]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_metadata/src/rmeta/encoder.rs
New upstream version 1.48.0~beta.8+dfsg1
[rustc.git] / compiler / rustc_metadata / src / rmeta / encoder.rs
1 use crate::rmeta::table::{FixedSizeEncoding, TableBuilder};
2 use crate::rmeta::*;
3
4 use rustc_ast as ast;
5 use rustc_data_structures::fingerprint::{Fingerprint, FingerprintEncoder};
6 use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexSet};
7 use rustc_data_structures::stable_hasher::StableHasher;
8 use rustc_data_structures::sync::{join, Lrc};
9 use rustc_hir as hir;
10 use rustc_hir::def::CtorKind;
11 use rustc_hir::def_id::{CrateNum, DefId, DefIndex, LocalDefId, CRATE_DEF_INDEX, LOCAL_CRATE};
12 use rustc_hir::intravisit::{self, NestedVisitorMap, Visitor};
13 use rustc_hir::itemlikevisit::{ItemLikeVisitor, ParItemLikeVisitor};
14 use rustc_hir::lang_items;
15 use rustc_hir::{AnonConst, GenericParamKind};
16 use rustc_index::bit_set::GrowableBitSet;
17 use rustc_index::vec::Idx;
18 use rustc_middle::hir::map::Map;
19 use rustc_middle::middle::cstore::{EncodedMetadata, ForeignModule, LinkagePreference, NativeLib};
20 use rustc_middle::middle::dependency_format::Linkage;
21 use rustc_middle::middle::exported_symbols::{
22 metadata_symbol_name, ExportedSymbol, SymbolExportLevel,
23 };
24 use rustc_middle::mir::interpret;
25 use rustc_middle::traits::specialization_graph;
26 use rustc_middle::ty::codec::TyEncoder;
27 use rustc_middle::ty::{self, SymbolName, Ty, TyCtxt};
28 use rustc_serialize::{opaque, Encodable, Encoder};
29 use rustc_session::config::CrateType;
30 use rustc_span::hygiene::{ExpnDataEncodeMode, HygieneEncodeContext};
31 use rustc_span::source_map::Spanned;
32 use rustc_span::symbol::{sym, Ident, Symbol};
33 use rustc_span::{self, ExternalSource, FileName, SourceFile, Span, SyntaxContext};
34 use rustc_target::abi::VariantIdx;
35 use std::hash::Hash;
36 use std::num::NonZeroUsize;
37 use std::path::Path;
38 use tracing::{debug, trace};
39
40 pub(super) struct EncodeContext<'a, 'tcx> {
41 opaque: opaque::Encoder,
42 tcx: TyCtxt<'tcx>,
43 feat: &'tcx rustc_feature::Features,
44
45 tables: TableBuilders<'tcx>,
46
47 lazy_state: LazyState,
48 type_shorthands: FxHashMap<Ty<'tcx>, usize>,
49 predicate_shorthands: FxHashMap<ty::Predicate<'tcx>, usize>,
50
51 interpret_allocs: FxIndexSet<interpret::AllocId>,
52
53 // This is used to speed up Span encoding.
54 // The `usize` is an index into the `MonotonicVec`
55 // that stores the `SourceFile`
56 source_file_cache: (Lrc<SourceFile>, usize),
57 // The indices (into the `SourceMap`'s `MonotonicVec`)
58 // of all of the `SourceFiles` that we need to serialize.
59 // When we serialize a `Span`, we insert the index of its
60 // `SourceFile` into the `GrowableBitSet`.
61 //
62 // This needs to be a `GrowableBitSet` and not a
63 // regular `BitSet` because we may actually import new `SourceFiles`
64 // during metadata encoding, due to executing a query
65 // with a result containing a foreign `Span`.
66 required_source_files: Option<GrowableBitSet<usize>>,
67 is_proc_macro: bool,
68 hygiene_ctxt: &'a HygieneEncodeContext,
69 }
70
71 /// If the current crate is a proc-macro, returns early with `Lazy:empty()`.
72 /// This is useful for skipping the encoding of things that aren't needed
73 /// for proc-macro crates.
74 macro_rules! empty_proc_macro {
75 ($self:ident) => {
76 if $self.is_proc_macro {
77 return Lazy::empty();
78 }
79 };
80 }
81
82 macro_rules! encoder_methods {
83 ($($name:ident($ty:ty);)*) => {
84 $(fn $name(&mut self, value: $ty) -> Result<(), Self::Error> {
85 self.opaque.$name(value)
86 })*
87 }
88 }
89
90 impl<'a, 'tcx> Encoder for EncodeContext<'a, 'tcx> {
91 type Error = <opaque::Encoder as Encoder>::Error;
92
93 #[inline]
94 fn emit_unit(&mut self) -> Result<(), Self::Error> {
95 Ok(())
96 }
97
98 encoder_methods! {
99 emit_usize(usize);
100 emit_u128(u128);
101 emit_u64(u64);
102 emit_u32(u32);
103 emit_u16(u16);
104 emit_u8(u8);
105
106 emit_isize(isize);
107 emit_i128(i128);
108 emit_i64(i64);
109 emit_i32(i32);
110 emit_i16(i16);
111 emit_i8(i8);
112
113 emit_bool(bool);
114 emit_f64(f64);
115 emit_f32(f32);
116 emit_char(char);
117 emit_str(&str);
118 }
119 }
120
121 impl<'a, 'tcx, T: Encodable<EncodeContext<'a, 'tcx>>> Encodable<EncodeContext<'a, 'tcx>>
122 for Lazy<T>
123 {
124 fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) -> opaque::EncodeResult {
125 e.emit_lazy_distance(*self)
126 }
127 }
128
129 impl<'a, 'tcx, T: Encodable<EncodeContext<'a, 'tcx>>> Encodable<EncodeContext<'a, 'tcx>>
130 for Lazy<[T]>
131 {
132 fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) -> opaque::EncodeResult {
133 e.emit_usize(self.meta)?;
134 if self.meta == 0 {
135 return Ok(());
136 }
137 e.emit_lazy_distance(*self)
138 }
139 }
140
141 impl<'a, 'tcx, I: Idx, T: Encodable<EncodeContext<'a, 'tcx>>> Encodable<EncodeContext<'a, 'tcx>>
142 for Lazy<Table<I, T>>
143 where
144 Option<T>: FixedSizeEncoding,
145 {
146 fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) -> opaque::EncodeResult {
147 e.emit_usize(self.meta)?;
148 e.emit_lazy_distance(*self)
149 }
150 }
151
152 impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for CrateNum {
153 fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) -> opaque::EncodeResult {
154 if *self != LOCAL_CRATE && s.is_proc_macro {
155 panic!("Attempted to encode non-local CrateNum {:?} for proc-macro crate", self);
156 }
157 s.emit_u32(self.as_u32())
158 }
159 }
160
161 impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for DefIndex {
162 fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) -> opaque::EncodeResult {
163 s.emit_u32(self.as_u32())
164 }
165 }
166
167 impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for SyntaxContext {
168 fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) -> opaque::EncodeResult {
169 rustc_span::hygiene::raw_encode_syntax_context(*self, &s.hygiene_ctxt, s)
170 }
171 }
172
173 impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for ExpnId {
174 fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) -> opaque::EncodeResult {
175 rustc_span::hygiene::raw_encode_expn_id(
176 *self,
177 &s.hygiene_ctxt,
178 ExpnDataEncodeMode::Metadata,
179 s,
180 )
181 }
182 }
183
184 impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for Span {
185 fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) -> opaque::EncodeResult {
186 if *self == rustc_span::DUMMY_SP {
187 return TAG_INVALID_SPAN.encode(s);
188 }
189
190 let span = self.data();
191
192 // The Span infrastructure should make sure that this invariant holds:
193 debug_assert!(span.lo <= span.hi);
194
195 if !s.source_file_cache.0.contains(span.lo) {
196 let source_map = s.tcx.sess.source_map();
197 let source_file_index = source_map.lookup_source_file_idx(span.lo);
198 s.source_file_cache =
199 (source_map.files()[source_file_index].clone(), source_file_index);
200 }
201
202 if !s.source_file_cache.0.contains(span.hi) {
203 // Unfortunately, macro expansion still sometimes generates Spans
204 // that malformed in this way.
205 return TAG_INVALID_SPAN.encode(s);
206 }
207
208 let source_files = s.required_source_files.as_mut().expect("Already encoded SourceMap!");
209 // Record the fact that we need to encode the data for this `SourceFile`
210 source_files.insert(s.source_file_cache.1);
211
212 // There are two possible cases here:
213 // 1. This span comes from a 'foreign' crate - e.g. some crate upstream of the
214 // crate we are writing metadata for. When the metadata for *this* crate gets
215 // deserialized, the deserializer will need to know which crate it originally came
216 // from. We use `TAG_VALID_SPAN_FOREIGN` to indicate that a `CrateNum` should
217 // be deserialized after the rest of the span data, which tells the deserializer
218 // which crate contains the source map information.
219 // 2. This span comes from our own crate. No special hamdling is needed - we just
220 // write `TAG_VALID_SPAN_LOCAL` to let the deserializer know that it should use
221 // our own source map information.
222 //
223 // If we're a proc-macro crate, we always treat this as a local `Span`.
224 // In `encode_source_map`, we serialize foreign `SourceFile`s into our metadata
225 // if we're a proc-macro crate.
226 // This allows us to avoid loading the dependencies of proc-macro crates: all of
227 // the information we need to decode `Span`s is stored in the proc-macro crate.
228 let (tag, lo, hi) = if s.source_file_cache.0.is_imported() && !s.is_proc_macro {
229 // To simplify deserialization, we 'rebase' this span onto the crate it originally came from
230 // (the crate that 'owns' the file it references. These rebased 'lo' and 'hi' values
231 // are relative to the source map information for the 'foreign' crate whose CrateNum
232 // we write into the metadata. This allows `imported_source_files` to binary
233 // search through the 'foreign' crate's source map information, using the
234 // deserialized 'lo' and 'hi' values directly.
235 //
236 // All of this logic ensures that the final result of deserialization is a 'normal'
237 // Span that can be used without any additional trouble.
238 let external_start_pos = {
239 // Introduce a new scope so that we drop the 'lock()' temporary
240 match &*s.source_file_cache.0.external_src.lock() {
241 ExternalSource::Foreign { original_start_pos, .. } => *original_start_pos,
242 src => panic!("Unexpected external source {:?}", src),
243 }
244 };
245 let lo = (span.lo - s.source_file_cache.0.start_pos) + external_start_pos;
246 let hi = (span.hi - s.source_file_cache.0.start_pos) + external_start_pos;
247
248 (TAG_VALID_SPAN_FOREIGN, lo, hi)
249 } else {
250 (TAG_VALID_SPAN_LOCAL, span.lo, span.hi)
251 };
252
253 tag.encode(s)?;
254 lo.encode(s)?;
255
256 // Encode length which is usually less than span.hi and profits more
257 // from the variable-length integer encoding that we use.
258 let len = hi - lo;
259 len.encode(s)?;
260
261 // Don't serialize any `SyntaxContext`s from a proc-macro crate,
262 // since we don't load proc-macro dependencies during serialization.
263 // This means that any hygiene information from macros used *within*
264 // a proc-macro crate (e.g. invoking a macro that expands to a proc-macro
265 // definition) will be lost.
266 //
267 // This can show up in two ways:
268 //
269 // 1. Any hygiene information associated with identifier of
270 // a proc macro (e.g. `#[proc_macro] pub fn $name`) will be lost.
