]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_middle/src/ty/fold.rs
382f3708c3d4bd7f7e3464844ce9a2fd5fd58ed3
[rustc.git] / compiler / rustc_middle / src / ty / fold.rs
1 //! Generalized type folding mechanism. The setup is a bit convoluted
2 //! but allows for convenient usage. Let T be an instance of some
3 //! "foldable type" (one which implements `TypeFoldable`) and F be an
4 //! instance of a "folder" (a type which implements `TypeFolder`). Then
5 //! the setup is intended to be:
6 //!
7 //! T.fold_with(F) --calls--> F.fold_T(T) --calls--> T.super_fold_with(F)
8 //!
9 //! This way, when you define a new folder F, you can override
10 //! `fold_T()` to customize the behavior, and invoke `T.super_fold_with()`
11 //! to get the original behavior. Meanwhile, to actually fold
12 //! something, you can just write `T.fold_with(F)`, which is
13 //! convenient. (Note that `fold_with` will also transparently handle
14 //! things like a `Vec<T>` where T is foldable and so on.)
15 //!
16 //! In this ideal setup, the only function that actually *does*
17 //! anything is `T.super_fold_with()`, which traverses the type `T`.
18 //! Moreover, `T.super_fold_with()` should only ever call `T.fold_with()`.
19 //!
20 //! In some cases, we follow a degenerate pattern where we do not have
21 //! a `fold_T` method. Instead, `T.fold_with` traverses the structure directly.
22 //! This is suboptimal because the behavior cannot be overridden, but it's
23 //! much less work to implement. If you ever *do* need an override that
24 //! doesn't exist, it's not hard to convert the degenerate pattern into the
25 //! proper thing.
26 //!
27 //! A `TypeFoldable` T can also be visited by a `TypeVisitor` V using similar setup:
28 //!
29 //! T.visit_with(V) --calls--> V.visit_T(T) --calls--> T.super_visit_with(V).
30 //!
31 //! These methods return true to indicate that the visitor has found what it is
32 //! looking for, and does not need to visit anything else.
33 use crate::ty::{self, flags::FlagComputation, Binder, Ty, TyCtxt, TypeFlags};
34 use rustc_hir as hir;
35 use rustc_hir::def_id::DefId;
36
37 use rustc_data_structures::fx::FxHashSet;
38 use std::collections::BTreeMap;
39 use std::fmt;
40 use std::ops::ControlFlow;
41
42 /// This trait is implemented for every type that can be folded.
43 /// Basically, every type that has a corresponding method in `TypeFolder`.
44 ///
45 /// To implement this conveniently, use the derive macro located in librustc_macros.
46 pub trait TypeFoldable<'tcx>: fmt::Debug + Clone {
47 fn super_fold_with<F: TypeFolder<'tcx>>(self, folder: &mut F) -> Self;
48 fn fold_with<F: TypeFolder<'tcx>>(self, folder: &mut F) -> Self {
49 self.super_fold_with(folder)
50 }
51
52 fn super_visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy>;
53 fn visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
54 self.super_visit_with(visitor)
55 }
56
57 /// Returns `true` if `self` has any late-bound regions that are either
58 /// bound by `binder` or bound by some binder outside of `binder`.
59 /// If `binder` is `ty::INNERMOST`, this indicates whether
60 /// there are any late-bound regions that appear free.
61 fn has_vars_bound_at_or_above(&self, binder: ty::DebruijnIndex) -> bool {
62 self.visit_with(&mut HasEscapingVarsVisitor { outer_index: binder }).is_break()
63 }
64
65 /// Returns `true` if this `self` has any regions that escape `binder` (and
66 /// hence are not bound by it).
67 fn has_vars_bound_above(&self, binder: ty::DebruijnIndex) -> bool {
68 self.has_vars_bound_at_or_above(binder.shifted_in(1))
69 }
70
71 fn has_escaping_bound_vars(&self) -> bool {
72 self.has_vars_bound_at_or_above(ty::INNERMOST)
73 }
74
75 fn has_type_flags(&self, flags: TypeFlags) -> bool {
76 self.visit_with(&mut HasTypeFlagsVisitor { flags }).break_value() == Some(FoundFlags)
77 }
78 fn has_projections(&self) -> bool {
79 self.has_type_flags(TypeFlags::HAS_PROJECTION)
80 }
81 fn has_opaque_types(&self) -> bool {
82 self.has_type_flags(TypeFlags::HAS_TY_OPAQUE)
83 }
84 fn references_error(&self) -> bool {
85 self.has_type_flags(TypeFlags::HAS_ERROR)
86 }
87 fn has_param_types_or_consts(&self) -> bool {
88 self.has_type_flags(TypeFlags::HAS_TY_PARAM | TypeFlags::HAS_CT_PARAM)
89 }
90 fn has_infer_regions(&self) -> bool {
91 self.has_type_flags(TypeFlags::HAS_RE_INFER)
92 }
93 fn has_infer_types(&self) -> bool {
94 self.has_type_flags(TypeFlags::HAS_TY_INFER)
95 }
96 fn has_infer_types_or_consts(&self) -> bool {
97 self.has_type_flags(TypeFlags::HAS_TY_INFER | TypeFlags::HAS_CT_INFER)
98 }
99 fn needs_infer(&self) -> bool {
100 self.has_type_flags(TypeFlags::NEEDS_INFER)
101 }
102 fn has_placeholders(&self) -> bool {
103 self.has_type_flags(
104 TypeFlags::HAS_RE_PLACEHOLDER
105 | TypeFlags::HAS_TY_PLACEHOLDER
106 | TypeFlags::HAS_CT_PLACEHOLDER,
107 )
108 }
109 fn needs_subst(&self) -> bool {
110 self.has_type_flags(TypeFlags::NEEDS_SUBST)
111 }
112 /// "Free" regions in this context means that it has any region
113 /// that is not (a) erased or (b) late-bound.
