]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_middle/src/ty/mod.rs
New upstream version 1.48.0~beta.8+dfsg1
[rustc.git] / compiler / rustc_middle / src / ty / mod.rs
1 // ignore-tidy-filelength
2 pub use self::fold::{TypeFoldable, TypeFolder, TypeVisitor};
3 pub use self::AssocItemContainer::*;
4 pub use self::BorrowKind::*;
5 pub use self::IntVarValue::*;
6 pub use self::Variance::*;
7
8 use crate::hir::exports::ExportMap;
9 use crate::ich::StableHashingContext;
10 use crate::infer::canonical::Canonical;
11 use crate::middle::cstore::CrateStoreDyn;
12 use crate::middle::resolve_lifetime::ObjectLifetimeDefault;
13 use crate::mir::interpret::ErrorHandled;
14 use crate::mir::Body;
15 use crate::mir::GeneratorLayout;
16 use crate::traits::{self, Reveal};
17 use crate::ty;
18 use crate::ty::subst::{GenericArg, InternalSubsts, Subst, SubstsRef};
19 use crate::ty::util::{Discr, IntTypeExt};
20 use rustc_ast as ast;
21 use rustc_attr as attr;
22 use rustc_data_structures::captures::Captures;
23 use rustc_data_structures::fingerprint::Fingerprint;
24 use rustc_data_structures::fx::FxHashMap;
25 use rustc_data_structures::fx::FxHashSet;
26 use rustc_data_structures::fx::FxIndexMap;
27 use rustc_data_structures::sorted_map::SortedIndexMultiMap;
28 use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
29 use rustc_data_structures::sync::{self, par_iter, ParallelIterator};
30 use rustc_data_structures::tagged_ptr::CopyTaggedPtr;
31 use rustc_errors::ErrorReported;
32 use rustc_hir as hir;
33 use rustc_hir::def::{CtorKind, CtorOf, DefKind, Namespace, Res};
34 use rustc_hir::def_id::{CrateNum, DefId, DefIdMap, LocalDefId, CRATE_DEF_INDEX};
35 use rustc_hir::lang_items::LangItem;
36 use rustc_hir::{Constness, Node};
37 use rustc_index::vec::{Idx, IndexVec};
38 use rustc_macros::HashStable;
39 use rustc_serialize::{self, Encodable, Encoder};
40 use rustc_session::DataTypeKind;
41 use rustc_span::hygiene::ExpnId;
42 use rustc_span::symbol::{kw, sym, Ident, Symbol};
43 use rustc_span::Span;
44 use rustc_target::abi::{Align, VariantIdx};
45
46 use std::cell::RefCell;
47 use std::cmp::Ordering;
48 use std::fmt;
49 use std::hash::{Hash, Hasher};
50 use std::ops::Range;
51 use std::ptr;
52 use std::str;
53
54 pub use self::sty::BoundRegion::*;
55 pub use self::sty::InferTy::*;
56 pub use self::sty::RegionKind;
57 pub use self::sty::RegionKind::*;
58 pub use self::sty::TyKind::*;
59 pub use self::sty::{Binder, BoundTy, BoundTyKind, BoundVar, DebruijnIndex, INNERMOST};
60 pub use self::sty::{BoundRegion, EarlyBoundRegion, FreeRegion, Region};
61 pub use self::sty::{CanonicalPolyFnSig, FnSig, GenSig, PolyFnSig, PolyGenSig};
62 pub use self::sty::{ClosureSubsts, GeneratorSubsts, TypeAndMut, UpvarSubsts};
63 pub use self::sty::{ClosureSubstsParts, GeneratorSubstsParts};
64 pub use self::sty::{ConstVid, FloatVid, IntVid, RegionVid, TyVid};
65 pub use self::sty::{ExistentialPredicate, InferTy, ParamConst, ParamTy, ProjectionTy};
66 pub use self::sty::{ExistentialProjection, PolyExistentialProjection};
67 pub use self::sty::{ExistentialTraitRef, PolyExistentialTraitRef};
68 pub use self::sty::{PolyTraitRef, TraitRef, TyKind};
69 pub use crate::ty::diagnostics::*;
70
71 pub use self::binding::BindingMode;
72 pub use self::binding::BindingMode::*;
73
74 pub use self::context::{tls, FreeRegionInfo, TyCtxt};
75 pub use self::context::{
76 CanonicalUserType, CanonicalUserTypeAnnotation, CanonicalUserTypeAnnotations,
77 DelaySpanBugEmitted, ResolvedOpaqueTy, UserType, UserTypeAnnotationIndex,
78 };
79 pub use self::context::{
80 CtxtInterners, GeneratorInteriorTypeCause, GlobalCtxt, Lift, TypeckResults,
81 };
82
83 pub use self::instance::{Instance, InstanceDef};
84
85 pub use self::list::List;
86
87 pub use self::trait_def::TraitDef;
88
89 pub use self::query::queries;
90
91 pub use self::consts::{Const, ConstInt, ConstKind, InferConst};
92
93 pub mod _match;
94 pub mod adjustment;
95 pub mod binding;
96 pub mod cast;
97 pub mod codec;
98 mod erase_regions;
99 pub mod error;
100 pub mod fast_reject;
101 pub mod flags;
102 pub mod fold;
103 pub mod inhabitedness;
104 pub mod layout;
105 pub mod normalize_erasing_regions;
106 pub mod outlives;
107 pub mod print;
108 pub mod query;
109 pub mod relate;
110 pub mod steal;
111 pub mod subst;
112 pub mod trait_def;
113 pub mod util;
114 pub mod walk;
115
116 mod consts;
117 mod context;
118 mod diagnostics;
119 mod instance;
120 mod list;
121 mod structural_impls;
122 mod sty;
123
124 // Data types
125
126 pub struct ResolverOutputs {
127 pub definitions: rustc_hir::definitions::Definitions,
128 pub cstore: Box<CrateStoreDyn>,
129 pub extern_crate_map: FxHashMap<LocalDefId, CrateNum>,
130 pub maybe_unused_trait_imports: FxHashSet<LocalDefId>,
131 pub maybe_unused_extern_crates: Vec<(LocalDefId, Span)>,
132 pub export_map: ExportMap<LocalDefId>,
133 pub glob_map: FxHashMap<LocalDefId, FxHashSet<Symbol>>,
134 /// Extern prelude entries. The value is `true` if the entry was introduced
135 /// via `extern crate` item and not `--extern` option or compiler built-in.
136 pub extern_prelude: FxHashMap<Symbol, bool>,
137 }
138
139 #[derive(Clone, Copy, PartialEq, Eq, Debug, HashStable, Hash)]
140 pub enum AssocItemContainer {
141 TraitContainer(DefId),
142 ImplContainer(DefId),
143 }
144
145 impl AssocItemContainer {
146 /// Asserts that this is the `DefId` of an associated item declared
147 /// in a trait, and returns the trait `DefId`.
148 pub fn assert_trait(&self) -> DefId {
149 match *self {
150 TraitContainer(id) => id,
151 _ => bug!("associated item has wrong container type: {:?}", self),
152 }
153 }
154
155 pub fn id(&self) -> DefId {
156 match *self {
157 TraitContainer(id) => id,
158 ImplContainer(id) => id,
159 }
160 }
161 }
162
163 /// The "header" of an impl is everything outside the body: a Self type, a trait
164 /// ref (in the case of a trait impl), and a set of predicates (from the
165 /// bounds / where-clauses).
166 #[derive(Clone, Debug, TypeFoldable)]
167 pub struct ImplHeader<'tcx> {
168 pub impl_def_id: DefId,
169 pub self_ty: Ty<'tcx>,
170 pub trait_ref: Option<TraitRef<'tcx>>,
171 pub predicates: Vec<Predicate<'tcx>>,
172 }
173
174 #[derive(Copy, Clone, PartialEq, TyEncodable, TyDecodable, HashStable)]
175 pub enum ImplPolarity {
176 /// `impl Trait for Type`
177 Positive,
178 /// `impl !Trait for Type`
179 Negative,
180 /// `#[rustc_reservation_impl] impl Trait for Type`
181 ///
182 /// This is a "stability hack", not a real Rust feature.
183 /// See #64631 for details.
184 Reservation,
185 }
186
187 #[derive(Copy, Clone, Debug, PartialEq, HashStable, Eq, Hash)]
188 pub struct AssocItem {
189 pub def_id: DefId,
190 #[stable_hasher(project(name))]
191 pub ident: Ident,
192 pub kind: AssocKind,
193 pub vis: Visibility,
194 pub defaultness: hir::Defaultness,
195 pub container: AssocItemContainer,
196
197 /// Whether this is a method with an explicit self
198 /// as its first parameter, allowing method calls.
199 pub fn_has_self_parameter: bool,
200 }
201
202 #[derive(Copy, Clone, PartialEq, Debug, HashStable, Eq, Hash)]
203 pub enum AssocKind {
204 Const,
205 Fn,
206 Type,
207 }
208
209 impl AssocKind {
210 pub fn namespace(&self) -> Namespace {
211 match *self {
212 ty::AssocKind::Type => Namespace::TypeNS,
213 ty::AssocKind::Const | ty::AssocKind::Fn => Namespace::ValueNS,
214 }
215 }
216
217 pub fn as_def_kind(&self) -> DefKind {
218 match self {
219 AssocKind::Const => DefKind::AssocConst,
220 AssocKind::Fn => DefKind::AssocFn,
221 AssocKind::Type => DefKind::AssocTy,
222 }
223 }
224 }
225
226 impl AssocItem {
227 pub fn signature(&self, tcx: TyCtxt<'_>) -> String {
228 match self.kind {
229 ty::AssocKind::Fn => {
230 // We skip the binder here because the binder would deanonymize all
231 // late-bound regions, and we don't want method signatures to show up
232 // `as for<'r> fn(&'r MyType)`. Pretty-printing handles late-bound
233 // regions just fine, showing `fn(&MyType)`.
234 tcx.fn_sig(self.def_id).skip_binder().to_string()
235 }
236 ty::AssocKind::Type => format!("type {};", self.ident),
237 ty::AssocKind::Const => {
238 format!("const {}: {:?};", self.ident, tcx.type_of(self.def_id))
239 }
240 }
241 }
242 }
243
244 /// A list of `ty::AssocItem`s in definition order that allows for efficient lookup by name.
245 ///
246 /// When doing lookup by name, we try to postpone hygienic comparison for as long as possible since
247 /// it is relatively expensive. Instead, items are indexed by `Symbol` and hygienic comparison is
248 /// done only on items with the same name.
249 #[derive(Debug, Clone, PartialEq, HashStable)]
250 pub struct AssociatedItems<'tcx> {
251 items: SortedIndexMultiMap<u32, Symbol, &'tcx ty::AssocItem>,
252 }
253
254 impl<'tcx> AssociatedItems<'tcx> {
255 /// Constructs an `AssociatedItems` map from a series of `ty::AssocItem`s in definition order.
256 pub fn new(items_in_def_order: impl IntoIterator<Item = &'tcx ty::AssocItem>) -> Self {
257 let items = items_in_def_order.into_iter().map(|item| (item.ident.name, item)).collect();
258 AssociatedItems { items }
259 }
260
261 /// Returns a slice of associated items in the order they were defined.
262 ///
263 /// New code should avoid relying on definition order. If you need a particular associated item
264 /// for a known trait, make that trait a lang item instead of indexing this array.
265 pub fn in_definition_order(&self) -> impl '_ + Iterator<Item = &ty::AssocItem> {
266 self.items.iter().map(|(_, v)| *v)
267 }
268
269 /// Returns an iterator over all associated items with the given name, ignoring hygiene.
270 pub fn filter_by_name_unhygienic(
271 &self,
272 name: Symbol,
273 ) -> impl '_ + Iterator<Item = &ty::AssocItem> {
274 self.items.get_by_key(&name).copied()
275 }
276
277 /// Returns an iterator over all associated items with the given name.
278 ///
279 /// Multiple items may have the same name if they are in different `Namespace`s. For example,
280 /// an associated type can have the same name as a method. Use one of the `find_by_name_and_*`
281 /// methods below if you know which item you are looking for.
282 pub fn filter_by_name(
283 &'a self,
284 tcx: TyCtxt<'a>,
285 ident: Ident,
286 parent_def_id: DefId,
287 ) -> impl 'a + Iterator<Item = &'a ty::AssocItem> {
288 self.filter_by_name_unhygienic(ident.name)
289 .filter(move |item| tcx.hygienic_eq(ident, item.ident, parent_def_id))
290 }
291
292 /// Returns the associated item with the given name and `AssocKind`, if one exists.
293 pub fn find_by_name_and_kind(
294 &self,
295 tcx: TyCtxt<'_>,
296 ident: Ident,
297 kind: AssocKind,
298 parent_def_id: DefId,
299 ) -> Option<&ty::AssocItem> {
300 self.filter_by_name_unhygienic(ident.name)
301 .filter(|item| item.kind == kind)
302 .find(|item| tcx.hygienic_eq(ident, item.ident, parent_def_id))
303 }
304
305 /// Returns the associated item with the given name in the given `Namespace`, if one exists.
306 pub fn find_by_name_and_namespace(
307 &self,
308 tcx: TyCtxt<'_>,
309 ident: Ident,
310 ns: Namespace,
311 parent_def_id: DefId,
312 ) -> Option<&ty::AssocItem> {
313 self.filter_by_name_unhygienic(ident.name)
314 .filter(|item| item.kind.namespace() == ns)
315 .find(|item| tcx.hygienic_eq(ident, item.ident, parent_def_id))
316 }
317 }
318
319 #[derive(Clone, Debug, PartialEq, Eq, Copy, Hash, TyEncodable, TyDecodable, HashStable)]
320 pub enum Visibility {
321 /// Visible everywhere (including in other crates).
322 Public,
323 /// Visible only in the given crate-local module.
324 Restricted(DefId),
325 /// Not visible anywhere in the local crate. This is the visibility of private external items.
326 Invisible,
327 }
328
329 pub trait DefIdTree: Copy {
330 fn parent(self, id: DefId) -> Option<DefId>;
331
332 fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
333 if descendant.krate != ancestor.krate {
334 return false;
335 }
336
337 while descendant != ancestor {
338 match self.parent(descendant) {
339 Some(parent) => descendant = parent,
340 None => return false,
341 }
342 }
343 true
344 }
345 }
346
347 impl<'tcx> DefIdTree for TyCtxt<'tcx> {
348 fn parent(self, id: DefId) -> Option<DefId> {
349 self.def_key(id).parent.map(|index| DefId { index, ..id })
350 }
351 }
352
353 impl Visibility {
354 pub fn from_hir(visibility: &hir::Visibility<'_>, id: hir::HirId, tcx: TyCtxt<'_>) -> Self {
355 match visibility.node {
356 hir::VisibilityKind::Public => Visibility::Public,
357 hir::VisibilityKind::Crate(_) => Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
358 hir::VisibilityKind::Restricted { ref path, .. } => match path.res {
359 // If there is no resolution, `resolve` will have already reported an error, so
360 // assume that the visibility is public to avoid reporting more privacy errors.
361 Res::Err => Visibility::Public,
362 def => Visibility::Restricted(def.def_id()),
363 },
364 hir::VisibilityKind::Inherited => {
365 Visibility::Restricted(tcx.parent_module(id).to_def_id())
366 }
367 }
368 }
369
370 /// Returns `true` if an item with this visibility is accessible from the given block.
371 pub fn is_accessible_from<T: DefIdTree>(self, module: DefId, tree: T) -> bool {
372 let restriction = match self {
373 // Public items are visible everywhere.
374 Visibility::Public => return true,
375 // Private items from other crates are visible nowhere.
376 Visibility::Invisible => return false,
377 // Restricted items are visible in an arbitrary local module.
378 Visibility::Restricted(other) if other.krate != module.krate => return false,
379 Visibility::Restricted(module) => module,
380 };
381
382 tree.is_descendant_of(module, restriction)
383 }
384
385 /// Returns `true` if this visibility is at least as accessible as the given visibility
386 pub fn is_at_least<T: DefIdTree>(self, vis: Visibility, tree: T) -> bool {
387 let vis_restriction = match vis {
388 Visibility::Public => return self == Visibility::Public,
389 Visibility::Invisible => return true,
390 Visibility::Restricted(module) => module,
391 };
392
393 self.is_accessible_from(vis_restriction, tree)
394 }
395
396 // Returns `true` if this item is visible anywhere in the local crate.
