]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_middle/src/ty/mod.rs
New upstream version 1.56.0~beta.4+dfsg1
[rustc.git] / compiler / rustc_middle / src / ty / mod.rs
1 //! Defines how the compiler represents types internally.
2 //!
3 //! Two important entities in this module are:
4 //!
5 //! - [`rustc_middle::ty::Ty`], used to represent the semantics of a type.
6 //! - [`rustc_middle::ty::TyCtxt`], the central data structure in the compiler.
7 //!
8 //! For more information, see ["The `ty` module: representing types"] in the ructc-dev-guide.
9 //!
10 //! ["The `ty` module: representing types"]: https://rustc-dev-guide.rust-lang.org/ty.html
11
12 pub use self::fold::{TypeFoldable, TypeFolder, TypeVisitor};
13 pub use self::AssocItemContainer::*;
14 pub use self::BorrowKind::*;
15 pub use self::IntVarValue::*;
16 pub use self::Variance::*;
17 pub use adt::*;
18 pub use assoc::*;
19 pub use generics::*;
20 pub use vtable::*;
21
22 use crate::hir::exports::ExportMap;
23 use crate::ich::StableHashingContext;
24 use crate::middle::cstore::CrateStoreDyn;
25 use crate::mir::{Body, GeneratorLayout};
26 use crate::traits::{self, Reveal};
27 use crate::ty;
28 use crate::ty::subst::{GenericArg, InternalSubsts, Subst, SubstsRef};
29 use crate::ty::util::Discr;
30 use rustc_ast as ast;
31 use rustc_attr as attr;
32 use rustc_data_structures::captures::Captures;
33 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
34 use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
35 use rustc_data_structures::sync::{self, par_iter, ParallelIterator};
36 use rustc_data_structures::tagged_ptr::CopyTaggedPtr;
37 use rustc_hir as hir;
38 use rustc_hir::def::{CtorKind, CtorOf, DefKind, Res};
39 use rustc_hir::def_id::{CrateNum, DefId, LocalDefId, LocalDefIdMap, CRATE_DEF_INDEX};
40 use rustc_hir::Node;
41 use rustc_macros::HashStable;
42 use rustc_span::symbol::{kw, Ident, Symbol};
43 use rustc_span::Span;
44 use rustc_target::abi::Align;
45
46 use std::cmp::Ordering;
47 use std::collections::BTreeMap;
48 use std::hash::{Hash, Hasher};
49 use std::ops::ControlFlow;
50 use std::{fmt, ptr, str};
51
52 pub use crate::ty::diagnostics::*;
53 pub use rustc_type_ir::InferTy::*;
54 pub use rustc_type_ir::*;
55
56 pub use self::binding::BindingMode;
57 pub use self::binding::BindingMode::*;
58 pub use self::closure::{
59 is_ancestor_or_same_capture, place_to_string_for_capture, BorrowKind, CaptureInfo,
60 CapturedPlace, ClosureKind, MinCaptureInformationMap, MinCaptureList,
61 RootVariableMinCaptureList, UpvarBorrow, UpvarCapture, UpvarCaptureMap, UpvarId, UpvarListMap,
62 UpvarPath, CAPTURE_STRUCT_LOCAL,
63 };
64 pub use self::consts::{Const, ConstInt, ConstKind, InferConst, ScalarInt, Unevaluated, ValTree};
65 pub use self::context::{
66 tls, CanonicalUserType, CanonicalUserTypeAnnotation, CanonicalUserTypeAnnotations,
67 CtxtInterners, DelaySpanBugEmitted, FreeRegionInfo, GeneratorInteriorTypeCause, GlobalCtxt,
68 Lift, OnDiskCache, TyCtxt, TypeckResults, UserType, UserTypeAnnotationIndex,
69 };
70 pub use self::instance::{Instance, InstanceDef};
71 pub use self::list::List;
72 pub use self::sty::BoundRegionKind::*;
73 pub use self::sty::RegionKind::*;
74 pub use self::sty::TyKind::*;
75 pub use self::sty::{
76 Binder, BoundRegion, BoundRegionKind, BoundTy, BoundTyKind, BoundVar, BoundVariableKind,
77 CanonicalPolyFnSig, ClosureSubsts, ClosureSubstsParts, ConstVid, EarlyBoundRegion,
78 ExistentialPredicate, ExistentialProjection, ExistentialTraitRef, FnSig, FreeRegion, GenSig,
79 GeneratorSubsts, GeneratorSubstsParts, ParamConst, ParamTy, PolyExistentialProjection,
80 PolyExistentialTraitRef, PolyFnSig, PolyGenSig, PolyTraitRef, ProjectionTy, Region, RegionKind,
81 RegionVid, TraitRef, TyKind, TypeAndMut, UpvarSubsts, VarianceDiagInfo, VarianceDiagMutKind,
82 };
83 pub use self::trait_def::TraitDef;
84
85 pub mod _match;
86 pub mod adjustment;
87 pub mod binding;
88 pub mod cast;
89 pub mod codec;
90 pub mod error;
91 pub mod fast_reject;
92 pub mod flags;
93 pub mod fold;
94 pub mod inhabitedness;
95 pub mod layout;
96 pub mod normalize_erasing_regions;
97 pub mod outlives;
98 pub mod print;
99 pub mod query;
100 pub mod relate;
101 pub mod subst;
102 pub mod trait_def;
103 pub mod util;
104 pub mod vtable;
105 pub mod walk;
106
107 mod adt;
108 mod assoc;
109 mod closure;
110 mod consts;
111 mod context;
112 mod diagnostics;
113 mod erase_regions;
114 mod generics;
115 mod instance;
116 mod list;
117 mod structural_impls;
118 mod sty;
119
120 // Data types
121
122 #[derive(Debug)]
123 pub struct ResolverOutputs {
124 pub definitions: rustc_hir::definitions::Definitions,
125 pub cstore: Box<CrateStoreDyn>,
126 pub visibilities: FxHashMap<LocalDefId, Visibility>,
127 pub extern_crate_map: FxHashMap<LocalDefId, CrateNum>,
128 pub maybe_unused_trait_imports: FxHashSet<LocalDefId>,
129 pub maybe_unused_extern_crates: Vec<(LocalDefId, Span)>,
130 pub export_map: ExportMap<LocalDefId>,
131 pub glob_map: FxHashMap<LocalDefId, FxHashSet<Symbol>>,
132 /// Extern prelude entries. The value is `true` if the entry was introduced
133 /// via `extern crate` item and not `--extern` option or compiler built-in.