271 // Since proc-macros can only be invoked from a different crate,
272 // real code should never need to care about this.
273 //
274 // 2. Using `Span::def_site` or `Span::mixed_site` will not
275 // include any hygiene information associated with the definition
276 // site. This means that a proc-macro cannot emit a `$crate`
277 // identifier which resolves to one of its dependencies,
278 // which also should never come up in practice.
279 //
280 // Additionally, this affects `Span::parent`, and any other
281 // span inspection APIs that would otherwise allow traversing
282 // the `SyntaxContexts` associated with a span.
283 //
284 // None of these user-visible effects should result in any
285 // cross-crate inconsistencies (getting one behavior in the same
286 // crate, and a different behavior in another crate) due to the
287 // limited surface that proc-macros can expose.
288 //
289 // IMPORTANT: If this is ever changed, be sure to update
290 // `rustc_span::hygiene::raw_encode_expn_id` to handle
291 // encoding `ExpnData` for proc-macro crates.
292 if s.is_proc_macro {
293 SyntaxContext::root().encode(s)?;
294 } else {
295 span.ctxt.encode(s)?;
296 }
297
298 if tag == TAG_VALID_SPAN_FOREIGN {
299 // This needs to be two lines to avoid holding the `s.source_file_cache`
300 // while calling `cnum.encode(s)`
301 let cnum = s.source_file_cache.0.cnum;
302 cnum.encode(s)?;
303 }
304
305 Ok(())
306 }
307 }
308
309 impl<'a, 'tcx> FingerprintEncoder for EncodeContext<'a, 'tcx> {
310 fn encode_fingerprint(&mut self, f: &Fingerprint) -> Result<(), Self::Error> {
311 f.encode_opaque(&mut self.opaque)
312 }
313 }
314
315 impl<'a, 'tcx> TyEncoder<'tcx> for EncodeContext<'a, 'tcx> {
316 const CLEAR_CROSS_CRATE: bool = true;
317
318 fn position(&self) -> usize {
319 self.opaque.position()
320 }
321
322 fn tcx(&self) -> TyCtxt<'tcx> {
323 self.tcx
324 }
325
326 fn type_shorthands(&mut self) -> &mut FxHashMap<Ty<'tcx>, usize> {
327 &mut self.type_shorthands
328 }
329
330 fn predicate_shorthands(&mut self) -> &mut FxHashMap<rustc_middle::ty::Predicate<'tcx>, usize> {
331 &mut self.predicate_shorthands
332 }
333
334 fn encode_alloc_id(
335 &mut self,
336 alloc_id: &rustc_middle::mir::interpret::AllocId,
337 ) -> Result<(), Self::Error> {
338 let (index, _) = self.interpret_allocs.insert_full(*alloc_id);
339
340 index.encode(self)
341 }
342 }
343
344 impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for &'tcx [mir::abstract_const::Node<'tcx>] {
345 fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) -> opaque::EncodeResult {
346 (**self).encode(s)
347 }
348 }
349
350 impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for &'tcx [(ty::Predicate<'tcx>, Span)] {
351 fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) -> opaque::EncodeResult {
352 (**self).encode(s)
353 }
354 }
355
356 /// Helper trait to allow overloading `EncodeContext::lazy` for iterators.
357 trait EncodeContentsForLazy<'a, 'tcx, T: ?Sized + LazyMeta> {
358 fn encode_contents_for_lazy(self, ecx: &mut EncodeContext<'a, 'tcx>) -> T::Meta;
359 }
360
361 impl<'a, 'tcx, T: Encodable<EncodeContext<'a, 'tcx>>> EncodeContentsForLazy<'a, 'tcx, T> for &T {
362 fn encode_contents_for_lazy(self, ecx: &mut EncodeContext<'a, 'tcx>) {
363 self.encode(ecx).unwrap()
364 }
365 }
366
367 impl<'a, 'tcx, T: Encodable<EncodeContext<'a, 'tcx>>> EncodeContentsForLazy<'a, 'tcx, T> for T {
368 fn encode_contents_for_lazy(self, ecx: &mut EncodeContext<'a, 'tcx>) {
369 self.encode(ecx).unwrap()
370 }
371 }
372
373 impl<'a, 'tcx, I, T: Encodable<EncodeContext<'a, 'tcx>>> EncodeContentsForLazy<'a, 'tcx, [T]> for I
374 where
375 I: IntoIterator,
376 I::Item: EncodeContentsForLazy<'a, 'tcx, T>,
377 {
378 fn encode_contents_for_lazy(self, ecx: &mut EncodeContext<'a, 'tcx>) -> usize {
379 self.into_iter().map(|value| value.encode_contents_for_lazy(ecx)).count()
380 }
381 }
382
383 // Shorthand for `$self.$tables.$table.set($def_id.index, $self.lazy($value))`, which would
384 // normally need extra variables to avoid errors about multiple mutable borrows.
385 macro_rules! record {
386 ($self:ident.$tables:ident.$table:ident[$def_id:expr] <- $value:expr) => {{
387 {
388 let value = $value;
389 let lazy = $self.lazy(value);
390 $self.$tables.$table.set($def_id.index, lazy);
391 }
392 }};
393 }
394
395 impl<'a, 'tcx> EncodeContext<'a, 'tcx> {
396 fn emit_lazy_distance<T: ?Sized + LazyMeta>(
397 &mut self,
398 lazy: Lazy<T>,
399 ) -> Result<(), <Self as Encoder>::Error> {
400 let min_end = lazy.position.get() + T::min_size(lazy.meta);
401 let distance = match self.lazy_state {
402 LazyState::NoNode => bug!("emit_lazy_distance: outside of a metadata node"),
403 LazyState::NodeStart(start) => {
404 let start = start.get();
405 assert!(min_end <= start);
406 start - min_end
407 }
408 LazyState::Previous(last_min_end) => {
409 assert!(
410 last_min_end <= lazy.position,
411 "make sure that the calls to `lazy*` \
412 are in the same order as the metadata fields",
413 );
414 lazy.position.get() - last_min_end.get()
415 }
416 };
417 self.lazy_state = LazyState::Previous(NonZeroUsize::new(min_end).unwrap());
418 self.emit_usize(distance)
419 }
420
421 fn lazy<T: ?Sized + LazyMeta>(
422 &mut self,
423 value: impl EncodeContentsForLazy<'a, 'tcx, T>,
424 ) -> Lazy<T> {
425 let pos = NonZeroUsize::new(self.position()).unwrap();
426
427 assert_eq!(self.lazy_state, LazyState::NoNode);
428 self.lazy_state = LazyState::NodeStart(pos);
429 let meta = value.encode_contents_for_lazy(self);
430 self.lazy_state = LazyState::NoNode;
431
432 assert!(pos.get() + <T>::min_size(meta) <= self.position());
433
434 Lazy::from_position_and_meta(pos, meta)
435 }
436
437 fn encode_info_for_items(&mut self) {
438 let krate = self.tcx.hir().krate();
439 let vis = Spanned { span: rustc_span::DUMMY_SP, node: hir::VisibilityKind::Public };
440 self.encode_info_for_mod(hir::CRATE_HIR_ID, &krate.item.module, &krate.item.attrs, &vis);
441
442 // Proc-macro crates only export proc-macro items, which are looked
443 // up using `proc_macro_data`
444 if self.is_proc_macro {
445 return;
446 }
447
448 krate.visit_all_item_likes(&mut self.as_deep_visitor());
449 for macro_def in krate.exported_macros {
450 self.visit_macro_def(macro_def);
451 }
452 }
453
454 fn encode_def_path_table(&mut self) {
455 let table = self.tcx.hir().definitions().def_path_table();
456 if self.is_proc_macro {
457 for def_index in std::iter::once(CRATE_DEF_INDEX)
458 .chain(self.tcx.hir().krate().proc_macros.iter().map(|p| p.owner.local_def_index))
459 {
460 let def_key = self.lazy(table.def_key(def_index));
461 let def_path_hash = self.lazy(table.def_path_hash(def_index));
462 self.tables.def_keys.set(def_index, def_key);
463 self.tables.def_path_hashes.set(def_index, def_path_hash);
464 }
465 } else {
466 for (def_index, def_key, def_path_hash) in table.enumerated_keys_and_path_hashes() {
467 let def_key = self.lazy(def_key);
468 let def_path_hash = self.lazy(def_path_hash);
469 self.tables.def_keys.set(def_index, def_key);
470 self.tables.def_path_hashes.set(def_index, def_path_hash);
471 }
472 }
473 }
474
475 fn encode_source_map(&mut self) -> Lazy<[rustc_span::SourceFile]> {
476 let source_map = self.tcx.sess.source_map();
477 let all_source_files = source_map.files();
478
479 let (working_dir, _cwd_remapped) = self.tcx.sess.working_dir.clone();
480 // By replacing the `Option` with `None`, we ensure that we can't
481 // accidentally serialize any more `Span`s after the source map encoding
482 // is done.
483 let required_source_files = self.required_source_files.take().unwrap();
484
485 let adapted = all_source_files
486 .iter()
487 .enumerate()
488 .filter(|(idx, source_file)| {
489 // Only serialize `SourceFile`s that were used
490 // during the encoding of a `Span`
491 required_source_files.contains(*idx) &&
492 // Don't serialize imported `SourceFile`s, unless
493 // we're in a proc-macro crate.
494 (!source_file.is_imported() || self.is_proc_macro)
495 })
496 .map(|(_, source_file)| {
497 let mut adapted = match source_file.name {
498 // This path of this SourceFile has been modified by
499 // path-remapping, so we use it verbatim (and avoid
500 // cloning the whole map in the process).
501 _ if source_file.name_was_remapped => source_file.clone(),
502
503 // Otherwise expand all paths to absolute paths because
504 // any relative paths are potentially relative to a
505 // wrong directory.
506 FileName::Real(ref name) => {
507 let name = name.stable_name();
508 let mut adapted = (**source_file).clone();
509 adapted.name = Path::new(&working_dir).join(name).into();
510 adapted.name_hash = {
511 let mut hasher: StableHasher = StableHasher::new();
512 adapted.name.hash(&mut hasher);
513 hasher.finish::<u128>()
514 };
515 Lrc::new(adapted)
516 }
517
518 // expanded code, not from a file
519 _ => source_file.clone(),
520 };
521
522 // We're serializing this `SourceFile` into our crate metadata,
523 // so mark it as coming from this crate.
524 // This also ensures that we don't try to deserialize the
525 // `CrateNum` for a proc-macro dependency - since proc macro
526 // dependencies aren't loaded when we deserialize a proc-macro,
527 // trying to remap the `CrateNum` would fail.
528 if self.is_proc_macro {
529 Lrc::make_mut(&mut adapted).cnum = LOCAL_CRATE;
530 }
531 adapted
532 })
533 .collect::<Vec<_>>();
534
535 self.lazy(adapted.iter().map(|rc| &**rc))
536 }
537
538 fn encode_crate_root(&mut self) -> Lazy<CrateRoot<'tcx>> {
539 let mut i = self.position();
540
541 // Encode the crate deps
542 let crate_deps = self.encode_crate_deps();
543 let dylib_dependency_formats = self.encode_dylib_dependency_formats();
544 let dep_bytes = self.position() - i;
545
546 // Encode the lib features.
547 i = self.position();
548 let lib_features = self.encode_lib_features();
549 let lib_feature_bytes = self.position() - i;
550
551 // Encode the language items.
552 i = self.position();
553 let lang_items = self.encode_lang_items();
554 let lang_items_missing = self.encode_lang_items_missing();
555 let lang_item_bytes = self.position() - i;
556
557 // Encode the diagnostic items.