114 fn has_free_regions(&self) -> bool {
115 self.has_type_flags(TypeFlags::HAS_FREE_REGIONS)
116 }
117
118 fn has_erased_regions(&self) -> bool {
119 self.has_type_flags(TypeFlags::HAS_RE_ERASED)
120 }
121
122 /// True if there are any un-erased free regions.
123 fn has_erasable_regions(&self) -> bool {
124 self.has_type_flags(TypeFlags::HAS_FREE_REGIONS)
125 }
126
127 /// Indicates whether this value references only 'global'
128 /// generic parameters that are the same regardless of what fn we are
129 /// in. This is used for caching.
130 fn is_global(&self) -> bool {
131 !self.has_type_flags(TypeFlags::HAS_FREE_LOCAL_NAMES)
132 }
133
134 /// True if there are any late-bound regions
135 fn has_late_bound_regions(&self) -> bool {
136 self.has_type_flags(TypeFlags::HAS_RE_LATE_BOUND)
137 }
138
139 /// Indicates whether this value still has parameters/placeholders/inference variables
140 /// which could be replaced later, in a way that would change the results of `impl`
141 /// specialization.
142 fn still_further_specializable(&self) -> bool {
143 self.has_type_flags(TypeFlags::STILL_FURTHER_SPECIALIZABLE)
144 }
145 }
146
147 impl TypeFoldable<'tcx> for hir::Constness {
148 fn super_fold_with<F: TypeFolder<'tcx>>(self, _: &mut F) -> Self {
149 self
150 }
151 fn super_visit_with<V: TypeVisitor<'tcx>>(&self, _: &mut V) -> ControlFlow<V::BreakTy> {
152 ControlFlow::CONTINUE
153 }
154 }
155
156 /// The `TypeFolder` trait defines the actual *folding*. There is a
157 /// method defined for every foldable type. Each of these has a
158 /// default implementation that does an "identity" fold. Within each
159 /// identity fold, it should invoke `foo.fold_with(self)` to fold each
160 /// sub-item.
161 pub trait TypeFolder<'tcx>: Sized {
162 fn tcx<'a>(&'a self) -> TyCtxt<'tcx>;
163
164 fn fold_binder<T>(&mut self, t: Binder<T>) -> Binder<T>
165 where
166 T: TypeFoldable<'tcx>,
167 {
168 t.super_fold_with(self)
169 }
170
171 fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
172 t.super_fold_with(self)
173 }
174
175 fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
176 r.super_fold_with(self)
177 }
178
179 fn fold_const(&mut self, c: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
180 c.super_fold_with(self)
181 }
182 }
183
184 pub trait TypeVisitor<'tcx>: Sized {
185 type BreakTy = !;
186
187 fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> ControlFlow<Self::BreakTy> {
188 t.super_visit_with(self)
189 }
190
191 fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
192 t.super_visit_with(self)
193 }
194
195 fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
196 r.super_visit_with(self)
197 }
198
199 fn visit_const(&mut self, c: &'tcx ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
200 c.super_visit_with(self)
201 }
202
203 fn visit_predicate(&mut self, p: ty::Predicate<'tcx>) -> ControlFlow<Self::BreakTy> {
204 p.super_visit_with(self)
205 }
206 }
207
208 ///////////////////////////////////////////////////////////////////////////
209 // Some sample folders
210
211 pub struct BottomUpFolder<'tcx, F, G, H>
212 where
213 F: FnMut(Ty<'tcx>) -> Ty<'tcx>,
214 G: FnMut(ty::Region<'tcx>) -> ty::Region<'tcx>,
215 H: FnMut(&'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx>,
216 {
217 pub tcx: TyCtxt<'tcx>,
218 pub ty_op: F,
219 pub lt_op: G,
220 pub ct_op: H,
221 }
222
223 impl<'tcx, F, G, H> TypeFolder<'tcx> for BottomUpFolder<'tcx, F, G, H>
224 where
225 F: FnMut(Ty<'tcx>) -> Ty<'tcx>,
226 G: FnMut(ty::Region<'tcx>) -> ty::Region<'tcx>,
227 H: FnMut(&'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx>,
228 {
229 fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
230 self.tcx
231 }
232
233 fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
234 let t = ty.super_fold_with(self);
235 (self.ty_op)(t)
236 }
237
238 fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
239 let r = r.super_fold_with(self);
240 (self.lt_op)(r)
241 }
242
243 fn fold_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
244 let ct = ct.super_fold_with(self);
245 (self.ct_op)(ct)
246 }
247 }
248
249 ///////////////////////////////////////////////////////////////////////////
250 // Region folder
251
252 impl<'tcx> TyCtxt<'tcx> {
253 /// Folds the escaping and free regions in `value` using `f`, and
254 /// sets `skipped_regions` to true if any late-bound region was found
255 /// and skipped.