134 pub extern_prelude: FxHashMap<Symbol, bool>,
135 pub main_def: Option<MainDefinition>,
136 pub trait_impls: BTreeMap<DefId, Vec<LocalDefId>>,
137 /// A list of proc macro LocalDefIds, written out in the order in which
138 /// they are declared in the static array generated by proc_macro_harness.
139 pub proc_macros: Vec<LocalDefId>,
140 }
141
142 #[derive(Clone, Copy, Debug)]
143 pub struct MainDefinition {
144 pub res: Res<ast::NodeId>,
145 pub is_import: bool,
146 pub span: Span,
147 }
148
149 impl MainDefinition {
150 pub fn opt_fn_def_id(self) -> Option<DefId> {
151 if let Res::Def(DefKind::Fn, def_id) = self.res { Some(def_id) } else { None }
152 }
153 }
154
155 /// The "header" of an impl is everything outside the body: a Self type, a trait
156 /// ref (in the case of a trait impl), and a set of predicates (from the
157 /// bounds / where-clauses).
158 #[derive(Clone, Debug, TypeFoldable)]
159 pub struct ImplHeader<'tcx> {
160 pub impl_def_id: DefId,
161 pub self_ty: Ty<'tcx>,
162 pub trait_ref: Option<TraitRef<'tcx>>,
163 pub predicates: Vec<Predicate<'tcx>>,
164 }
165
166 #[derive(Copy, Clone, PartialEq, TyEncodable, TyDecodable, HashStable, Debug)]
167 pub enum ImplPolarity {
168 /// `impl Trait for Type`
169 Positive,
170 /// `impl !Trait for Type`
171 Negative,
172 /// `#[rustc_reservation_impl] impl Trait for Type`
173 ///
174 /// This is a "stability hack", not a real Rust feature.
175 /// See #64631 for details.
176 Reservation,
177 }
178
179 #[derive(Clone, Debug, PartialEq, Eq, Copy, Hash, TyEncodable, TyDecodable, HashStable)]
180 pub enum Visibility {
181 /// Visible everywhere (including in other crates).
182 Public,
183 /// Visible only in the given crate-local module.
184 Restricted(DefId),
185 /// Not visible anywhere in the local crate. This is the visibility of private external items.
186 Invisible,
187 }
188
189 #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable, TyEncodable, TyDecodable)]
190 pub enum BoundConstness {
191 /// `T: Trait`
192 NotConst,
193 /// `T: ~const Trait`
194 ///
195 /// Requires resolving to const only when we are in a const context.
196 ConstIfConst,
197 }
198
199 impl fmt::Display for BoundConstness {
200 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
201 match self {
202 Self::NotConst => f.write_str("normal"),
203 Self::ConstIfConst => f.write_str("`~const`"),
204 }
205 }
206 }
207
208 #[derive(
209 Clone,
210 Debug,
211 PartialEq,
212 Eq,
213 Copy,
214 Hash,
215 TyEncodable,
216 TyDecodable,
217 HashStable,
218 TypeFoldable
219 )]
220 pub struct ClosureSizeProfileData<'tcx> {
221 /// Tuple containing the types of closure captures before the feature `capture_disjoint_fields`
222 pub before_feature_tys: Ty<'tcx>,
223 /// Tuple containing the types of closure captures after the feature `capture_disjoint_fields`
224 pub after_feature_tys: Ty<'tcx>,
225 }
226
227 pub trait DefIdTree: Copy {
228 fn parent(self, id: DefId) -> Option<DefId>;
229
230 fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
231 if descendant.krate != ancestor.krate {
232 return false;
233 }
234
235 while descendant != ancestor {
236 match self.parent(descendant) {
237 Some(parent) => descendant = parent,
238 None => return false,
239 }
240 }
241 true
242 }
243 }
244
245 impl<'tcx> DefIdTree for TyCtxt<'tcx> {
246 fn parent(self, id: DefId) -> Option<DefId> {
247 self.def_key(id).parent.map(|index| DefId { index, ..id })
248 }
249 }
250
251 impl Visibility {
252 pub fn from_hir(visibility: &hir::Visibility<'_>, id: hir::HirId, tcx: TyCtxt<'_>) -> Self {
253 match visibility.node {
254 hir::VisibilityKind::Public => Visibility::Public,
255 hir::VisibilityKind::Crate(_) => Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
256 hir::VisibilityKind::Restricted { ref path, .. } => match path.res {
257 // If there is no resolution, `resolve` will have already reported an error, so
258 // assume that the visibility is public to avoid reporting more privacy errors.
259 Res::Err => Visibility::Public,
260 def => Visibility::Restricted(def.def_id()),
261 },
262 hir::VisibilityKind::Inherited => {
263 Visibility::Restricted(tcx.parent_module(id).to_def_id())
264 }
265 }
266 }
267
268 /// Returns `true` if an item with this visibility is accessible from the given block.
269 pub fn is_accessible_from<T: DefIdTree>(self, module: DefId, tree: T) -> bool {
270 let restriction = match self {
271 // Public items are visible everywhere.
272 Visibility::Public => return true,
273 // Private items from other crates are visible nowhere.
274 Visibility::Invisible => return false,
275 // Restricted items are visible in an arbitrary local module.
276 Visibility::Restricted(other) if other.krate != module.krate => return false,
277 Visibility::Restricted(module) => module,
278 };
279
280 tree.is_descendant_of(module, restriction)
281 }
282
283 /// Returns `true` if this visibility is at least as accessible as the given visibility
284 pub fn is_at_least<T: DefIdTree>(self, vis: Visibility, tree: T) -> bool {
285 let vis_restriction = match vis {
286 Visibility::Public => return self == Visibility::Public,
287 Visibility::Invisible => return true,
288 Visibility::Restricted(module) => module,
289 };
290
291 self.is_accessible_from(vis_restriction, tree)
292 }
293
294 // Returns `true` if this item is visible anywhere in the local crate.
295 pub fn is_visible_locally(self) -> bool {
296 match self {
297 Visibility::Public => true,
298 Visibility::Restricted(def_id) => def_id.is_local(),
299 Visibility::Invisible => false,
300 }
301 }
302 }
303
304 /// The crate variances map is computed during typeck and contains the
305 /// variance of every item in the local crate. You should not use it
306 /// directly, because to do so will make your pass dependent on the
307 /// HIR of every item in the local crate. Instead, use
308 /// `tcx.variances_of()` to get the variance for a *particular*
309 /// item.