558 i = self.position();
559 let diagnostic_items = self.encode_diagnostic_items();
560 let diagnostic_item_bytes = self.position() - i;
561
562 // Encode the native libraries used
563 i = self.position();
564 let native_libraries = self.encode_native_libraries();
565 let native_lib_bytes = self.position() - i;
566
567 let foreign_modules = self.encode_foreign_modules();
568
569 // Encode DefPathTable
570 i = self.position();
571 self.encode_def_path_table();
572 let def_path_table_bytes = self.position() - i;
573
574 // Encode the def IDs of impls, for coherence checking.
575 i = self.position();
576 let impls = self.encode_impls();
577 let impl_bytes = self.position() - i;
578
579 let tcx = self.tcx;
580
581 // Encode the items.
582 i = self.position();
583 self.encode_info_for_items();
584 let item_bytes = self.position() - i;
585
586 // Encode the allocation index
587 let interpret_alloc_index = {
588 let mut interpret_alloc_index = Vec::new();
589 let mut n = 0;
590 trace!("beginning to encode alloc ids");
591 loop {
592 let new_n = self.interpret_allocs.len();
593 // if we have found new ids, serialize those, too
594 if n == new_n {
595 // otherwise, abort
596 break;
597 }
598 trace!("encoding {} further alloc ids", new_n - n);
599 for idx in n..new_n {
600 let id = self.interpret_allocs[idx];
601 let pos = self.position() as u32;
602 interpret_alloc_index.push(pos);
603 interpret::specialized_encode_alloc_id(self, tcx, id).unwrap();
604 }
605 n = new_n;
606 }
607 self.lazy(interpret_alloc_index)
608 };
609
610 // Encode the proc macro data. This affects 'tables',
611 // so we need to do this before we encode the tables
612 i = self.position();
613 let proc_macro_data = self.encode_proc_macros();
614 let proc_macro_data_bytes = self.position() - i;
615
616 i = self.position();
617 let tables = self.tables.encode(&mut self.opaque);
618 let tables_bytes = self.position() - i;
619
620 // Encode exported symbols info. This is prefetched in `encode_metadata` so we encode
621 // this as late as possible to give the prefetching as much time as possible to complete.
622 i = self.position();
623 let exported_symbols = tcx.exported_symbols(LOCAL_CRATE);
624 let exported_symbols = self.encode_exported_symbols(&exported_symbols);
625 let exported_symbols_bytes = self.position() - i;
626
627 // Encode the hygiene data,
628 // IMPORTANT: this *must* be the last thing that we encode (other than `SourceMap`). The process
629 // of encoding other items (e.g. `optimized_mir`) may cause us to load
630 // data from the incremental cache. If this causes us to deserialize a `Span`,
631 // then we may load additional `SyntaxContext`s into the global `HygieneData`.
632 // Therefore, we need to encode the hygiene data last to ensure that we encode
633 // any `SyntaxContext`s that might be used.
634 i = self.position();
635 let (syntax_contexts, expn_data) = self.encode_hygiene();
636 let hygiene_bytes = self.position() - i;
637
638 // Encode source_map. This needs to be done last,
639 // since encoding `Span`s tells us which `SourceFiles` we actually
640 // need to encode.
641 i = self.position();
642 let source_map = self.encode_source_map();
643 let source_map_bytes = self.position() - i;
644
645 let attrs = tcx.hir().krate_attrs();
646 let has_default_lib_allocator = tcx.sess.contains_name(&attrs, sym::default_lib_allocator);
647
648 let root = self.lazy(CrateRoot {
649 name: tcx.crate_name(LOCAL_CRATE),
650 extra_filename: tcx.sess.opts.cg.extra_filename.clone(),
651 triple: tcx.sess.opts.target_triple.clone(),
652 hash: tcx.crate_hash(LOCAL_CRATE),
653 disambiguator: tcx.sess.local_crate_disambiguator(),
654 panic_strategy: tcx.sess.panic_strategy(),
655 edition: tcx.sess.edition(),
656 has_global_allocator: tcx.has_global_allocator(LOCAL_CRATE),
657 has_panic_handler: tcx.has_panic_handler(LOCAL_CRATE),
658 has_default_lib_allocator,
659 plugin_registrar_fn: tcx.plugin_registrar_fn(LOCAL_CRATE).map(|id| id.index),
660 proc_macro_data,
661 compiler_builtins: tcx.sess.contains_name(&attrs, sym::compiler_builtins),
662 needs_allocator: tcx.sess.contains_name(&attrs, sym::needs_allocator),
663 needs_panic_runtime: tcx.sess.contains_name(&attrs, sym::needs_panic_runtime),
664 no_builtins: tcx.sess.contains_name(&attrs, sym::no_builtins),
665 panic_runtime: tcx.sess.contains_name(&attrs, sym::panic_runtime),
666 profiler_runtime: tcx.sess.contains_name(&attrs, sym::profiler_runtime),
667 symbol_mangling_version: tcx.sess.opts.debugging_opts.symbol_mangling_version,
668
669 crate_deps,
670 dylib_dependency_formats,
671 lib_features,
672 lang_items,
673 diagnostic_items,
674 lang_items_missing,
675 native_libraries,
676 foreign_modules,
677 source_map,
678 impls,
679 exported_symbols,
680 interpret_alloc_index,
681 tables,
682 syntax_contexts,
683 expn_data,
684 });
685
686 let total_bytes = self.position();
687
688 if tcx.sess.meta_stats() {
689 let mut zero_bytes = 0;
690 for e in self.opaque.data.iter() {
691 if *e == 0 {
692 zero_bytes += 1;
693 }
694 }
695
696 println!("metadata stats:");
697 println!(" dep bytes: {}", dep_bytes);
698 println!(" lib feature bytes: {}", lib_feature_bytes);
699 println!(" lang item bytes: {}", lang_item_bytes);
700 println!(" diagnostic item bytes: {}", diagnostic_item_bytes);
701 println!(" native bytes: {}", native_lib_bytes);
702 println!(" source_map bytes: {}", source_map_bytes);
703 println!(" impl bytes: {}", impl_bytes);
704 println!(" exp. symbols bytes: {}", exported_symbols_bytes);
705 println!(" def-path table bytes: {}", def_path_table_bytes);
706 println!(" proc-macro-data-bytes: {}", proc_macro_data_bytes);
707 println!(" item bytes: {}", item_bytes);
708 println!(" table bytes: {}", tables_bytes);
709 println!(" hygiene bytes: {}", hygiene_bytes);
710 println!(" zero bytes: {}", zero_bytes);
711 println!(" total bytes: {}", total_bytes);
712 }
713
714 root
715 }
716 }
717
718 impl EncodeContext<'a, 'tcx> {
719 fn encode_variances_of(&mut self, def_id: DefId) {
720 debug!("EncodeContext::encode_variances_of({:?})", def_id);
721 record!(self.tables.variances[def_id] <- &self.tcx.variances_of(def_id)[..]);
722 }
723
724 fn encode_item_type(&mut self, def_id: DefId) {
725 debug!("EncodeContext::encode_item_type({:?})", def_id);
726 record!(self.tables.ty[def_id] <- self.tcx.type_of(def_id));
727 }
728
729 fn encode_enum_variant_info(&mut self, def: &ty::AdtDef, index: VariantIdx) {
730 let tcx = self.tcx;
731 let variant = &def.variants[index];
732 let def_id = variant.def_id;
733 debug!("EncodeContext::encode_enum_variant_info({:?})", def_id);
734
735 let data = VariantData {
736 ctor_kind: variant.ctor_kind,
737 discr: variant.discr,
738 ctor: variant.ctor_def_id.map(|did| did.index),
739 is_non_exhaustive: variant.is_field_list_non_exhaustive(),
740 };
741
742 let enum_id = tcx.hir().local_def_id_to_hir_id(def.did.expect_local());
743 let enum_vis = &tcx.hir().expect_item(enum_id).vis;
744
745 record!(self.tables.kind[def_id] <- EntryKind::Variant(self.lazy(data)));
746 record!(self.tables.visibility[def_id] <-
747 ty::Visibility::from_hir(enum_vis, enum_id, self.tcx));
748 record!(self.tables.span[def_id] <- self.tcx.def_span(def_id));
749 record!(self.tables.attributes[def_id] <- &self.tcx.get_attrs(def_id)[..]);
750 record!(self.tables.children[def_id] <- variant.fields.iter().map(|f| {
751 assert!(f.did.is_local());
752 f.did.index
753 }));
754 self.encode_ident_span(def_id, variant.ident);
755 self.encode_stability(def_id);
756 self.encode_deprecation(def_id);
757 self.encode_item_type(def_id);
758 if variant.ctor_kind == CtorKind::Fn {
759 // FIXME(eddyb) encode signature only in `encode_enum_variant_ctor`.
760 if let Some(ctor_def_id) = variant.ctor_def_id {
761 record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(ctor_def_id));
762 }
763 // FIXME(eddyb) is this ever used?
764 self.encode_variances_of(def_id);
765 }
766 self.encode_generics(def_id);
767 self.encode_explicit_predicates(def_id);
768 self.encode_inferred_outlives(def_id);
769 self.encode_optimized_mir(def_id.expect_local());
770 self.encode_promoted_mir(def_id.expect_local());
771 }
772
773 fn encode_enum_variant_ctor(&mut self, def: &ty::AdtDef, index: VariantIdx) {
774 let tcx = self.tcx;
775 let variant = &def.variants[index];
776 let def_id = variant.ctor_def_id.unwrap();
777 debug!("EncodeContext::encode_enum_variant_ctor({:?})", def_id);
778
779 // FIXME(eddyb) encode only the `CtorKind` for constructors.
780 let data = VariantData {
781 ctor_kind: variant.ctor_kind,
782 discr: variant.discr,
783 ctor: Some(def_id.index),
784 is_non_exhaustive: variant.is_field_list_non_exhaustive(),
785 };
786
787 // Variant constructors have the same visibility as the parent enums, unless marked as
788 // non-exhaustive, in which case they are lowered to `pub(crate)`.
789 let enum_id = tcx.hir().local_def_id_to_hir_id(def.did.expect_local());
790 let enum_vis = &tcx.hir().expect_item(enum_id).vis;
791 let mut ctor_vis = ty::Visibility::from_hir(enum_vis, enum_id, tcx);
792 if variant.is_field_list_non_exhaustive() && ctor_vis == ty::Visibility::Public {
793 ctor_vis = ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX));
794 }
795
796 record!(self.tables.kind[def_id] <- EntryKind::Variant(self.lazy(data)));
797 record!(self.tables.visibility[def_id] <- ctor_vis);
798 record!(self.tables.span[def_id] <- self.tcx.def_span(def_id));
799 self.encode_stability(def_id);
800 self.encode_deprecation(def_id);
801 self.encode_item_type(def_id);
802 if variant.ctor_kind == CtorKind::Fn {
803 record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(def_id));
804 self.encode_variances_of(def_id);
805 }
806 self.encode_generics(def_id);
807 self.encode_explicit_predicates(def_id);
808 self.encode_inferred_outlives(def_id);
809 self.encode_optimized_mir(def_id.expect_local());
810 self.encode_promoted_mir(def_id.expect_local());
811 }
812
813 fn encode_info_for_mod(
814 &mut self,
815 id: hir::HirId,
816 md: &hir::Mod<'_>,
817 attrs: &[ast::Attribute],
818 vis: &hir::Visibility<'_>,
819 ) {
820 let tcx = self.tcx;
821 let local_def_id = tcx.hir().local_def_id(id);
822 let def_id = local_def_id.to_def_id();
823 debug!("EncodeContext::encode_info_for_mod({:?})", def_id);
824
825 // If we are encoding a proc-macro crates, `encode_info_for_mod` will
826 // only ever get called for the crate root. We still want to encode
827 // the crate root for consistency with other crates (some of the resolver
828 // code uses it). However, we skip encoding anything relating to child
829 // items - we encode information about proc-macros later on.
