContext::encode_const_stability({:?})", def_id);
1335
1336 // The query lookup can take a measurable amount of time in crates with many items. Check if
1337 // the stability attributes are even enabled before using their queries.
1338 if self.feat.staged_api || self.tcx.sess.opts.debugging_opts.force_unstable_if_unmarked {
1339 if let Some(stab) = self.tcx.lookup_const_stability(def_id) {
1340 record!(self.tables.const_stability[def_id] <- stab)
1341 }
1342 }
1343 }
1344
1345 fn encode_deprecation(&mut self, def_id: DefId) {
1346 debug!("EncodeContext::encode_deprecation({:?})", def_id);
1347 if let Some(depr) = self.tcx.lookup_deprecation(def_id) {
1348 record!(self.tables.deprecation[def_id] <- depr);
1349 }
1350 }
1351
1352 fn encode_rendered_const_for_body(&mut self, body_id: hir::BodyId) -> Lazy<RenderedConst> {
1353 let hir = self.tcx.hir();
1354 let body = hir.body(body_id);
1355 let rendered = rustc_hir_pretty::to_string(&(&hir as &dyn intravisit::Map<'_>), |s| {
1356 s.print_expr(&body.value)
1357 });
1358 let rendered_const = &RenderedConst(rendered);
1359 self.lazy(rendered_const)
1360 }
1361
1362 fn encode_info_for_item(&mut self, def_id: DefId, item: &'tcx hir::Item<'tcx>) {
1363 let tcx = self.tcx;
1364
1365 debug!("EncodeContext::encode_info_for_item({:?})", def_id);
1366
1367 self.encode_ident_span(def_id, item.ident);
1368
1369 let entry_kind = match item.kind {
1370 hir::ItemKind::Static(_, hir::Mutability::Mut, _) => EntryKind::MutStatic,
1371 hir::ItemKind::Static(_, hir::Mutability::Not, _) => EntryKind::ImmStatic,
1372 hir::ItemKind::Const(_, body_id) => {
1373 let qualifs = self.tcx.at(item.span).mir_const_qualif(def_id);
1374 EntryKind::Const(qualifs, self.encode_rendered_const_for_body(body_id))
1375 }
1376 hir::ItemKind::Fn(ref sig, .., body) => {
1377 let data = FnData {
1378 asyncness: sig.header.asyncness,
1379 constness: sig.header.constness,
1380 param_names: self.encode_fn_param_names_for_body(body),
1381 };
1382
1383 EntryKind::Fn(self.lazy(data))
1384 }
1385 hir::ItemKind::Macro(ref macro_def) => {
1386 EntryKind::MacroDef(self.lazy(macro_def.clone()))
1387 }
1388 hir::ItemKind::Mod(ref m) => {
1389 return self.encode_info_for_mod(item.def_id, m);
1390 }
1391 hir::ItemKind::ForeignMod { .. } => EntryKind::ForeignMod,
1392 hir::ItemKind::GlobalAsm(..) => EntryKind::GlobalAsm,
1393 hir::ItemKind::TyAlias(..) => EntryKind::Type,
1394 hir::ItemKind::OpaqueTy(..) => {
1395 self.encode_explicit_item_bounds(def_id);
1396 EntryKind::OpaqueTy
1397 }
1398 hir::ItemKind::Enum(..) => EntryKind::Enum(self.tcx.adt_def(def_id).repr),
1399 hir::ItemKind::Struct(ref struct_def, _) => {
1400 let adt_def = self.tcx.adt_def(def_id);
1401 let variant = adt_def.non_enum_variant();
1402
1403 // Encode def_ids for each field and method
1404 // for methods, write all the stuff get_trait_method
1405 // needs to know
1406 let ctor = struct_def
1407 .ctor_hir_id()
1408 .map(|ctor_hir_id| self.tcx.hir().local_def_id(ctor_hir_id).local_def_index);
1409
1410 EntryKind::Struct(
1411 self.lazy(VariantData {
1412 ctor_kind: variant.ctor_kind,
1413 discr: variant.discr,
1414 ctor,
1415 is_non_exhaustive: variant.is_field_list_non_exhaustive(),
1416 }),
1417 adt_def.repr,
1418 )
1419 }
1420 hir::ItemKind::Union(..) => {
1421 let adt_def = self.tcx.adt_def(def_id);
1422 let variant = adt_def.non_enum_variant();
1423
1424 EntryKind::Union(
1425 self.lazy(VariantData {
1426 ctor_kind: variant.ctor_kind,
1427 discr: variant.discr,
1428 ctor: None,
1429 is_non_exhaustive: variant.is_field_list_non_exhaustive(),
1430 }),
1431 adt_def.repr,
1432 )
1433 }
1434 hir::ItemKind::Impl(hir::Impl { defaultness, constness, .. }) => {
1435 let trait_ref = self.tcx.impl_trait_ref(def_id);
1436 let polarity = self.tcx.impl_polarity(def_id);
1437 let parent = if let Some(trait_ref) = trait_ref {