310 #[derive(HashStable, Debug)]
311 pub struct CrateVariancesMap<'tcx> {
312 /// For each item with generics, maps to a vector of the variance
313 /// of its generics. If an item has no generics, it will have no
314 /// entry.
315 pub variances: FxHashMap<DefId, &'tcx [ty::Variance]>,
316 }
317
318 // Contains information needed to resolve types and (in the future) look up
319 // the types of AST nodes.
320 #[derive(Copy, Clone, PartialEq, Eq, Hash)]
321 pub struct CReaderCacheKey {
322 pub cnum: Option<CrateNum>,
323 pub pos: usize,
324 }
325
326 #[allow(rustc::usage_of_ty_tykind)]
327 pub struct TyS<'tcx> {
328 /// This field shouldn't be used directly and may be removed in the future.
329 /// Use `TyS::kind()` instead.
330 kind: TyKind<'tcx>,
331 /// This field shouldn't be used directly and may be removed in the future.
332 /// Use `TyS::flags()` instead.
333 flags: TypeFlags,
334
335 /// This is a kind of confusing thing: it stores the smallest
336 /// binder such that
337 ///
338 /// (a) the binder itself captures nothing but
339 /// (b) all the late-bound things within the type are captured
340 /// by some sub-binder.
341 ///
342 /// So, for a type without any late-bound things, like `u32`, this
343 /// will be *innermost*, because that is the innermost binder that
344 /// captures nothing. But for a type `&'D u32`, where `'D` is a
345 /// late-bound region with De Bruijn index `D`, this would be `D + 1`
346 /// -- the binder itself does not capture `D`, but `D` is captured
347 /// by an inner binder.
348 ///
349 /// We call this concept an "exclusive" binder `D` because all
350 /// De Bruijn indices within the type are contained within `0..D`
351 /// (exclusive).
352 outer_exclusive_binder: ty::DebruijnIndex,
353 }
354
355 impl<'tcx> TyS<'tcx> {
356 /// A constructor used only for internal testing.
357 #[allow(rustc::usage_of_ty_tykind)]
358 pub fn make_for_test(
359 kind: TyKind<'tcx>,
360 flags: TypeFlags,
361 outer_exclusive_binder: ty::DebruijnIndex,
362 ) -> TyS<'tcx> {
363 TyS { kind, flags, outer_exclusive_binder }
364 }
365 }
366
367 // `TyS` is used a lot. Make sure it doesn't unintentionally get bigger.
368 #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
369 static_assert_size!(TyS<'_>, 40);
370
371 impl<'tcx> Ord for TyS<'tcx> {
372 fn cmp(&self, other: &TyS<'tcx>) -> Ordering {
373 self.kind().cmp(other.kind())
374 }
375 }
376
377 impl<'tcx> PartialOrd for TyS<'tcx> {
378 fn partial_cmp(&self, other: &TyS<'tcx>) -> Option<Ordering> {
379 Some(self.kind().cmp(other.kind()))
380 }
381 }
382
383 impl<'tcx> PartialEq for TyS<'tcx> {
384 #[inline]
385 fn eq(&self, other: &TyS<'tcx>) -> bool {
386 ptr::eq(self, other)
387 }
388 }
389 impl<'tcx> Eq for TyS<'tcx> {}
390
391 impl<'tcx> Hash for TyS<'tcx> {
392 fn hash<H: Hasher>(&self, s: &mut H) {
393 (self as *const TyS<'_>).hash(s)
394 }
395 }
396
397 impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for TyS<'tcx> {
398 fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
399 let ty::TyS {
400 ref kind,
401
402 // The other fields just provide fast access to information that is
403 // also contained in `kind`, so no need to hash them.
404 flags: _,
405
406 outer_exclusive_binder: _,
407 } = *self;
408
409 kind.hash_stable(hcx, hasher);
410 }
411 }
412
413 #[rustc_diagnostic_item = "Ty"]
414 pub type Ty<'tcx> = &'tcx TyS<'tcx>;
415
416 impl ty::EarlyBoundRegion {
417 /// Does this early bound region have a name? Early bound regions normally
418 /// always have names except when using anonymous lifetimes (`'_`).
419 pub fn has_name(&self) -> bool {
420 self.name != kw::UnderscoreLifetime
421 }
422 }
423
424 #[derive(Debug)]
425 crate struct PredicateInner<'tcx> {
426 kind: Binder<'tcx, PredicateKind<'tcx>>,
427 flags: TypeFlags,
428 /// See the comment for the corresponding field of [TyS].
429 outer_exclusive_binder: ty::DebruijnIndex,
430 }
431
432 #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
433 static_assert_size!(PredicateInner<'_>, 48);
434
435 #[derive(Clone, Copy, Lift)]
436 pub struct Predicate<'tcx> {
437 inner: &'tcx PredicateInner<'tcx>,
438 }
439
440 impl<'tcx> PartialEq for Predicate<'tcx> {
441 fn eq(&self, other: &Self) -> bool {
442 // `self.kind` is always interned.
443 ptr::eq(self.inner, other.inner)
444 }
445 }
446
447 impl Hash for Predicate<'_> {
448 fn hash<H: Hasher>(&self, s: &mut H) {
449 (self.inner as *const PredicateInner<'_>).hash(s)
450 }
451 }
452
453 impl<'tcx> Eq for Predicate<'tcx> {}
454
455 impl<'tcx> Predicate<'tcx> {
456 /// Gets the inner `Binder<'tcx, PredicateKind<'tcx>>`.
457 #[inline]
458 pub fn kind(self) -> Binder<'tcx, PredicateKind<'tcx>> {
459 self.inner.kind
460 }
461 }
462
463 impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for Predicate<'tcx> {
464 fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
465 let PredicateInner {
466 ref kind,
467
468 // The other fields just provide fast access to information that is
469 // also contained in `kind`, so no need to hash them.
470 flags: _,
471 outer_exclusive_binder: _,
472 } = self.inner;
473
474 kind.hash_stable(hcx, hasher);
475 }
476 }
477
478 #[derive(Clone, Copy, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
479 #[derive(HashStable, TypeFoldable)]
480 pub enum PredicateKind<'tcx> {
481 /// Corresponds to `where Foo: Bar<A, B, C>`. `Foo` here would be
482 /// the `Self` type of the trait reference and `A`, `B`, and `C`
483 /// would be the type parameters.
484 Trait(TraitPredicate<'tcx>),
485
486 /// `where 'a: 'b`
487 RegionOutlives(RegionOutlivesPredicate<'tcx>),
488
489 /// `where T: 'a`
490 TypeOutlives(TypeOutlivesPredicate<'tcx>),
491
492 /// `where <T as TraitRef>::Name == X`, approximately.