830 let reexports = if !self.is_proc_macro {
831 match tcx.module_exports(local_def_id) {
832 Some(exports) => {
833 let hir = self.tcx.hir();
834 self.lazy(
835 exports
836 .iter()
837 .map(|export| export.map_id(|id| hir.local_def_id_to_hir_id(id))),
838 )
839 }
840 _ => Lazy::empty(),
841 }
842 } else {
843 Lazy::empty()
844 };
845
846 let data = ModData {
847 reexports,
848 expansion: tcx.hir().definitions().expansion_that_defined(local_def_id),
849 };
850
851 record!(self.tables.kind[def_id] <- EntryKind::Mod(self.lazy(data)));
852 record!(self.tables.visibility[def_id] <- ty::Visibility::from_hir(vis, id, self.tcx));
853 record!(self.tables.span[def_id] <- self.tcx.def_span(def_id));
854 record!(self.tables.attributes[def_id] <- attrs);
855 if self.is_proc_macro {
856 record!(self.tables.children[def_id] <- &[]);
857 } else {
858 record!(self.tables.children[def_id] <- md.item_ids.iter().map(|item_id| {
859 tcx.hir().local_def_id(item_id.id).local_def_index
860 }));
861 }
862 self.encode_stability(def_id);
863 self.encode_deprecation(def_id);
864 }
865
866 fn encode_field(
867 &mut self,
868 adt_def: &ty::AdtDef,
869 variant_index: VariantIdx,
870 field_index: usize,
871 ) {
872 let tcx = self.tcx;
873 let variant = &adt_def.variants[variant_index];
874 let field = &variant.fields[field_index];
875
876 let def_id = field.did;
877 debug!("EncodeContext::encode_field({:?})", def_id);
878
879 let variant_id = tcx.hir().local_def_id_to_hir_id(variant.def_id.expect_local());
880 let variant_data = tcx.hir().expect_variant_data(variant_id);
881
882 record!(self.tables.kind[def_id] <- EntryKind::Field);
883 record!(self.tables.visibility[def_id] <- field.vis);
884 record!(self.tables.span[def_id] <- self.tcx.def_span(def_id));
885 record!(self.tables.attributes[def_id] <- variant_data.fields()[field_index].attrs);
886 self.encode_ident_span(def_id, field.ident);
887 self.encode_stability(def_id);
888 self.encode_deprecation(def_id);
889 self.encode_item_type(def_id);
890 self.encode_generics(def_id);
891 self.encode_explicit_predicates(def_id);
892 self.encode_inferred_outlives(def_id);
893 }
894
895 fn encode_struct_ctor(&mut self, adt_def: &ty::AdtDef, def_id: DefId) {
896 debug!("EncodeContext::encode_struct_ctor({:?})", def_id);
897 let tcx = self.tcx;
898 let variant = adt_def.non_enum_variant();
899
900 let data = VariantData {
901 ctor_kind: variant.ctor_kind,
902 discr: variant.discr,
903 ctor: Some(def_id.index),
904 is_non_exhaustive: variant.is_field_list_non_exhaustive(),
905 };
906
907 let struct_id = tcx.hir().local_def_id_to_hir_id(adt_def.did.expect_local());
908 let struct_vis = &tcx.hir().expect_item(struct_id).vis;
909 let mut ctor_vis = ty::Visibility::from_hir(struct_vis, struct_id, tcx);
910 for field in &variant.fields {
911 if ctor_vis.is_at_least(field.vis, tcx) {
912 ctor_vis = field.vis;
913 }
914 }
915
916 // If the structure is marked as non_exhaustive then lower the visibility
917 // to within the crate.
918 if adt_def.non_enum_variant().is_field_list_non_exhaustive()
919 && ctor_vis == ty::Visibility::Public
920 {
921 ctor_vis = ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX));
922 }
923
924 record!(self.tables.kind[def_id] <- EntryKind::Struct(self.lazy(data), adt_def.repr));
925 record!(self.tables.visibility[def_id] <- ctor_vis);
926 record!(self.tables.span[def_id] <- self.tcx.def_span(def_id));
927 self.encode_stability(def_id);
928 self.encode_deprecation(def_id);
929 self.encode_item_type(def_id);
930 if variant.ctor_kind == CtorKind::Fn {
931 record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(def_id));
932 self.encode_variances_of(def_id);
933 }
934 self.encode_generics(def_id);
935 self.encode_explicit_predicates(def_id);
936 self.encode_inferred_outlives(def_id);
937 self.encode_optimized_mir(def_id.expect_local());
938 self.encode_promoted_mir(def_id.expect_local());
939 }
940
941 fn encode_generics(&mut self, def_id: DefId) {
942 debug!("EncodeContext::encode_generics({:?})", def_id);
943 record!(self.tables.generics[def_id] <- self.tcx.generics_of(def_id));
944 }
945
946 fn encode_explicit_predicates(&mut self, def_id: DefId) {
947 debug!("EncodeContext::encode_explicit_predicates({:?})", def_id);
948 record!(self.tables.explicit_predicates[def_id] <-
949 self.tcx.explicit_predicates_of(def_id));
950 }
951
952 fn encode_inferred_outlives(&mut self, def_id: DefId) {
953 debug!("EncodeContext::encode_inferred_outlives({:?})", def_id);
954 let inferred_outlives = self.tcx.inferred_outlives_of(def_id);
955 if !inferred_outlives.is_empty() {
956 record!(self.tables.inferred_outlives[def_id] <- inferred_outlives);
957 }
958 }
959
960 fn encode_super_predicates(&mut self, def_id: DefId) {
961 debug!("EncodeContext::encode_super_predicates({:?})", def_id);
962 record!(self.tables.super_predicates[def_id] <- self.tcx.super_predicates_of(def_id));
963 }
964
965 fn encode_info_for_trait_item(&mut self, def_id: DefId) {
966 debug!("EncodeContext::encode_info_for_trait_item({:?})", def_id);
967 let tcx = self.tcx;
968
969 let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
970 let ast_item = tcx.hir().expect_trait_item(hir_id);
971 let trait_item = tcx.associated_item(def_id);
972
973 let container = match trait_item.defaultness {
974 hir::Defaultness::Default { has_value: true } => AssocContainer::TraitWithDefault,
975 hir::Defaultness::Default { has_value: false } => AssocContainer::TraitRequired,
976 hir::Defaultness::Final => span_bug!(ast_item.span, "traits cannot have final items"),
977 };
978
979 record!(self.tables.kind[def_id] <- match trait_item.kind {
980 ty::AssocKind::Const => {
981 let rendered = rustc_hir_pretty::to_string(
982 &(&self.tcx.hir() as &dyn intravisit::Map<'_>),
983 |s| s.print_trait_item(ast_item)
984 );
985 let rendered_const = self.lazy(RenderedConst(rendered));
986
987 EntryKind::AssocConst(
988 container,
989 Default::default(),
990 rendered_const,
991 )
992 }
993 ty::AssocKind::Fn => {
994 let fn_data = if let hir::TraitItemKind::Fn(m_sig, m) = &ast_item.kind {
995 let param_names = match *m {
996 hir::TraitFn::Required(ref names) => {
997 self.encode_fn_param_names(names)
998 }
999 hir::TraitFn::Provided(body) => {
1000 self.encode_fn_param_names_for_body(body)
1001 }
1002 };
1003 FnData {
1004 asyncness: m_sig.header.asyncness,
1005 constness: hir::Constness::NotConst,
1006 param_names,
1007 }
1008 } else {
1009 bug!()
1010 };
1011 EntryKind::AssocFn(self.lazy(AssocFnData {
1012 fn_data,
1013 container,
1014 has_self: trait_item.fn_has_self_parameter,
1015 }))
1016 }
1017 ty::AssocKind::Type => EntryKind::AssocType(container),
1018 });
1019 record!(self.tables.visibility[def_id] <- trait_item.vis);
1020 record!(self.tables.span[def_id] <- ast_item.span);
1021 record!(self.tables.attributes[def_id] <- ast_item.attrs);
1022 self.encode_ident_span(def_id, ast_item.ident);
1023 self.encode_stability(def_id);
1024 self.encode_const_stability(def_id);
1025 self.encode_deprecation(def_id);
1026 match trait_item.kind {
1027 ty::AssocKind::Const | ty::AssocKind::Fn => {
1028 self.encode_item_type(def_id);
1029 }
1030 ty::AssocKind::Type => {
1031 if trait_item.defaultness.has_value() {
1032 self.encode_item_type(def_id);
1033 }
1034 }
1035 }
1036 if trait_item.kind == ty::AssocKind::Fn {
1037 record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(def_id));
1038 self.encode_variances_of(def_id);
1039 }
1040 self.encode_generics(def_id);
1041 self.encode_explicit_predicates(def_id);
1042 self.encode_inferred_outlives(def_id);
1043
1044 // This should be kept in sync with `PrefetchVisitor.visit_trait_item`.
1045 self.encode_optimized_mir(def_id.expect_local());
1046 self.encode_promoted_mir(def_id.expect_local());
1047 }
1048
1049 fn metadata_output_only(&self) -> bool {
1050 // MIR optimisation can be skipped when we're just interested in the metadata.
1051 !self.tcx.sess.opts.output_types.should_codegen()
1052 }
1053
1054 fn encode_info_for_impl_item(&mut self, def_id: DefId) {
1055 debug!("EncodeContext::encode_info_for_impl_item({:?})", def_id);
1056 let tcx = self.tcx;
1057
1058 let hir_id = self.tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
1059 let ast_item = self.tcx.hir().expect_impl_item(hir_id);
1060 let impl_item = self.tcx.associated_item(def_id);
1061
1062 let container = match impl_item.defaultness {
1063 hir::Defaultness::Default { has_value: true } => AssocContainer::ImplDefault,
1064 hir::Defaultness::Final => AssocContainer::ImplFinal,
1065 hir::Defaultness::Default { has_value: false } => {
1066 span_bug!(ast_item.span, "impl items always have values (currently)")
1067 }
1068 };
1069
1070 record!(self.tables.kind[def_id] <- match impl_item.kind {
1071 ty::AssocKind::Const => {
1072 if let hir::ImplItemKind::Const(_, body_id) = ast_item.kind {
1073 let qualifs = self.tcx.at(ast_item.span).mir_const_qualif(def_id);
1074
1075 EntryKind::AssocConst(
1076 container,
1077 qualifs,
1078 self.encode_rendered_const_for_body(body_id))
1079 } else {
1080 bug!()
1081 }
1082 }
1083 ty::AssocKind::Fn => {
1084 let fn_data = if let hir::ImplItemKind::Fn(ref sig, body) = ast_item.kind {
1085 FnData {
1086 asyncness: sig.header.asyncness,
1087 constness: sig.header.constness,
1088 param_names: self.encode_fn_param_names_for_body(body),
1089 }
1090 } else {
1091 bug!()
1092 };
1093 EntryKind::AssocFn(self.lazy(AssocFnData {
1094 fn_data,
1095 container,
1096 has_self: impl_item.fn_has_self_parameter,
1097 }))
1098 }
1099 ty::AssocKind::Type => EntryKind::AssocType(container)
1100 });
1101 record!(self.tables.visibility[def_id] <- impl_item.vis);
1102 record!(self.tables.span[def_id] <- ast_item.span);
1103 record!(self.tables.attributes[def_id] <- ast_item.attrs);
1104 self.encode_ident_span(def_id, impl_item.ident);
1105 self.encode_stability(def_id);
1106 self.encode_const_stability(def_id);
1107 self.encode_deprecation(def_id);
1108 self.encode_item_type(def_id);
1109 if impl_item.kind == ty::AssocKind::Fn {
1110 record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(def_id));
1111 self.encode_variances_of(def_id);
1112 }
1113 self.encode_generics(def_id);
1114 self.encode_explicit_predicates(def_id);
1115 self.encode_inferred_outlives(def_id);
1116
1117 // The following part should be kept in sync with `PrefetchVisitor.visit_impl_item`.