256 pub fn fold_regions<T>(
257 self,
258 value: T,
259 skipped_regions: &mut bool,
260 mut f: impl FnMut(ty::Region<'tcx>, ty::DebruijnIndex) -> ty::Region<'tcx>,
261 ) -> T
262 where
263 T: TypeFoldable<'tcx>,
264 {
265 value.fold_with(&mut RegionFolder::new(self, skipped_regions, &mut f))
266 }
267
268 /// Invoke `callback` on every region appearing free in `value`.
269 pub fn for_each_free_region(
270 self,
271 value: &impl TypeFoldable<'tcx>,
272 mut callback: impl FnMut(ty::Region<'tcx>),
273 ) {
274 self.any_free_region_meets(value, |r| {
275 callback(r);
276 false
277 });
278 }
279
280 /// Returns `true` if `callback` returns true for every region appearing free in `value`.
281 pub fn all_free_regions_meet(
282 self,
283 value: &impl TypeFoldable<'tcx>,
284 mut callback: impl FnMut(ty::Region<'tcx>) -> bool,
285 ) -> bool {
286 !self.any_free_region_meets(value, |r| !callback(r))
287 }
288
289 /// Returns `true` if `callback` returns true for some region appearing free in `value`.
290 pub fn any_free_region_meets(
291 self,
292 value: &impl TypeFoldable<'tcx>,
293 callback: impl FnMut(ty::Region<'tcx>) -> bool,
294 ) -> bool {
295 struct RegionVisitor<F> {
296 /// The index of a binder *just outside* the things we have
297 /// traversed. If we encounter a bound region bound by this
298 /// binder or one outer to it, it appears free. Example:
299 ///
300 /// ```
301 /// for<'a> fn(for<'b> fn(), T)
302 /// ^ ^ ^ ^
303 /// | | | | here, would be shifted in 1
304 /// | | | here, would be shifted in 2
305 /// | | here, would be `INNERMOST` shifted in by 1
306 /// | here, initially, binder would be `INNERMOST`
307 /// ```
308 ///
309 /// You see that, initially, *any* bound value is free,
310 /// because we've not traversed any binders. As we pass
311 /// through a binder, we shift the `outer_index` by 1 to
312 /// account for the new binder that encloses us.
313 outer_index: ty::DebruijnIndex,
314 callback: F,
315 }
316
317 impl<'tcx, F> TypeVisitor<'tcx> for RegionVisitor<F>
318 where
319 F: FnMut(ty::Region<'tcx>) -> bool,
320 {
321 type BreakTy = ();
322
323 fn visit_binder<T: TypeFoldable<'tcx>>(
324 &mut self,
325 t: &Binder<T>,
326 ) -> ControlFlow<Self::BreakTy> {
327 self.outer_index.shift_in(1);
328 let result = t.as_ref().skip_binder().visit_with(self);
329 self.outer_index.shift_out(1);
330 result
331 }
332
333 fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
334 match *r {
335 ty::ReLateBound(debruijn, _) if debruijn < self.outer_index => {
336 ControlFlow::CONTINUE
337 }
338 _ => {
339 if (self.callback)(r) {
340 ControlFlow::BREAK
341 } else {
342 ControlFlow::CONTINUE
343 }
344 }
345 }
346 }
347
348 fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
349 // We're only interested in types involving regions
350 if ty.flags().intersects(TypeFlags::HAS_FREE_REGIONS) {
351 ty.super_visit_with(self)
352 } else {
353 ControlFlow::CONTINUE
354 }
355 }
356 }
357
358 value.visit_with(&mut RegionVisitor { outer_index: ty::INNERMOST, callback }).is_break()
359 }
360 }
361
362 /// Folds over the substructure of a type, visiting its component
363 /// types and all regions that occur *free* within it.
364 ///
365 /// That is, `Ty` can contain function or method types that bind
366 /// regions at the call site (`ReLateBound`), and occurrences of
367 /// regions (aka "lifetimes") that are bound within a type are not
368 /// visited by this folder; only regions that occur free will be
369 /// visited by `fld_r`.