493 /// See the `ProjectionPredicate` struct for details.
494 Projection(ProjectionPredicate<'tcx>),
495
496 /// No syntax: `T` well-formed.
497 WellFormed(GenericArg<'tcx>),
498
499 /// Trait must be object-safe.
500 ObjectSafe(DefId),
501
502 /// No direct syntax. May be thought of as `where T: FnFoo<...>`
503 /// for some substitutions `...` and `T` being a closure type.
504 /// Satisfied (or refuted) once we know the closure's kind.
505 ClosureKind(DefId, SubstsRef<'tcx>, ClosureKind),
506
507 /// `T1 <: T2`
508 ///
509 /// This obligation is created most often when we have two
510 /// unresolved type variables and hence don't have enough
511 /// information to process the subtyping obligation yet.
512 Subtype(SubtypePredicate<'tcx>),
513
514 /// `T1` coerced to `T2`
515 ///
516 /// Like a subtyping obligation, this is created most often
517 /// when we have two unresolved type variables and hence
518 /// don't have enough information to process the coercion
519 /// obligation yet. At the moment, we actually process coercions
520 /// very much like subtyping and don't handle the full coercion
521 /// logic.
522 Coerce(CoercePredicate<'tcx>),
523
524 /// Constant initializer must evaluate successfully.
525 ConstEvaluatable(ty::Unevaluated<'tcx, ()>),
526
527 /// Constants must be equal. The first component is the const that is expected.
528 ConstEquate(&'tcx Const<'tcx>, &'tcx Const<'tcx>),
529
530 /// Represents a type found in the environment that we can use for implied bounds.
531 ///
532 /// Only used for Chalk.
533 TypeWellFormedFromEnv(Ty<'tcx>),
534 }
535
536 /// The crate outlives map is computed during typeck and contains the
537 /// outlives of every item in the local crate. You should not use it
538 /// directly, because to do so will make your pass dependent on the
539 /// HIR of every item in the local crate. Instead, use
540 /// `tcx.inferred_outlives_of()` to get the outlives for a *particular*
541 /// item.
542 #[derive(HashStable, Debug)]
543 pub struct CratePredicatesMap<'tcx> {
544 /// For each struct with outlive bounds, maps to a vector of the
545 /// predicate of its outlive bounds. If an item has no outlives
546 /// bounds, it will have no entry.
547 pub predicates: FxHashMap<DefId, &'tcx [(Predicate<'tcx>, Span)]>,
548 }
549
550 impl<'tcx> Predicate<'tcx> {
551 /// Performs a substitution suitable for going from a
552 /// poly-trait-ref to supertraits that must hold if that
553 /// poly-trait-ref holds. This is slightly different from a normal
554 /// substitution in terms of what happens with bound regions. See
555 /// lengthy comment below for details.
556 pub fn subst_supertrait(
557 self,
558 tcx: TyCtxt<'tcx>,
559 trait_ref: &ty::PolyTraitRef<'tcx>,
560 ) -> Predicate<'tcx> {
561 // The interaction between HRTB and supertraits is not entirely
562 // obvious. Let me walk you (and myself) through an example.
563 //
564 // Let's start with an easy case. Consider two traits:
565 //
566 // trait Foo<'a>: Bar<'a,'a> { }
567 // trait Bar<'b,'c> { }
568 //
569 // Now, if we have a trait reference `for<'x> T: Foo<'x>`, then
570 // we can deduce that `for<'x> T: Bar<'x,'x>`. Basically, if we
571 // knew that `Foo<'x>` (for any 'x) then we also know that
572 // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
573 // normal substitution.
574 //
575 // In terms of why this is sound, the idea is that whenever there
576 // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
577 // holds. So if there is an impl of `T:Foo<'a>` that applies to
578 // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
579 // `'a`.
580 //
581 // Another example to be careful of is this:
582 //
583 // trait Foo1<'a>: for<'b> Bar1<'a,'b> { }
584 // trait Bar1<'b,'c> { }
585 //
586 // Here, if we have `for<'x> T: Foo1<'x>`, then what do we know?
587 // The answer is that we know `for<'x,'b> T: Bar1<'x,'b>`. The
588 // reason is similar to the previous example: any impl of
589 // `T:Foo1<'x>` must show that `for<'b> T: Bar1<'x, 'b>`. So
590 // basically we would want to collapse the bound lifetimes from
591 // the input (`trait_ref`) and the supertraits.
592 //
593 // To achieve this in practice is fairly straightforward. Let's
594 // consider the more complicated scenario:
595 //
596 // - We start out with `for<'x> T: Foo1<'x>`. In this case, `'x`
597 // has a De Bruijn index of 1. We want to produce `for<'x,'b> T: Bar1<'x,'b>`,
598 // where both `'x` and `'b` would have a DB index of 1.
599 // The substitution from the input trait-ref is therefore going to be
600 // `'a => 'x` (where `'x` has a DB index of 1).
601 // - The super-trait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
602 // early-bound parameter and `'b' is a late-bound parameter with a
603 // DB index of 1.
604 // - If we replace `'a` with `'x` from the input, it too will have
605 // a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
606 // just as we wanted.
607 //
608 // There is only one catch. If we just apply the substitution `'a
609 // => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
610 // adjust the DB index because we substituting into a binder (it
611 // tries to be so smart...) resulting in `for<'x> for<'b>
612 // Bar1<'x,'b>` (we have no syntax for this, so use your
613 // imagination). Basically the 'x will have DB index of 2 and 'b
614 // will have DB index of 1. Not quite what we want. So we apply
615 // the substitution to the *contents* of the trait reference,
616 // rather than the trait reference itself (put another way, the
617 // substitution code expects equal binding levels in the values
618 // from the substitution and the value being substituted into, and
619 // this trick achieves that).