1118
1119 let mir = match ast_item.kind {
1120 hir::ImplItemKind::Const(..) => true,
1121 hir::ImplItemKind::Fn(ref sig, _) => {
1122 let generics = self.tcx.generics_of(def_id);
1123 let needs_inline = (generics.requires_monomorphization(self.tcx)
1124 || tcx.codegen_fn_attrs(def_id).requests_inline())
1125 && !self.metadata_output_only();
1126 let is_const_fn = sig.header.constness == hir::Constness::Const;
1127 let always_encode_mir = self.tcx.sess.opts.debugging_opts.always_encode_mir;
1128 needs_inline || is_const_fn || always_encode_mir
1129 }
1130 hir::ImplItemKind::TyAlias(..) => false,
1131 };
1132 if mir {
1133 self.encode_optimized_mir(def_id.expect_local());
1134 self.encode_promoted_mir(def_id.expect_local());
1135 }
1136 }
1137
1138 fn encode_fn_param_names_for_body(&mut self, body_id: hir::BodyId) -> Lazy<[Ident]> {
1139 self.lazy(self.tcx.hir().body_param_names(body_id))
1140 }
1141
1142 fn encode_fn_param_names(&mut self, param_names: &[Ident]) -> Lazy<[Ident]> {
1143 self.lazy(param_names.iter())
1144 }
1145
1146 fn encode_optimized_mir(&mut self, def_id: LocalDefId) {
1147 debug!("EntryBuilder::encode_mir({:?})", def_id);
1148 if self.tcx.mir_keys(LOCAL_CRATE).contains(&def_id) {
1149 record!(self.tables.mir[def_id.to_def_id()] <- self.tcx.optimized_mir(def_id));
1150
1151 let unused = self.tcx.unused_generic_params(def_id);
1152 if !unused.is_empty() {
1153 record!(self.tables.unused_generic_params[def_id.to_def_id()] <- unused);
1154 }
1155
1156 let abstract_const = self.tcx.mir_abstract_const(def_id);
1157 if let Ok(Some(abstract_const)) = abstract_const {
1158 record!(self.tables.mir_abstract_consts[def_id.to_def_id()] <- abstract_const);
1159 }
1160 }
1161 }
1162
1163 fn encode_promoted_mir(&mut self, def_id: LocalDefId) {
1164 debug!("EncodeContext::encode_promoted_mir({:?})", def_id);
1165 if self.tcx.mir_keys(LOCAL_CRATE).contains(&def_id) {
1166 record!(self.tables.promoted_mir[def_id.to_def_id()] <- self.tcx.promoted_mir(def_id));
1167 }
1168 }
1169
1170 // Encodes the inherent implementations of a structure, enumeration, or trait.
1171 fn encode_inherent_implementations(&mut self, def_id: DefId) {
1172 debug!("EncodeContext::encode_inherent_implementations({:?})", def_id);
1173 let implementations = self.tcx.inherent_impls(def_id);
1174 if !implementations.is_empty() {
1175 record!(self.tables.inherent_impls[def_id] <- implementations.iter().map(|&def_id| {
1176 assert!(def_id.is_local());
1177 def_id.index
1178 }));
1179 }
1180 }
1181
1182 fn encode_stability(&mut self, def_id: DefId) {
1183 debug!("EncodeContext::encode_stability({:?})", def_id);
1184
1185 // The query lookup can take a measurable amount of time in crates with many items. Check if
1186 // the stability attributes are even enabled before using their queries.
1187 if self.feat.staged_api || self.tcx.sess.opts.debugging_opts.force_unstable_if_unmarked {
1188 if let Some(stab) = self.tcx.lookup_stability(def_id) {
1189 record!(self.tables.stability[def_id] <- stab)
1190 }
1191 }
1192 }
1193
1194 fn encode_const_stability(&mut self, def_id: DefId) {
1195 debug!("EncodeContext::encode_const_stability({:?})", def_id);
1196
1197 // The query lookup can take a measurable amount of time in crates with many items. Check if
1198 // the stability attributes are even enabled before using their queries.
1199 if self.feat.staged_api || self.tcx.sess.opts.debugging_opts.force_unstable_if_unmarked {
1200 if let Some(stab) = self.tcx.lookup_const_stability(def_id) {
1201 record!(self.tables.const_stability[def_id] <- stab)
1202 }
1203 }
1204 }
1205
1206 fn encode_deprecation(&mut self, def_id: DefId) {
1207 debug!("EncodeContext::encode_deprecation({:?})", def_id);
1208 if let Some(depr) = self.tcx.lookup_deprecation(def_id) {
1209 record!(self.tables.deprecation[def_id] <- depr);
1210 }
1211 }
1212
1213 fn encode_rendered_const_for_body(&mut self, body_id: hir::BodyId) -> Lazy<RenderedConst> {
1214 let hir = self.tcx.hir();
1215 let body = hir.body(body_id);
1216 let rendered = rustc_hir_pretty::to_string(&(&hir as &dyn intravisit::Map<'_>), |s| {
1217 s.print_expr(&body.value)
1218 });
1219 let rendered_const = &RenderedConst(rendered);
1220 self.lazy(rendered_const)
1221 }
1222
1223 fn encode_info_for_item(&mut self, def_id: DefId, item: &'tcx hir::Item<'tcx>) {
1224 let tcx = self.tcx;
1225
1226 debug!("EncodeContext::encode_info_for_item({:?})", def_id);
1227
1228 self.encode_ident_span(def_id, item.ident);
1229
1230 record!(self.tables.kind[def_id] <- match item.kind {
1231 hir::ItemKind::Static(_, hir::Mutability::Mut, _) => EntryKind::MutStatic,
1232 hir::ItemKind::Static(_, hir::Mutability::Not, _) => EntryKind::ImmStatic,
1233 hir::ItemKind::Const(_, body_id) => {
1234 let qualifs = self.tcx.at(item.span).mir_const_qualif(def_id);
1235 EntryKind::Const(
1236 qualifs,
1237 self.encode_rendered_const_for_body(body_id)
1238 )
1239 }
1240 hir::ItemKind::Fn(ref sig, .., body) => {
1241 let data = FnData {
1242 asyncness: sig.header.asyncness,
1243 constness: sig.header.constness,
1244 param_names: self.encode_fn_param_names_for_body(body),
1245 };
1246
1247 EntryKind::Fn(self.lazy(data))
1248 }
1249 hir::ItemKind::Mod(ref m) => {
1250 return self.encode_info_for_mod(item.hir_id, m, &item.attrs, &item.vis);
1251 }
1252 hir::ItemKind::ForeignMod(_) => EntryKind::ForeignMod,
1253 hir::ItemKind::GlobalAsm(..) => EntryKind::GlobalAsm,
1254 hir::ItemKind::TyAlias(..) => EntryKind::Type,
1255 hir::ItemKind::OpaqueTy(..) => EntryKind::OpaqueTy,
1256 hir::ItemKind::Enum(..) => EntryKind::Enum(self.tcx.adt_def(def_id).repr),
1257 hir::ItemKind::Struct(ref struct_def, _) => {
1258 let adt_def = self.tcx.adt_def(def_id);
1259 let variant = adt_def.non_enum_variant();
1260
1261 // Encode def_ids for each field and method
1262 // for methods, write all the stuff get_trait_method
1263 // needs to know
1264 let ctor = struct_def.ctor_hir_id().map(|ctor_hir_id| {
1265 self.tcx.hir().local_def_id(ctor_hir_id).local_def_index
1266 });
1267
1268 EntryKind::Struct(self.lazy(VariantData {
1269 ctor_kind: variant.ctor_kind,
1270 discr: variant.discr,
1271 ctor,
1272 is_non_exhaustive: variant.is_field_list_non_exhaustive(),
1273 }), adt_def.repr)
1274 }
1275 hir::ItemKind::Union(..) => {
1276 let adt_def = self.tcx.adt_def(def_id);
1277 let variant = adt_def.non_enum_variant();
1278
1279 EntryKind::Union(self.lazy(VariantData {
1280 ctor_kind: variant.ctor_kind,
1281 discr: variant.discr,
1282 ctor: None,
1283 is_non_exhaustive: variant.is_field_list_non_exhaustive(),
1284 }), adt_def.repr)
1285 }
1286 hir::ItemKind::Impl { defaultness, .. } => {
1287 let trait_ref = self.tcx.impl_trait_ref(def_id);
1288 let polarity = self.tcx.impl_polarity(def_id);
1289 let parent = if let Some(trait_ref) = trait_ref {
1290 let trait_def = self.tcx.trait_def(trait_ref.def_id);
1291 trait_def.ancestors(self.tcx, def_id).ok()
1292 .and_then(|mut an| an.nth(1).and_then(|node| {
1293 match node {
1294 specialization_graph::Node::Impl(parent) => Some(parent),
1295 _ => None,
1296 }
1297 }))
1298 } else {
1299 None
1300 };
1301
1302 // if this is an impl of `CoerceUnsized`, create its
1303 // "unsized info", else just store None
1304 let coerce_unsized_info =
1305 trait_ref.and_then(|t| {
1306 if Some(t.def_id) == self.tcx.lang_items().coerce_unsized_trait() {
1307 Some(self.tcx.at(item.span).coerce_unsized_info(def_id))
1308 } else {
1309 None
1310 }
1311 });
1312
1313 let data = ImplData {
1314 polarity,
1315 defaultness,
1316 parent_impl: parent,
1317 coerce_unsized_info,
1318 };
1319
1320 EntryKind::Impl(self.lazy(data))
1321 }
1322 hir::ItemKind::Trait(..) => {
1323 let trait_def = self.tcx.trait_def(def_id);
1324 let data = TraitData {
1325 unsafety: trait_def.unsafety,
1326 paren_sugar: trait_def.paren_sugar,
1327 has_auto_impl: self.tcx.trait_is_auto(def_id),
1328 is_marker: trait_def.is_marker,
1329 specialization_kind: trait_def.specialization_kind,
1330 };
1331
1332 EntryKind::Trait(self.lazy(data))
1333 }
1334 hir::ItemKind::TraitAlias(..) => EntryKind::TraitAlias,
1335 hir::ItemKind::ExternCrate(_) |
1336 hir::ItemKind::Use(..) => bug!("cannot encode info for item {:?}", item),
1337 });
1338 record!(self.tables.visibility[def_id] <-
1339 ty::Visibility::from_hir(&item.vis, item.hir_id, tcx));
1340 record!(self.tables.span[def_id] <- self.tcx.def_span(def_id));
1341 record!(self.tables.attributes[def_id] <- item.attrs);
1342 // FIXME(eddyb) there should be a nicer way to do this.