397 pub fn is_visible_locally(self) -> bool {
398 match self {
399 Visibility::Public => true,
400 Visibility::Restricted(def_id) => def_id.is_local(),
401 Visibility::Invisible => false,
402 }
403 }
404 }
405
406 #[derive(Copy, Clone, PartialEq, TyDecodable, TyEncodable, HashStable)]
407 pub enum Variance {
408 Covariant, // T<A> <: T<B> iff A <: B -- e.g., function return type
409 Invariant, // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
410 Contravariant, // T<A> <: T<B> iff B <: A -- e.g., function param type
411 Bivariant, // T<A> <: T<B> -- e.g., unused type parameter
412 }
413
414 /// The crate variances map is computed during typeck and contains the
415 /// variance of every item in the local crate. You should not use it
416 /// directly, because to do so will make your pass dependent on the
417 /// HIR of every item in the local crate. Instead, use
418 /// `tcx.variances_of()` to get the variance for a *particular*
419 /// item.
420 #[derive(HashStable)]
421 pub struct CrateVariancesMap<'tcx> {
422 /// For each item with generics, maps to a vector of the variance
423 /// of its generics. If an item has no generics, it will have no
424 /// entry.
425 pub variances: FxHashMap<DefId, &'tcx [ty::Variance]>,
426 }
427
428 impl Variance {
429 /// `a.xform(b)` combines the variance of a context with the
430 /// variance of a type with the following meaning. If we are in a
431 /// context with variance `a`, and we encounter a type argument in
432 /// a position with variance `b`, then `a.xform(b)` is the new
433 /// variance with which the argument appears.
434 ///
435 /// Example 1:
436 ///
437 /// *mut Vec<i32>
438 ///
439 /// Here, the "ambient" variance starts as covariant. `*mut T` is
440 /// invariant with respect to `T`, so the variance in which the
441 /// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
442 /// yields `Invariant`. Now, the type `Vec<T>` is covariant with
443 /// respect to its type argument `T`, and hence the variance of
444 /// the `i32` here is `Invariant.xform(Covariant)`, which results
445 /// (again) in `Invariant`.
446 ///
447 /// Example 2:
448 ///
449 /// fn(*const Vec<i32>, *mut Vec<i32)
450 ///
451 /// The ambient variance is covariant. A `fn` type is
452 /// contravariant with respect to its parameters, so the variance
453 /// within which both pointer types appear is
454 /// `Covariant.xform(Contravariant)`, or `Contravariant`. `*const
455 /// T` is covariant with respect to `T`, so the variance within
456 /// which the first `Vec<i32>` appears is
457 /// `Contravariant.xform(Covariant)` or `Contravariant`. The same
458 /// is true for its `i32` argument. In the `*mut T` case, the
459 /// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
460 /// and hence the outermost type is `Invariant` with respect to
461 /// `Vec<i32>` (and its `i32` argument).
462 ///
463 /// Source: Figure 1 of "Taming the Wildcards:
464 /// Combining Definition- and Use-Site Variance" published in PLDI'11.
465 pub fn xform(self, v: ty::Variance) -> ty::Variance {
466 match (self, v) {
467 // Figure 1, column 1.
468 (ty::Covariant, ty::Covariant) => ty::Covariant,
469 (ty::Covariant, ty::Contravariant) => ty::Contravariant,
470 (ty::Covariant, ty::Invariant) => ty::Invariant,
471 (ty::Covariant, ty::Bivariant) => ty::Bivariant,
472
473 // Figure 1, column 2.
474 (ty::Contravariant, ty::Covariant) => ty::Contravariant,
475 (ty::Contravariant, ty::Contravariant) => ty::Covariant,
476 (ty::Contravariant, ty::Invariant) => ty::Invariant,
477 (ty::Contravariant, ty::Bivariant) => ty::Bivariant,
478
479 // Figure 1, column 3.
480 (ty::Invariant, _) => ty::Invariant,
481
482 // Figure 1, column 4.
483 (ty::Bivariant, _) => ty::Bivariant,
484 }
485 }
486 }
487
488 // Contains information needed to resolve types and (in the future) look up
489 // the types of AST nodes.
490 #[derive(Copy, Clone, PartialEq, Eq, Hash)]
491 pub struct CReaderCacheKey {
492 pub cnum: CrateNum,
493 pub pos: usize,
494 }
495
496 bitflags! {
497 /// Flags that we track on types. These flags are propagated upwards
498 /// through the type during type construction, so that we can quickly check
499 /// whether the type has various kinds of types in it without recursing
500 /// over the type itself.
501 pub struct TypeFlags: u32 {
502 // Does this have parameters? Used to determine whether substitution is
503 // required.
504 /// Does this have [Param]?
505 const HAS_TY_PARAM = 1 << 0;
506 /// Does this have [ReEarlyBound]?
507 const HAS_RE_PARAM = 1 << 1;
508 /// Does this have [ConstKind::Param]?
509 const HAS_CT_PARAM = 1 << 2;
510
511 const NEEDS_SUBST = TypeFlags::HAS_TY_PARAM.bits
512 | TypeFlags::HAS_RE_PARAM.bits
513 | TypeFlags::HAS_CT_PARAM.bits;
514
515 /// Does this have [Infer]?
516 const HAS_TY_INFER = 1 << 3;
517 /// Does this have [ReVar]?
518 const HAS_RE_INFER = 1 << 4;
519 /// Does this have [ConstKind::Infer]?
520 const HAS_CT_INFER = 1 << 5;
521
522 /// Does this have inference variables? Used to determine whether
523 /// inference is required.
524 const NEEDS_INFER = TypeFlags::HAS_TY_INFER.bits
525 | TypeFlags::HAS_RE_INFER.bits
526 | TypeFlags::HAS_CT_INFER.bits;
527
528 /// Does this have [Placeholder]?
529 const HAS_TY_PLACEHOLDER = 1 << 6;
530 /// Does this have [RePlaceholder]?
531 const HAS_RE_PLACEHOLDER = 1 << 7;
532 /// Does this have [ConstKind::Placeholder]?
533 const HAS_CT_PLACEHOLDER = 1 << 8;
534
535 /// `true` if there are "names" of regions and so forth
536 /// that are local to a particular fn/inferctxt
537 const HAS_FREE_LOCAL_REGIONS = 1 << 9;
538
539 /// `true` if there are "names" of types and regions and so forth
540 /// that are local to a particular fn
541 const HAS_FREE_LOCAL_NAMES = TypeFlags::HAS_TY_PARAM.bits
542 | TypeFlags::HAS_CT_PARAM.bits
543 | TypeFlags::HAS_TY_INFER.bits
544 | TypeFlags::HAS_CT_INFER.bits
545 | TypeFlags::HAS_TY_PLACEHOLDER.bits
546 | TypeFlags::HAS_CT_PLACEHOLDER.bits
547 | TypeFlags::HAS_FREE_LOCAL_REGIONS.bits;
548
549 /// Does this have [Projection]?
550 const HAS_TY_PROJECTION = 1 << 10;
551 /// Does this have [Opaque]?
552 const HAS_TY_OPAQUE = 1 << 11;
553 /// Does this have [ConstKind::Unevaluated]?
554 const HAS_CT_PROJECTION = 1 << 12;
555
556 /// Could this type be normalized further?
557 const HAS_PROJECTION = TypeFlags::HAS_TY_PROJECTION.bits
558 | TypeFlags::HAS_TY_OPAQUE.bits
559 | TypeFlags::HAS_CT_PROJECTION.bits;
560
561 /// Is an error type/const reachable?
562 const HAS_ERROR = 1 << 13;
563
564 /// Does this have any region that "appears free" in the type?
565 /// Basically anything but [ReLateBound] and [ReErased].
566 const HAS_FREE_REGIONS = 1 << 14;
567
568 /// Does this have any [ReLateBound] regions? Used to check
569 /// if a global bound is safe to evaluate.
570 const HAS_RE_LATE_BOUND = 1 << 15;
571
572 /// Does this have any [ReErased] regions?
573 const HAS_RE_ERASED = 1 << 16;
574
575 /// Does this value have parameters/placeholders/inference variables which could be
576 /// replaced later, in a way that would change the results of `impl` specialization?
577 const STILL_FURTHER_SPECIALIZABLE = 1 << 17;
578 }
579 }
580
581 #[allow(rustc::usage_of_ty_tykind)]
582 pub struct TyS<'tcx> {
583 /// This field shouldn't be used directly and may be removed in the future.
584 /// Use `TyS::kind()` instead.
585 kind: TyKind<'tcx>,
586 /// This field shouldn't be used directly and may be removed in the future.
587 /// Use `TyS::flags()` instead.
588 flags: TypeFlags,
589
590 /// This is a kind of confusing thing: it stores the smallest
591 /// binder such that
592 ///
593 /// (a) the binder itself captures nothing but
594 /// (b) all the late-bound things within the type are captured
595 /// by some sub-binder.
596 ///
597 /// So, for a type without any late-bound things, like `u32`, this
598 /// will be *innermost*, because that is the innermost binder that
599 /// captures nothing. But for a type `&'D u32`, where `'D` is a
600 /// late-bound region with De Bruijn index `D`, this would be `D + 1`
601 /// -- the binder itself does not capture `D`, but `D` is captured
602 /// by an inner binder.
603 ///
604 /// We call this concept an "exclusive" binder `D` because all
605 /// De Bruijn indices within the type are contained within `0..D`
606 /// (exclusive).
607 outer_exclusive_binder: ty::DebruijnIndex,
608 }
609
610 // `TyS` is used a lot. Make sure it doesn't unintentionally get bigger.
611 #[cfg(target_arch = "x86_64")]
612 static_assert_size!(TyS<'_>, 32);
613
614 impl<'tcx> Ord for TyS<'tcx> {
615 fn cmp(&self, other: &TyS<'tcx>) -> Ordering {
616 self.kind().cmp(other.kind())
617 }
618 }
619
620 impl<'tcx> PartialOrd for TyS<'tcx> {
621 fn partial_cmp(&self, other: &TyS<'tcx>) -> Option<Ordering> {
622 Some(self.kind().cmp(other.kind()))
623 }
624 }
625
626 impl<'tcx> PartialEq for TyS<'tcx> {
627 #[inline]
628 fn eq(&self, other: &TyS<'tcx>) -> bool {
629 ptr::eq(self, other)
630 }
631 }
632 impl<'tcx> Eq for TyS<'tcx> {}
633
634 impl<'tcx> Hash for TyS<'tcx> {
635 fn hash<H: Hasher>(&self, s: &mut H) {
636 (self as *const TyS<'_>).hash(s)
637 }
638 }
639
640 impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for TyS<'tcx> {
641 fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
642 let ty::TyS {
643 ref kind,
644
645 // The other fields just provide fast access to information that is
646 // also contained in `kind`, so no need to hash them.
647 flags: _,
648
649 outer_exclusive_binder: _,
650 } = *self;
651
652 kind.hash_stable(hcx, hasher);
653 }
654 }
655
656 #[rustc_diagnostic_item = "Ty"]
657 pub type Ty<'tcx> = &'tcx TyS<'tcx>;
658
659 pub type CanonicalTy<'tcx> = Canonical<'tcx, Ty<'tcx>>;
660
661 #[derive(Clone, Copy, PartialEq, Eq, Hash, TyEncodable, TyDecodable, HashStable)]
662 pub struct UpvarPath {
663 pub hir_id: hir::HirId,
664 }
665
666 /// Upvars do not get their own `NodeId`. Instead, we use the pair of
667 /// the original var ID (that is, the root variable that is referenced
668 /// by the upvar) and the ID of the closure expression.
669 #[derive(Clone, Copy, PartialEq, Eq, Hash, TyEncodable, TyDecodable, HashStable)]
670 pub struct UpvarId {
671 pub var_path: UpvarPath,
672 pub closure_expr_id: LocalDefId,
673 }
674
675 #[derive(Clone, PartialEq, Debug, TyEncodable, TyDecodable, Copy, HashStable)]
676 pub enum BorrowKind {
677 /// Data must be immutable and is aliasable.
678 ImmBorrow,
679
680 /// Data must be immutable but not aliasable. This kind of borrow
681 /// cannot currently be expressed by the user and is used only in
682 /// implicit closure bindings. It is needed when the closure
683 /// is borrowing or mutating a mutable referent, e.g.:
684 ///
685 /// ```
686 /// let x: &mut isize = ...;
687 /// let y = || *x += 5;
688 /// ```
689 ///
690 /// If we were to try to translate this closure into a more explicit
691 /// form, we'd encounter an error with the code as written:
692 ///
693 /// ```
694 /// struct Env { x: & &mut isize }
695 /// let x: &mut isize = ...;
696 /// let y = (&mut Env { &x }, fn_ptr); // Closure is pair of env and fn
697 /// fn fn_ptr(env: &mut Env) { **env.x += 5; }
698 /// ```
699 ///
700 /// This is then illegal because you cannot mutate a `&mut` found
701 /// in an aliasable location. To solve, you'd have to translate with
702 /// an `&mut` borrow:
703 ///
704 /// ```
705 /// struct Env { x: & &mut isize }
706 /// let x: &mut isize = ...;
707 /// let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
708 /// fn fn_ptr(env: &mut Env) { **env.x += 5; }
709 /// ```
710 ///
711 /// Now the assignment to `**env.x` is legal, but creating a
712 /// mutable pointer to `x` is not because `x` is not mutable. We
713 /// could fix this by declaring `x` as `let mut x`. This is ok in
714 /// user code, if awkward, but extra weird for closures, since the
715 /// borrow is hidden.
716 ///
717 /// So we introduce a "unique imm" borrow -- the referent is
718 /// immutable, but not aliasable. This solves the problem. For
719 /// simplicity, we don't give users the way to express this
720 /// borrow, it's just used when translating closures.
721 UniqueImmBorrow,
722
723 /// Data is mutable and not aliasable.
724 MutBorrow,
725 }
726
727 /// Information describing the capture of an upvar. This is computed
728 /// during `typeck`, specifically by `regionck`.
729 #[derive(PartialEq, Clone, Debug, Copy, TyEncodable, TyDecodable, HashStable)]
730 pub enum UpvarCapture<'tcx> {
731 /// Upvar is captured by value. This is always true when the
732 /// closure is labeled `move`, but can also be true in other cases
733 /// depending on inference.
734 ///
735 /// If the upvar was inferred to be captured by value (e.g. `move`
736 /// was not used), then the `Span` points to a usage that
737 /// required it. There may be more than one such usage
738 /// (e.g. `|| { a; a; }`), in which case we pick an
739 /// arbitrary one.
740 ByValue(Option<Span>),
741
742 /// Upvar is captured by reference.
743 ByRef(UpvarBorrow<'tcx>),
744 }
745
746 #[derive(PartialEq, Clone, Copy, TyEncodable, TyDecodable, HashStable)]
747 pub struct UpvarBorrow<'tcx> {
748 /// The kind of borrow: by-ref upvars have access to shared
749 /// immutable borrows, which are not part of the normal language
750 /// syntax.
751 pub kind: BorrowKind,
752
753 /// Region of the resulting reference.
754 pub region: ty::Region<'tcx>,
755 }
756
757 pub type UpvarListMap = FxHashMap<DefId, FxIndexMap<hir::HirId, UpvarId>>;
758 pub type UpvarCaptureMap<'tcx> = FxHashMap<UpvarId, UpvarCapture<'tcx>>;
759
760 #[derive(Clone, Copy, PartialEq, Eq)]
761 pub enum IntVarValue {
762 IntType(ast::IntTy),
763 UintType(ast::UintTy),
764 }
765
766 #[derive(Clone, Copy, PartialEq, Eq)]
767 pub struct FloatVarValue(pub ast::FloatTy);
768
769 impl ty::EarlyBoundRegion {
770 pub fn to_bound_region(&self) -> ty::BoundRegion {
771 ty::BoundRegion::BrNamed(self.def_id, self.name)
772 }
773
774 /// Does this early bound region have a name? Early bound regions normally
775 /// always have names except when using anonymous lifetimes (`'_`).