370
371 pub struct RegionFolder<'a, 'tcx> {
372 tcx: TyCtxt<'tcx>,
373 skipped_regions: &'a mut bool,
374
375 /// Stores the index of a binder *just outside* the stuff we have
376 /// visited. So this begins as INNERMOST; when we pass through a
377 /// binder, it is incremented (via `shift_in`).
378 current_index: ty::DebruijnIndex,
379
380 /// Callback invokes for each free region. The `DebruijnIndex`
381 /// points to the binder *just outside* the ones we have passed
382 /// through.
383 fold_region_fn:
384 &'a mut (dyn FnMut(ty::Region<'tcx>, ty::DebruijnIndex) -> ty::Region<'tcx> + 'a),
385 }
386
387 impl<'a, 'tcx> RegionFolder<'a, 'tcx> {
388 #[inline]
389 pub fn new(
390 tcx: TyCtxt<'tcx>,
391 skipped_regions: &'a mut bool,
392 fold_region_fn: &'a mut dyn FnMut(ty::Region<'tcx>, ty::DebruijnIndex) -> ty::Region<'tcx>,
393 ) -> RegionFolder<'a, 'tcx> {
394 RegionFolder { tcx, skipped_regions, current_index: ty::INNERMOST, fold_region_fn }
395 }
396 }
397
398 impl<'a, 'tcx> TypeFolder<'tcx> for RegionFolder<'a, 'tcx> {
399 fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
400 self.tcx
401 }
402
403 fn fold_binder<T: TypeFoldable<'tcx>>(&mut self, t: ty::Binder<T>) -> ty::Binder<T> {
404 self.current_index.shift_in(1);
405 let t = t.super_fold_with(self);
406 self.current_index.shift_out(1);
407 t
408 }
409
410 fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
411 match *r {
412 ty::ReLateBound(debruijn, _) if debruijn < self.current_index => {
413 debug!(
414 "RegionFolder.fold_region({:?}) skipped bound region (current index={:?})",
415 r, self.current_index
416 );
417 *self.skipped_regions = true;
418 r
419 }
420 _ => {
421 debug!(
422 "RegionFolder.fold_region({:?}) folding free region (current_index={:?})",
423 r, self.current_index
424 );
425 (self.fold_region_fn)(r, self.current_index)
426 }
427 }
428 }
429 }
430
431 ///////////////////////////////////////////////////////////////////////////
432 // Bound vars replacer
433
434 /// Replaces the escaping bound vars (late bound regions or bound types) in a type.
435 struct BoundVarReplacer<'a, 'tcx> {
436 tcx: TyCtxt<'tcx>,
437
438 /// As with `RegionFolder`, represents the index of a binder *just outside*
439 /// the ones we have visited.
440 current_index: ty::DebruijnIndex,
441
442 fld_r: &'a mut (dyn FnMut(ty::BoundRegion) -> ty::Region<'tcx> + 'a),
443 fld_t: &'a mut (dyn FnMut(ty::BoundTy) -> Ty<'tcx> + 'a),
444 fld_c: &'a mut (dyn FnMut(ty::BoundVar, Ty<'tcx>) -> &'tcx ty::Const<'tcx> + 'a),
445 }
446
447 impl<'a, 'tcx> BoundVarReplacer<'a, 'tcx> {
448 fn new<F, G, H>(tcx: TyCtxt<'tcx>, fld_r: &'a mut F, fld_t: &'a mut G, fld_c: &'a mut H) -> Self
449 where
450 F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
451 G: FnMut(ty::BoundTy) -> Ty<'tcx>,
452 H: FnMut(ty::BoundVar, Ty<'tcx>) -> &'tcx ty::Const<'tcx>,
453 {
454 BoundVarReplacer { tcx, current_index: ty::INNERMOST, fld_r, fld_t, fld_c }
455 }
456 }
457
458 impl<'a, 'tcx> TypeFolder<'tcx> for BoundVarReplacer<'a, 'tcx> {
459 fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
460 self.tcx
461 }
462
463 fn fold_binder<T: TypeFoldable<'tcx>>(&mut self, t: ty::Binder<T>) -> ty::Binder<T> {
464 self.current_index.shift_in(1);
465 let t = t.super_fold_with(self);
466 self.current_index.shift_out(1);
467 t
468 }
469
470 fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
471 match *t.kind() {
472 ty::Bound(debruijn, bound_ty) => {
473 if debruijn == self.current_index {
474 let fld_t = &mut self.fld_t;
475 let ty = fld_t(bound_ty);
476 ty::fold::shift_vars(self.tcx, &ty, self.current_index.as_u32())
477 } else {
478 t
479 }
480 }
481 _ => {
482 if !t.has_vars_bound_at_or_above(self.current_index) {
483 // Nothing more to substitute.