1343 match item.kind {
1344 hir::ItemKind::ForeignMod(ref fm) => record!(self.tables.children[def_id] <-
1345 fm.items
1346 .iter()
1347 .map(|foreign_item| tcx.hir().local_def_id(
1348 foreign_item.hir_id).local_def_index)
1349 ),
1350 hir::ItemKind::Enum(..) => record!(self.tables.children[def_id] <-
1351 self.tcx.adt_def(def_id).variants.iter().map(|v| {
1352 assert!(v.def_id.is_local());
1353 v.def_id.index
1354 })
1355 ),
1356 hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) => {
1357 record!(self.tables.children[def_id] <-
1358 self.tcx.adt_def(def_id).non_enum_variant().fields.iter().map(|f| {
1359 assert!(f.did.is_local());
1360 f.did.index
1361 })
1362 )
1363 }
1364 hir::ItemKind::Impl { .. } | hir::ItemKind::Trait(..) => {
1365 let associated_item_def_ids = self.tcx.associated_item_def_ids(def_id);
1366 record!(self.tables.children[def_id] <-
1367 associated_item_def_ids.iter().map(|&def_id| {
1368 assert!(def_id.is_local());
1369 def_id.index
1370 })
1371 );
1372 }
1373 _ => {}
1374 }
1375 self.encode_stability(def_id);
1376 self.encode_const_stability(def_id);
1377 self.encode_deprecation(def_id);
1378 match item.kind {
1379 hir::ItemKind::Static(..)
1380 | hir::ItemKind::Const(..)
1381 | hir::ItemKind::Fn(..)
1382 | hir::ItemKind::TyAlias(..)
1383 | hir::ItemKind::OpaqueTy(..)
1384 | hir::ItemKind::Enum(..)
1385 | hir::ItemKind::Struct(..)
1386 | hir::ItemKind::Union(..)
1387 | hir::ItemKind::Impl { .. } => self.encode_item_type(def_id),
1388 _ => {}
1389 }
1390 if let hir::ItemKind::Fn(..) = item.kind {
1391 record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(def_id));
1392 }
1393 if let hir::ItemKind::Impl { .. } = item.kind {
1394 if let Some(trait_ref) = self.tcx.impl_trait_ref(def_id) {
1395 record!(self.tables.impl_trait_ref[def_id] <- trait_ref);
1396 }
1397 }
1398 self.encode_inherent_implementations(def_id);
1399 match item.kind {
1400 hir::ItemKind::Enum(..)
1401 | hir::ItemKind::Struct(..)
1402 | hir::ItemKind::Union(..)
1403 | hir::ItemKind::Fn(..) => self.encode_variances_of(def_id),
1404 _ => {}
1405 }
1406 match item.kind {
1407 hir::ItemKind::Static(..)
1408 | hir::ItemKind::Const(..)
1409 | hir::ItemKind::Fn(..)
1410 | hir::ItemKind::TyAlias(..)
1411 | hir::ItemKind::Enum(..)
1412 | hir::ItemKind::Struct(..)
1413 | hir::ItemKind::Union(..)
1414 | hir::ItemKind::Impl { .. }
1415 | hir::ItemKind::OpaqueTy(..)
1416 | hir::ItemKind::Trait(..)
1417 | hir::ItemKind::TraitAlias(..) => {
1418 self.encode_generics(def_id);
1419 self.encode_explicit_predicates(def_id);
1420 self.encode_inferred_outlives(def_id);
1421 }
1422 _ => {}
1423 }
1424 match item.kind {
1425 hir::ItemKind::Trait(..) | hir::ItemKind::TraitAlias(..) => {
1426 self.encode_super_predicates(def_id);
1427 }
1428 _ => {}
1429 }
1430
1431 // The following part should be kept in sync with `PrefetchVisitor.visit_item`.
1432
1433 let mir = match item.kind {
1434 hir::ItemKind::Static(..) | hir::ItemKind::Const(..) => true,
1435 hir::ItemKind::Fn(ref sig, ..) => {
1436 let generics = tcx.generics_of(def_id);
1437 let needs_inline = (generics.requires_monomorphization(tcx)
1438 || tcx.codegen_fn_attrs(def_id).requests_inline())
1439 && !self.metadata_output_only();
1440 let always_encode_mir = self.tcx.sess.opts.debugging_opts.always_encode_mir;
1441 needs_inline || sig.header.constness == hir::Constness::Const || always_encode_mir
1442 }
1443 _ => false,
1444 };
1445 if mir {
1446 self.encode_optimized_mir(def_id.expect_local());
1447 self.encode_promoted_mir(def_id.expect_local());
1448 }
1449 }
1450
1451 /// Serialize the text of exported macros
1452 fn encode_info_for_macro_def(&mut self, macro_def: &hir::MacroDef<'_>) {
1453 let def_id = self.tcx.hir().local_def_id(macro_def.hir_id).to_def_id();
1454 record!(self.tables.kind[def_id] <- EntryKind::MacroDef(self.lazy(macro_def.ast.clone())));
1455 record!(self.tables.visibility[def_id] <- ty::Visibility::Public);
1456 record!(self.tables.span[def_id] <- macro_def.span);
1457 record!(self.tables.attributes[def_id] <- macro_def.attrs);
1458 self.encode_ident_span(def_id, macro_def.ident);
1459 self.encode_stability(def_id);
1460 self.encode_deprecation(def_id);
1461 }
1462
1463 fn encode_info_for_generic_param(&mut self, def_id: DefId, kind: EntryKind, encode_type: bool) {
1464 record!(self.tables.kind[def_id] <- kind);
1465 record!(self.tables.visibility[def_id] <- ty::Visibility::Public);
1466 record!(self.tables.span[def_id] <- self.tcx.def_span(def_id));
1467 if encode_type {
1468 self.encode_item_type(def_id);
1469 }
1470 }
1471
1472 fn encode_info_for_closure(&mut self, def_id: LocalDefId) {
1473 debug!("EncodeContext::encode_info_for_closure({:?})", def_id);
1474
1475 // NOTE(eddyb) `tcx.type_of(def_id)` isn't used because it's fully generic,
1476 // including on the signature, which is inferred in `typeck.
1477 let hir_id = self.tcx.hir().local_def_id_to_hir_id(def_id);
1478 let ty = self.tcx.typeck(def_id).node_type(hir_id);
1479
1480 record!(self.tables.kind[def_id.to_def_id()] <- match ty.kind() {
1481 ty::Generator(..) => {
1482 let data = self.tcx.generator_kind(def_id).unwrap();
1483 EntryKind::Generator(data)
1484 }
1485
1486 ty::Closure(..) => EntryKind::Closure,
1487
1488 _ => bug!("closure that is neither generator nor closure"),
1489 });
1490 record!(self.tables.visibility[def_id.to_def_id()] <- ty::Visibility::Public);
1491 record!(self.tables.span[def_id.to_def_id()] <- self.tcx.def_span(def_id));
1492 record!(self.tables.attributes[def_id.to_def_id()] <- &self.tcx.get_attrs(def_id.to_def_id())[..]);
1493 self.encode_item_type(def_id.to_def_id());
1494 if let ty::Closure(def_id, substs) = *ty.kind() {
1495 record!(self.tables.fn_sig[def_id] <- substs.as_closure().sig());
1496 }
1497 self.encode_generics(def_id.to_def_id());
1498 self.encode_optimized_mir(def_id);
1499 self.encode_promoted_mir(def_id);
1500 }
1501
1502 fn encode_info_for_anon_const(&mut self, def_id: LocalDefId) {
1503 debug!("EncodeContext::encode_info_for_anon_const({:?})", def_id);
1504 let id = self.tcx.hir().local_def_id_to_hir_id(def_id);
1505 let body_id = self.tcx.hir().body_owned_by(id);
1506 let const_data = self.encode_rendered_const_for_body(body_id);
1507 let qualifs = self.tcx.mir_const_qualif(def_id);
1508
1509 record!(self.tables.kind[def_id.to_def_id()] <- EntryKind::AnonConst(qualifs, const_data));
1510 record!(self.tables.visibility[def_id.to_def_id()] <- ty::Visibility::Public);
1511 record!(self.tables.span[def_id.to_def_id()] <- self.tcx.def_span(def_id));
1512 self.encode_item_type(def_id.to_def_id());
1513 self.encode_generics(def_id.to_def_id());
1514 self.encode_explicit_predicates(def_id.to_def_id());
1515 self.encode_inferred_outlives(def_id.to_def_id());
1516 self.encode_optimized_mir(def_id);
1517 self.encode_promoted_mir(def_id);
1518 }
1519
1520 fn encode_native_libraries(&mut self) -> Lazy<[NativeLib]> {
1521 empty_proc_macro!(self);
1522 let used_libraries = self.tcx.native_libraries(LOCAL_CRATE);
1523 self.lazy(used_libraries.iter().cloned())
1524 }
1525
1526 fn encode_foreign_modules(&mut self) -> Lazy<[ForeignModule]> {
1527 empty_proc_macro!(self);
1528 let foreign_modules = self.tcx.foreign_modules(LOCAL_CRATE);
1529 self.lazy(foreign_modules.iter().cloned())
1530 }
1531
1532 fn encode_hygiene(&mut self) -> (SyntaxContextTable, ExpnDataTable) {
1533 let mut syntax_contexts: TableBuilder<_, _> = Default::default();
1534 let mut expn_data_table: TableBuilder<_, _> = Default::default();
1535
1536 let _: Result<(), !> = self.hygiene_ctxt.encode(
1537 &mut (&mut *self, &mut syntax_contexts, &mut expn_data_table),
1538 |(this, syntax_contexts, _), index, ctxt_data| {
1539 syntax_contexts.set(index, this.lazy(ctxt_data));
1540 Ok(())
1541 },
1542 |(this, _, expn_data_table), index, expn_data| {
1543 expn_data_table.set(index, this.lazy(expn_data));
1544 Ok(())
1545 },
1546 );
1547
1548 (syntax_contexts.encode(&mut self.opaque), expn_data_table.encode(&mut self.opaque))
1549 }
1550
1551 fn encode_proc_macros(&mut self) -> Option<ProcMacroData> {
1552 let is_proc_macro = self.tcx.sess.crate_types().contains(&CrateType::ProcMacro);
1553 if is_proc_macro {
1554 let tcx = self.tcx;
1555 let hir = tcx.hir();
1556
1557 let proc_macro_decls_static = tcx.proc_macro_decls_static(LOCAL_CRATE).unwrap().index;
1558 let stability = tcx.lookup_stability(DefId::local(CRATE_DEF_INDEX)).copied();
1559 let macros = self.lazy(hir.krate().proc_macros.iter().map(|p| p.owner.local_def_index));
1560
1561 // Normally, this information is encoded when we walk the items
1562 // defined in this crate. However, we skip doing that for proc-macro crates,
1563 // so we manually encode just the information that we need
1564 for proc_macro in &hir.krate().proc_macros {
1565 let id = proc_macro.owner.local_def_index;
1566 let span = self.lazy(hir.span(*proc_macro));
1567 // Proc-macros may have attributes like `#[allow_internal_unstable]`,
1568 // so downstream crates need access to them.