776 pub fn has_name(&self) -> bool {
777 self.name != kw::UnderscoreLifetime
778 }
779 }
780
781 #[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
782 pub enum GenericParamDefKind {
783 Lifetime,
784 Type {
785 has_default: bool,
786 object_lifetime_default: ObjectLifetimeDefault,
787 synthetic: Option<hir::SyntheticTyParamKind>,
788 },
789 Const,
790 }
791
792 impl GenericParamDefKind {
793 pub fn descr(&self) -> &'static str {
794 match self {
795 GenericParamDefKind::Lifetime => "lifetime",
796 GenericParamDefKind::Type { .. } => "type",
797 GenericParamDefKind::Const => "constant",
798 }
799 }
800 }
801
802 #[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
803 pub struct GenericParamDef {
804 pub name: Symbol,
805 pub def_id: DefId,
806 pub index: u32,
807
808 /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
809 /// on generic parameter `'a`/`T`, asserts data behind the parameter
810 /// `'a`/`T` won't be accessed during the parent type's `Drop` impl.
811 pub pure_wrt_drop: bool,
812
813 pub kind: GenericParamDefKind,
814 }
815
816 impl GenericParamDef {
817 pub fn to_early_bound_region_data(&self) -> ty::EarlyBoundRegion {
818 if let GenericParamDefKind::Lifetime = self.kind {
819 ty::EarlyBoundRegion { def_id: self.def_id, index: self.index, name: self.name }
820 } else {
821 bug!("cannot convert a non-lifetime parameter def to an early bound region")
822 }
823 }
824
825 pub fn to_bound_region(&self) -> ty::BoundRegion {
826 if let GenericParamDefKind::Lifetime = self.kind {
827 self.to_early_bound_region_data().to_bound_region()
828 } else {
829 bug!("cannot convert a non-lifetime parameter def to an early bound region")
830 }
831 }
832 }
833
834 #[derive(Default)]
835 pub struct GenericParamCount {
836 pub lifetimes: usize,
837 pub types: usize,
838 pub consts: usize,
839 }
840
841 /// Information about the formal type/lifetime parameters associated
842 /// with an item or method. Analogous to `hir::Generics`.
843 ///
844 /// The ordering of parameters is the same as in `Subst` (excluding child generics):
845 /// `Self` (optionally), `Lifetime` params..., `Type` params...
846 #[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
847 pub struct Generics {
848 pub parent: Option<DefId>,
849 pub parent_count: usize,
850 pub params: Vec<GenericParamDef>,
851
852 /// Reverse map to the `index` field of each `GenericParamDef`.
853 #[stable_hasher(ignore)]
854 pub param_def_id_to_index: FxHashMap<DefId, u32>,
855
856 pub has_self: bool,
857 pub has_late_bound_regions: Option<Span>,
858 }
859
860 impl<'tcx> Generics {
861 pub fn count(&self) -> usize {
862 self.parent_count + self.params.len()
863 }
864
865 pub fn own_counts(&self) -> GenericParamCount {
866 // We could cache this as a property of `GenericParamCount`, but
867 // the aim is to refactor this away entirely eventually and the
868 // presence of this method will be a constant reminder.
869 let mut own_counts: GenericParamCount = Default::default();
870
871 for param in &self.params {
872 match param.kind {
873 GenericParamDefKind::Lifetime => own_counts.lifetimes += 1,
874 GenericParamDefKind::Type { .. } => own_counts.types += 1,
875 GenericParamDefKind::Const => own_counts.consts += 1,
876 };
877 }
878
879 own_counts
880 }
881
882 pub fn requires_monomorphization(&self, tcx: TyCtxt<'tcx>) -> bool {
883 if self.own_requires_monomorphization() {
884 return true;
885 }
886
887 if let Some(parent_def_id) = self.parent {
888 let parent = tcx.generics_of(parent_def_id);
889 parent.requires_monomorphization(tcx)
890 } else {
891 false
892 }
893 }
894
895 pub fn own_requires_monomorphization(&self) -> bool {
896 for param in &self.params {
897 match param.kind {
898 GenericParamDefKind::Type { .. } | GenericParamDefKind::Const => return true,
899 GenericParamDefKind::Lifetime => {}
900 }
901 }
902 false
903 }
904
905 /// Returns the `GenericParamDef` with the given index.
906 pub fn param_at(&'tcx self, param_index: usize, tcx: TyCtxt<'tcx>) -> &'tcx GenericParamDef {
907 if let Some(index) = param_index.checked_sub(self.parent_count) {
908 &self.params[index]
909 } else {
910 tcx.generics_of(self.parent.expect("parent_count > 0 but no parent?"))
911 .param_at(param_index, tcx)
912 }
913 }
914
915 /// Returns the `GenericParamDef` associated with this `EarlyBoundRegion`.
916 pub fn region_param(
917 &'tcx self,
918 param: &EarlyBoundRegion,
919 tcx: TyCtxt<'tcx>,
920 ) -> &'tcx GenericParamDef {
921 let param = self.param_at(param.index as usize, tcx);
922 match param.kind {
923 GenericParamDefKind::Lifetime => param,
924 _ => bug!("expected lifetime parameter, but found another generic parameter"),
925 }
926 }
927
928 /// Returns the `GenericParamDef` associated with this `ParamTy`.
929 pub fn type_param(&'tcx self, param: &ParamTy, tcx: TyCtxt<'tcx>) -> &'tcx GenericParamDef {
930 let param = self.param_at(param.index as usize, tcx);
931 match param.kind {
932 GenericParamDefKind::Type { .. } => param,
933 _ => bug!("expected type parameter, but found another generic parameter"),
934 }
935 }
936
937 /// Returns the `GenericParamDef` associated with this `ParamConst`.
938 pub fn const_param(&'tcx self, param: &ParamConst, tcx: TyCtxt<'tcx>) -> &GenericParamDef {
939 let param = self.param_at(param.index as usize, tcx);
940 match param.kind {
941 GenericParamDefKind::Const => param,
942 _ => bug!("expected const parameter, but found another generic parameter"),
943 }
944 }
945 }
946
947 /// Bounds on generics.
948 #[derive(Copy, Clone, Default, Debug, TyEncodable, TyDecodable, HashStable)]
949 pub struct GenericPredicates<'tcx> {
950 pub parent: Option<DefId>,
951 pub predicates: &'tcx [(Predicate<'tcx>, Span)],
952 }
953
954 impl<'tcx> GenericPredicates<'tcx> {
955 pub fn instantiate(
956 &self,
957 tcx: TyCtxt<'tcx>,
958 substs: SubstsRef<'tcx>,
959 ) -> InstantiatedPredicates<'tcx> {
960 let mut instantiated = InstantiatedPredicates::empty();
961 self.instantiate_into(tcx, &mut instantiated, substs);
962 instantiated
963 }
964
965 pub fn instantiate_own(
966 &self,
967 tcx: TyCtxt<'tcx>,
968 substs: SubstsRef<'tcx>,
969 ) -> InstantiatedPredicates<'tcx> {
970 InstantiatedPredicates {
971 predicates: self.predicates.iter().map(|(p, _)| p.subst(tcx, substs)).collect(),
972 spans: self.predicates.iter().map(|(_, sp)| *sp).collect(),
973 }
974 }
975
976 fn instantiate_into(
977 &self,
978 tcx: TyCtxt<'tcx>,
979 instantiated: &mut InstantiatedPredicates<'tcx>,
980 substs: SubstsRef<'tcx>,
981 ) {
982 if let Some(def_id) = self.parent {
983 tcx.predicates_of(def_id).instantiate_into(tcx, instantiated, substs);
984 }
985 instantiated.predicates.extend(self.predicates.iter().map(|(p, _)| p.subst(tcx, substs)));
986 instantiated.spans.extend(self.predicates.iter().map(|(_, sp)| *sp));
987 }
988
989 pub fn instantiate_identity(&self, tcx: TyCtxt<'tcx>) -> InstantiatedPredicates<'tcx> {
990 let mut instantiated = InstantiatedPredicates::empty();
991 self.instantiate_identity_into(tcx, &mut instantiated);
992 instantiated
993 }
994
995 fn instantiate_identity_into(
996 &self,
997 tcx: TyCtxt<'tcx>,
998 instantiated: &mut InstantiatedPredicates<'tcx>,
999 ) {
1000 if let Some(def_id) = self.parent {
1001 tcx.predicates_of(def_id).instantiate_identity_into(tcx, instantiated);
1002 }
1003 instantiated.predicates.extend(self.predicates.iter().map(|(p, _)| p));
1004 instantiated.spans.extend(self.predicates.iter().map(|(_, s)| s));
1005 }
1006
1007 pub fn instantiate_supertrait(
1008 &self,
1009 tcx: TyCtxt<'tcx>,
1010 poly_trait_ref: &ty::PolyTraitRef<'tcx>,
1011 ) -> InstantiatedPredicates<'tcx> {
1012 assert_eq!(self.parent, None);
1013 InstantiatedPredicates {
1014 predicates: self
1015 .predicates
1016 .iter()
1017 .map(|(pred, _)| pred.subst_supertrait(tcx, poly_trait_ref))
1018 .collect(),
1019 spans: self.predicates.iter().map(|(_, sp)| *sp).collect(),
1020 }
1021 }
1022 }
1023
1024 #[derive(Debug)]
1025 crate struct PredicateInner<'tcx> {
1026 kind: PredicateKind<'tcx>,
1027 flags: TypeFlags,
1028 /// See the comment for the corresponding field of [TyS].
1029 outer_exclusive_binder: ty::DebruijnIndex,
1030 }
1031
1032 #[cfg(target_arch = "x86_64")]
1033 static_assert_size!(PredicateInner<'_>, 48);
1034
1035 #[derive(Clone, Copy, Lift)]
1036 pub struct Predicate<'tcx> {
1037 inner: &'tcx PredicateInner<'tcx>,
1038 }
1039
1040 impl<'tcx> PartialEq for Predicate<'tcx> {
1041 fn eq(&self, other: &Self) -> bool {
1042 // `self.kind` is always interned.
1043 ptr::eq(self.inner, other.inner)
1044 }
1045 }
1046
1047 impl Hash for Predicate<'_> {
1048 fn hash<H: Hasher>(&self, s: &mut H) {
1049 (self.inner as *const PredicateInner<'_>).hash(s)
1050 }
1051 }
1052
1053 impl<'tcx> Eq for Predicate<'tcx> {}
1054
1055 impl<'tcx> Predicate<'tcx> {
1056 #[inline(always)]
1057 pub fn kind(self) -> &'tcx PredicateKind<'tcx> {
1058 &self.inner.kind
1059 }
1060
1061 /// Returns the inner `PredicateAtom`.
1062 ///
1063 /// The returned atom may contain unbound variables bound to binders skipped in this method.
1064 /// It is safe to reapply binders to the given atom.
1065 ///
1066 /// Note that this method panics in case this predicate has unbound variables.
1067 pub fn skip_binders(self) -> PredicateAtom<'tcx> {
1068 match self.kind() {
1069 &PredicateKind::ForAll(binder) => binder.skip_binder(),
1070 &PredicateKind::Atom(atom) => {
1071 debug_assert!(!atom.has_escaping_bound_vars());
1072 atom
1073 }
1074 }
1075 }
1076
1077 /// Returns the inner `PredicateAtom`.
1078 ///
1079 /// Note that this method does not check if the predicate has unbound variables.
1080 ///
1081 /// Rebinding the returned atom can causes the previously bound variables
1082 /// to end up at the wrong binding level.
1083 pub fn skip_binders_unchecked(self) -> PredicateAtom<'tcx> {
1084 match self.kind() {
1085 &PredicateKind::ForAll(binder) => binder.skip_binder(),
1086 &PredicateKind::Atom(atom) => atom,
1087 }
1088 }
1089
1090 /// Allows using a `Binder<PredicateAtom<'tcx>>` even if the given predicate previously
1091 /// contained unbound variables by shifting these variables outwards.
1092 pub fn bound_atom(self, tcx: TyCtxt<'tcx>) -> Binder<PredicateAtom<'tcx>> {
1093 match self.kind() {
1094 &PredicateKind::ForAll(binder) => binder,
1095 &PredicateKind::Atom(atom) => Binder::wrap_nonbinding(tcx, atom),
1096 }
1097 }
1098 }
1099
1100 impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for Predicate<'tcx> {
1101 fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
1102 let PredicateInner {
1103 ref kind,
1104
1105 // The other fields just provide fast access to information that is
1106 // also contained in `kind`, so no need to hash them.
1107 flags: _,
1108 outer_exclusive_binder: _,
1109 } = self.inner;
1110
1111 kind.hash_stable(hcx, hasher);
1112 }
1113 }
1114
1115 #[derive(Clone, Copy, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
1116 #[derive(HashStable, TypeFoldable)]
1117 pub enum PredicateKind<'tcx> {
1118 /// `for<'a>: ...`
1119 ForAll(Binder<PredicateAtom<'tcx>>),
1120 Atom(PredicateAtom<'tcx>),
1121 }
1122
1123 #[derive(Clone, Copy, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
1124 #[derive(HashStable, TypeFoldable)]
1125 pub enum PredicateAtom<'tcx> {
1126 /// Corresponds to `where Foo: Bar<A, B, C>`. `Foo` here would be
1127 /// the `Self` type of the trait reference and `A`, `B`, and `C`
1128 /// would be the type parameters.
1129 ///
1130 /// A trait predicate will have `Constness::Const` if it originates
1131 /// from a bound on a `const fn` without the `?const` opt-out (e.g.,
1132 /// `const fn foobar<Foo: Bar>() {}`).
1133 Trait(TraitPredicate<'tcx>, Constness),
1134
1135 /// `where 'a: 'b`
1136 RegionOutlives(RegionOutlivesPredicate<'tcx>),
1137
1138 /// `where T: 'a`
1139 TypeOutlives(TypeOutlivesPredicate<'tcx>),
1140
1141 /// `where <T as TraitRef>::Name == X`, approximately.
1142 /// See the `ProjectionPredicate` struct for details.
1143 Projection(ProjectionPredicate<'tcx>),
1144
1145 /// No syntax: `T` well-formed.
1146 WellFormed(GenericArg<'tcx>),
1147
1148 /// Trait must be object-safe.
1149 ObjectSafe(DefId),
1150
1151 /// No direct syntax. May be thought of as `where T: FnFoo<...>`
1152 /// for some substitutions `...` and `T` being a closure type.
1153 /// Satisfied (or refuted) once we know the closure's kind.
1154 ClosureKind(DefId, SubstsRef<'tcx>, ClosureKind),
1155
1156 /// `T1 <: T2`
1157 Subtype(SubtypePredicate<'tcx>),
1158
1159 /// Constant initializer must evaluate successfully.
1160 ConstEvaluatable(ty::WithOptConstParam<DefId>, SubstsRef<'tcx>),
1161
1162 /// Constants must be equal. The first component is the const that is expected.
1163 ConstEquate(&'tcx Const<'tcx>, &'tcx Const<'tcx>),
1164
1165 /// Represents a type found in the environment that we can use for implied bounds.
1166 ///
1167 /// Only used for Chalk.
1168 TypeWellFormedFromEnv(Ty<'tcx>),
1169 }
1170
1171 impl<'tcx> PredicateAtom<'tcx> {
1172 /// Wraps `self` with the given qualifier if this predicate has any unbound variables.
1173 pub fn potentially_quantified(
1174 self,
1175 tcx: TyCtxt<'tcx>,
1176 qualifier: impl FnOnce(Binder<PredicateAtom<'tcx>>) -> PredicateKind<'tcx>,
1177 ) -> Predicate<'tcx> {
1178 if self.has_escaping_bound_vars() {
1179 qualifier(Binder::bind(self))
1180 } else {
1181 PredicateKind::Atom(self)
1182 }
1183 .to_predicate(tcx)
1184 }
1185 }
1186
1187 /// The crate outlives map is computed during typeck and contains the
1188 /// outlives of every item in the local crate. You should not use it
1189 /// directly, because to do so will make your pass dependent on the
1190 /// HIR of every item in the local crate. Instead, use
1191 /// `tcx.inferred_outlives_of()` to get the outlives for a *particular*
1192 /// item.
1193 #[derive(HashStable)]
1194 pub struct CratePredicatesMap<'tcx> {
1195 /// For each struct with outlive bounds, maps to a vector of the
1196 /// predicate of its outlive bounds. If an item has no outlives
1197 /// bounds, it will have no entry.