1438 let trait_def = self.tcx.trait_def(trait_ref.def_id);
1439 trait_def.ancestors(self.tcx, def_id).ok().and_then(|mut an| {
1440 an.nth(1).and_then(|node| match node {
1441 specialization_graph::Node::Impl(parent) => Some(parent),
1442 _ => None,
1443 })
1444 })
1445 } else {
1446 None
1447 };
1448
1449 // if this is an impl of `CoerceUnsized`, create its
1450 // "unsized info", else just store None
1451 let coerce_unsized_info = trait_ref.and_then(|t| {
1452 if Some(t.def_id) == self.tcx.lang_items().coerce_unsized_trait() {
1453 Some(self.tcx.at(item.span).coerce_unsized_info(def_id))
1454 } else {
1455 None
1456 }
1457 });
1458
1459 let data = ImplData {
1460 polarity,
1461 defaultness,
1462 constness,
1463 parent_impl: parent,
1464 coerce_unsized_info,
1465 };
1466
1467 EntryKind::Impl(self.lazy(data))
1468 }
1469 hir::ItemKind::Trait(..) => {
1470 let trait_def = self.tcx.trait_def(def_id);
1471 let data = TraitData {
1472 unsafety: trait_def.unsafety,
1473 paren_sugar: trait_def.paren_sugar,
1474 has_auto_impl: self.tcx.trait_is_auto(def_id),
1475 is_marker: trait_def.is_marker,
1476 skip_array_during_method_dispatch: trait_def.skip_array_during_method_dispatch,
1477 specialization_kind: trait_def.specialization_kind,
1478 };
1479
1480 EntryKind::Trait(self.lazy(data))
1481 }
1482 hir::ItemKind::TraitAlias(..) => EntryKind::TraitAlias,
1483 hir::ItemKind::ExternCrate(_) | hir::ItemKind::Use(..) => {
1484 bug!("cannot encode info for item {:?}", item)
1485 }
1486 };
1487 record!(self.tables.kind[def_id] <- entry_kind);
1488 // FIXME(eddyb) there should be a nicer way to do this.
1489 match item.kind {
1490 hir::ItemKind::ForeignMod { items, .. } => record!(self.tables.children[def_id] <-
1491 items
1492 .iter()
1493 .map(|foreign_item| foreign_item.id.def_id.local_def_index)
1494 ),
1495 hir::ItemKind::Enum(..) => record!(self.tables.children[def_id] <-
1496 self.tcx.adt_def(def_id).variants.iter().map(|v| {
1497 assert!(v.def_id.is_local());
1498 v.def_id.index
1499 })
1500 ),
1501 hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) => {
1502 record!(self.tables.children[def_id] <-
1503 self.tcx.adt_def(def_id).non_enum_variant().fields.iter().map(|f| {
1504 assert!(f.did.is_local());
1505 f.did.index
1506 })
1507 )
1508 }
1509 hir::ItemKind::Impl { .. } | hir::ItemKind::Trait(..) => {
1510 let associated_item_def_ids = self.tcx.associated_item_def_ids(def_id);
1511 record!(self.tables.children[def_id] <-
1512 associated_item_def_ids.iter().map(|&def_id| {
1513 assert!(def_id.is_local());
1514 def_id.index
1515 })
1516 );
1517 }
1518 _ => {}
1519 }
1520 match item.kind {
1521 hir::ItemKind::Static(..)
1522 | hir::ItemKind::Const(..)
1523 | hir::ItemKind::Fn(..)
1524 | hir::ItemKind::TyAlias(..)
1525 | hir::ItemKind::OpaqueTy(..)
1526 | hir::ItemKind::Enum(..)
1527 | hir::ItemKind::Struct(..)
1528 | hir::ItemKind::Union(..)
1529 | hir::ItemKind::Impl { .. } => self.encode_item_type(def_id),
1530 _ => {}
1531 }
1532 if let hir::ItemKind::Fn(..) = item.kind {
1533 record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(def_id));
1534 }
1535 if let hir::ItemKind::Impl { .. } = item.kind {
1536 if let Some(trait_ref) = self.tcx.impl_trait_ref(def_id) {
1537 record!(self.tables.impl_trait_ref[def_id] <- trait_ref);
1538 }
1539 }
1540 }
1541
1542 fn encode_info_for_generic_param(&mut self, def_id: DefId, kind: EntryKind, encode_type: bool) {
1543 record!(self.tables.kind[def_id] <- kind);
1544 if encode_type {
1545 self.encode_item_type(def_id);
1546 }
1547 }
1548
1549 fn encode_info_for_closure(&mut self, def_id: LocalDefId) {
1550 debug!("EncodeContext::encode_info_for_closure({:?})", def_id);
1551
1552 // NOTE(eddyb) `tcx.type_of(def_id)` isn't used because it's fully generic,
1553 // including on the signature, which is inferred in `typeck.