1569 let attrs = self.lazy(hir.attrs(*proc_macro));
1570 self.tables.span.set(id, span);
1571 self.tables.attributes.set(id, attrs);
1572 }
1573
1574 Some(ProcMacroData { proc_macro_decls_static, stability, macros })
1575 } else {
1576 None
1577 }
1578 }
1579
1580 fn encode_crate_deps(&mut self) -> Lazy<[CrateDep]> {
1581 empty_proc_macro!(self);
1582 let crates = self.tcx.crates();
1583
1584 let mut deps = crates
1585 .iter()
1586 .map(|&cnum| {
1587 let dep = CrateDep {
1588 name: self.tcx.original_crate_name(cnum),
1589 hash: self.tcx.crate_hash(cnum),
1590 host_hash: self.tcx.crate_host_hash(cnum),
1591 kind: self.tcx.dep_kind(cnum),
1592 extra_filename: self.tcx.extra_filename(cnum),
1593 };
1594 (cnum, dep)
1595 })
1596 .collect::<Vec<_>>();
1597
1598 deps.sort_by_key(|&(cnum, _)| cnum);
1599
1600 {
1601 // Sanity-check the crate numbers
1602 let mut expected_cnum = 1;
1603 for &(n, _) in &deps {
1604 assert_eq!(n, CrateNum::new(expected_cnum));
1605 expected_cnum += 1;
1606 }
1607 }
1608
1609 // We're just going to write a list of crate 'name-hash-version's, with
1610 // the assumption that they are numbered 1 to n.
1611 // FIXME (#2166): This is not nearly enough to support correct versioning
1612 // but is enough to get transitive crate dependencies working.
1613 self.lazy(deps.iter().map(|&(_, ref dep)| dep))
1614 }
1615
1616 fn encode_lib_features(&mut self) -> Lazy<[(Symbol, Option<Symbol>)]> {
1617 empty_proc_macro!(self);
1618 let tcx = self.tcx;
1619 let lib_features = tcx.lib_features();
1620 self.lazy(lib_features.to_vec())
1621 }
1622
1623 fn encode_diagnostic_items(&mut self) -> Lazy<[(Symbol, DefIndex)]> {
1624 empty_proc_macro!(self);
1625 let tcx = self.tcx;
1626 let diagnostic_items = tcx.diagnostic_items(LOCAL_CRATE);
1627 self.lazy(diagnostic_items.iter().map(|(&name, def_id)| (name, def_id.index)))
1628 }
1629
1630 fn encode_lang_items(&mut self) -> Lazy<[(DefIndex, usize)]> {
1631 empty_proc_macro!(self);
1632 let tcx = self.tcx;
1633 let lang_items = tcx.lang_items();
1634 let lang_items = lang_items.items().iter();
1635 self.lazy(lang_items.enumerate().filter_map(|(i, &opt_def_id)| {
1636 if let Some(def_id) = opt_def_id {
1637 if def_id.is_local() {
1638 return Some((def_id.index, i));
1639 }
1640 }
1641 None
1642 }))
1643 }
1644
1645 fn encode_lang_items_missing(&mut self) -> Lazy<[lang_items::LangItem]> {
1646 empty_proc_macro!(self);
1647 let tcx = self.tcx;
1648 self.lazy(&tcx.lang_items().missing)
1649 }
1650
1651 /// Encodes an index, mapping each trait to its (local) implementations.
1652 fn encode_impls(&mut self) -> Lazy<[TraitImpls]> {
1653 empty_proc_macro!(self);
1654 debug!("EncodeContext::encode_impls()");
1655 let tcx = self.tcx;
1656 let mut visitor = ImplVisitor { tcx, impls: FxHashMap::default() };
1657 tcx.hir().krate().visit_all_item_likes(&mut visitor);
1658
1659 let mut all_impls: Vec<_> = visitor.impls.into_iter().collect();
1660
1661 // Bring everything into deterministic order for hashing
1662 all_impls.sort_by_cached_key(|&(trait_def_id, _)| tcx.def_path_hash(trait_def_id));
1663
1664 let all_impls: Vec<_> = all_impls
1665 .into_iter()
1666 .map(|(trait_def_id, mut impls)| {
1667 // Bring everything into deterministic order for hashing
1668 impls.sort_by_cached_key(|&(index, _)| {
1669 tcx.hir().definitions().def_path_hash(LocalDefId { local_def_index: index })
1670 });
1671
1672 TraitImpls {
1673 trait_id: (trait_def_id.krate.as_u32(), trait_def_id.index),
1674 impls: self.lazy(&impls),
1675 }
1676 })
1677 .collect();
1678
1679 self.lazy(&all_impls)
1680 }
1681
1682 // Encodes all symbols exported from this crate into the metadata.
1683 //
1684 // This pass is seeded off the reachability list calculated in the
1685 // middle::reachable module but filters out items that either don't have a
1686 // symbol associated with them (they weren't translated) or if they're an FFI
1687 // definition (as that's not defined in this crate).
1688 fn encode_exported_symbols(
1689 &mut self,
1690 exported_symbols: &[(ExportedSymbol<'tcx>, SymbolExportLevel)],
1691 ) -> Lazy<[(ExportedSymbol<'tcx>, SymbolExportLevel)]> {
1692 empty_proc_macro!(self);
1693 // The metadata symbol name is special. It should not show up in
1694 // downstream crates.
1695 let metadata_symbol_name = SymbolName::new(self.tcx, &metadata_symbol_name(self.tcx));
1696
1697 self.lazy(
1698 exported_symbols
1699 .iter()
1700 .filter(|&&(ref exported_symbol, _)| match *exported_symbol {
1701 ExportedSymbol::NoDefId(symbol_name) => symbol_name != metadata_symbol_name,
1702 _ => true,
1703 })
1704 .cloned(),
1705 )
1706 }
1707
1708 fn encode_dylib_dependency_formats(&mut self) -> Lazy<[Option<LinkagePreference>]> {
1709 empty_proc_macro!(self);
1710 let formats = self.tcx.dependency_formats(LOCAL_CRATE);
1711 for (ty, arr) in formats.iter() {
1712 if *ty != CrateType::Dylib {
1713 continue;
1714 }
1715 return self.lazy(arr.iter().map(|slot| match *slot {
1716 Linkage::NotLinked | Linkage::IncludedFromDylib => None,
1717
1718 Linkage::Dynamic => Some(LinkagePreference::RequireDynamic),
1719 Linkage::Static => Some(LinkagePreference::RequireStatic),
1720 }));
1721 }
1722 Lazy::empty()
1723 }
1724
1725 fn encode_info_for_foreign_item(&mut self, def_id: DefId, nitem: &hir::ForeignItem<'_>) {
1726 let tcx = self.tcx;
1727
1728 debug!("EncodeContext::encode_info_for_foreign_item({:?})", def_id);
1729
1730 record!(self.tables.kind[def_id] <- match nitem.kind {
1731 hir::ForeignItemKind::Fn(_, ref names, _) => {
1732 let data = FnData {
1733 asyncness: hir::IsAsync::NotAsync,
1734 constness: if self.tcx.is_const_fn_raw(def_id) {
1735 hir::Constness::Const
1736 } else {
1737 hir::Constness::NotConst
1738 },
1739 param_names: self.encode_fn_param_names(names),
1740 };
1741 EntryKind::ForeignFn(self.lazy(data))
1742 }
1743 hir::ForeignItemKind::Static(_, hir::Mutability::Mut) => EntryKind::ForeignMutStatic,
1744 hir::ForeignItemKind::Static(_, hir::Mutability::Not) => EntryKind::ForeignImmStatic,
1745 hir::ForeignItemKind::Type => EntryKind::ForeignType,
1746 });
1747 record!(self.tables.visibility[def_id] <-
1748 ty::Visibility::from_hir(&nitem.vis, nitem.hir_id, self.tcx));
1749 record!(self.tables.span[def_id] <- nitem.span);
1750 record!(self.tables.attributes[def_id] <- nitem.attrs);
1751 self.encode_ident_span(def_id, nitem.ident);
1752 self.encode_stability(def_id);
1753 self.encode_const_stability(def_id);
1754 self.encode_deprecation(def_id);
1755 self.encode_item_type(def_id);
1756 self.encode_inherent_implementations(def_id);
1757 if let hir::ForeignItemKind::Fn(..) = nitem.kind {
1758 record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(def_id));
1759 self.encode_variances_of(def_id);
1760 }
1761 self.encode_generics(def_id);
1762 self.encode_explicit_predicates(def_id);
1763 self.encode_inferred_outlives(def_id);
1764 }
1765 }
1766
1767 // FIXME(eddyb) make metadata encoding walk over all definitions, instead of HIR.
1768 impl Visitor<'tcx> for EncodeContext<'a, 'tcx> {
1769 type Map = Map<'tcx>;
1770
1771 fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
1772 NestedVisitorMap::OnlyBodies(self.tcx.hir())
1773 }
1774 fn visit_expr(&mut self, ex: &'tcx hir::Expr<'tcx>) {
1775 intravisit::walk_expr(self, ex);
1776 self.encode_info_for_expr(ex);
1777 }
1778 fn visit_anon_const(&mut self, c: &'tcx AnonConst) {
1779 intravisit::walk_anon_const(self, c);
1780 let def_id = self.tcx.hir().local_def_id(c.hir_id);
1781 self.encode_info_for_anon_const(def_id);
1782 }
1783 fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
1784 intravisit::walk_item(self, item);
1785 let def_id = self.tcx.hir().local_def_id(item.hir_id);
1786 match item.kind {
1787 hir::ItemKind::ExternCrate(_) | hir::ItemKind::Use(..) => {} // ignore these
1788 _ => self.encode_info_for_item(def_id.to_def_id(), item),
1789 }
1790 self.encode_addl_info_for_item(item);
1791 }
1792 fn visit_foreign_item(&mut self, ni: &'tcx hir::ForeignItem<'tcx>) {
1793 intravisit::walk_foreign_item(self, ni);
1794 let def_id = self.tcx.hir().local_def_id(ni.hir_id);
1795 self.encode_info_for_foreign_item(def_id.to_def_id(), ni);
1796 }
1797 fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
1798 intravisit::walk_generics(self, generics);
1799 self.encode_info_for_generics(generics);
1800 }
1801 fn visit_macro_def(&mut self, macro_def: &'tcx hir::MacroDef<'tcx>) {
1802 self.encode_info_for_macro_def(macro_def);
1803 }
1804 }
1805
1806 impl EncodeContext<'a, 'tcx> {
1807 fn encode_fields(&mut self, adt_def: &ty::AdtDef) {
1808 for (variant_index, variant) in adt_def.variants.iter_enumerated() {
1809 for (field_index, _field) in variant.fields.iter().enumerate() {
1810 self.encode_field(adt_def, variant_index, field_index);
1811 }
1812 }
1813 }
1814
1815 fn encode_info_for_generics(&mut self, generics: &hir::Generics<'tcx>) {
1816 for param in generics.params {
1817 let def_id = self.tcx.hir().local_def_id(param.hir_id);
1818 match param.kind {
1819 GenericParamKind::Lifetime { .. } => continue,
1820 GenericParamKind::Type { ref default, .. } => {
1821 self.encode_info_for_generic_param(
1822 def_id.to_def_id(),
1823 EntryKind::TypeParam,
1824 default.is_some(),
1825 );
1826 if default.is_some() {
1827 self.encode_stability(def_id.to_def_id());
1828 }
1829 }
1830 GenericParamKind::Const { .. } => {
1831 self.encode_info_for_generic_param(
1832 def_id.to_def_id(),
1833 EntryKind::ConstParam,
1834 true,
1835 );
1836 // FIXME(const_generics:defaults)
1837 }
1838 }
1839 }
1840 }
1841
1842 fn encode_info_for_expr(&mut self, expr: &hir::Expr<'_>) {
1843 if let hir::ExprKind::Closure(..) = expr.kind {
1844 let def_id = self.tcx.hir().local_def_id(expr.hir_id);
1845 self.encode_info_for_closure(def_id);
1846 }
1847 }
1848
1849 fn encode_ident_span(&mut self, def_id: DefId, ident: Ident) {
1850 record!(self.tables.ident_span[def_id] <- ident.span);
1851 }
1852
1853 /// In some cases, along with the item itself, we also
1854 /// encode some sub-items. Usually we want some info from the item
1855 /// so it's easier to do that here then to wait until we would encounter
1856 /// normally in the visitor walk.