1198 pub predicates: FxHashMap<DefId, &'tcx [(Predicate<'tcx>, Span)]>,
1199 }
1200
1201 impl<'tcx> Predicate<'tcx> {
1202 /// Performs a substitution suitable for going from a
1203 /// poly-trait-ref to supertraits that must hold if that
1204 /// poly-trait-ref holds. This is slightly different from a normal
1205 /// substitution in terms of what happens with bound regions. See
1206 /// lengthy comment below for details.
1207 pub fn subst_supertrait(
1208 self,
1209 tcx: TyCtxt<'tcx>,
1210 trait_ref: &ty::PolyTraitRef<'tcx>,
1211 ) -> Predicate<'tcx> {
1212 // The interaction between HRTB and supertraits is not entirely
1213 // obvious. Let me walk you (and myself) through an example.
1214 //
1215 // Let's start with an easy case. Consider two traits:
1216 //
1217 // trait Foo<'a>: Bar<'a,'a> { }
1218 // trait Bar<'b,'c> { }
1219 //
1220 // Now, if we have a trait reference `for<'x> T: Foo<'x>`, then
1221 // we can deduce that `for<'x> T: Bar<'x,'x>`. Basically, if we
1222 // knew that `Foo<'x>` (for any 'x) then we also know that
1223 // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
1224 // normal substitution.
1225 //
1226 // In terms of why this is sound, the idea is that whenever there
1227 // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
1228 // holds. So if there is an impl of `T:Foo<'a>` that applies to
1229 // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
1230 // `'a`.
1231 //
1232 // Another example to be careful of is this:
1233 //
1234 // trait Foo1<'a>: for<'b> Bar1<'a,'b> { }
1235 // trait Bar1<'b,'c> { }
1236 //
1237 // Here, if we have `for<'x> T: Foo1<'x>`, then what do we know?
1238 // The answer is that we know `for<'x,'b> T: Bar1<'x,'b>`. The
1239 // reason is similar to the previous example: any impl of
1240 // `T:Foo1<'x>` must show that `for<'b> T: Bar1<'x, 'b>`. So
1241 // basically we would want to collapse the bound lifetimes from
1242 // the input (`trait_ref`) and the supertraits.
1243 //
1244 // To achieve this in practice is fairly straightforward. Let's
1245 // consider the more complicated scenario:
1246 //
1247 // - We start out with `for<'x> T: Foo1<'x>`. In this case, `'x`
1248 // has a De Bruijn index of 1. We want to produce `for<'x,'b> T: Bar1<'x,'b>`,
1249 // where both `'x` and `'b` would have a DB index of 1.
1250 // The substitution from the input trait-ref is therefore going to be
1251 // `'a => 'x` (where `'x` has a DB index of 1).
1252 // - The super-trait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
1253 // early-bound parameter and `'b' is a late-bound parameter with a
1254 // DB index of 1.
1255 // - If we replace `'a` with `'x` from the input, it too will have
1256 // a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
1257 // just as we wanted.
1258 //
1259 // There is only one catch. If we just apply the substitution `'a
1260 // => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
1261 // adjust the DB index because we substituting into a binder (it
1262 // tries to be so smart...) resulting in `for<'x> for<'b>
1263 // Bar1<'x,'b>` (we have no syntax for this, so use your
1264 // imagination). Basically the 'x will have DB index of 2 and 'b
1265 // will have DB index of 1. Not quite what we want. So we apply
1266 // the substitution to the *contents* of the trait reference,
1267 // rather than the trait reference itself (put another way, the
1268 // substitution code expects equal binding levels in the values
1269 // from the substitution and the value being substituted into, and
1270 // this trick achieves that).
1271 let substs = trait_ref.skip_binder().substs;
1272 let pred = self.skip_binders();
1273 let new = pred.subst(tcx, substs);
1274 if new != pred { new.potentially_quantified(tcx, PredicateKind::ForAll) } else { self }
1275 }
1276 }
1277
1278 #[derive(Clone, Copy, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
1279 #[derive(HashStable, TypeFoldable)]
1280 pub struct TraitPredicate<'tcx> {
1281 pub trait_ref: TraitRef<'tcx>,
1282 }
1283
1284 pub type PolyTraitPredicate<'tcx> = ty::Binder<TraitPredicate<'tcx>>;
1285
1286 impl<'tcx> TraitPredicate<'tcx> {
1287 pub fn def_id(self) -> DefId {
1288 self.trait_ref.def_id
1289 }
1290
1291 pub fn self_ty(self) -> Ty<'tcx> {
1292 self.trait_ref.self_ty()
1293 }
1294 }
1295
1296 impl<'tcx> PolyTraitPredicate<'tcx> {
1297 pub fn def_id(self) -> DefId {
1298 // Ok to skip binder since trait `DefId` does not care about regions.
1299 self.skip_binder().def_id()
1300 }
1301 }
1302
1303 #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
1304 #[derive(HashStable, TypeFoldable)]
1305 pub struct OutlivesPredicate<A, B>(pub A, pub B); // `A: B`
1306 pub type PolyOutlivesPredicate<A, B> = ty::Binder<OutlivesPredicate<A, B>>;
1307 pub type RegionOutlivesPredicate<'tcx> = OutlivesPredicate<ty::Region<'tcx>, ty::Region<'tcx>>;
1308 pub type TypeOutlivesPredicate<'tcx> = OutlivesPredicate<Ty<'tcx>, ty::Region<'tcx>>;
1309 pub type PolyRegionOutlivesPredicate<'tcx> = ty::Binder<RegionOutlivesPredicate<'tcx>>;
1310 pub type PolyTypeOutlivesPredicate<'tcx> = ty::Binder<TypeOutlivesPredicate<'tcx>>;
1311
1312 #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, TyEncodable, TyDecodable)]
1313 #[derive(HashStable, TypeFoldable)]
1314 pub struct SubtypePredicate<'tcx> {
1315 pub a_is_expected: bool,
1316 pub a: Ty<'tcx>,
1317 pub b: Ty<'tcx>,
1318 }
1319 pub type PolySubtypePredicate<'tcx> = ty::Binder<SubtypePredicate<'tcx>>;
1320
1321 /// This kind of predicate has no *direct* correspondent in the
1322 /// syntax, but it roughly corresponds to the syntactic forms:
1323 ///
1324 /// 1. `T: TraitRef<..., Item = Type>`
1325 /// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
1326 ///
1327 /// In particular, form #1 is "desugared" to the combination of a
1328 /// normal trait predicate (`T: TraitRef<...>`) and one of these
1329 /// predicates. Form #2 is a broader form in that it also permits
1330 /// equality between arbitrary types. Processing an instance of
1331 /// Form #2 eventually yields one of these `ProjectionPredicate`
1332 /// instances to normalize the LHS.
1333 #[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
1334 #[derive(HashStable, TypeFoldable)]
1335 pub struct ProjectionPredicate<'tcx> {
1336 pub projection_ty: ProjectionTy<'tcx>,
1337 pub ty: Ty<'tcx>,
1338 }
1339
1340 pub type PolyProjectionPredicate<'tcx> = Binder<ProjectionPredicate<'tcx>>;
1341
1342 impl<'tcx> PolyProjectionPredicate<'tcx> {
1343 /// Returns the `DefId` of the associated item being projected.
1344 pub fn item_def_id(&self) -> DefId {
1345 self.skip_binder().projection_ty.item_def_id
1346 }
1347
1348 #[inline]
1349 pub fn to_poly_trait_ref(&self, tcx: TyCtxt<'tcx>) -> PolyTraitRef<'tcx> {
1350 // Note: unlike with `TraitRef::to_poly_trait_ref()`,
1351 // `self.0.trait_ref` is permitted to have escaping regions.
1352 // This is because here `self` has a `Binder` and so does our
1353 // return value, so we are preserving the number of binding
1354 // levels.
1355 self.map_bound(|predicate| predicate.projection_ty.trait_ref(tcx))
1356 }
1357
1358 pub fn ty(&self) -> Binder<Ty<'tcx>> {
1359 self.map_bound(|predicate| predicate.ty)
1360 }
1361
1362 /// The `DefId` of the `TraitItem` for the associated type.
1363 ///
1364 /// Note that this is not the `DefId` of the `TraitRef` containing this
1365 /// associated type, which is in `tcx.associated_item(projection_def_id()).container`.
1366 pub fn projection_def_id(&self) -> DefId {
1367 // Ok to skip binder since trait `DefId` does not care about regions.
1368 self.skip_binder().projection_ty.item_def_id
1369 }
1370 }
1371
1372 pub trait ToPolyTraitRef<'tcx> {
1373 fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
1374 }
1375
1376 impl<'tcx> ToPolyTraitRef<'tcx> for TraitRef<'tcx> {
1377 fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1378 ty::Binder::dummy(*self)
1379 }
1380 }
1381
1382 impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
1383 fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1384 self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
1385 }
1386 }
1387
1388 pub trait ToPredicate<'tcx> {
1389 fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx>;
1390 }
1391
1392 impl ToPredicate<'tcx> for PredicateKind<'tcx> {
1393 #[inline(always)]
1394 fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
1395 tcx.mk_predicate(self)
1396 }
1397 }
1398
1399 impl ToPredicate<'tcx> for PredicateAtom<'tcx> {
1400 #[inline(always)]
1401 fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
1402 debug_assert!(!self.has_escaping_bound_vars(), "escaping bound vars for {:?}", self);
1403 tcx.mk_predicate(PredicateKind::Atom(self))
1404 }
1405 }
1406
1407 impl<'tcx> ToPredicate<'tcx> for ConstnessAnd<TraitRef<'tcx>> {
1408 fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
1409 PredicateAtom::Trait(ty::TraitPredicate { trait_ref: self.value }, self.constness)
1410 .to_predicate(tcx)
1411 }
1412 }
1413
1414 impl<'tcx> ToPredicate<'tcx> for ConstnessAnd<PolyTraitRef<'tcx>> {
1415 fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
1416 ConstnessAnd {
1417 value: self.value.map_bound(|trait_ref| ty::TraitPredicate { trait_ref }),
1418 constness: self.constness,
1419 }
1420 .to_predicate(tcx)
1421 }
1422 }
1423
1424 impl<'tcx> ToPredicate<'tcx> for ConstnessAnd<PolyTraitPredicate<'tcx>> {
1425 fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
1426 PredicateAtom::Trait(self.value.skip_binder(), self.constness)
1427 .potentially_quantified(tcx, PredicateKind::ForAll)
1428 }
1429 }
1430
1431 impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> {
1432 fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
1433 PredicateAtom::RegionOutlives(self.skip_binder())
1434 .potentially_quantified(tcx, PredicateKind::ForAll)
1435 }
1436 }
1437
1438 impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> {
1439 fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
1440 PredicateAtom::TypeOutlives(self.skip_binder())
1441 .potentially_quantified(tcx, PredicateKind::ForAll)
1442 }
1443 }
1444
1445 impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
1446 fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
1447 PredicateAtom::Projection(self.skip_binder())
1448 .potentially_quantified(tcx, PredicateKind::ForAll)
1449 }
1450 }
1451
1452 impl<'tcx> Predicate<'tcx> {
1453 pub fn to_opt_poly_trait_ref(self) -> Option<PolyTraitRef<'tcx>> {
1454 match self.skip_binders() {
1455 PredicateAtom::Trait(t, _) => Some(ty::Binder::bind(t.trait_ref)),
1456 PredicateAtom::Projection(..)
1457 | PredicateAtom::Subtype(..)
1458 | PredicateAtom::RegionOutlives(..)
1459 | PredicateAtom::WellFormed(..)
1460 | PredicateAtom::ObjectSafe(..)
1461 | PredicateAtom::ClosureKind(..)
1462 | PredicateAtom::TypeOutlives(..)
1463 | PredicateAtom::ConstEvaluatable(..)
1464 | PredicateAtom::ConstEquate(..)
1465 | PredicateAtom::TypeWellFormedFromEnv(..) => None,
1466 }
1467 }
1468
1469 pub fn to_opt_type_outlives(self) -> Option<PolyTypeOutlivesPredicate<'tcx>> {
1470 match self.skip_binders() {
1471 PredicateAtom::TypeOutlives(data) => Some(ty::Binder::bind(data)),
1472 PredicateAtom::Trait(..)
1473 | PredicateAtom::Projection(..)
1474 | PredicateAtom::Subtype(..)
1475 | PredicateAtom::RegionOutlives(..)
1476 | PredicateAtom::WellFormed(..)
1477 | PredicateAtom::ObjectSafe(..)
1478 | PredicateAtom::ClosureKind(..)
1479 | PredicateAtom::ConstEvaluatable(..)
1480 | PredicateAtom::ConstEquate(..)
1481 | PredicateAtom::TypeWellFormedFromEnv(..) => None,
1482 }
1483 }
1484 }
1485
1486 /// Represents the bounds declared on a particular set of type
1487 /// parameters. Should eventually be generalized into a flag list of
1488 /// where-clauses. You can obtain a `InstantiatedPredicates` list from a
1489 /// `GenericPredicates` by using the `instantiate` method. Note that this method
1490 /// reflects an important semantic invariant of `InstantiatedPredicates`: while
1491 /// the `GenericPredicates` are expressed in terms of the bound type
1492 /// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
1493 /// represented a set of bounds for some particular instantiation,
1494 /// meaning that the generic parameters have been substituted with
1495 /// their values.
1496 ///
1497 /// Example:
1498 ///
1499 /// struct Foo<T, U: Bar<T>> { ... }
1500 ///
1501 /// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
1502 /// `[[], [U:Bar<T>]]`. Now if there were some particular reference
1503 /// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
1504 /// [usize:Bar<isize>]]`.
1505 #[derive(Clone, Debug, TypeFoldable)]
1506 pub struct InstantiatedPredicates<'tcx> {
1507 pub predicates: Vec<Predicate<'tcx>>,
1508 pub spans: Vec<Span>,
1509 }
1510
1511 impl<'tcx> InstantiatedPredicates<'tcx> {
1512 pub fn empty() -> InstantiatedPredicates<'tcx> {
1513 InstantiatedPredicates { predicates: vec![], spans: vec![] }
1514 }
1515
1516 pub fn is_empty(&self) -> bool {
1517 self.predicates.is_empty()
1518 }
1519 }
1520
1521 rustc_index::newtype_index! {
1522 /// "Universes" are used during type- and trait-checking in the
1523 /// presence of `for<..>` binders to control what sets of names are
1524 /// visible. Universes are arranged into a tree: the root universe
1525 /// contains names that are always visible. Each child then adds a new
1526 /// set of names that are visible, in addition to those of its parent.
1527 /// We say that the child universe "extends" the parent universe with
1528 /// new names.
1529 ///
1530 /// To make this more concrete, consider this program:
1531 ///
1532 /// ```
1533 /// struct Foo { }
1534 /// fn bar<T>(x: T) {
1535 /// let y: for<'a> fn(&'a u8, Foo) = ...;
1536 /// }
1537 /// ```
1538 ///
1539 /// The struct name `Foo` is in the root universe U0. But the type
1540 /// parameter `T`, introduced on `bar`, is in an extended universe U1
1541 /// -- i.e., within `bar`, we can name both `T` and `Foo`, but outside
1542 /// of `bar`, we cannot name `T`. Then, within the type of `y`, the
1543 /// region `'a` is in a universe U2 that extends U1, because we can
1544 /// name it inside the fn type but not outside.
1545 ///
1546 /// Universes are used to do type- and trait-checking around these
1547 /// "forall" binders (also called **universal quantification**). The
1548 /// idea is that when, in the body of `bar`, we refer to `T` as a
1549 /// type, we aren't referring to any type in particular, but rather a
1550 /// kind of "fresh" type that is distinct from all other types we have
1551 /// actually declared. This is called a **placeholder** type, and we
1552 /// use universes to talk about this. In other words, a type name in
1553 /// universe 0 always corresponds to some "ground" type that the user
1554 /// declared, but a type name in a non-zero universe is a placeholder
1555 /// type -- an idealized representative of "types in general" that we
1556 /// use for checking generic functions.