1554 let hir_id = self.tcx.hir().local_def_id_to_hir_id(def_id);
1555 let ty = self.tcx.typeck(def_id).node_type(hir_id);
1556
1557 match ty.kind() {
1558 ty::Generator(..) => {
1559 let data = self.tcx.generator_kind(def_id).unwrap();
1560 record!(self.tables.kind[def_id.to_def_id()] <- EntryKind::Generator(data));
1561 }
1562
1563 ty::Closure(..) => {
1564 record!(self.tables.kind[def_id.to_def_id()] <- EntryKind::Closure);
1565 }
1566
1567 _ => bug!("closure that is neither generator nor closure"),
1568 }
1569 self.encode_item_type(def_id.to_def_id());
1570 if let ty::Closure(def_id, substs) = *ty.kind() {
1571 record!(self.tables.fn_sig[def_id] <- substs.as_closure().sig());
1572 }
1573 }
1574
1575 fn encode_info_for_anon_const(&mut self, def_id: LocalDefId) {
1576 debug!("EncodeContext::encode_info_for_anon_const({:?})", def_id);
1577 let id = self.tcx.hir().local_def_id_to_hir_id(def_id);
1578 let body_id = self.tcx.hir().body_owned_by(id);
1579 let const_data = self.encode_rendered_const_for_body(body_id);
1580 let qualifs = self.tcx.mir_const_qualif(def_id);
1581
1582 record!(self.tables.kind[def_id.to_def_id()] <- EntryKind::AnonConst(qualifs, const_data));
1583 self.encode_item_type(def_id.to_def_id());
1584 }
1585
1586 fn encode_native_libraries(&mut self) -> Lazy<[NativeLib]> {
1587 empty_proc_macro!(self);
1588 let used_libraries = self.tcx.native_libraries(LOCAL_CRATE);
1589 self.lazy(used_libraries.iter())
1590 }
1591
1592 fn encode_foreign_modules(&mut self) -> Lazy<[ForeignModule]> {
1593 empty_proc_macro!(self);
1594 let foreign_modules = self.tcx.foreign_modules(LOCAL_CRATE);
1595 self.lazy(foreign_modules.iter().map(|(_, m)| m).cloned())
1596 }
1597
1598 fn encode_hygiene(&mut self) -> (SyntaxContextTable, ExpnDataTable, ExpnHashTable) {
1599 let mut syntax_contexts: TableBuilder<_, _> = Default::default();
1600 let mut expn_data_table: TableBuilder<_, _> = Default::default();
1601 let mut expn_hash_table: TableBuilder<_, _> = Default::default();
1602
1603 let _: Result<(), !> = self.hygiene_ctxt.encode(
1604 &mut (&mut *self, &mut syntax_contexts, &mut expn_data_table, &mut expn_hash_table),
1605 |(this, syntax_contexts, _, _), index, ctxt_data| {
1606 syntax_contexts.set(index, this.lazy(ctxt_data));
1607 Ok(())
1608 },
1609 |(this, _, expn_data_table, expn_hash_table), index, expn_data, hash| {
1610 if let Some(index) = index.as_local() {
1611 expn_data_table.set(index.as_raw(), this.lazy(expn_data));
1612 expn_hash_table.set(index.as_raw(), this.lazy(hash));
1613 }
1614 Ok(())
1615 },
1616 );
1617
1618 (
1619 syntax_contexts.encode(&mut self.opaque),
1620 expn_data_table.encode(&mut self.opaque),
1621 expn_hash_table.encode(&mut self.opaque),
1622 )
1623 }
1624
1625 fn encode_proc_macros(&mut self) -> Option<ProcMacroData> {
1626 let is_proc_macro = self.tcx.sess.crate_types().contains(&CrateType::ProcMacro);
1627 if is_proc_macro {
1628 let tcx = self.tcx;
1629 let hir = tcx.hir();
1630
1631 let proc_macro_decls_static = tcx.proc_macro_decls_static(()).unwrap().local_def_index;
1632 let stability = tcx.lookup_stability(DefId::local(CRATE_DEF_INDEX)).copied();
1633 let macros =
1634 self.lazy(tcx.resolutions(()).proc_macros.iter().map(|p| p.local_def_index));
1635 let spans = self.tcx.sess.parse_sess.proc_macro_quoted_spans();
1636 for (i, span) in spans.into_iter().enumerate() {
1637 let span = self.lazy(span);
1638 self.tables.proc_macro_quoted_spans.set(i, span);
1639 }
1640
1641 record!(self.tables.def_kind[LOCAL_CRATE.as_def_id()] <- DefKind::Mod);