484 t
485 } else {
486 t.super_fold_with(self)
487 }
488 }
489 }
490 }
491
492 fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
493 match *r {
494 ty::ReLateBound(debruijn, br) if debruijn == self.current_index => {
495 let fld_r = &mut self.fld_r;
496 let region = fld_r(br);
497 if let ty::ReLateBound(debruijn1, br) = *region {
498 // If the callback returns a late-bound region,
499 // that region should always use the INNERMOST
500 // debruijn index. Then we adjust it to the
501 // correct depth.
502 assert_eq!(debruijn1, ty::INNERMOST);
503 self.tcx.mk_region(ty::ReLateBound(debruijn, br))
504 } else {
505 region
506 }
507 }
508 _ => r,
509 }
510 }
511
512 fn fold_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
513 if let ty::Const { val: ty::ConstKind::Bound(debruijn, bound_const), ty } = *ct {
514 if debruijn == self.current_index {
515 let fld_c = &mut self.fld_c;
516 let ct = fld_c(bound_const, ty);
517 ty::fold::shift_vars(self.tcx, &ct, self.current_index.as_u32())
518 } else {
519 ct
520 }
521 } else {
522 if !ct.has_vars_bound_at_or_above(self.current_index) {
523 // Nothing more to substitute.
524 ct
525 } else {
526 ct.super_fold_with(self)
527 }
528 }
529 }
530 }
531
532 impl<'tcx> TyCtxt<'tcx> {
533 /// Replaces all regions bound by the given `Binder` with the
534 /// results returned by the closure; the closure is expected to
535 /// return a free region (relative to this binder), and hence the
536 /// binder is removed in the return type. The closure is invoked
537 /// once for each unique `BoundRegionKind`; multiple references to the
538 /// same `BoundRegionKind` will reuse the previous result. A map is
539 /// returned at the end with each bound region and the free region
540 /// that replaced it.
541 ///
542 /// This method only replaces late bound regions and the result may still
543 /// contain escaping bound types.
544 pub fn replace_late_bound_regions<T, F>(
545 self,
546 value: Binder<T>,
547 mut fld_r: F,
548 ) -> (T, BTreeMap<ty::BoundRegion, ty::Region<'tcx>>)
549 where
550 F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
551 T: TypeFoldable<'tcx>,
552 {
553 // identity for bound types and consts
554 let fld_t = |bound_ty| self.mk_ty(ty::Bound(ty::INNERMOST, bound_ty));
555 let fld_c = |bound_ct, ty| {
556 self.mk_const(ty::Const { val: ty::ConstKind::Bound(ty::INNERMOST, bound_ct), ty })
557 };
558 let mut region_map = BTreeMap::new();
559 let real_fld_r = |br: ty::BoundRegion| *region_map.entry(br).or_insert_with(|| fld_r(br));
560 let value = self.replace_escaping_bound_vars(value.skip_binder(), real_fld_r, fld_t, fld_c);
561 (value, region_map)
562 }
563
564 /// Replaces all escaping bound vars. The `fld_r` closure replaces escaping
565 /// bound regions; the `fld_t` closure replaces escaping bound types and the `fld_c`
566 /// closure replaces escaping bound consts.
567 pub fn replace_escaping_bound_vars<T, F, G, H>(
568 self,
569 value: T,
570 mut fld_r: F,
571 mut fld_t: G,
572 mut fld_c: H,
573 ) -> T
574 where
575 F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
576 G: FnMut(ty::BoundTy) -> Ty<'tcx>,
577 H: FnMut(ty::BoundVar, Ty<'tcx>) -> &'tcx ty::Const<'tcx>,
578 T: TypeFoldable<'tcx>,
579 {
580 if !value.has_escaping_bound_vars() {
581 value
582 } else {
583 let mut replacer = BoundVarReplacer::new(self, &mut fld_r, &mut fld_t, &mut fld_c);
584 value.fold_with(&mut replacer)
585 }
586 }
587
588 /// Replaces all types or regions bound by the given `Binder`. The `fld_r`
589 /// closure replaces bound regions while the `fld_t` closure replaces bound
590 /// types.
591 pub fn replace_bound_vars<T, F, G, H>(
592 self,
593 value: Binder<T>,
594 mut fld_r: F,
595 fld_t: G,
596 fld_c: H,
597 ) -> (T, BTreeMap<ty::BoundRegion, ty::Region<'tcx>>)
598 where
599 F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
600 G: FnMut(ty::BoundTy) -> Ty<'tcx>,
601 H: FnMut(ty::BoundVar, Ty<'tcx>) -> &'tcx ty::Const<'tcx>,
602 T: TypeFoldable<'tcx>,
603 {
604 let mut region_map = BTreeMap::new();
605 let real_fld_r = |br: ty::BoundRegion| *region_map.entry(br).or_insert_with(|| fld_r(br));
606 let value = self.replace_escaping_bound_vars(value.skip_binder(), real_fld_r, fld_t, fld_c);
607 (value, region_map)
608 }
609
610 /// Replaces any late-bound regions bound in `value` with
611 /// free variants attached to `all_outlive_scope`.