1557 pub struct UniverseIndex {
1558 derive [HashStable]
1559 DEBUG_FORMAT = "U{}",
1560 }
1561 }
1562
1563 impl UniverseIndex {
1564 pub const ROOT: UniverseIndex = UniverseIndex::from_u32(0);
1565
1566 /// Returns the "next" universe index in order -- this new index
1567 /// is considered to extend all previous universes. This
1568 /// corresponds to entering a `forall` quantifier. So, for
1569 /// example, suppose we have this type in universe `U`:
1570 ///
1571 /// ```
1572 /// for<'a> fn(&'a u32)
1573 /// ```
1574 ///
1575 /// Once we "enter" into this `for<'a>` quantifier, we are in a
1576 /// new universe that extends `U` -- in this new universe, we can
1577 /// name the region `'a`, but that region was not nameable from
1578 /// `U` because it was not in scope there.
1579 pub fn next_universe(self) -> UniverseIndex {
1580 UniverseIndex::from_u32(self.private.checked_add(1).unwrap())
1581 }
1582
1583 /// Returns `true` if `self` can name a name from `other` -- in other words,
1584 /// if the set of names in `self` is a superset of those in
1585 /// `other` (`self >= other`).
1586 pub fn can_name(self, other: UniverseIndex) -> bool {
1587 self.private >= other.private
1588 }
1589
1590 /// Returns `true` if `self` cannot name some names from `other` -- in other
1591 /// words, if the set of names in `self` is a strict subset of
1592 /// those in `other` (`self < other`).
1593 pub fn cannot_name(self, other: UniverseIndex) -> bool {
1594 self.private < other.private
1595 }
1596 }
1597
1598 /// The "placeholder index" fully defines a placeholder region.
1599 /// Placeholder regions are identified by both a **universe** as well
1600 /// as a "bound-region" within that universe. The `bound_region` is
1601 /// basically a name -- distinct bound regions within the same
1602 /// universe are just two regions with an unknown relationship to one
1603 /// another.
1604 #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TyEncodable, TyDecodable, PartialOrd, Ord)]
1605 pub struct Placeholder<T> {
1606 pub universe: UniverseIndex,
1607 pub name: T,
1608 }
1609
1610 impl<'a, T> HashStable<StableHashingContext<'a>> for Placeholder<T>
1611 where
1612 T: HashStable<StableHashingContext<'a>>,
1613 {
1614 fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
1615 self.universe.hash_stable(hcx, hasher);
1616 self.name.hash_stable(hcx, hasher);
1617 }
1618 }
1619
1620 pub type PlaceholderRegion = Placeholder<BoundRegion>;
1621
1622 pub type PlaceholderType = Placeholder<BoundVar>;
1623
1624 pub type PlaceholderConst = Placeholder<BoundVar>;
1625
1626 /// A `DefId` which is potentially bundled with its corresponding generic parameter
1627 /// in case `did` is a const argument.
1628 ///
1629 /// This is used to prevent cycle errors during typeck
1630 /// as `type_of(const_arg)` depends on `typeck(owning_body)`
1631 /// which once again requires the type of its generic arguments.
1632 ///
1633 /// Luckily we only need to deal with const arguments once we
1634 /// know their corresponding parameters. We (ab)use this by
1635 /// calling `type_of(param_did)` for these arguments.
1636 ///
1637 /// ```rust
1638 /// #![feature(const_generics)]
1639 ///
1640 /// struct A;
1641 /// impl A {
1642 /// fn foo<const N: usize>(&self) -> usize { N }
1643 /// }
1644 /// struct B;
1645 /// impl B {
1646 /// fn foo<const N: u8>(&self) -> usize { 42 }
1647 /// }
1648 ///
1649 /// fn main() {
1650 /// let a = A;
1651 /// a.foo::<7>();
1652 /// }
1653 /// ```
1654 #[derive(Copy, Clone, Debug, TypeFoldable, Lift, TyEncodable, TyDecodable)]
1655 #[derive(PartialEq, Eq, PartialOrd, Ord)]
1656 #[derive(Hash, HashStable)]
1657 pub struct WithOptConstParam<T> {
1658 pub did: T,
1659 /// The `DefId` of the corresponding generic paramter in case `did` is
1660 /// a const argument.
1661 ///
1662 /// Note that even if `did` is a const argument, this may still be `None`.
1663 /// All queries taking `WithOptConstParam` start by calling `tcx.opt_const_param_of(def.did)`
1664 /// to potentially update `param_did` in case it `None`.
1665 pub const_param_did: Option<DefId>,
1666 }
1667
1668 impl<T> WithOptConstParam<T> {
1669 /// Creates a new `WithOptConstParam` setting `const_param_did` to `None`.
1670 #[inline(always)]
1671 pub fn unknown(did: T) -> WithOptConstParam<T> {
1672 WithOptConstParam { did, const_param_did: None }
1673 }
1674 }
1675
1676 impl WithOptConstParam<LocalDefId> {
1677 /// Returns `Some((did, param_did))` if `def_id` is a const argument,
1678 /// `None` otherwise.
1679 #[inline(always)]
1680 pub fn try_lookup(did: LocalDefId, tcx: TyCtxt<'_>) -> Option<(LocalDefId, DefId)> {
1681 tcx.opt_const_param_of(did).map(|param_did| (did, param_did))
1682 }
1683
1684 /// In case `self` is unknown but `self.did` is a const argument, this returns
1685 /// a `WithOptConstParam` with the correct `const_param_did`.
1686 #[inline(always)]
1687 pub fn try_upgrade(self, tcx: TyCtxt<'_>) -> Option<WithOptConstParam<LocalDefId>> {
1688 if self.const_param_did.is_none() {
1689 if let const_param_did @ Some(_) = tcx.opt_const_param_of(self.did) {
1690 return Some(WithOptConstParam { did: self.did, const_param_did });
1691 }
1692 }
1693
1694 None
1695 }
1696
1697 pub fn to_global(self) -> WithOptConstParam<DefId> {
1698 WithOptConstParam { did: self.did.to_def_id(), const_param_did: self.const_param_did }
1699 }
1700
1701 pub fn def_id_for_type_of(self) -> DefId {
1702 if let Some(did) = self.const_param_did { did } else { self.did.to_def_id() }
1703 }
1704 }
1705
1706 impl WithOptConstParam<DefId> {
1707 pub fn as_local(self) -> Option<WithOptConstParam<LocalDefId>> {
1708 self.did
1709 .as_local()
1710 .map(|did| WithOptConstParam { did, const_param_did: self.const_param_did })
1711 }
1712
1713 pub fn as_const_arg(self) -> Option<(LocalDefId, DefId)> {
1714 if let Some(param_did) = self.const_param_did {
1715 if let Some(did) = self.did.as_local() {
1716 return Some((did, param_did));
1717 }
1718 }
1719
1720 None
1721 }
1722
1723 pub fn expect_local(self) -> WithOptConstParam<LocalDefId> {
1724 self.as_local().unwrap()
1725 }
1726
1727 pub fn is_local(self) -> bool {
1728 self.did.is_local()
1729 }
1730
1731 pub fn def_id_for_type_of(self) -> DefId {
1732 self.const_param_did.unwrap_or(self.did)
1733 }
1734 }
1735
1736 /// When type checking, we use the `ParamEnv` to track
1737 /// details about the set of where-clauses that are in scope at this
1738 /// particular point.
1739 #[derive(Copy, Clone, Hash, PartialEq, Eq)]
1740 pub struct ParamEnv<'tcx> {
1741 /// This packs both caller bounds and the reveal enum into one pointer.
1742 ///
1743 /// Caller bounds are `Obligation`s that the caller must satisfy. This is
1744 /// basically the set of bounds on the in-scope type parameters, translated
1745 /// into `Obligation`s, and elaborated and normalized.
1746 ///
1747 /// Use the `caller_bounds()` method to access.
1748 ///
1749 /// Typically, this is `Reveal::UserFacing`, but during codegen we
1750 /// want `Reveal::All`.
1751 ///
1752 /// Note: This is packed, use the reveal() method to access it.
1753 packed: CopyTaggedPtr<&'tcx List<Predicate<'tcx>>, traits::Reveal, true>,
1754 }
1755
1756 unsafe impl rustc_data_structures::tagged_ptr::Tag for traits::Reveal {
1757 const BITS: usize = 1;
1758 fn into_usize(self) -> usize {
1759 match self {
1760 traits::Reveal::UserFacing => 0,
1761 traits::Reveal::All => 1,
1762 }
1763 }
1764 unsafe fn from_usize(ptr: usize) -> Self {
1765 match ptr {
1766 0 => traits::Reveal::UserFacing,
1767 1 => traits::Reveal::All,
1768 _ => std::hint::unreachable_unchecked(),
1769 }
1770 }
1771 }
1772
1773 impl<'tcx> fmt::Debug for ParamEnv<'tcx> {
1774 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1775 f.debug_struct("ParamEnv")
1776 .field("caller_bounds", &self.caller_bounds())
1777 .field("reveal", &self.reveal())
1778 .finish()
1779 }
1780 }
1781
1782 impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for ParamEnv<'tcx> {
1783 fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
1784 self.caller_bounds().hash_stable(hcx, hasher);
1785 self.reveal().hash_stable(hcx, hasher);
1786 }
1787 }
1788
1789 impl<'tcx> TypeFoldable<'tcx> for ParamEnv<'tcx> {
1790 fn super_fold_with<F: ty::fold::TypeFolder<'tcx>>(&self, folder: &mut F) -> Self {
1791 ParamEnv::new(self.caller_bounds().fold_with(folder), self.reveal().fold_with(folder))
1792 }
1793
1794 fn super_visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> bool {
1795 self.caller_bounds().visit_with(visitor) || self.reveal().visit_with(visitor)
1796 }
1797 }
1798
1799 impl<'tcx> ParamEnv<'tcx> {
1800 /// Construct a trait environment suitable for contexts where
1801 /// there are no where-clauses in scope. Hidden types (like `impl
1802 /// Trait`) are left hidden, so this is suitable for ordinary
1803 /// type-checking.
1804 #[inline]
1805 pub fn empty() -> Self {
1806 Self::new(List::empty(), Reveal::UserFacing)
1807 }
1808
1809 #[inline]
1810 pub fn caller_bounds(self) -> &'tcx List<Predicate<'tcx>> {
1811 self.packed.pointer()
1812 }
1813
1814 #[inline]
1815 pub fn reveal(self) -> traits::Reveal {
1816 self.packed.tag()
1817 }
1818
1819 /// Construct a trait environment with no where-clauses in scope
1820 /// where the values of all `impl Trait` and other hidden types
1821 /// are revealed. This is suitable for monomorphized, post-typeck
1822 /// environments like codegen or doing optimizations.
1823 ///
1824 /// N.B., if you want to have predicates in scope, use `ParamEnv::new`,
1825 /// or invoke `param_env.with_reveal_all()`.
1826 #[inline]
1827 pub fn reveal_all() -> Self {
1828 Self::new(List::empty(), Reveal::All)
1829 }
1830
1831 /// Construct a trait environment with the given set of predicates.
1832 #[inline]
1833 pub fn new(caller_bounds: &'tcx List<Predicate<'tcx>>, reveal: Reveal) -> Self {
1834 ty::ParamEnv { packed: CopyTaggedPtr::new(caller_bounds, reveal) }
1835 }
1836
1837 pub fn with_user_facing(mut self) -> Self {
1838 self.packed.set_tag(Reveal::UserFacing);
1839 self
1840 }
1841
1842 /// Returns a new parameter environment with the same clauses, but
1843 /// which "reveals" the true results of projections in all cases
1844 /// (even for associated types that are specializable). This is
1845 /// the desired behavior during codegen and certain other special
1846 /// contexts; normally though we want to use `Reveal::UserFacing`,
1847 /// which is the default.
1848 /// All opaque types in the caller_bounds of the `ParamEnv`
1849 /// will be normalized to their underlying types.
1850 /// See PR #65989 and issue #65918 for more details
1851 pub fn with_reveal_all_normalized(self, tcx: TyCtxt<'tcx>) -> Self {
1852 if self.packed.tag() == traits::Reveal::All {
1853 return self;
1854 }
1855
1856 ParamEnv::new(tcx.normalize_opaque_types(self.caller_bounds()), Reveal::All)
1857 }
1858
1859 /// Returns this same environment but with no caller bounds.
1860 pub fn without_caller_bounds(self) -> Self {
1861 Self::new(List::empty(), self.reveal())
1862 }
1863
1864 /// Creates a suitable environment in which to perform trait
1865 /// queries on the given value. When type-checking, this is simply
1866 /// the pair of the environment plus value. But when reveal is set to
1867 /// All, then if `value` does not reference any type parameters, we will
1868 /// pair it with the empty environment. This improves caching and is generally
1869 /// invisible.
1870 ///
1871 /// N.B., we preserve the environment when type-checking because it
1872 /// is possible for the user to have wacky where-clauses like
1873 /// `where Box<u32>: Copy`, which are clearly never
1874 /// satisfiable. We generally want to behave as if they were true,
1875 /// although the surrounding function is never reachable.
1876 pub fn and<T: TypeFoldable<'tcx>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
1877 match self.reveal() {
1878 Reveal::UserFacing => ParamEnvAnd { param_env: self, value },
1879
1880 Reveal::All => {
1881 if value.is_global() {
1882 ParamEnvAnd { param_env: self.without_caller_bounds(), value }
1883 } else {
1884 ParamEnvAnd { param_env: self, value }
1885 }
1886 }
1887 }
1888 }
1889 }
1890
1891 #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1892 pub struct ConstnessAnd<T> {
1893 pub constness: Constness,
1894 pub value: T,
1895 }
1896
1897 // FIXME(ecstaticmorse): Audit all occurrences of `without_const().to_predicate(tcx)` to ensure that
1898 // the constness of trait bounds is being propagated correctly.
1899 pub trait WithConstness: Sized {
1900 #[inline]
1901 fn with_constness(self, constness: Constness) -> ConstnessAnd<Self> {
1902 ConstnessAnd { constness, value: self }
1903 }
1904
1905 #[inline]
1906 fn with_const(self) -> ConstnessAnd<Self> {
1907 self.with_constness(Constness::Const)
1908 }
1909
1910 #[inline]
1911 fn without_const(self) -> ConstnessAnd<Self> {
1912 self.with_constness(Constness::NotConst)
1913 }
1914 }
1915
1916 impl<T> WithConstness for T {}
1917
1918 #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TypeFoldable)]
1919 pub struct ParamEnvAnd<'tcx, T> {
1920 pub param_env: ParamEnv<'tcx>,
1921 pub value: T,
1922 }
1923
1924 impl<'tcx, T> ParamEnvAnd<'tcx, T> {
1925 pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
1926 (self.param_env, self.value)
1927 }
1928 }
1929
1930 impl<'a, 'tcx, T> HashStable<StableHashingContext<'a>> for ParamEnvAnd<'tcx, T>
1931 where
1932 T: HashStable<StableHashingContext<'a>>,
1933 {
1934 fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
1935 let ParamEnvAnd { ref param_env, ref value } = *self;
1936
1937 param_env.hash_stable(hcx, hasher);
1938 value.hash_stable(hcx, hasher);
1939 }
1940 }
1941
1942 #[derive(Copy, Clone, Debug, HashStable)]
1943 pub struct Destructor {
1944 /// The `DefId` of the destructor method
1945 pub did: DefId,
1946 }
1947
1948 bitflags! {
1949 #[derive(HashStable)]
1950 pub struct AdtFlags: u32 {
1951 const NO_ADT_FLAGS = 0;
1952 /// Indicates whether the ADT is an enum.
1953 const IS_ENUM = 1 << 0;
1954 /// Indicates whether the ADT is a union.
1955 const IS_UNION = 1 << 1;
1956 /// Indicates whether the ADT is a struct.
1957 const IS_STRUCT = 1 << 2;
1958 /// Indicates whether the ADT is a struct and has a constructor.
1959 const HAS_CTOR = 1 << 3;
1960 /// Indicates whether the type is `PhantomData`.
1961 const IS_PHANTOM_DATA = 1 << 4;
1962 /// Indicates whether the type has a `#[fundamental]` attribute.
1963 const IS_FUNDAMENTAL = 1 << 5;
1964 /// Indicates whether the type is `Box`.
1965 const IS_BOX = 1 << 6;
1966 /// Indicates whether the type is `ManuallyDrop`.
1967 const IS_MANUALLY_DROP = 1 << 7;
1968 /// Indicates whether the variant list of this ADT is `#[non_exhaustive]`.
1969 /// (i.e., this flag is never set unless this ADT is an enum).