620
621 // Working through the second example:
622 // trait_ref: for<'x> T: Foo1<'^0.0>; substs: [T, '^0.0]
623 // predicate: for<'b> Self: Bar1<'a, '^0.0>; substs: [Self, 'a, '^0.0]
624 // We want to end up with:
625 // for<'x, 'b> T: Bar1<'^0.0, '^0.1>
626 // To do this:
627 // 1) We must shift all bound vars in predicate by the length
628 // of trait ref's bound vars. So, we would end up with predicate like
629 // Self: Bar1<'a, '^0.1>
630 // 2) We can then apply the trait substs to this, ending up with
631 // T: Bar1<'^0.0, '^0.1>
632 // 3) Finally, to create the final bound vars, we concatenate the bound
633 // vars of the trait ref with those of the predicate:
634 // ['x, 'b]
635 let bound_pred = self.kind();
636 let pred_bound_vars = bound_pred.bound_vars();
637 let trait_bound_vars = trait_ref.bound_vars();
638 // 1) Self: Bar1<'a, '^0.0> -> Self: Bar1<'a, '^0.1>
639 let shifted_pred =
640 tcx.shift_bound_var_indices(trait_bound_vars.len(), bound_pred.skip_binder());
641 // 2) Self: Bar1<'a, '^0.1> -> T: Bar1<'^0.0, '^0.1>
642 let new = shifted_pred.subst(tcx, trait_ref.skip_binder().substs);
643 // 3) ['x] + ['b] -> ['x, 'b]
644 let bound_vars =
645 tcx.mk_bound_variable_kinds(trait_bound_vars.iter().chain(pred_bound_vars));
646 tcx.reuse_or_mk_predicate(self, ty::Binder::bind_with_vars(new, bound_vars))
647 }
648 }
649
650 #[derive(Clone, Copy, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
651 #[derive(HashStable, TypeFoldable)]
652 pub struct TraitPredicate<'tcx> {
653 pub trait_ref: TraitRef<'tcx>,
654
655 pub constness: BoundConstness,
656 }
657
658 pub type PolyTraitPredicate<'tcx> = ty::Binder<'tcx, TraitPredicate<'tcx>>;
659
660 impl<'tcx> TraitPredicate<'tcx> {
661 pub fn def_id(self) -> DefId {
662 self.trait_ref.def_id
663 }
664
665 pub fn self_ty(self) -> Ty<'tcx> {
666 self.trait_ref.self_ty()
667 }
668 }
669
670 impl<'tcx> PolyTraitPredicate<'tcx> {
671 pub fn def_id(self) -> DefId {
672 // Ok to skip binder since trait `DefId` does not care about regions.
673 self.skip_binder().def_id()
674 }
675
676 pub fn self_ty(self) -> ty::Binder<'tcx, Ty<'tcx>> {
677 self.map_bound(|trait_ref| trait_ref.self_ty())
678 }
679 }
680
681 #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
682 #[derive(HashStable, TypeFoldable)]
683 pub struct OutlivesPredicate<A, B>(pub A, pub B); // `A: B`
684 pub type RegionOutlivesPredicate<'tcx> = OutlivesPredicate<ty::Region<'tcx>, ty::Region<'tcx>>;
685 pub type TypeOutlivesPredicate<'tcx> = OutlivesPredicate<Ty<'tcx>, ty::Region<'tcx>>;
686 pub type PolyRegionOutlivesPredicate<'tcx> = ty::Binder<'tcx, RegionOutlivesPredicate<'tcx>>;
687 pub type PolyTypeOutlivesPredicate<'tcx> = ty::Binder<'tcx, TypeOutlivesPredicate<'tcx>>;
688
689 /// Encodes that `a` must be a subtype of `b`. The `a_is_expected` flag indicates
690 /// whether the `a` type is the type that we should label as "expected" when
691 /// presenting user diagnostics.
692 #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, TyEncodable, TyDecodable)]
693 #[derive(HashStable, TypeFoldable)]
694 pub struct SubtypePredicate<'tcx> {
695 pub a_is_expected: bool,
696 pub a: Ty<'tcx>,
697 pub b: Ty<'tcx>,
698 }
699 pub type PolySubtypePredicate<'tcx> = ty::Binder<'tcx, SubtypePredicate<'tcx>>;
700
701 /// Encodes that we have to coerce *from* the `a` type to the `b` type.
702 #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, TyEncodable, TyDecodable)]
703 #[derive(HashStable, TypeFoldable)]
704 pub struct CoercePredicate<'tcx> {
705 pub a: Ty<'tcx>,
706 pub b: Ty<'tcx>,
707 }
708 pub type PolyCoercePredicate<'tcx> = ty::Binder<'tcx, CoercePredicate<'tcx>>;
709
710 /// This kind of predicate has no *direct* correspondent in the
711 /// syntax, but it roughly corresponds to the syntactic forms:
712 ///
713 /// 1. `T: TraitRef<..., Item = Type>`
714 /// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
715 ///
716 /// In particular, form #1 is "desugared" to the combination of a
717 /// normal trait predicate (`T: TraitRef<...>`) and one of these
718 /// predicates. Form #2 is a broader form in that it also permits
719 /// equality between arbitrary types. Processing an instance of
720 /// Form #2 eventually yields one of these `ProjectionPredicate`
721 /// instances to normalize the LHS.
722 #[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
723 #[derive(HashStable, TypeFoldable)]
724 pub struct ProjectionPredicate<'tcx> {
725 pub projection_ty: ProjectionTy<'tcx>,
726 pub ty: Ty<'tcx>,
727 }
728
729 pub type PolyProjectionPredicate<'tcx> = Binder<'tcx, ProjectionPredicate<'tcx>>;
730
731 impl<'tcx> PolyProjectionPredicate<'tcx> {
732 /// Returns the `DefId` of the trait of the associated item being projected.
733 #[inline]
734 pub fn trait_def_id(&self, tcx: TyCtxt<'tcx>) -> DefId {
735 self.skip_binder().projection_ty.trait_def_id(tcx)
736 }
737
738 /// Get the [PolyTraitRef] required for this projection to be well formed.
739 /// Note that for generic associated types the predicates of the associated
740 /// type also need to be checked.
741 #[inline]
742 pub fn required_poly_trait_ref(&self, tcx: TyCtxt<'tcx>) -> PolyTraitRef<'tcx> {
743 // Note: unlike with `TraitRef::to_poly_trait_ref()`,
744 // `self.0.trait_ref` is permitted to have escaping regions.
745 // This is because here `self` has a `Binder` and so does our
746 // return value, so we are preserving the number of binding
747 // levels.
748 self.map_bound(|predicate| predicate.projection_ty.trait_ref(tcx))
749 }
750
751 pub fn ty(&self) -> Binder<'tcx, Ty<'tcx>> {
752 self.map_bound(|predicate| predicate.ty)
753 }
754
755 /// The `DefId` of the `TraitItem` for the associated type.
756 ///
757 /// Note that this is not the `DefId` of the `TraitRef` containing this
758 /// associated type, which is in `tcx.associated_item(projection_def_id()).container`.