1857 fn encode_addl_info_for_item(&mut self, item: &hir::Item<'_>) {
1858 let def_id = self.tcx.hir().local_def_id(item.hir_id);
1859 match item.kind {
1860 hir::ItemKind::Static(..)
1861 | hir::ItemKind::Const(..)
1862 | hir::ItemKind::Fn(..)
1863 | hir::ItemKind::Mod(..)
1864 | hir::ItemKind::ForeignMod(..)
1865 | hir::ItemKind::GlobalAsm(..)
1866 | hir::ItemKind::ExternCrate(..)
1867 | hir::ItemKind::Use(..)
1868 | hir::ItemKind::TyAlias(..)
1869 | hir::ItemKind::OpaqueTy(..)
1870 | hir::ItemKind::TraitAlias(..) => {
1871 // no sub-item recording needed in these cases
1872 }
1873 hir::ItemKind::Enum(..) => {
1874 let def = self.tcx.adt_def(def_id.to_def_id());
1875 self.encode_fields(def);
1876
1877 for (i, variant) in def.variants.iter_enumerated() {
1878 self.encode_enum_variant_info(def, i);
1879
1880 if let Some(_ctor_def_id) = variant.ctor_def_id {
1881 self.encode_enum_variant_ctor(def, i);
1882 }
1883 }
1884 }
1885 hir::ItemKind::Struct(ref struct_def, _) => {
1886 let def = self.tcx.adt_def(def_id.to_def_id());
1887 self.encode_fields(def);
1888
1889 // If the struct has a constructor, encode it.
1890 if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
1891 let ctor_def_id = self.tcx.hir().local_def_id(ctor_hir_id);
1892 self.encode_struct_ctor(def, ctor_def_id.to_def_id());
1893 }
1894 }
1895 hir::ItemKind::Union(..) => {
1896 let def = self.tcx.adt_def(def_id.to_def_id());
1897 self.encode_fields(def);
1898 }
1899 hir::ItemKind::Impl { .. } => {
1900 for &trait_item_def_id in
1901 self.tcx.associated_item_def_ids(def_id.to_def_id()).iter()
1902 {
1903 self.encode_info_for_impl_item(trait_item_def_id);
1904 }
1905 }
1906 hir::ItemKind::Trait(..) => {
1907 for &item_def_id in self.tcx.associated_item_def_ids(def_id.to_def_id()).iter() {
1908 self.encode_info_for_trait_item(item_def_id);
1909 }
1910 }
1911 }
1912 }
1913 }
1914
1915 struct ImplVisitor<'tcx> {
1916 tcx: TyCtxt<'tcx>,
1917 impls: FxHashMap<DefId, Vec<(DefIndex, Option<ty::fast_reject::SimplifiedType>)>>,
1918 }
1919
1920 impl<'tcx, 'v> ItemLikeVisitor<'v> for ImplVisitor<'tcx> {
1921 fn visit_item(&mut self, item: &hir::Item<'_>) {
1922 if let hir::ItemKind::Impl { .. } = item.kind {
1923 let impl_id = self.tcx.hir().local_def_id(item.hir_id);
1924 if let Some(trait_ref) = self.tcx.impl_trait_ref(impl_id.to_def_id()) {
1925 let simplified_self_ty =
1926 ty::fast_reject::simplify_type(self.tcx, trait_ref.self_ty(), false);
1927
1928 self.impls
1929 .entry(trait_ref.def_id)
1930 .or_default()
1931 .push((impl_id.local_def_index, simplified_self_ty));
1932 }
1933 }
1934 }
1935
1936 fn visit_trait_item(&mut self, _trait_item: &'v hir::TraitItem<'v>) {}
1937
1938 fn visit_impl_item(&mut self, _impl_item: &'v hir::ImplItem<'v>) {
1939 // handled in `visit_item` above
1940 }
1941 }
1942
1943 /// Used to prefetch queries which will be needed later by metadata encoding.
1944 /// Only a subset of the queries are actually prefetched to keep this code smaller.
1945 struct PrefetchVisitor<'tcx> {
1946 tcx: TyCtxt<'tcx>,
1947 mir_keys: &'tcx FxHashSet<LocalDefId>,
1948 }
1949
1950 impl<'tcx> PrefetchVisitor<'tcx> {
1951 fn prefetch_mir(&self, def_id: LocalDefId) {
1952 if self.mir_keys.contains(&def_id) {
1953 self.tcx.ensure().optimized_mir(def_id);
1954 self.tcx.ensure().promoted_mir(def_id);
1955 }
1956 }
1957 }
1958
1959 impl<'tcx, 'v> ParItemLikeVisitor<'v> for PrefetchVisitor<'tcx> {
1960 fn visit_item(&self, item: &hir::Item<'_>) {
1961 // This should be kept in sync with `encode_info_for_item`.
1962 let tcx = self.tcx;
1963 match item.kind {
1964 hir::ItemKind::Static(..) | hir::ItemKind::Const(..) => {
1965 self.prefetch_mir(tcx.hir().local_def_id(item.hir_id))
1966 }
1967 hir::ItemKind::Fn(ref sig, ..) => {
1968 let def_id = tcx.hir().local_def_id(item.hir_id);
1969 let generics = tcx.generics_of(def_id.to_def_id());
1970 let needs_inline = generics.requires_monomorphization(tcx)
1971 || tcx.codegen_fn_attrs(def_id.to_def_id()).requests_inline();
1972 if needs_inline || sig.header.constness == hir::Constness::Const {
1973 self.prefetch_mir(def_id)
1974 }
1975 }
1976 _ => (),
1977 }
1978 }
1979
1980 fn visit_trait_item(&self, trait_item: &'v hir::TraitItem<'v>) {
1981 // This should be kept in sync with `encode_info_for_trait_item`.
1982 self.prefetch_mir(self.tcx.hir().local_def_id(trait_item.hir_id));
1983 }
1984
1985 fn visit_impl_item(&self, impl_item: &'v hir::ImplItem<'v>) {
1986 // This should be kept in sync with `encode_info_for_impl_item`.
1987 let tcx = self.tcx;
1988 match impl_item.kind {
1989 hir::ImplItemKind::Const(..) => {
1990 self.prefetch_mir(tcx.hir().local_def_id(impl_item.hir_id))
1991 }
1992 hir::ImplItemKind::Fn(ref sig, _) => {
1993 let def_id = tcx.hir().local_def_id(impl_item.hir_id);
1994 let generics = tcx.generics_of(def_id.to_def_id());
1995 let needs_inline = generics.requires_monomorphization(tcx)
1996 || tcx.codegen_fn_attrs(def_id.to_def_id()).requests_inline();
1997 let is_const_fn = sig.header.constness == hir::Constness::Const;
1998 if needs_inline || is_const_fn {
1999 self.prefetch_mir(def_id)
2000 }
2001 }
2002 hir::ImplItemKind::TyAlias(..) => (),
2003 }
2004 }
2005 }
2006
2007 // NOTE(eddyb) The following comment was preserved for posterity, even
2008 // though it's no longer relevant as EBML (which uses nested & tagged
2009 // "documents") was replaced with a scheme that can't go out of bounds.
2010 //
2011 // And here we run into yet another obscure archive bug: in which metadata
2012 // loaded from archives may have trailing garbage bytes. Awhile back one of
2013 // our tests was failing sporadically on the macOS 64-bit builders (both nopt
2014 // and opt) by having ebml generate an out-of-bounds panic when looking at
2015 // metadata.
2016 //
2017 // Upon investigation it turned out that the metadata file inside of an rlib
2018 // (and ar archive) was being corrupted. Some compilations would generate a
2019 // metadata file which would end in a few extra bytes, while other
2020 // compilations would not have these extra bytes appended to the end. These
2021 // extra bytes were interpreted by ebml as an extra tag, so they ended up
2022 // being interpreted causing the out-of-bounds.
2023 //
2024 // The root cause of why these extra bytes were appearing was never
2025 // discovered, and in the meantime the solution we're employing is to insert
2026 // the length of the metadata to the start of the metadata. Later on this
2027 // will allow us to slice the metadata to the precise length that we just
2028 // generated regardless of trailing bytes that end up in it.
2029
2030 pub(super) fn encode_metadata(tcx: TyCtxt<'_>) -> EncodedMetadata {
2031 // Since encoding metadata is not in a query, and nothing is cached,
2032 // there's no need to do dep-graph tracking for any of it.
2033 tcx.dep_graph.assert_ignored();
2034
2035 join(
2036 || encode_metadata_impl(tcx),
2037 || {
2038 if tcx.sess.threads() == 1 {
2039 return;
2040 }
2041 // Prefetch some queries used by metadata encoding.
2042 // This is not necessary for correctness, but is only done for performance reasons.
2043 // It can be removed if it turns out to cause trouble or be detrimental to performance.
2044 join(
2045 || {
2046 if !tcx.sess.opts.output_types.should_codegen() {
2047 // We won't emit MIR, so don't prefetch it.
2048 return;
2049 }
2050 tcx.hir().krate().par_visit_all_item_likes(&PrefetchVisitor {
2051 tcx,
2052 mir_keys: tcx.mir_keys(LOCAL_CRATE),
2053 });
2054 },
2055 || tcx.exported_symbols(LOCAL_CRATE),
2056 );
2057 },
2058 )
2059 .0
2060 }
2061
2062 fn encode_metadata_impl(tcx: TyCtxt<'_>) -> EncodedMetadata {
2063 let mut encoder = opaque::Encoder::new(vec![]);
2064 encoder.emit_raw_bytes(METADATA_HEADER);
2065
2066 // Will be filled with the root position after encoding everything.
2067 encoder.emit_raw_bytes(&[0, 0, 0, 0]);
2068
2069 let source_map_files = tcx.sess.source_map().files();
2070 let hygiene_ctxt = HygieneEncodeContext::default();
2071
2072 let mut ecx = EncodeContext {
2073 opaque: encoder,
2074 tcx,
2075 feat: tcx.features(),
2076 tables: Default::default(),
2077 lazy_state: LazyState::NoNode,
2078 type_shorthands: Default::default(),
2079 predicate_shorthands: Default::default(),
2080 source_file_cache: (source_map_files[0].clone(), 0),
2081 interpret_allocs: Default::default(),
2082 required_source_files: Some(GrowableBitSet::with_capacity(source_map_files.len())),
2083 is_proc_macro: tcx.sess.crate_types().contains(&CrateType::ProcMacro),
2084 hygiene_ctxt: &hygiene_ctxt,
2085 };
2086 drop(source_map_files);
2087
2088 // Encode the rustc version string in a predictable location.
2089 rustc_version().encode(&mut ecx).unwrap();
2090
2091 // Encode all the entries and extra information in the crate,
2092 // culminating in the `CrateRoot` which points to all of it.
2093 let root = ecx.encode_crate_root();
2094
2095 let mut result = ecx.opaque.into_inner();
2096
2097 // Encode the root position.
2098 let header = METADATA_HEADER.len();
2099 let pos = root.position.get();
2100 result[header + 0] = (pos >> 24) as u8;
2101 result[header + 1] = (pos >> 16) as u8;
2102 result[header + 2] = (pos >> 8) as u8;
2103 result[header + 3] = (pos >> 0) as u8;
2104
2105 EncodedMetadata { raw_data: result }
2106 }