1642 record!(self.tables.span[LOCAL_CRATE.as_def_id()] <- tcx.def_span(LOCAL_CRATE.as_def_id()));
1643 record!(self.tables.attributes[LOCAL_CRATE.as_def_id()] <- tcx.get_attrs(LOCAL_CRATE.as_def_id()));
1644 record!(self.tables.visibility[LOCAL_CRATE.as_def_id()] <- tcx.visibility(LOCAL_CRATE.as_def_id()));
1645 if let Some(stability) = stability {
1646 record!(self.tables.stability[LOCAL_CRATE.as_def_id()] <- stability);
1647 }
1648 self.encode_deprecation(LOCAL_CRATE.as_def_id());
1649
1650 // Normally, this information is encoded when we walk the items
1651 // defined in this crate. However, we skip doing that for proc-macro crates,
1652 // so we manually encode just the information that we need
1653 for &proc_macro in &tcx.resolutions(()).proc_macros {
1654 let id = proc_macro;
1655 let proc_macro = hir.local_def_id_to_hir_id(proc_macro);
1656 let mut name = hir.name(proc_macro);
1657 let span = hir.span(proc_macro);
1658 // Proc-macros may have attributes like `#[allow_internal_unstable]`,
1659 // so downstream crates need access to them.
1660 let attrs = hir.attrs(proc_macro);
1661 let macro_kind = if tcx.sess.contains_name(attrs, sym::proc_macro) {
1662 MacroKind::Bang
1663 } else if tcx.sess.contains_name(attrs, sym::proc_macro_attribute) {
1664 MacroKind::Attr
1665 } else if let Some(attr) = tcx.sess.find_by_name(attrs, sym::proc_macro_derive) {
1666 // This unwrap chain should have been checked by the proc-macro harness.
1667 name = attr.meta_item_list().unwrap()[0]
1668 .meta_item()
1669 .unwrap()
1670 .ident()
1671 .unwrap()
1672 .name;
1673 MacroKind::Derive
1674 } else {
1675 bug!("Unknown proc-macro type for item {:?}", id);
1676 };
1677
1678 let mut def_key = self.tcx.hir().def_key(id);
1679 def_key.disambiguated_data.data = DefPathData::MacroNs(name);
1680
1681 let def_id = id.to_def_id();
1682 record!(self.tables.def_kind[def_id] <- DefKind::Macro(macro_kind));
1683 record!(self.tables.kind[def_id] <- EntryKind::ProcMacro(macro_kind));
1684 record!(self.tables.attributes[def_id] <- attrs);
1685 record!(self.tables.def_keys[def_id] <- def_key);
1686 record!(self.tables.ident_span[def_id] <- span);
1687 record!(self.tables.span[def_id] <- span);
1688 record!(self.tables.visibility[def_id] <- ty::Visibility::Public);
1689 if let Some(stability) = stability {
1690 record!(self.tables.stability[def_id] <- stability);
1691 }
1692 }
1693
1694 Some(ProcMacroData { proc_macro_decls_static, stability, macros })
1695 } else {
1696 None
1697 }
1698 }
1699
1700 fn encode_crate_deps(&mut self) -> Lazy<[CrateDep]> {
1701 empty_proc_macro!(self);
1702 let crates = self.tcx.crates(());
1703
1704 let mut deps = crates
1705 .iter()
1706 .map(|&cnum| {
1707 let dep = CrateDep {
1708 name: self.tcx.crate_name(cnum),
1709 hash: self.tcx.crate_hash(cnum),
1710 host_hash: self.tcx.crate_host_hash(cnum),
1711 kind: self.tcx.dep_kind(cnum),
1712 extra_filename: self.tcx.extra_filename(cnum),
1713 };
1714 (cnum, dep)
1715 })
1716 .collect::<Vec<_>>();
1717
1718 deps.sort_by_key(|&(cnum, _)| cnum);
1719
1720 {
1721 // Sanity-check the crate numbers
1722 let mut expected_cnum = 1;
1723 for &(n, _) in &deps {
1724 assert_eq!(n, CrateNum::new(expected_cnum));
1725 expected_cnum += 1;
1726 }
1727 }
1728
1729 // We're just going to write a list of crate 'name-hash-version's, with
1730 // the assumption that they are numbered 1 to n.
1731 // FIXME (#2166): This is not nearly enough to support correct versioning
1732 // but is enough to get transitive crate dependencies working.