759 pub fn projection_def_id(&self) -> DefId {
760 // Ok to skip binder since trait `DefId` does not care about regions.
761 self.skip_binder().projection_ty.item_def_id
762 }
763 }
764
765 pub trait ToPolyTraitRef<'tcx> {
766 fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
767 }
768
769 impl<'tcx> ToPolyTraitRef<'tcx> for TraitRef<'tcx> {
770 fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
771 ty::Binder::dummy(*self)
772 }
773 }
774
775 impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
776 fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
777 self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
778 }
779 }
780
781 pub trait ToPredicate<'tcx> {
782 fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx>;
783 }
784
785 impl ToPredicate<'tcx> for Binder<'tcx, PredicateKind<'tcx>> {
786 #[inline(always)]
787 fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
788 tcx.mk_predicate(self)
789 }
790 }
791
792 impl ToPredicate<'tcx> for PredicateKind<'tcx> {
793 #[inline(always)]
794 fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
795 tcx.mk_predicate(Binder::dummy(self))
796 }
797 }
798
799 impl<'tcx> ToPredicate<'tcx> for ConstnessAnd<TraitRef<'tcx>> {
800 fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
801 PredicateKind::Trait(ty::TraitPredicate {
802 trait_ref: self.value,
803 constness: self.constness,
804 })
805 .to_predicate(tcx)
806 }
807 }
808
809 impl<'tcx> ToPredicate<'tcx> for ConstnessAnd<PolyTraitRef<'tcx>> {
810 fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
811 self.value
812 .map_bound(|trait_ref| {
813 PredicateKind::Trait(ty::TraitPredicate { trait_ref, constness: self.constness })
814 })
815 .to_predicate(tcx)
816 }
817 }
818
819 impl<'tcx> ToPredicate<'tcx> for PolyTraitPredicate<'tcx> {
820 fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
821 self.map_bound(PredicateKind::Trait).to_predicate(tcx)
822 }
823 }
824
825 impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> {
826 fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
827 self.map_bound(PredicateKind::RegionOutlives).to_predicate(tcx)
828 }
829 }
830
831 impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> {
832 fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
833 self.map_bound(PredicateKind::TypeOutlives).to_predicate(tcx)
834 }
835 }
836
837 impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
838 fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
839 self.map_bound(PredicateKind::Projection).to_predicate(tcx)
840 }
841 }
842
843 impl<'tcx> Predicate<'tcx> {
844 pub fn to_opt_poly_trait_ref(self) -> Option<ConstnessAnd<PolyTraitRef<'tcx>>> {
845 let predicate = self.kind();
846 match predicate.skip_binder() {
847 PredicateKind::Trait(t) => {
848 Some(ConstnessAnd { constness: t.constness, value: predicate.rebind(t.trait_ref) })
849 }
850 PredicateKind::Projection(..)
851 | PredicateKind::Subtype(..)
852 | PredicateKind::Coerce(..)
853 | PredicateKind::RegionOutlives(..)
854 | PredicateKind::WellFormed(..)
855 | PredicateKind::ObjectSafe(..)
856 | PredicateKind::ClosureKind(..)
857 | PredicateKind::TypeOutlives(..)
858 | PredicateKind::ConstEvaluatable(..)
859 | PredicateKind::ConstEquate(..)
860 | PredicateKind::TypeWellFormedFromEnv(..) => None,
861 }
862 }
863
864 pub fn to_opt_type_outlives(self) -> Option<PolyTypeOutlivesPredicate<'tcx>> {
865 let predicate = self.kind();
866 match predicate.skip_binder() {
867 PredicateKind::TypeOutlives(data) => Some(predicate.rebind(data)),
868 PredicateKind::Trait(..)
869 | PredicateKind::Projection(..)
870 | PredicateKind::Subtype(..)
871 | PredicateKind::Coerce(..)
872 | PredicateKind::RegionOutlives(..)
873 | PredicateKind::WellFormed(..)
874 | PredicateKind::ObjectSafe(..)
875 | PredicateKind::ClosureKind(..)
876 | PredicateKind::ConstEvaluatable(..)
877 | PredicateKind::ConstEquate(..)
878 | PredicateKind::TypeWellFormedFromEnv(..) => None,
879 }
880 }
881 }
882
883 /// Represents the bounds declared on a particular set of type
884 /// parameters. Should eventually be generalized into a flag list of
885 /// where-clauses. You can obtain an `InstantiatedPredicates` list from a
886 /// `GenericPredicates` by using the `instantiate` method. Note that this method
887 /// reflects an important semantic invariant of `InstantiatedPredicates`: while
888 /// the `GenericPredicates` are expressed in terms of the bound type
889 /// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
890 /// represented a set of bounds for some particular instantiation,
891 /// meaning that the generic parameters have been substituted with
892 /// their values.
893 ///
894 /// Example:
895 ///
896 /// struct Foo<T, U: Bar<T>> { ... }
897 ///
898 /// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
899 /// `[[], [U:Bar<T>]]`. Now if there were some particular reference
900 /// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
901 /// [usize:Bar<isize>]]`.
902 #[derive(Clone, Debug, TypeFoldable)]
903 pub struct InstantiatedPredicates<'tcx> {
904 pub predicates: Vec<Predicate<'tcx>>,
905 pub spans: Vec<Span>,
906 }
907
908 impl<'tcx> InstantiatedPredicates<'tcx> {
909 pub fn empty() -> InstantiatedPredicates<'tcx> {
910 InstantiatedPredicates { predicates: vec![], spans: vec![] }
911 }
912
913 pub fn is_empty(&self) -> bool {
914 self.predicates.is_empty()
915 }
916 }
917
918 #[derive(Copy, Clone, Debug, PartialEq, Eq, HashStable, TyEncodable, TyDecodable, TypeFoldable)]
919 pub struct OpaqueTypeKey<'tcx> {
920 pub def_id: DefId,
921 pub substs: SubstsRef<'tcx>,
922 }
923
924 rustc_index::newtype_index! {
925 /// "Universes" are used during type- and trait-checking in the
926 /// presence of `for<..>` binders to control what sets of names are
927 /// visible. Universes are arranged into a tree: the root universe
928 /// contains names that are always visible. Each child then adds a new
929 /// set of names that are visible, in addition to those of its parent.
930 /// We say that the child universe "extends" the parent universe with
931 /// new names.