612 pub fn liberate_late_bound_regions<T>(self, all_outlive_scope: DefId, value: ty::Binder<T>) -> T
613 where
614 T: TypeFoldable<'tcx>,
615 {
616 self.replace_late_bound_regions(value, |br| {
617 self.mk_region(ty::ReFree(ty::FreeRegion {
618 scope: all_outlive_scope,
619 bound_region: br.kind,
620 }))
621 })
622 .0
623 }
624
625 /// Returns a set of all late-bound regions that are constrained
626 /// by `value`, meaning that if we instantiate those LBR with
627 /// variables and equate `value` with something else, those
628 /// variables will also be equated.
629 pub fn collect_constrained_late_bound_regions<T>(
630 self,
631 value: &Binder<T>,
632 ) -> FxHashSet<ty::BoundRegionKind>
633 where
634 T: TypeFoldable<'tcx>,
635 {
636 self.collect_late_bound_regions(value, true)
637 }
638
639 /// Returns a set of all late-bound regions that appear in `value` anywhere.
640 pub fn collect_referenced_late_bound_regions<T>(
641 self,
642 value: &Binder<T>,
643 ) -> FxHashSet<ty::BoundRegionKind>
644 where
645 T: TypeFoldable<'tcx>,
646 {
647 self.collect_late_bound_regions(value, false)
648 }
649
650 fn collect_late_bound_regions<T>(
651 self,
652 value: &Binder<T>,
653 just_constraint: bool,
654 ) -> FxHashSet<ty::BoundRegionKind>
655 where
656 T: TypeFoldable<'tcx>,
657 {
658 let mut collector = LateBoundRegionsCollector::new(just_constraint);
659 let result = value.as_ref().skip_binder().visit_with(&mut collector);
660 assert!(result.is_continue()); // should never have stopped early
661 collector.regions
662 }
663
664 /// Replaces any late-bound regions bound in `value` with `'erased`. Useful in codegen but also
665 /// method lookup and a few other places where precise region relationships are not required.
666 pub fn erase_late_bound_regions<T>(self, value: Binder<T>) -> T
667 where
668 T: TypeFoldable<'tcx>,
669 {
670 self.replace_late_bound_regions(value, |_| self.lifetimes.re_erased).0
671 }
672
673 /// Rewrite any late-bound regions so that they are anonymous. Region numbers are
674 /// assigned starting at 0 and increasing monotonically in the order traversed
675 /// by the fold operation.
676 ///
677 /// The chief purpose of this function is to canonicalize regions so that two
678 /// `FnSig`s or `TraitRef`s which are equivalent up to region naming will become
679 /// structurally identical. For example, `for<'a, 'b> fn(&'a isize, &'b isize)` and
680 /// `for<'a, 'b> fn(&'b isize, &'a isize)` will become identical after anonymization.
681 pub fn anonymize_late_bound_regions<T>(self, sig: Binder<T>) -> Binder<T>
682 where
683 T: TypeFoldable<'tcx>,
684 {
685 let mut counter = 0;
686 Binder::bind(
687 self.replace_late_bound_regions(sig, |_| {
688 let br = ty::BoundRegion { kind: ty::BrAnon(counter) };
689 let r = self.mk_region(ty::ReLateBound(ty::INNERMOST, br));
690 counter += 1;
691 r
692 })
693 .0,
694 )
695 }
696 }
697
698 ///////////////////////////////////////////////////////////////////////////
699 // Shifter
700 //
701 // Shifts the De Bruijn indices on all escaping bound vars by a
702 // fixed amount. Useful in substitution or when otherwise introducing
703 // a binding level that is not intended to capture the existing bound
704 // vars. See comment on `shift_vars_through_binders` method in
705 // `subst.rs` for more details.