1733 self.lazy(deps.iter().map(|&(_, ref dep)| dep))
1734 }
1735
1736 fn encode_lib_features(&mut self) -> Lazy<[(Symbol, Option<Symbol>)]> {
1737 empty_proc_macro!(self);
1738 let tcx = self.tcx;
1739 let lib_features = tcx.lib_features();
1740 self.lazy(lib_features.to_vec())
1741 }
1742
1743 fn encode_diagnostic_items(&mut self) -> Lazy<[(Symbol, DefIndex)]> {
1744 empty_proc_macro!(self);
1745 let tcx = self.tcx;
1746 let diagnostic_items = tcx.diagnostic_items(LOCAL_CRATE);
1747 self.lazy(diagnostic_items.iter().map(|(&name, def_id)| (name, def_id.index)))
1748 }
1749
1750 fn encode_lang_items(&mut self) -> Lazy<[(DefIndex, usize)]> {
1751 empty_proc_macro!(self);
1752 let tcx = self.tcx;
1753 let lang_items = tcx.lang_items();
1754 let lang_items = lang_items.items().iter();
1755 self.lazy(lang_items.enumerate().filter_map(|(i, &opt_def_id)| {
1756 if let Some(def_id) = opt_def_id {
1757 if def_id.is_local() {
1758 return Some((def_id.index, i));
1759 }
1760 }
1761 None
1762 }))
1763 }
1764
1765 fn encode_lang_items_missing(&mut self) -> Lazy<[lang_items::LangItem]> {
1766 empty_proc_macro!(self);
1767 let tcx = self.tcx;
1768 self.lazy(&tcx.lang_items().missing)
1769 }
1770
1771 /// Encodes an index, mapping each trait to its (local) implementations.
1772 fn encode_impls(&mut self) -> Lazy<[TraitImpls]> {
1773 empty_proc_macro!(self);
1774 debug!("EncodeContext::encode_impls()");
1775 let tcx = self.tcx;
1776 let mut visitor = ImplVisitor { tcx, impls: FxHashMap::default() };
1777 tcx.hir().krate().visit_all_item_likes(&mut visitor);
1778
1779 let mut all_impls: Vec<_> = visitor.impls.into_iter().collect();
1780
1781 // Bring everything into deterministic order for hashing
1782 all_impls.sort_by_cached_key(|&(trait_def_id, _)| tcx.def_path_hash(trait_def_id));
1783
1784 let all_impls: Vec<_> = all_impls
1785 .into_iter()
1786 .map(|(trait_def_id, mut impls)| {
1787 // Bring everything into deterministic order for hashing
1788 impls.sort_by_cached_key(|&(index, _)| {
1789 tcx.hir().def_path_hash(LocalDefId { local_def_index: index })
1790 });
1791
1792 TraitImpls {
1793 trait_id: (trait_def_id.krate.as_u32(), trait_def_id.index),
1794 impls: self.lazy(&impls),
1795 }
1796 })
1797 .collect();
1798
1799 self.lazy(&all_impls)
1800 }
1801
1802 // Encodes all symbols exported from this crate into the metadata.
1803 //
1804 // This pass is seeded off the reachability list calculated in the
1805 // middle::reachable module but filters out items that either don't have a
1806 // symbol associated with them (they weren't translated) or if they're an FFI
1807 // definition (as that's not defined in this crate).
1808 fn encode_exported_symbols(
1809 &mut self,
1810 exported_symbols: &[(ExportedSymbol<'tcx>, SymbolExportLevel)],
1811 ) -> Lazy<[(ExportedSymbol<'tcx>, SymbolExportLevel)]> {
1812 empty_proc_macro!(self);
1813 // The metadata symbol name is special. It should not show up in
1814 // downstream crates.