932 ///
933 /// To make this more concrete, consider this program:
934 ///
935 /// ```
936 /// struct Foo { }
937 /// fn bar<T>(x: T) {
938 /// let y: for<'a> fn(&'a u8, Foo) = ...;
939 /// }
940 /// ```
941 ///
942 /// The struct name `Foo` is in the root universe U0. But the type
943 /// parameter `T`, introduced on `bar`, is in an extended universe U1
944 /// -- i.e., within `bar`, we can name both `T` and `Foo`, but outside
945 /// of `bar`, we cannot name `T`. Then, within the type of `y`, the
946 /// region `'a` is in a universe U2 that extends U1, because we can
947 /// name it inside the fn type but not outside.
948 ///
949 /// Universes are used to do type- and trait-checking around these
950 /// "forall" binders (also called **universal quantification**). The
951 /// idea is that when, in the body of `bar`, we refer to `T` as a
952 /// type, we aren't referring to any type in particular, but rather a
953 /// kind of "fresh" type that is distinct from all other types we have
954 /// actually declared. This is called a **placeholder** type, and we
955 /// use universes to talk about this. In other words, a type name in
956 /// universe 0 always corresponds to some "ground" type that the user
957 /// declared, but a type name in a non-zero universe is a placeholder
958 /// type -- an idealized representative of "types in general" that we
959 /// use for checking generic functions.
960 pub struct UniverseIndex {
961 derive [HashStable]
962 DEBUG_FORMAT = "U{}",
963 }
964 }
965
966 impl UniverseIndex {
967 pub const ROOT: UniverseIndex = UniverseIndex::from_u32(0);
968
969 /// Returns the "next" universe index in order -- this new index
970 /// is considered to extend all previous universes. This
971 /// corresponds to entering a `forall` quantifier. So, for
972 /// example, suppose we have this type in universe `U`:
973 ///
974 /// ```
975 /// for<'a> fn(&'a u32)
976 /// ```
977 ///
978 /// Once we "enter" into this `for<'a>` quantifier, we are in a
979 /// new universe that extends `U` -- in this new universe, we can
980 /// name the region `'a`, but that region was not nameable from
981 /// `U` because it was not in scope there.
982 pub fn next_universe(self) -> UniverseIndex {
983 UniverseIndex::from_u32(self.private.checked_add(1).unwrap())
984 }
985
986 /// Returns `true` if `self` can name a name from `other` -- in other words,
987 /// if the set of names in `self` is a superset of those in
988 /// `other` (`self >= other`).
989 pub fn can_name(self, other: UniverseIndex) -> bool {
990 self.private >= other.private
991 }
992
993 /// Returns `true` if `self` cannot name some names from `other` -- in other
994 /// words, if the set of names in `self` is a strict subset of
995 /// those in `other` (`self < other`).
996 pub fn cannot_name(self, other: UniverseIndex) -> bool {
997 self.private < other.private
998 }
999 }
1000
1001 /// The "placeholder index" fully defines a placeholder region, type, or const. Placeholders are
1002 /// identified by both a universe, as well as a name residing within that universe. Distinct bound
1003 /// regions/types/consts within the same universe simply have an unknown relationship to one
1004 /// another.
1005 #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TyEncodable, TyDecodable, PartialOrd, Ord)]
1006 pub struct Placeholder<T> {
1007 pub universe: UniverseIndex,
1008 pub name: T,
1009 }
1010
1011 impl<'a, T> HashStable<StableHashingContext<'a>> for Placeholder<T>
1012 where
1013 T: HashStable<StableHashingContext<'a>>,
1014 {
1015 fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
1016 self.universe.hash_stable(hcx, hasher);
1017 self.name.hash_stable(hcx, hasher);
1018 }
1019 }
1020
1021 pub type PlaceholderRegion = Placeholder<BoundRegionKind>;
1022
1023 pub type PlaceholderType = Placeholder<BoundVar>;
1024
1025 #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable)]
1026 #[derive(TyEncodable, TyDecodable, PartialOrd, Ord)]
1027 pub struct BoundConst<'tcx> {
1028 pub var: BoundVar,
1029 pub ty: Ty<'tcx>,
1030 }
1031
1032 pub type PlaceholderConst<'tcx> = Placeholder<BoundConst<'tcx>>;
1033
1034 /// A `DefId` which, in case it is a const argument, is potentially bundled with
1035 /// the `DefId` of the generic parameter it instantiates.
1036 ///
1037 /// This is used to avoid calls to `type_of` for const arguments during typeck
1038 /// which cause cycle errors.
1039 ///
1040 /// ```rust
1041 /// struct A;
1042 /// impl A {
1043 /// fn foo<const N: usize>(&self) -> [u8; N] { [0; N] }
1044 /// // ^ const parameter
1045 /// }
1046 /// struct B;
1047 /// impl B {
1048 /// fn foo<const M: u8>(&self) -> usize { 42 }
1049 /// // ^ const parameter
1050 /// }
1051 ///
1052 /// fn main() {
1053 /// let a = A;
1054 /// let _b = a.foo::<{ 3 + 7 }>();
1055 /// // ^^^^^^^^^ const argument
1056 /// }
1057 /// ```
1058 ///
1059 /// Let's look at the call `a.foo::<{ 3 + 7 }>()` here. We do not know
1060 /// which `foo` is used until we know the type of `a`.
1061 ///
1062 /// We only know the type of `a` once we are inside of `typeck(main)`.
1063 /// We also end up normalizing the type of `_b` during `typeck(main)` which
1064 /// requires us to evaluate the const argument.
1065 ///
1066 /// To evaluate that const argument we need to know its type,
1067 /// which we would get using `type_of(const_arg)`. This requires us to
1068 /// resolve `foo` as it can be either `usize` or `u8` in this example.
1069 /// However, resolving `foo` once again requires `typeck(main)` to get the type of `a`,
1070 /// which results in a cycle.
1071 ///
1072 /// In short we must not call `type_of(const_arg)` during `typeck(main)`.
1073 ///
1074 /// When first creating the `ty::Const` of the const argument inside of `typeck` we have
1075 /// already resolved `foo` so we know which const parameter this argument instantiates.
1076 /// This means that we also know the expected result of `type_of(const_arg)` even if we
1077 /// aren't allowed to call that query: it is equal to `type_of(const_param)` which is
1078 /// trivial to compute.
1079 ///
1080 /// If we now want to use that constant in a place which potentionally needs its type
1081 /// we also pass the type of its `const_param`. This is the point of `WithOptConstParam`,
1082 /// except that instead of a `Ty` we bundle the `DefId` of the const parameter.
1083 /// Meaning that we need to use `type_of(const_param_did)` if `const_param_did` is `Some`
1084 /// to get the type of `did`.