1970 const IS_VARIANT_LIST_NON_EXHAUSTIVE = 1 << 8;
1971 }
1972 }
1973
1974 bitflags! {
1975 #[derive(HashStable)]
1976 pub struct VariantFlags: u32 {
1977 const NO_VARIANT_FLAGS = 0;
1978 /// Indicates whether the field list of this variant is `#[non_exhaustive]`.
1979 const IS_FIELD_LIST_NON_EXHAUSTIVE = 1 << 0;
1980 /// Indicates whether this variant was obtained as part of recovering from
1981 /// a syntactic error. May be incomplete or bogus.
1982 const IS_RECOVERED = 1 << 1;
1983 }
1984 }
1985
1986 /// Definition of a variant -- a struct's fields or a enum variant.
1987 #[derive(Debug, HashStable)]
1988 pub struct VariantDef {
1989 /// `DefId` that identifies the variant itself.
1990 /// If this variant belongs to a struct or union, then this is a copy of its `DefId`.
1991 pub def_id: DefId,
1992 /// `DefId` that identifies the variant's constructor.
1993 /// If this variant is a struct variant, then this is `None`.
1994 pub ctor_def_id: Option<DefId>,
1995 /// Variant or struct name.
1996 #[stable_hasher(project(name))]
1997 pub ident: Ident,
1998 /// Discriminant of this variant.
1999 pub discr: VariantDiscr,
2000 /// Fields of this variant.
2001 pub fields: Vec<FieldDef>,
2002 /// Type of constructor of variant.
2003 pub ctor_kind: CtorKind,
2004 /// Flags of the variant (e.g. is field list non-exhaustive)?
2005 flags: VariantFlags,
2006 }
2007
2008 impl VariantDef {
2009 /// Creates a new `VariantDef`.
2010 ///
2011 /// `variant_did` is the `DefId` that identifies the enum variant (if this `VariantDef`
2012 /// represents an enum variant).
2013 ///
2014 /// `ctor_did` is the `DefId` that identifies the constructor of unit or
2015 /// tuple-variants/structs. If this is a `struct`-variant then this should be `None`.
2016 ///
2017 /// `parent_did` is the `DefId` of the `AdtDef` representing the enum or struct that
2018 /// owns this variant. It is used for checking if a struct has `#[non_exhaustive]` w/out having
2019 /// to go through the redirect of checking the ctor's attributes - but compiling a small crate
2020 /// requires loading the `AdtDef`s for all the structs in the universe (e.g., coherence for any
2021 /// built-in trait), and we do not want to load attributes twice.
2022 ///
2023 /// If someone speeds up attribute loading to not be a performance concern, they can
2024 /// remove this hack and use the constructor `DefId` everywhere.
2025 pub fn new(
2026 ident: Ident,
2027 variant_did: Option<DefId>,
2028 ctor_def_id: Option<DefId>,
2029 discr: VariantDiscr,
2030 fields: Vec<FieldDef>,
2031 ctor_kind: CtorKind,
2032 adt_kind: AdtKind,
2033 parent_did: DefId,
2034 recovered: bool,
2035 is_field_list_non_exhaustive: bool,
2036 ) -> Self {
2037 debug!(
2038 "VariantDef::new(ident = {:?}, variant_did = {:?}, ctor_def_id = {:?}, discr = {:?},
2039 fields = {:?}, ctor_kind = {:?}, adt_kind = {:?}, parent_did = {:?})",
2040 ident, variant_did, ctor_def_id, discr, fields, ctor_kind, adt_kind, parent_did,
2041 );
2042
2043 let mut flags = VariantFlags::NO_VARIANT_FLAGS;
2044 if is_field_list_non_exhaustive {
2045 flags |= VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE;
2046 }
2047
2048 if recovered {
2049 flags |= VariantFlags::IS_RECOVERED;
2050 }
2051
2052 VariantDef {
2053 def_id: variant_did.unwrap_or(parent_did),
2054 ctor_def_id,
2055 ident,
2056 discr,
2057 fields,
2058 ctor_kind,
2059 flags,
2060 }
2061 }
2062
2063 /// Is this field list non-exhaustive?
2064 #[inline]
2065 pub fn is_field_list_non_exhaustive(&self) -> bool {
2066 self.flags.intersects(VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE)
2067 }
2068
2069 /// Was this variant obtained as part of recovering from a syntactic error?
2070 #[inline]
2071 pub fn is_recovered(&self) -> bool {
2072 self.flags.intersects(VariantFlags::IS_RECOVERED)
2073 }
2074 }
2075
2076 #[derive(Copy, Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)]
2077 pub enum VariantDiscr {
2078 /// Explicit value for this variant, i.e., `X = 123`.
2079 /// The `DefId` corresponds to the embedded constant.
2080 Explicit(DefId),
2081
2082 /// The previous variant's discriminant plus one.
2083 /// For efficiency reasons, the distance from the
2084 /// last `Explicit` discriminant is being stored,
2085 /// or `0` for the first variant, if it has none.
2086 Relative(u32),
2087 }
2088
2089 #[derive(Debug, HashStable)]
2090 pub struct FieldDef {
2091 pub did: DefId,
2092 #[stable_hasher(project(name))]
2093 pub ident: Ident,
2094 pub vis: Visibility,
2095 }
2096
2097 /// The definition of a user-defined type, e.g., a `struct`, `enum`, or `union`.
2098 ///
2099 /// These are all interned (by `alloc_adt_def`) into the global arena.
2100 ///
2101 /// The initialism *ADT* stands for an [*algebraic data type (ADT)*][adt].
2102 /// This is slightly wrong because `union`s are not ADTs.
2103 /// Moreover, Rust only allows recursive data types through indirection.
2104 ///
2105 /// [adt]: https://en.wikipedia.org/wiki/Algebraic_data_type
2106 pub struct AdtDef {
2107 /// The `DefId` of the struct, enum or union item.
2108 pub did: DefId,
2109 /// Variants of the ADT. If this is a struct or union, then there will be a single variant.
2110 pub variants: IndexVec<VariantIdx, VariantDef>,
2111 /// Flags of the ADT (e.g., is this a struct? is this non-exhaustive?).
2112 flags: AdtFlags,
2113 /// Repr options provided by the user.
2114 pub repr: ReprOptions,
2115 }
2116
2117 impl PartialOrd for AdtDef {
2118 fn partial_cmp(&self, other: &AdtDef) -> Option<Ordering> {
2119 Some(self.cmp(&other))
2120 }
2121 }
2122
2123 /// There should be only one AdtDef for each `did`, therefore
2124 /// it is fine to implement `Ord` only based on `did`.
2125 impl Ord for AdtDef {
2126 fn cmp(&self, other: &AdtDef) -> Ordering {
2127 self.did.cmp(&other.did)
2128 }
2129 }
2130
2131 impl PartialEq for AdtDef {
2132 // `AdtDef`s are always interned, and this is part of `TyS` equality.
2133 #[inline]
2134 fn eq(&self, other: &Self) -> bool {
2135 ptr::eq(self, other)
2136 }
2137 }
2138
2139 impl Eq for AdtDef {}
2140
2141 impl Hash for AdtDef {
2142 #[inline]
2143 fn hash<H: Hasher>(&self, s: &mut H) {
2144 (self as *const AdtDef).hash(s)
2145 }
2146 }
2147
2148 impl<S: Encoder> Encodable<S> for AdtDef {
2149 fn encode(&self, s: &mut S) -> Result<(), S::Error> {
2150 self.did.encode(s)
2151 }
2152 }
2153
2154 impl<'a> HashStable<StableHashingContext<'a>> for AdtDef {
2155 fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
2156 thread_local! {
2157 static CACHE: RefCell<FxHashMap<usize, Fingerprint>> = Default::default();
2158 }
2159
2160 let hash: Fingerprint = CACHE.with(|cache| {
2161 let addr = self as *const AdtDef as usize;
2162 *cache.borrow_mut().entry(addr).or_insert_with(|| {
2163 let ty::AdtDef { did, ref variants, ref flags, ref repr } = *self;
2164
2165 let mut hasher = StableHasher::new();
2166 did.hash_stable(hcx, &mut hasher);
2167 variants.hash_stable(hcx, &mut hasher);
2168 flags.hash_stable(hcx, &mut hasher);
2169 repr.hash_stable(hcx, &mut hasher);
2170
2171 hasher.finish()
2172 })
2173 });
2174
2175 hash.hash_stable(hcx, hasher);
2176 }
2177 }
2178
2179 #[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
2180 pub enum AdtKind {
2181 Struct,
2182 Union,
2183 Enum,
2184 }
2185
2186 impl Into<DataTypeKind> for AdtKind {
2187 fn into(self) -> DataTypeKind {
2188 match self {
2189 AdtKind::Struct => DataTypeKind::Struct,
2190 AdtKind::Union => DataTypeKind::Union,
2191 AdtKind::Enum => DataTypeKind::Enum,
2192 }
2193 }
2194 }
2195
2196 bitflags! {
2197 #[derive(TyEncodable, TyDecodable, Default, HashStable)]
2198 pub struct ReprFlags: u8 {
2199 const IS_C = 1 << 0;
2200 const IS_SIMD = 1 << 1;
2201 const IS_TRANSPARENT = 1 << 2;
2202 // Internal only for now. If true, don't reorder fields.
2203 const IS_LINEAR = 1 << 3;
2204 // If true, don't expose any niche to type's context.
2205 const HIDE_NICHE = 1 << 4;
2206 // Any of these flags being set prevent field reordering optimisation.
2207 const IS_UNOPTIMISABLE = ReprFlags::IS_C.bits |
2208 ReprFlags::IS_SIMD.bits |
2209 ReprFlags::IS_LINEAR.bits;
2210 }
2211 }
2212
2213 /// Represents the repr options provided by the user,
2214 #[derive(Copy, Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Default, HashStable)]
2215 pub struct ReprOptions {
2216 pub int: Option<attr::IntType>,
2217 pub align: Option<Align>,
2218 pub pack: Option<Align>,
2219 pub flags: ReprFlags,
2220 }
2221
2222 impl ReprOptions {
2223 pub fn new(tcx: TyCtxt<'_>, did: DefId) -> ReprOptions {
2224 let mut flags = ReprFlags::empty();
2225 let mut size = None;
2226 let mut max_align: Option<Align> = None;
2227 let mut min_pack: Option<Align> = None;
2228 for attr in tcx.get_attrs(did).iter() {
2229 for r in attr::find_repr_attrs(&tcx.sess, attr) {
2230 flags.insert(match r {
2231 attr::ReprC => ReprFlags::IS_C,
2232 attr::ReprPacked(pack) => {
2233 let pack = Align::from_bytes(pack as u64).unwrap();
2234 min_pack = Some(if let Some(min_pack) = min_pack {
2235 min_pack.min(pack)
2236 } else {
2237 pack
2238 });
2239 ReprFlags::empty()
2240 }
2241 attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
2242 attr::ReprNoNiche => ReprFlags::HIDE_NICHE,
2243 attr::ReprSimd => ReprFlags::IS_SIMD,
2244 attr::ReprInt(i) => {
2245 size = Some(i);
2246 ReprFlags::empty()
2247 }
2248 attr::ReprAlign(align) => {
2249 max_align = max_align.max(Some(Align::from_bytes(align as u64).unwrap()));
2250 ReprFlags::empty()
2251 }
2252 });
2253 }
2254 }
2255
2256 // This is here instead of layout because the choice must make it into metadata.
2257 if !tcx.consider_optimizing(|| format!("Reorder fields of {:?}", tcx.def_path_str(did))) {
2258 flags.insert(ReprFlags::IS_LINEAR);
2259 }
2260 ReprOptions { int: size, align: max_align, pack: min_pack, flags }
2261 }
2262
2263 #[inline]
2264 pub fn simd(&self) -> bool {
2265 self.flags.contains(ReprFlags::IS_SIMD)
2266 }
2267 #[inline]
2268 pub fn c(&self) -> bool {
2269 self.flags.contains(ReprFlags::IS_C)
2270 }
2271 #[inline]
2272 pub fn packed(&self) -> bool {
2273 self.pack.is_some()
2274 }
2275 #[inline]
2276 pub fn transparent(&self) -> bool {
2277 self.flags.contains(ReprFlags::IS_TRANSPARENT)
2278 }
2279 #[inline]
2280 pub fn linear(&self) -> bool {
2281 self.flags.contains(ReprFlags::IS_LINEAR)
2282 }
2283 #[inline]
2284 pub fn hide_niche(&self) -> bool {
2285 self.flags.contains(ReprFlags::HIDE_NICHE)
2286 }
2287
2288 /// Returns the discriminant type, given these `repr` options.
2289 /// This must only be called on enums!
2290 pub fn discr_type(&self) -> attr::IntType {
2291 self.int.unwrap_or(attr::SignedInt(ast::IntTy::Isize))
2292 }
2293
2294 /// Returns `true` if this `#[repr()]` should inhabit "smart enum
2295 /// layout" optimizations, such as representing `Foo<&T>` as a
2296 /// single pointer.
2297 pub fn inhibit_enum_layout_opt(&self) -> bool {
2298 self.c() || self.int.is_some()
2299 }
2300
2301 /// Returns `true` if this `#[repr()]` should inhibit struct field reordering
2302 /// optimizations, such as with `repr(C)`, `repr(packed(1))`, or `repr(<int>)`.
2303 pub fn inhibit_struct_field_reordering_opt(&self) -> bool {
2304 if let Some(pack) = self.pack {
2305 if pack.bytes() == 1 {
2306 return true;
2307 }
2308 }
2309 self.flags.intersects(ReprFlags::IS_UNOPTIMISABLE) || self.int.is_some()
2310 }
2311
2312 /// Returns `true` if this `#[repr()]` should inhibit union ABI optimisations.
2313 pub fn inhibit_union_abi_opt(&self) -> bool {
2314 self.c()
2315 }
2316 }
2317
2318 impl<'tcx> AdtDef {
2319 /// Creates a new `AdtDef`.
2320 fn new(
2321 tcx: TyCtxt<'_>,
2322 did: DefId,
2323 kind: AdtKind,
2324 variants: IndexVec<VariantIdx, VariantDef>,
2325 repr: ReprOptions,
2326 ) -> Self {
2327 debug!("AdtDef::new({:?}, {:?}, {:?}, {:?})", did, kind, variants, repr);
2328 let mut flags = AdtFlags::NO_ADT_FLAGS;
2329
2330 if kind == AdtKind::Enum && tcx.has_attr(did, sym::non_exhaustive) {
2331 debug!("found non-exhaustive variant list for {:?}", did);
2332 flags = flags | AdtFlags::IS_VARIANT_LIST_NON_EXHAUSTIVE;
2333 }
2334
2335 flags |= match kind {
2336 AdtKind::Enum => AdtFlags::IS_ENUM,
2337 AdtKind::Union => AdtFlags::IS_UNION,
2338 AdtKind::Struct => AdtFlags::IS_STRUCT,
2339 };
2340
2341 if kind == AdtKind::Struct && variants[VariantIdx::new(0)].ctor_def_id.is_some() {
2342 flags |= AdtFlags::HAS_CTOR;
2343 }
2344
2345 let attrs = tcx.get_attrs(did);
2346 if tcx.sess.contains_name(&attrs, sym::fundamental) {
2347 flags |= AdtFlags::IS_FUNDAMENTAL;
2348 }
2349 if Some(did) == tcx.lang_items().phantom_data() {
2350 flags |= AdtFlags::IS_PHANTOM_DATA;
2351 }
2352 if Some(did) == tcx.lang_items().owned_box() {
2353 flags |= AdtFlags::IS_BOX;
2354 }
2355 if Some(did) == tcx.lang_items().manually_drop() {
2356 flags |= AdtFlags::IS_MANUALLY_DROP;
2357 }
2358
2359 AdtDef { did, variants, flags, repr }
2360 }
2361
2362 /// Returns `true` if this is a struct.
2363 #[inline]
2364 pub fn is_struct(&self) -> bool {
2365 self.flags.contains(AdtFlags::IS_STRUCT)
2366 }
2367
2368 /// Returns `true` if this is a union.
2369 #[inline]
2370 pub fn is_union(&self) -> bool {
2371 self.flags.contains(AdtFlags::IS_UNION)
2372 }
2373
2374 /// Returns `true` if this is a enum.
2375 #[inline]
2376 pub fn is_enum(&self) -> bool {
2377 self.flags.contains(AdtFlags::IS_ENUM)
2378 }
2379
2380 /// Returns `true` if the variant list of this ADT is `#[non_exhaustive]`.