1815 let metadata_symbol_name = SymbolName::new(self.tcx, &metadata_symbol_name(self.tcx));
1816
1817 self.lazy(
1818 exported_symbols
1819 .iter()
1820 .filter(|&&(ref exported_symbol, _)| match *exported_symbol {
1821 ExportedSymbol::NoDefId(symbol_name) => symbol_name != metadata_symbol_name,
1822 _ => true,
1823 })
1824 .cloned(),
1825 )
1826 }
1827
1828 fn encode_dylib_dependency_formats(&mut self) -> Lazy<[Option<LinkagePreference>]> {
1829 empty_proc_macro!(self);
1830 let formats = self.tcx.dependency_formats(());
1831 for (ty, arr) in formats.iter() {
1832 if *ty != CrateType::Dylib {
1833 continue;
1834 }
1835 return self.lazy(arr.iter().map(|slot| match *slot {
1836 Linkage::NotLinked | Linkage::IncludedFromDylib => None,
1837
1838 Linkage::Dynamic => Some(LinkagePreference::RequireDynamic),
1839 Linkage::Static => Some(LinkagePreference::RequireStatic),
1840 }));
1841 }
1842 Lazy::empty()
1843 }
1844
1845 fn encode_info_for_foreign_item(&mut self, def_id: DefId, nitem: &hir::ForeignItem<'_>) {
1846 let tcx = self.tcx;
1847
1848 debug!("EncodeContext::encode_info_for_foreign_item({:?})", def_id);
1849
1850 match nitem.kind {
1851 hir::ForeignItemKind::Fn(_, ref names, _) => {
1852 let data = FnData {
1853 asyncness: hir::IsAsync::NotAsync,
1854 constness: if self.tcx.is_const_fn_raw(def_id) {
1855 hir::Constness::Const
1856 } else {
1857 hir::Constness::NotConst
1858 },
1859 param_names: self.encode_fn_param_names(names),
1860 };
1861 record!(self.tables.kind[def_id] <- EntryKind::ForeignFn(self.lazy(data)));
1862 }
1863 hir::ForeignItemKind::Static(_, hir::Mutability::Mut) => {
1864 record!(self.tables.kind[def_id] <- EntryKind::ForeignMutStatic);
1865 }
1866 hir::ForeignItemKind::Static(_, hir::Mutability::Not) => {
1867 record!(self.tables.kind[def_id] <- EntryKind::ForeignImmStatic);
1868 }
1869 hir::ForeignItemKind::Type => {
1870 record!(self.tables.kind[def_id] <- EntryKind::ForeignType);
1871 }
1872 }
1873 self.encode_ident_span(def_id, nitem.ident);
1874 self.encode_item_type(def_id);
1875 if let hir::ForeignItemKind::Fn(..) = nitem.kind {
1876 record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(def_id));
1877 }
1878 }
1879 }
1880
1881 // FIXME(eddyb) make metadata encoding walk over all definitions, instead of HIR.
1882 impl Visitor<'tcx> for EncodeContext<'a, 'tcx> {
1883 type Map = Map<'tcx>;
1884
1885 fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
1886 NestedVisitorMap::OnlyBodies(self.tcx.hir())
1887 }
1888 fn visit_expr(&mut self, ex: &'tcx hir::Expr<'tcx>) {
1889 intravisit::walk_expr(self, ex);
1890 self.encode_info_for_expr(ex);
1891 }
1892 fn visit_anon_const(&mut self, c: &'tcx AnonConst) {
1893 intravisit::walk_anon_const(self, c);
1894 let def_id = self.tcx.hir().local_def_id(c.hir_id);
1895 self.encode_info_for_anon_const(def_id);
1896 }
1897 fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
1898 intravisit::walk_item(self, item);
1899 match item.kind {
1900 hir::ItemKind::ExternCrate(_) | hir::ItemKind::Use(..) => {} // ignore these
1901 _ => self.encode_info_for_item(item.def_id.to_def_id(), item),
1902 }
1903 self.encode_addl_info_for_item(item);
1904 }
1905 fn visit_foreign_item(&mut self, ni: &'tcx hir::ForeignItem<'tcx>) {
1906 intravisit::walk_foreign_item(self, ni);
1907 self.encode_info_for_foreign_item(ni.def_id.to_def_id(), ni);
1908 }
1909 fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
1910 intravisit::walk_generics(self, generics);
1911 self.encode_info_for_generics(generics);
1912 }
1913 }
1914
1915 impl EncodeContext<'a, 'tcx> {
1916 fn encode_fields(&mut self, adt_def: &ty::AdtDef) {
1917 for (variant_index, variant) in adt_def.variants.iter_enumerated() {
1918 for (field_index, _field) in variant.fields.iter().enumerate() {
1919 self.encode_field(adt_def, variant_index, field_index);
1920 }
1921 }
1922 }
1923
1924 fn encode_info_for_generics(&mut self, generics: &hir::Generics<'tcx>) {
1925 for param in generics.params {
1926 let def_id = self.tcx.hir().local_def_id(param.hir_id);
1927 match param.kind {
1928 GenericParamKind::Lifetime { .. } => continue,
1929 GenericParamKind::Type { default, .. } => {
1930 self.encode_info_for_generic_param(
1931 def_id.to_def_id(),
1932 EntryKind::TypeParam,
1933 default.is_some(),
1934 );
1935 }
1936 GenericParamKind::Const { ref default, .. } => {
1937 let def_id = def_id.to_def_id();
1938 self.encode_info_for_generic_param(def_id, EntryKind::ConstParam, true);
1939 if default.is_some() {
1940 record!(self.tables.const_defaults[def_id] <- self.tcx.const_param_default(def_id))
1941 }
1942 }
1943 }
1944 }
1945 }
1946
1947 fn encode_info_for_expr(&mut self, expr: &hir::Expr<'_>) {
1948 if let hir::ExprKind::Closure(..) = expr.kind {
1949 let def_id = self.tcx.hir().local_def_id(expr.hir_id);
1950 self.encode_info_for_closure(def_id);
1951 }
1952 }
1953
1954 fn encode_ident_span(&mut self, def_id: DefId, ident: Ident) {
1955 record!(self.tables.ident_span[def_id] <- ident.span);
1956 }
1957
1958 /// In some cases, along with the item itself, we also
1959 /// encode some sub-items. Usually we want some info from the item
1960 /// so it's easier to do that here then to wait until we would encounter
1961 /// normally in the visitor walk.