706
707 struct Shifter<'tcx> {
708 tcx: TyCtxt<'tcx>,
709 current_index: ty::DebruijnIndex,
710 amount: u32,
711 }
712
713 impl Shifter<'tcx> {
714 pub fn new(tcx: TyCtxt<'tcx>, amount: u32) -> Self {
715 Shifter { tcx, current_index: ty::INNERMOST, amount }
716 }
717 }
718
719 impl TypeFolder<'tcx> for Shifter<'tcx> {
720 fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
721 self.tcx
722 }
723
724 fn fold_binder<T: TypeFoldable<'tcx>>(&mut self, t: ty::Binder<T>) -> ty::Binder<T> {
725 self.current_index.shift_in(1);
726 let t = t.super_fold_with(self);
727 self.current_index.shift_out(1);
728 t
729 }
730
731 fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
732 match *r {
733 ty::ReLateBound(debruijn, br) => {
734 if self.amount == 0 || debruijn < self.current_index {
735 r
736 } else {
737 let debruijn = debruijn.shifted_in(self.amount);
738 let shifted = ty::ReLateBound(debruijn, br);
739 self.tcx.mk_region(shifted)
740 }
741 }
742 _ => r,
743 }
744 }
745
746 fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
747 match *ty.kind() {
748 ty::Bound(debruijn, bound_ty) => {
749 if self.amount == 0 || debruijn < self.current_index {
750 ty
751 } else {
752 let debruijn = debruijn.shifted_in(self.amount);
753 self.tcx.mk_ty(ty::Bound(debruijn, bound_ty))
754 }
755 }
756
757 _ => ty.super_fold_with(self),
758 }
759 }
760
761 fn fold_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
762 if let ty::Const { val: ty::ConstKind::Bound(debruijn, bound_ct), ty } = *ct {
763 if self.amount == 0 || debruijn < self.current_index {
764 ct
765 } else {
766 let debruijn = debruijn.shifted_in(self.amount);
767 self.tcx.mk_const(ty::Const { val: ty::ConstKind::Bound(debruijn, bound_ct), ty })
768 }
769 } else {
770 ct.super_fold_with(self)
771 }
772 }
773 }
774
775 pub fn shift_region<'tcx>(
776 tcx: TyCtxt<'tcx>,
777 region: ty::Region<'tcx>,
778 amount: u32,
779 ) -> ty::Region<'tcx> {
780 match region {
781 ty::ReLateBound(debruijn, br) if amount > 0 => {
782 tcx.mk_region(ty::ReLateBound(debruijn.shifted_in(amount), *br))
783 }
784 _ => region,
785 }
786 }
787
788 pub fn shift_vars<'tcx, T>(tcx: TyCtxt<'tcx>, value: T, amount: u32) -> T
789 where
790 T: TypeFoldable<'tcx>,
791 {
792 debug!("shift_vars(value={:?}, amount={})", value, amount);
793
794 value.fold_with(&mut Shifter::new(tcx, amount))
795 }
796
797 #[derive(Debug, PartialEq, Eq, Copy, Clone)]
798 struct FoundEscapingVars;
799
800 /// An "escaping var" is a bound var whose binder is not part of `t`. A bound var can be a
801 /// bound region or a bound type.
802 ///
803 /// So, for example, consider a type like the following, which has two binders:
804 ///
805 /// for<'a> fn(x: for<'b> fn(&'a isize, &'b isize))
806 /// ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ outer scope
807 /// ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ inner scope
808 ///
809 /// This type has *bound regions* (`'a`, `'b`), but it does not have escaping regions, because the
810 /// binders of both `'a` and `'b` are part of the type itself. However, if we consider the *inner
811 /// fn type*, that type has an escaping region: `'a`.
812 ///
813 /// Note that what I'm calling an "escaping var" is often just called a "free var". However,
814 /// we already use the term "free var". It refers to the regions or types that we use to represent
815 /// bound regions or type params on a fn definition while we are type checking its body.
816 ///
817 /// To clarify, conceptually there is no particular difference between
818 /// an "escaping" var and a "free" var. However, there is a big
819 /// difference in practice. Basically, when "entering" a binding
820 /// level, one is generally required to do some sort of processing to
821 /// a bound var, such as replacing it with a fresh/placeholder
822 /// var, or making an entry in the environment to represent the
823 /// scope to which it is attached, etc. An escaping var represents
824 /// a bound var for which this processing has not yet been done.
825 struct HasEscapingVarsVisitor {
826 /// Anything bound by `outer_index` or "above" is escaping.
827 outer_index: ty::DebruijnIndex,
828 }
829
830 impl<'tcx> TypeVisitor<'tcx> for HasEscapingVarsVisitor {
831 type BreakTy = FoundEscapingVars;
832
833 fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> ControlFlow<Self::BreakTy> {
834 self.outer_index.shift_in(1);
835 let result = t.super_visit_with(self);
836 self.outer_index.shift_out(1);
837 result
838 }
839
840 fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
841 // If the outer-exclusive-binder is *strictly greater* than
842 // `outer_index`, that means that `t` contains some content
843 // bound at `outer_index` or above (because
844 // `outer_exclusive_binder` is always 1 higher than the
845 // content in `t`). Therefore, `t` has some escaping vars.
846 if t.outer_exclusive_binder > self.outer_index {
847 ControlFlow::Break(FoundEscapingVars)
848 } else {
849 ControlFlow::CONTINUE
850 }
851 }
852
853 fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
854 // If the region is bound by `outer_index` or anything outside
855 // of outer index, then it escapes the binders we have
856 // visited.
857 if r.bound_at_or_above_binder(self.outer_index) {
858 ControlFlow::Break(FoundEscapingVars)
859 } else {
860 ControlFlow::CONTINUE
861 }
862 }
863
864 fn visit_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
865 // we don't have a `visit_infer_const` callback, so we have to
866 // hook in here to catch this case (annoying...), but
867 // otherwise we do want to remember to visit the rest of the
868 // const, as it has types/regions embedded in a lot of other
869 // places.