2381 #[inline]
2382 pub fn is_variant_list_non_exhaustive(&self) -> bool {
2383 self.flags.contains(AdtFlags::IS_VARIANT_LIST_NON_EXHAUSTIVE)
2384 }
2385
2386 /// Returns the kind of the ADT.
2387 #[inline]
2388 pub fn adt_kind(&self) -> AdtKind {
2389 if self.is_enum() {
2390 AdtKind::Enum
2391 } else if self.is_union() {
2392 AdtKind::Union
2393 } else {
2394 AdtKind::Struct
2395 }
2396 }
2397
2398 /// Returns a description of this abstract data type.
2399 pub fn descr(&self) -> &'static str {
2400 match self.adt_kind() {
2401 AdtKind::Struct => "struct",
2402 AdtKind::Union => "union",
2403 AdtKind::Enum => "enum",
2404 }
2405 }
2406
2407 /// Returns a description of a variant of this abstract data type.
2408 #[inline]
2409 pub fn variant_descr(&self) -> &'static str {
2410 match self.adt_kind() {
2411 AdtKind::Struct => "struct",
2412 AdtKind::Union => "union",
2413 AdtKind::Enum => "variant",
2414 }
2415 }
2416
2417 /// If this function returns `true`, it implies that `is_struct` must return `true`.
2418 #[inline]
2419 pub fn has_ctor(&self) -> bool {
2420 self.flags.contains(AdtFlags::HAS_CTOR)
2421 }
2422
2423 /// Returns `true` if this type is `#[fundamental]` for the purposes
2424 /// of coherence checking.
2425 #[inline]
2426 pub fn is_fundamental(&self) -> bool {
2427 self.flags.contains(AdtFlags::IS_FUNDAMENTAL)
2428 }
2429
2430 /// Returns `true` if this is `PhantomData<T>`.
2431 #[inline]
2432 pub fn is_phantom_data(&self) -> bool {
2433 self.flags.contains(AdtFlags::IS_PHANTOM_DATA)
2434 }
2435
2436 /// Returns `true` if this is Box<T>.
2437 #[inline]
2438 pub fn is_box(&self) -> bool {
2439 self.flags.contains(AdtFlags::IS_BOX)
2440 }
2441
2442 /// Returns `true` if this is `ManuallyDrop<T>`.
2443 #[inline]
2444 pub fn is_manually_drop(&self) -> bool {
2445 self.flags.contains(AdtFlags::IS_MANUALLY_DROP)
2446 }
2447
2448 /// Returns `true` if this type has a destructor.
2449 pub fn has_dtor(&self, tcx: TyCtxt<'tcx>) -> bool {
2450 self.destructor(tcx).is_some()
2451 }
2452
2453 /// Asserts this is a struct or union and returns its unique variant.
2454 pub fn non_enum_variant(&self) -> &VariantDef {
2455 assert!(self.is_struct() || self.is_union());
2456 &self.variants[VariantIdx::new(0)]
2457 }
2458
2459 #[inline]
2460 pub fn predicates(&self, tcx: TyCtxt<'tcx>) -> GenericPredicates<'tcx> {
2461 tcx.predicates_of(self.did)
2462 }
2463
2464 /// Returns an iterator over all fields contained
2465 /// by this ADT.
2466 #[inline]
2467 pub fn all_fields(&self) -> impl Iterator<Item = &FieldDef> + Clone {
2468 self.variants.iter().flat_map(|v| v.fields.iter())
2469 }
2470
2471 pub fn is_payloadfree(&self) -> bool {
2472 !self.variants.is_empty() && self.variants.iter().all(|v| v.fields.is_empty())
2473 }
2474
2475 /// Return a `VariantDef` given a variant id.
2476 pub fn variant_with_id(&self, vid: DefId) -> &VariantDef {
2477 self.variants.iter().find(|v| v.def_id == vid).expect("variant_with_id: unknown variant")
2478 }
2479
2480 /// Return a `VariantDef` given a constructor id.
2481 pub fn variant_with_ctor_id(&self, cid: DefId) -> &VariantDef {
2482 self.variants
2483 .iter()
2484 .find(|v| v.ctor_def_id == Some(cid))
2485 .expect("variant_with_ctor_id: unknown variant")
2486 }
2487
2488 /// Return the index of `VariantDef` given a variant id.
2489 pub fn variant_index_with_id(&self, vid: DefId) -> VariantIdx {
2490 self.variants
2491 .iter_enumerated()
2492 .find(|(_, v)| v.def_id == vid)
2493 .expect("variant_index_with_id: unknown variant")
2494 .0
2495 }
2496
2497 /// Return the index of `VariantDef` given a constructor id.
2498 pub fn variant_index_with_ctor_id(&self, cid: DefId) -> VariantIdx {
2499 self.variants
2500 .iter_enumerated()
2501 .find(|(_, v)| v.ctor_def_id == Some(cid))
2502 .expect("variant_index_with_ctor_id: unknown variant")
2503 .0
2504 }
2505
2506 pub fn variant_of_res(&self, res: Res) -> &VariantDef {
2507 match res {
2508 Res::Def(DefKind::Variant, vid) => self.variant_with_id(vid),
2509 Res::Def(DefKind::Ctor(..), cid) => self.variant_with_ctor_id(cid),
2510 Res::Def(DefKind::Struct, _)
2511 | Res::Def(DefKind::Union, _)
2512 | Res::Def(DefKind::TyAlias, _)
2513 | Res::Def(DefKind::AssocTy, _)
2514 | Res::SelfTy(..)
2515 | Res::SelfCtor(..) => self.non_enum_variant(),
2516 _ => bug!("unexpected res {:?} in variant_of_res", res),
2517 }
2518 }
2519
2520 #[inline]
2521 pub fn eval_explicit_discr(&self, tcx: TyCtxt<'tcx>, expr_did: DefId) -> Option<Discr<'tcx>> {
2522 assert!(self.is_enum());
2523 let param_env = tcx.param_env(expr_did);
2524 let repr_type = self.repr.discr_type();
2525 match tcx.const_eval_poly(expr_did) {
2526 Ok(val) => {
2527 let ty = repr_type.to_ty(tcx);
2528 if let Some(b) = val.try_to_bits_for_ty(tcx, param_env, ty) {
2529 trace!("discriminants: {} ({:?})", b, repr_type);
2530 Some(Discr { val: b, ty })
2531 } else {
2532 info!("invalid enum discriminant: {:#?}", val);
2533 crate::mir::interpret::struct_error(
2534 tcx.at(tcx.def_span(expr_did)),
2535 "constant evaluation of enum discriminant resulted in non-integer",
2536 )
2537 .emit();
2538 None
2539 }
2540 }
2541 Err(err) => {
2542 let msg = match err {
2543 ErrorHandled::Reported(ErrorReported) | ErrorHandled::Linted => {
2544 "enum discriminant evaluation failed"
2545 }
2546 ErrorHandled::TooGeneric => "enum discriminant depends on generics",
2547 };
2548 tcx.sess.delay_span_bug(tcx.def_span(expr_did), msg);
2549 None
2550 }
2551 }
2552 }
2553
2554 #[inline]
2555 pub fn discriminants(
2556 &'tcx self,
2557 tcx: TyCtxt<'tcx>,
2558 ) -> impl Iterator<Item = (VariantIdx, Discr<'tcx>)> + Captures<'tcx> {
2559 assert!(self.is_enum());
2560 let repr_type = self.repr.discr_type();
2561 let initial = repr_type.initial_discriminant(tcx);
2562 let mut prev_discr = None::<Discr<'tcx>>;
2563 self.variants.iter_enumerated().map(move |(i, v)| {
2564 let mut discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
2565 if let VariantDiscr::Explicit(expr_did) = v.discr {
2566 if let Some(new_discr) = self.eval_explicit_discr(tcx, expr_did) {
2567 discr = new_discr;
2568 }
2569 }
2570 prev_discr = Some(discr);
2571
2572 (i, discr)
2573 })
2574 }
2575
2576 #[inline]
2577 pub fn variant_range(&self) -> Range<VariantIdx> {
2578 VariantIdx::new(0)..VariantIdx::new(self.variants.len())
2579 }
2580
2581 /// Computes the discriminant value used by a specific variant.
2582 /// Unlike `discriminants`, this is (amortized) constant-time,
2583 /// only doing at most one query for evaluating an explicit
2584 /// discriminant (the last one before the requested variant),
2585 /// assuming there are no constant-evaluation errors there.
2586 #[inline]
2587 pub fn discriminant_for_variant(
2588 &self,
2589 tcx: TyCtxt<'tcx>,
2590 variant_index: VariantIdx,
2591 ) -> Discr<'tcx> {
2592 assert!(self.is_enum());
2593 let (val, offset) = self.discriminant_def_for_variant(variant_index);
2594 let explicit_value = val
2595 .and_then(|expr_did| self.eval_explicit_discr(tcx, expr_did))
2596 .unwrap_or_else(|| self.repr.discr_type().initial_discriminant(tcx));
2597 explicit_value.checked_add(tcx, offset as u128).0
2598 }
2599
2600 /// Yields a `DefId` for the discriminant and an offset to add to it
2601 /// Alternatively, if there is no explicit discriminant, returns the
2602 /// inferred discriminant directly.
2603 pub fn discriminant_def_for_variant(&self, variant_index: VariantIdx) -> (Option<DefId>, u32) {
2604 assert!(!self.variants.is_empty());
2605 let mut explicit_index = variant_index.as_u32();
2606 let expr_did;
2607 loop {
2608 match self.variants[VariantIdx::from_u32(explicit_index)].discr {
2609 ty::VariantDiscr::Relative(0) => {
2610 expr_did = None;
2611 break;
2612 }
2613 ty::VariantDiscr::Relative(distance) => {
2614 explicit_index -= distance;
2615 }
2616 ty::VariantDiscr::Explicit(did) => {
2617 expr_did = Some(did);
2618 break;
2619 }
2620 }
2621 }
2622 (expr_did, variant_index.as_u32() - explicit_index)
2623 }
2624
2625 pub fn destructor(&self, tcx: TyCtxt<'tcx>) -> Option<Destructor> {
2626 tcx.adt_destructor(self.did)
2627 }
2628
2629 /// Returns a list of types such that `Self: Sized` if and only
2630 /// if that type is `Sized`, or `TyErr` if this type is recursive.
2631 ///
2632 /// Oddly enough, checking that the sized-constraint is `Sized` is
2633 /// actually more expressive than checking all members:
2634 /// the `Sized` trait is inductive, so an associated type that references
2635 /// `Self` would prevent its containing ADT from being `Sized`.
2636 ///
2637 /// Due to normalization being eager, this applies even if
2638 /// the associated type is behind a pointer (e.g., issue #31299).
2639 pub fn sized_constraint(&self, tcx: TyCtxt<'tcx>) -> &'tcx [Ty<'tcx>] {
2640 tcx.adt_sized_constraint(self.did).0
2641 }
2642 }
2643
2644 impl<'tcx> FieldDef {
2645 /// Returns the type of this field. The `subst` is typically obtained
2646 /// via the second field of `TyKind::AdtDef`.
2647 pub fn ty(&self, tcx: TyCtxt<'tcx>, subst: SubstsRef<'tcx>) -> Ty<'tcx> {
2648 tcx.type_of(self.did).subst(tcx, subst)
2649 }
2650 }
2651
2652 /// Represents the various closure traits in the language. This
2653 /// will determine the type of the environment (`self`, in the
2654 /// desugaring) argument that the closure expects.
2655 ///
2656 /// You can get the environment type of a closure using
2657 /// `tcx.closure_env_ty()`.
2658 #[derive(Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash, Debug, TyEncodable, TyDecodable)]
2659 #[derive(HashStable)]
2660 pub enum ClosureKind {
2661 // Warning: Ordering is significant here! The ordering is chosen
2662 // because the trait Fn is a subtrait of FnMut and so in turn, and
2663 // hence we order it so that Fn < FnMut < FnOnce.
2664 Fn,
2665 FnMut,
2666 FnOnce,
2667 }
2668
2669 impl<'tcx> ClosureKind {
2670 // This is the initial value used when doing upvar inference.
2671 pub const LATTICE_BOTTOM: ClosureKind = ClosureKind::Fn;
2672
2673 pub fn trait_did(&self, tcx: TyCtxt<'tcx>) -> DefId {
2674 match *self {
2675 ClosureKind::Fn => tcx.require_lang_item(LangItem::Fn, None),
2676 ClosureKind::FnMut => tcx.require_lang_item(LangItem::FnMut, None),
2677 ClosureKind::FnOnce => tcx.require_lang_item(LangItem::FnOnce, None),
2678 }
2679 }
2680
2681 /// Returns `true` if a type that impls this closure kind
2682 /// must also implement `other`.
2683 pub fn extends(self, other: ty::ClosureKind) -> bool {
2684 match (self, other) {
2685 (ClosureKind::Fn, ClosureKind::Fn) => true,
2686 (ClosureKind::Fn, ClosureKind::FnMut) => true,
2687 (ClosureKind::Fn, ClosureKind::FnOnce) => true,
2688 (ClosureKind::FnMut, ClosureKind::FnMut) => true,
2689 (ClosureKind::FnMut, ClosureKind::FnOnce) => true,
2690 (ClosureKind::FnOnce, ClosureKind::FnOnce) => true,
2691 _ => false,
2692 }
2693 }
2694
2695 /// Returns the representative scalar type for this closure kind.
2696 /// See `TyS::to_opt_closure_kind` for more details.
2697 pub fn to_ty(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
2698 match self {
2699 ty::ClosureKind::Fn => tcx.types.i8,
2700 ty::ClosureKind::FnMut => tcx.types.i16,
2701 ty::ClosureKind::FnOnce => tcx.types.i32,
2702 }
2703 }
2704 }
2705
2706 impl BorrowKind {
2707 pub fn from_mutbl(m: hir::Mutability) -> BorrowKind {
2708 match m {
2709 hir::Mutability::Mut => MutBorrow,
2710 hir::Mutability::Not => ImmBorrow,
2711 }
2712 }
2713
2714 /// Returns a mutability `m` such that an `&m T` pointer could be used to obtain this borrow
2715 /// kind. Because borrow kinds are richer than mutabilities, we sometimes have to pick a
2716 /// mutability that is stronger than necessary so that it at least *would permit* the borrow in
2717 /// question.
2718 pub fn to_mutbl_lossy(self) -> hir::Mutability {
2719 match self {
2720 MutBorrow => hir::Mutability::Mut,
2721 ImmBorrow => hir::Mutability::Not,
2722
2723 // We have no type corresponding to a unique imm borrow, so
2724 // use `&mut`. It gives all the capabilities of an `&uniq`
2725 // and hence is a safe "over approximation".
2726 UniqueImmBorrow => hir::Mutability::Mut,
2727 }
2728 }
2729
2730 pub fn to_user_str(&self) -> &'static str {
2731 match *self {
2732 MutBorrow => "mutable",
2733 ImmBorrow => "immutable",
2734 UniqueImmBorrow => "uniquely immutable",
2735 }
2736 }
2737 }
2738
2739 pub type Attributes<'tcx> = &'tcx [ast::Attribute];
2740
2741 #[derive(Debug, PartialEq, Eq)]
2742 pub enum ImplOverlapKind {
2743 /// These impls are always allowed to overlap.
2744 Permitted {
2745 /// Whether or not the impl is permitted due to the trait being a `#[marker]` trait
2746 marker: bool,
2747 },
2748 /// These impls are allowed to overlap, but that raises
2749 /// an issue #33140 future-compatibility warning.
2750 ///
2751 /// Some background: in Rust 1.0, the trait-object types `Send + Sync` (today's
2752 /// `dyn Send + Sync`) and `Sync + Send` (now `dyn Sync + Send`) were different.
2753 ///
2754 /// The widely-used version 0.1.0 of the crate `traitobject` had accidentally relied
2755 /// that difference, making what reduces to the following set of impls:
2756 ///
2757 /// ```
2758 /// trait Trait {}
2759 /// impl Trait for dyn Send + Sync {}
2760 /// impl Trait for dyn Sync + Send {}
2761 /// ```
2762 ///
2763 /// Obviously, once we made these types be identical, that code causes a coherence
2764 /// error and a fairly big headache for us. However, luckily for us, the trait
2765 /// `Trait` used in this case is basically a marker trait, and therefore having
2766 /// overlapping impls for it is sound.