1962 fn encode_addl_info_for_item(&mut self, item: &hir::Item<'_>) {
1963 match item.kind {
1964 hir::ItemKind::Static(..)
1965 | hir::ItemKind::Const(..)
1966 | hir::ItemKind::Fn(..)
1967 | hir::ItemKind::Macro(..)
1968 | hir::ItemKind::Mod(..)
1969 | hir::ItemKind::ForeignMod { .. }
1970 | hir::ItemKind::GlobalAsm(..)
1971 | hir::ItemKind::ExternCrate(..)
1972 | hir::ItemKind::Use(..)
1973 | hir::ItemKind::TyAlias(..)
1974 | hir::ItemKind::OpaqueTy(..)
1975 | hir::ItemKind::TraitAlias(..) => {
1976 // no sub-item recording needed in these cases
1977 }
1978 hir::ItemKind::Enum(..) => {
1979 let def = self.tcx.adt_def(item.def_id.to_def_id());
1980 self.encode_fields(def);
1981
1982 for (i, variant) in def.variants.iter_enumerated() {
1983 self.encode_enum_variant_info(def, i);
1984
1985 if let Some(_ctor_def_id) = variant.ctor_def_id {
1986 self.encode_enum_variant_ctor(def, i);
1987 }
1988 }
1989 }
1990 hir::ItemKind::Struct(ref struct_def, _) => {
1991 let def = self.tcx.adt_def(item.def_id.to_def_id());
1992 self.encode_fields(def);
1993
1994 // If the struct has a constructor, encode it.
1995 if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
1996 let ctor_def_id = self.tcx.hir().local_def_id(ctor_hir_id);
1997 self.encode_struct_ctor(def, ctor_def_id.to_def_id());
1998 }
1999 }
2000 hir::ItemKind::Union(..) => {
2001 let def = self.tcx.adt_def(item.def_id.to_def_id());
2002 self.encode_fields(def);
2003 }
2004 hir::ItemKind::Impl { .. } => {
2005 for &trait_item_def_id in
2006 self.tcx.associated_item_def_ids(item.def_id.to_def_id()).iter()
2007 {
2008 self.encode_info_for_impl_item(trait_item_def_id);
2009 }
2010 }
2011 hir::ItemKind::Trait(..) => {
2012 for &item_def_id in self.tcx.associated_item_def_ids(item.def_id.to_def_id()).iter()
2013 {
2014 self.encode_info_for_trait_item(item_def_id);
2015 }
2016 }
2017 }
2018 }
2019 }
2020
2021 struct ImplVisitor<'tcx> {
2022 tcx: TyCtxt<'tcx>,
2023 impls: FxHashMap<DefId, Vec<(DefIndex, Option<ty::fast_reject::SimplifiedType>)>>,
2024 }
2025
2026 impl<'tcx, 'v> ItemLikeVisitor<'v> for ImplVisitor<'tcx> {
2027 fn visit_item(&mut self, item: &hir::Item<'_>) {
2028 if let hir::ItemKind::Impl { .. } = item.kind {
2029 if let Some(trait_ref) = self.tcx.impl_trait_ref(item.def_id.to_def_id()) {
2030 let simplified_self_ty =
2031 ty::fast_reject::simplify_type(self.tcx, trait_ref.self_ty(), false);
2032
2033 self.impls
2034 .entry(trait_ref.def_id)
2035 .or_default()
2036 .push((item.def_id.local_def_index, simplified_self_ty));
2037 }
2038 }
2039 }
2040
2041 fn visit_trait_item(&mut self, _trait_item: &'v hir::TraitItem<'v>) {}
2042
2043 fn visit_impl_item(&mut self, _impl_item: &'v hir::ImplItem<'v>) {
2044 // handled in `visit_item` above
2045 }
2046
2047 fn visit_foreign_item(&mut self, _foreign_item: &'v hir::ForeignItem<'v>) {}
2048 }
2049
2050 /// Used to prefetch queries which will be needed later by metadata encoding.
2051 /// Only a subset of the queries are actually prefetched to keep this code smaller.
2052 fn prefetch_mir(tcx: TyCtxt<'_>) {
2053 if !tcx.sess.opts.output_types.should_codegen() {
2054 // We won't emit MIR, so don't prefetch it.