870 match ct.val {
871 ty::ConstKind::Bound(debruijn, _) if debruijn >= self.outer_index => {
872 ControlFlow::Break(FoundEscapingVars)
873 }
874 _ => ct.super_visit_with(self),
875 }
876 }
877
878 fn visit_predicate(&mut self, predicate: ty::Predicate<'tcx>) -> ControlFlow<Self::BreakTy> {
879 if predicate.inner.outer_exclusive_binder > self.outer_index {
880 ControlFlow::Break(FoundEscapingVars)
881 } else {
882 ControlFlow::CONTINUE
883 }
884 }
885 }
886
887 #[derive(Debug, PartialEq, Eq, Copy, Clone)]
888 struct FoundFlags;
889
890 // FIXME: Optimize for checking for infer flags
891 struct HasTypeFlagsVisitor {
892 flags: ty::TypeFlags,
893 }
894
895 impl<'tcx> TypeVisitor<'tcx> for HasTypeFlagsVisitor {
896 type BreakTy = FoundFlags;
897
898 fn visit_ty(&mut self, t: Ty<'_>) -> ControlFlow<Self::BreakTy> {
899 debug!(
900 "HasTypeFlagsVisitor: t={:?} t.flags={:?} self.flags={:?}",
901 t,
902 t.flags(),
903 self.flags
904 );
905 if t.flags().intersects(self.flags) {
906 ControlFlow::Break(FoundFlags)
907 } else {
908 ControlFlow::CONTINUE
909 }
910 }
911
912 fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
913 let flags = r.type_flags();
914 debug!("HasTypeFlagsVisitor: r={:?} r.flags={:?} self.flags={:?}", r, flags, self.flags);
915 if flags.intersects(self.flags) {
916 ControlFlow::Break(FoundFlags)
917 } else {
918 ControlFlow::CONTINUE
919 }
920 }
921
922 fn visit_const(&mut self, c: &'tcx ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
923 let flags = FlagComputation::for_const(c);
924 debug!("HasTypeFlagsVisitor: c={:?} c.flags={:?} self.flags={:?}", c, flags, self.flags);
925 if flags.intersects(self.flags) {
926 ControlFlow::Break(FoundFlags)
927 } else {
928 ControlFlow::CONTINUE
929 }
930 }
931
932 fn visit_predicate(&mut self, predicate: ty::Predicate<'tcx>) -> ControlFlow<Self::BreakTy> {
933 debug!(
934 "HasTypeFlagsVisitor: predicate={:?} predicate.flags={:?} self.flags={:?}",
935 predicate, predicate.inner.flags, self.flags
936 );
937 if predicate.inner.flags.intersects(self.flags) {
938 ControlFlow::Break(FoundFlags)
939 } else {
940 ControlFlow::CONTINUE
941 }
942 }
943 }
944
945 /// Collects all the late-bound regions at the innermost binding level
946 /// into a hash set.
947 struct LateBoundRegionsCollector {
948 current_index: ty::DebruijnIndex,
949 regions: FxHashSet<ty::BoundRegionKind>,
950
951 /// `true` if we only want regions that are known to be
952 /// "constrained" when you equate this type with another type. In
953 /// particular, if you have e.g., `&'a u32` and `&'b u32`, equating
954 /// them constraints `'a == 'b`. But if you have `<&'a u32 as
955 /// Trait>::Foo` and `<&'b u32 as Trait>::Foo`, normalizing those
956 /// types may mean that `'a` and `'b` don't appear in the results,
957 /// so they are not considered *constrained*.
958 just_constrained: bool,
959 }
960
961 impl LateBoundRegionsCollector {
962 fn new(just_constrained: bool) -> Self {
963 LateBoundRegionsCollector {
964 current_index: ty::INNERMOST,
965 regions: Default::default(),
966 just_constrained,
967 }
968 }
969 }
970
971 impl<'tcx> TypeVisitor<'tcx> for LateBoundRegionsCollector {
972 fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> ControlFlow<Self::BreakTy> {
973 self.current_index.shift_in(1);
974 let result = t.super_visit_with(self);
975 self.current_index.shift_out(1);
976 result
977 }
978
979 fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
980 // if we are only looking for "constrained" region, we have to
981 // ignore the inputs to a projection, as they may not appear
982 // in the normalized form
983 if self.just_constrained {
984 if let ty::Projection(..) | ty::Opaque(..) = t.kind() {
985 return ControlFlow::CONTINUE;
986 }
987 }
988
989 t.super_visit_with(self)
990 }
991
992 fn visit_const(&mut self, c: &'tcx ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
993 // if we are only looking for "constrained" region, we have to
994 // ignore the inputs of an unevaluated const, as they may not appear
995 // in the normalized form
996 if self.just_constrained {
997 if let ty::ConstKind::Unevaluated(..) = c.val {
998 return ControlFlow::CONTINUE;
999 }
1000 }
1001
1002 c.super_visit_with(self)
1003 }
1004
1005 fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
1006 if let ty::ReLateBound(debruijn, br) = *r {
1007 if debruijn == self.current_index {
1008 self.regions.insert(br.kind);
1009 }
1010 }
1011 ControlFlow::CONTINUE
1012 }
1013 }