2767 ///
2768 /// To handle this, we basically regard the trait as a marker trait, with an additional
2769 /// future-compatibility warning. To avoid accidentally "stabilizing" this feature,
2770 /// it has the following restrictions:
2771 ///
2772 /// 1. The trait must indeed be a marker-like trait (i.e., no items), and must be
2773 /// positive impls.
2774 /// 2. The trait-ref of both impls must be equal.
2775 /// 3. The trait-ref of both impls must be a trait object type consisting only of
2776 /// marker traits.
2777 /// 4. Neither of the impls can have any where-clauses.
2778 ///
2779 /// Once `traitobject` 0.1.0 is no longer an active concern, this hack can be removed.
2780 Issue33140,
2781 }
2782
2783 impl<'tcx> TyCtxt<'tcx> {
2784 pub fn typeck_body(self, body: hir::BodyId) -> &'tcx TypeckResults<'tcx> {
2785 self.typeck(self.hir().body_owner_def_id(body))
2786 }
2787
2788 /// Returns an iterator of the `DefId`s for all body-owners in this
2789 /// crate. If you would prefer to iterate over the bodies
2790 /// themselves, you can do `self.hir().krate().body_ids.iter()`.
2791 pub fn body_owners(self) -> impl Iterator<Item = LocalDefId> + Captures<'tcx> + 'tcx {
2792 self.hir()
2793 .krate()
2794 .body_ids
2795 .iter()
2796 .map(move |&body_id| self.hir().body_owner_def_id(body_id))
2797 }
2798
2799 pub fn par_body_owners<F: Fn(LocalDefId) + sync::Sync + sync::Send>(self, f: F) {
2800 par_iter(&self.hir().krate().body_ids)
2801 .for_each(|&body_id| f(self.hir().body_owner_def_id(body_id)));
2802 }
2803
2804 pub fn provided_trait_methods(self, id: DefId) -> impl 'tcx + Iterator<Item = &'tcx AssocItem> {
2805 self.associated_items(id)
2806 .in_definition_order()
2807 .filter(|item| item.kind == AssocKind::Fn && item.defaultness.has_value())
2808 }
2809
2810 pub fn opt_item_name(self, def_id: DefId) -> Option<Ident> {
2811 def_id
2812 .as_local()
2813 .and_then(|def_id| self.hir().get(self.hir().local_def_id_to_hir_id(def_id)).ident())
2814 }
2815
2816 pub fn opt_associated_item(self, def_id: DefId) -> Option<&'tcx AssocItem> {
2817 let is_associated_item = if let Some(def_id) = def_id.as_local() {
2818 match self.hir().get(self.hir().local_def_id_to_hir_id(def_id)) {
2819 Node::TraitItem(_) | Node::ImplItem(_) => true,
2820 _ => false,
2821 }
2822 } else {
2823 match self.def_kind(def_id) {
2824 DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy => true,
2825 _ => false,
2826 }
2827 };
2828
2829 is_associated_item.then(|| self.associated_item(def_id))
2830 }
2831
2832 pub fn field_index(self, hir_id: hir::HirId, typeck_results: &TypeckResults<'_>) -> usize {
2833 typeck_results.field_indices().get(hir_id).cloned().expect("no index for a field")
2834 }
2835
2836 pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<usize> {
2837 variant.fields.iter().position(|field| self.hygienic_eq(ident, field.ident, variant.def_id))
2838 }
2839
2840 /// Returns `true` if the impls are the same polarity and the trait either
2841 /// has no items or is annotated `#[marker]` and prevents item overrides.
2842 pub fn impls_are_allowed_to_overlap(
2843 self,
2844 def_id1: DefId,
2845 def_id2: DefId,
2846 ) -> Option<ImplOverlapKind> {
2847 // If either trait impl references an error, they're allowed to overlap,
2848 // as one of them essentially doesn't exist.
2849 if self.impl_trait_ref(def_id1).map_or(false, |tr| tr.references_error())
2850 || self.impl_trait_ref(def_id2).map_or(false, |tr| tr.references_error())
2851 {
2852 return Some(ImplOverlapKind::Permitted { marker: false });
2853 }
2854
2855 match (self.impl_polarity(def_id1), self.impl_polarity(def_id2)) {
2856 (ImplPolarity::Reservation, _) | (_, ImplPolarity::Reservation) => {
2857 // `#[rustc_reservation_impl]` impls don't overlap with anything
2858 debug!(
2859 "impls_are_allowed_to_overlap({:?}, {:?}) = Some(Permitted) (reservations)",
2860 def_id1, def_id2
2861 );
2862 return Some(ImplOverlapKind::Permitted { marker: false });
2863 }
2864 (ImplPolarity::Positive, ImplPolarity::Negative)
2865 | (ImplPolarity::Negative, ImplPolarity::Positive) => {
2866 // `impl AutoTrait for Type` + `impl !AutoTrait for Type`
2867 debug!(
2868 "impls_are_allowed_to_overlap({:?}, {:?}) - None (differing polarities)",
2869 def_id1, def_id2
2870 );
2871 return None;
2872 }
2873 (ImplPolarity::Positive, ImplPolarity::Positive)
2874 | (ImplPolarity::Negative, ImplPolarity::Negative) => {}
2875 };
2876
2877 let is_marker_overlap = {
2878 let is_marker_impl = |def_id: DefId| -> bool {
2879 let trait_ref = self.impl_trait_ref(def_id);
2880 trait_ref.map_or(false, |tr| self.trait_def(tr.def_id).is_marker)
2881 };
2882 is_marker_impl(def_id1) && is_marker_impl(def_id2)
2883 };
2884
2885 if is_marker_overlap {
2886 debug!(
2887 "impls_are_allowed_to_overlap({:?}, {:?}) = Some(Permitted) (marker overlap)",
2888 def_id1, def_id2
2889 );
2890 Some(ImplOverlapKind::Permitted { marker: true })
2891 } else {
2892 if let Some(self_ty1) = self.issue33140_self_ty(def_id1) {
2893 if let Some(self_ty2) = self.issue33140_self_ty(def_id2) {
2894 if self_ty1 == self_ty2 {
2895 debug!(
2896 "impls_are_allowed_to_overlap({:?}, {:?}) - issue #33140 HACK",
2897 def_id1, def_id2
2898 );
2899 return Some(ImplOverlapKind::Issue33140);
2900 } else {
2901 debug!(
2902 "impls_are_allowed_to_overlap({:?}, {:?}) - found {:?} != {:?}",
2903 def_id1, def_id2, self_ty1, self_ty2
2904 );
2905 }
2906 }
2907 }
2908
2909 debug!("impls_are_allowed_to_overlap({:?}, {:?}) = None", def_id1, def_id2);
2910 None
2911 }
2912 }
2913
2914 /// Returns `ty::VariantDef` if `res` refers to a struct,
2915 /// or variant or their constructors, panics otherwise.
2916 pub fn expect_variant_res(self, res: Res) -> &'tcx VariantDef {
2917 match res {
2918 Res::Def(DefKind::Variant, did) => {
2919 let enum_did = self.parent(did).unwrap();
2920 self.adt_def(enum_did).variant_with_id(did)
2921 }
2922 Res::Def(DefKind::Struct | DefKind::Union, did) => self.adt_def(did).non_enum_variant(),
2923 Res::Def(DefKind::Ctor(CtorOf::Variant, ..), variant_ctor_did) => {
2924 let variant_did = self.parent(variant_ctor_did).unwrap();
2925 let enum_did = self.parent(variant_did).unwrap();
2926 self.adt_def(enum_did).variant_with_ctor_id(variant_ctor_did)
2927 }
2928 Res::Def(DefKind::Ctor(CtorOf::Struct, ..), ctor_did) => {
2929 let struct_did = self.parent(ctor_did).expect("struct ctor has no parent");
2930 self.adt_def(struct_did).non_enum_variant()
2931 }
2932 _ => bug!("expect_variant_res used with unexpected res {:?}", res),
2933 }
2934 }
2935
2936 pub fn item_name(self, id: DefId) -> Symbol {
2937 if id.index == CRATE_DEF_INDEX {
2938 self.original_crate_name(id.krate)
2939 } else {
2940 let def_key = self.def_key(id);
2941 match def_key.disambiguated_data.data {
2942 // The name of a constructor is that of its parent.
2943 rustc_hir::definitions::DefPathData::Ctor => {
2944 self.item_name(DefId { krate: id.krate, index: def_key.parent.unwrap() })
2945 }
2946 _ => def_key.disambiguated_data.data.get_opt_name().unwrap_or_else(|| {
2947 bug!("item_name: no name for {:?}", self.def_path(id));
2948 }),
2949 }
2950 }
2951 }
2952
2953 /// Returns the possibly-auto-generated MIR of a `(DefId, Subst)` pair.
2954 pub fn instance_mir(self, instance: ty::InstanceDef<'tcx>) -> &'tcx Body<'tcx> {
2955 match instance {
2956 ty::InstanceDef::Item(def) => {
2957 if let Some((did, param_did)) = def.as_const_arg() {
2958 self.optimized_mir_of_const_arg((did, param_did))
2959 } else {
2960 self.optimized_mir(def.did)
2961 }
2962 }
2963 ty::InstanceDef::VtableShim(..)
2964 | ty::InstanceDef::ReifyShim(..)
2965 | ty::InstanceDef::Intrinsic(..)
2966 | ty::InstanceDef::FnPtrShim(..)
2967 | ty::InstanceDef::Virtual(..)
2968 | ty::InstanceDef::ClosureOnceShim { .. }
2969 | ty::InstanceDef::DropGlue(..)
2970 | ty::InstanceDef::CloneShim(..) => self.mir_shims(instance),
2971 }
2972 }
2973
2974 /// Gets the attributes of a definition.
2975 pub fn get_attrs(self, did: DefId) -> Attributes<'tcx> {
2976 if let Some(did) = did.as_local() {
2977 self.hir().attrs(self.hir().local_def_id_to_hir_id(did))
2978 } else {
2979 self.item_attrs(did)
2980 }
2981 }
2982
2983 /// Determines whether an item is annotated with an attribute.
2984 pub fn has_attr(self, did: DefId, attr: Symbol) -> bool {
2985 self.sess.contains_name(&self.get_attrs(did), attr)
2986 }
2987
2988 /// Returns `true` if this is an `auto trait`.
2989 pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
2990 self.trait_def(trait_def_id).has_auto_impl
2991 }
2992
2993 pub fn generator_layout(self, def_id: DefId) -> &'tcx GeneratorLayout<'tcx> {
2994 self.optimized_mir(def_id).generator_layout.as_ref().unwrap()
2995 }
2996
2997 /// Given the `DefId` of an impl, returns the `DefId` of the trait it implements.
2998 /// If it implements no trait, returns `None`.
2999 pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
3000 self.impl_trait_ref(def_id).map(|tr| tr.def_id)
3001 }
3002
3003 /// If the given defid describes a method belonging to an impl, returns the
3004 /// `DefId` of the impl that the method belongs to; otherwise, returns `None`.
3005 pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
3006 self.opt_associated_item(def_id).and_then(|trait_item| match trait_item.container {
3007 TraitContainer(_) => None,
3008 ImplContainer(def_id) => Some(def_id),
3009 })
3010 }
3011
3012 /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
3013 /// with the name of the crate containing the impl.
3014 pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol> {
3015 if let Some(impl_did) = impl_did.as_local() {
3016 let hir_id = self.hir().local_def_id_to_hir_id(impl_did);
3017 Ok(self.hir().span(hir_id))
3018 } else {
3019 Err(self.crate_name(impl_did.krate))
3020 }
3021 }
3022
3023 /// Hygienically compares a use-site name (`use_name`) for a field or an associated item with
3024 /// its supposed definition name (`def_name`). The method also needs `DefId` of the supposed
3025 /// definition's parent/scope to perform comparison.
3026 pub fn hygienic_eq(self, use_name: Ident, def_name: Ident, def_parent_def_id: DefId) -> bool {
3027 // We could use `Ident::eq` here, but we deliberately don't. The name
3028 // comparison fails frequently, and we want to avoid the expensive
3029 // `normalize_to_macros_2_0()` calls required for the span comparison whenever possible.
3030 use_name.name == def_name.name
3031 && use_name
3032 .span
3033 .ctxt()
3034 .hygienic_eq(def_name.span.ctxt(), self.expansion_that_defined(def_parent_def_id))
3035 }
3036
3037 fn expansion_that_defined(self, scope: DefId) -> ExpnId {
3038 match scope.as_local() {
3039 Some(scope) => self.hir().definitions().expansion_that_defined(scope),
3040 None => ExpnId::root(),
3041 }
3042 }
3043
3044 pub fn adjust_ident(self, mut ident: Ident, scope: DefId) -> Ident {
3045 ident.span.normalize_to_macros_2_0_and_adjust(self.expansion_that_defined(scope));
3046 ident
3047 }
3048
3049 pub fn adjust_ident_and_get_scope(
3050 self,
3051 mut ident: Ident,
3052 scope: DefId,
3053 block: hir::HirId,
3054 ) -> (Ident, DefId) {
3055 let scope =
3056 match ident.span.normalize_to_macros_2_0_and_adjust(self.expansion_that_defined(scope))
3057 {
3058 Some(actual_expansion) => {
3059 self.hir().definitions().parent_module_of_macro_def(actual_expansion)
3060 }
3061 None => self.parent_module(block).to_def_id(),
3062 };
3063 (ident, scope)
3064 }
3065
3066 pub fn is_object_safe(self, key: DefId) -> bool {
3067 self.object_safety_violations(key).is_empty()
3068 }
3069 }
3070
3071 #[derive(Clone, HashStable)]
3072 pub struct AdtSizedConstraint<'tcx>(pub &'tcx [Ty<'tcx>]);
3073
3074 /// Yields the parent function's `DefId` if `def_id` is an `impl Trait` definition.
3075 pub fn is_impl_trait_defn(tcx: TyCtxt<'_>, def_id: DefId) -> Option<DefId> {
3076 if let Some(def_id) = def_id.as_local() {
3077 if let Node::Item(item) = tcx.hir().get(tcx.hir().local_def_id_to_hir_id(def_id)) {
3078 if let hir::ItemKind::OpaqueTy(ref opaque_ty) = item.kind {
3079 return opaque_ty.impl_trait_fn;
3080 }
3081 }
3082 }
3083 None
3084 }
3085
3086 pub fn provide(providers: &mut ty::query::Providers) {
3087 context::provide(providers);
3088 erase_regions::provide(providers);
3089 layout::provide(providers);
3090 util::provide(providers);
3091 print::provide(providers);
3092 super::util::bug::provide(providers);
3093 *providers = ty::query::Providers {
3094 trait_impls_of: trait_def::trait_impls_of_provider,
3095 all_local_trait_impls: trait_def::all_local_trait_impls,
3096 ..*providers
3097 };
3098 }
3099
3100 /// A map for the local crate mapping each type to a vector of its
3101 /// inherent impls. This is not meant to be used outside of coherence;
3102 /// rather, you should request the vector for a specific type via
3103 /// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
3104 /// (constructing this map requires touching the entire crate).
3105 #[derive(Clone, Debug, Default, HashStable)]
3106 pub struct CrateInherentImpls {
3107 pub inherent_impls: DefIdMap<Vec<DefId>>,
3108 }
3109
3110 #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, HashStable)]
3111 pub struct SymbolName<'tcx> {
3112 /// `&str` gives a consistent ordering, which ensures reproducible builds.
3113 pub name: &'tcx str,
3114 }
3115
3116 impl<'tcx> SymbolName<'tcx> {
3117 pub fn new(tcx: TyCtxt<'tcx>, name: &str) -> SymbolName<'tcx> {
3118 SymbolName {
3119 name: unsafe { str::from_utf8_unchecked(tcx.arena.alloc_slice(name.as_bytes())) },
3120 }
3121 }
3122 }
3123
3124 impl<'tcx> fmt::Display for SymbolName<'tcx> {
3125 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
3126 fmt::Display::fmt(&self.name, fmt)
3127 }
3128 }
3129
3130 impl<'tcx> fmt::Debug for SymbolName<'tcx> {
3131 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
3132 fmt::Display::fmt(&self.name, fmt)
3133 }
3134 }