2055 return;
2056 }
2057
2058 par_iter(tcx.mir_keys(())).for_each(|&def_id| {
2059 let (encode_const, encode_opt) = should_encode_mir(tcx, def_id);
2060
2061 if encode_const {
2062 tcx.ensure().mir_for_ctfe(def_id);
2063 }
2064 if encode_opt {
2065 tcx.ensure().optimized_mir(def_id);
2066 }
2067 if encode_opt || encode_const {
2068 tcx.ensure().promoted_mir(def_id);
2069 }
2070 })
2071 }
2072
2073 // NOTE(eddyb) The following comment was preserved for posterity, even
2074 // though it's no longer relevant as EBML (which uses nested & tagged
2075 // "documents") was replaced with a scheme that can't go out of bounds.
2076 //
2077 // And here we run into yet another obscure archive bug: in which metadata
2078 // loaded from archives may have trailing garbage bytes. Awhile back one of
2079 // our tests was failing sporadically on the macOS 64-bit builders (both nopt
2080 // and opt) by having ebml generate an out-of-bounds panic when looking at
2081 // metadata.
2082 //
2083 // Upon investigation it turned out that the metadata file inside of an rlib
2084 // (and ar archive) was being corrupted. Some compilations would generate a
2085 // metadata file which would end in a few extra bytes, while other
2086 // compilations would not have these extra bytes appended to the end. These
2087 // extra bytes were interpreted by ebml as an extra tag, so they ended up
2088 // being interpreted causing the out-of-bounds.
2089 //
2090 // The root cause of why these extra bytes were appearing was never
2091 // discovered, and in the meantime the solution we're employing is to insert
2092 // the length of the metadata to the start of the metadata. Later on this
2093 // will allow us to slice the metadata to the precise length that we just
2094 // generated regardless of trailing bytes that end up in it.
2095
2096 pub(super) fn encode_metadata(tcx: TyCtxt<'_>) -> EncodedMetadata {
2097 // Since encoding metadata is not in a query, and nothing is cached,
2098 // there's no need to do dep-graph tracking for any of it.
2099 tcx.dep_graph.assert_ignored();
2100
2101 join(
2102 || encode_metadata_impl(tcx),
2103 || {
2104 if tcx.sess.threads() == 1 {
2105 return;
2106 }
2107 // Prefetch some queries used by metadata encoding.
2108 // This is not necessary for correctness, but is only done for performance reasons.
2109 // It can be removed if it turns out to cause trouble or be detrimental to performance.
2110 join(|| prefetch_mir(tcx), || tcx.exported_symbols(LOCAL_CRATE));
2111 },
2112 )
2113 .0
2114 }
2115
2116 fn encode_metadata_impl(tcx: TyCtxt<'_>) -> EncodedMetadata {
2117 let mut encoder = opaque::Encoder::new(vec![]);
2118 encoder.emit_raw_bytes(METADATA_HEADER).unwrap();
2119
2120 // Will be filled with the root position after encoding everything.
2121 encoder.emit_raw_bytes(&[0, 0, 0, 0]).unwrap();
2122
2123 let source_map_files = tcx.sess.source_map().files();
2124 let source_file_cache = (source_map_files[0].clone(), 0);
2125 let required_source_files = Some(GrowableBitSet::with_capacity(source_map_files.len()));
2126 drop(source_map_files);
2127
2128 let hygiene_ctxt = HygieneEncodeContext::default();
2129
2130 let mut ecx = EncodeContext {
2131 opaque: encoder,
2132 tcx,
2133 feat: tcx.features(),
2134 tables: Default::default(),
2135 lazy_state: LazyState::NoNode,
2136 type_shorthands: Default::default(),
2137 predicate_shorthands: Default::default(),
2138 source_file_cache,
2139 interpret_allocs: Default::default(),
2140 required_source_files,
2141 is_proc_macro: tcx.sess.crate_types().contains(&CrateType::ProcMacro),
2142 hygiene_ctxt: &hygiene_ctxt,
2143 };
2144
2145 // Encode the rustc version string in a predictable location.
2146 rustc_version().encode(&mut ecx).unwrap();
2147
2148 // Encode all the entries and extra information in the crate,
2149 // culminating in the `CrateRoot` which points to all of it.
2150 let root = ecx.encode_crate_root();
2151
2152 let mut result = ecx.opaque.into_inner();
2153
2154 // Encode the root position.
2155 let header = METADATA_HEADER.len();
2156 let pos = root.position.get();
2157 result[header + 0] = (pos >> 24) as u8;
2158 result[header + 1] = (pos >> 16) as u8;
2159 result[header + 2] = (pos >> 8) as u8;
2160 result[header + 3] = (pos >> 0) as u8;
2161
2162 EncodedMetadata { raw_data: result }
2163 }