1085 #[derive(Copy, Clone, Debug, TypeFoldable, Lift, TyEncodable, TyDecodable)]
1086 #[derive(PartialEq, Eq, PartialOrd, Ord)]
1087 #[derive(Hash, HashStable)]
1088 pub struct WithOptConstParam<T> {
1089 pub did: T,
1090 /// The `DefId` of the corresponding generic parameter in case `did` is
1091 /// a const argument.
1092 ///
1093 /// Note that even if `did` is a const argument, this may still be `None`.
1094 /// All queries taking `WithOptConstParam` start by calling `tcx.opt_const_param_of(def.did)`
1095 /// to potentially update `param_did` in the case it is `None`.
1096 pub const_param_did: Option<DefId>,
1097 }
1098
1099 impl<T> WithOptConstParam<T> {
1100 /// Creates a new `WithOptConstParam` setting `const_param_did` to `None`.
1101 #[inline(always)]
1102 pub fn unknown(did: T) -> WithOptConstParam<T> {
1103 WithOptConstParam { did, const_param_did: None }
1104 }
1105 }
1106
1107 impl WithOptConstParam<LocalDefId> {
1108 /// Returns `Some((did, param_did))` if `def_id` is a const argument,
1109 /// `None` otherwise.
1110 #[inline(always)]
1111 pub fn try_lookup(did: LocalDefId, tcx: TyCtxt<'_>) -> Option<(LocalDefId, DefId)> {
1112 tcx.opt_const_param_of(did).map(|param_did| (did, param_did))
1113 }
1114
1115 /// In case `self` is unknown but `self.did` is a const argument, this returns
1116 /// a `WithOptConstParam` with the correct `const_param_did`.
1117 #[inline(always)]
1118 pub fn try_upgrade(self, tcx: TyCtxt<'_>) -> Option<WithOptConstParam<LocalDefId>> {
1119 if self.const_param_did.is_none() {
1120 if let const_param_did @ Some(_) = tcx.opt_const_param_of(self.did) {
1121 return Some(WithOptConstParam { did: self.did, const_param_did });
1122 }
1123 }
1124
1125 None
1126 }
1127
1128 pub fn to_global(self) -> WithOptConstParam<DefId> {
1129 WithOptConstParam { did: self.did.to_def_id(), const_param_did: self.const_param_did }
1130 }
1131
1132 pub fn def_id_for_type_of(self) -> DefId {
1133 if let Some(did) = self.const_param_did { did } else { self.did.to_def_id() }
1134 }
1135 }
1136
1137 impl WithOptConstParam<DefId> {
1138 pub fn as_local(self) -> Option<WithOptConstParam<LocalDefId>> {
1139 self.did
1140 .as_local()
1141 .map(|did| WithOptConstParam { did, const_param_did: self.const_param_did })
1142 }
1143
1144 pub fn as_const_arg(self) -> Option<(LocalDefId, DefId)> {
1145 if let Some(param_did) = self.const_param_did {
1146 if let Some(did) = self.did.as_local() {
1147 return Some((did, param_did));
1148 }
1149 }
1150
1151 None
1152 }
1153
1154 pub fn is_local(self) -> bool {
1155 self.did.is_local()
1156 }
1157
1158 pub fn def_id_for_type_of(self) -> DefId {
1159 self.const_param_did.unwrap_or(self.did)
1160 }
1161 }
1162
1163 /// When type checking, we use the `ParamEnv` to track
1164 /// details about the set of where-clauses that are in scope at this
1165 /// particular point.
1166 #[derive(Copy, Clone, Hash, PartialEq, Eq)]
1167 pub struct ParamEnv<'tcx> {
1168 /// This packs both caller bounds and the reveal enum into one pointer.
1169 ///
1170 /// Caller bounds are `Obligation`s that the caller must satisfy. This is
1171 /// basically the set of bounds on the in-scope type parameters, translated
1172 /// into `Obligation`s, and elaborated and normalized.
1173 ///
1174 /// Use the `caller_bounds()` method to access.
1175 ///
1176 /// Typically, this is `Reveal::UserFacing`, but during codegen we
1177 /// want `Reveal::All`.
1178 ///
1179 /// Note: This is packed, use the reveal() method to access it.
1180 packed: CopyTaggedPtr<&'tcx List<Predicate<'tcx>>, traits::Reveal, true>,
1181 }
1182
1183 unsafe impl rustc_data_structures::tagged_ptr::Tag for traits::Reveal {
1184 const BITS: usize = 1;
1185 #[inline]
1186 fn into_usize(self) -> usize {
1187 match self {
1188 traits::Reveal::UserFacing => 0,
1189 traits::Reveal::All => 1,
1190 }
1191 }
1192 #[inline]
1193 unsafe fn from_usize(ptr: usize) -> Self {
1194 match ptr {
1195 0 => traits::Reveal::UserFacing,
1196 1 => traits::Reveal::All,
1197 _ => std::hint::unreachable_unchecked(),
1198 }
1199 }
1200 }
1201
1202 impl<'tcx> fmt::Debug for ParamEnv<'tcx> {
1203 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1204 f.debug_struct("ParamEnv")
1205 .field("caller_bounds", &self.caller_bounds())
1206 .field("reveal", &self.reveal())
1207 .finish()
1208 }
1209 }
1210
1211 impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for ParamEnv<'tcx> {
1212 fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
1213 self.caller_bounds().hash_stable(hcx, hasher);
1214 self.reveal().hash_stable(hcx, hasher);
1215 }
1216 }
1217
1218 impl<'tcx> TypeFoldable<'tcx> for ParamEnv<'tcx> {
1219 fn super_fold_with<F: ty::fold::TypeFolder<'tcx>>(self, folder: &mut F) -> Self {
1220 ParamEnv::new(self.caller_bounds().fold_with(folder), self.reveal().fold_with(folder))
1221 }
1222
1223 fn super_visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
1224 self.caller_bounds().visit_with(visitor)?;
1225 self.reveal().visit_with(visitor)
1226 }
1227 }
1228
1229 impl<'tcx> ParamEnv<'tcx> {
1230 /// Construct a trait environment suitable for contexts where
1231 /// there are no where-clauses in scope. Hidden types (like `impl
1232 /// Trait`) are left hidden, so this is suitable for ordinary
1233 /// type-checking.
1234 #[inline]
1235 pub fn empty() -> Self {
1236 Self::new(List::empty(), Reveal::UserFacing)
1237 }
1238
1239 #[inline]
1240 pub fn caller_bounds(self) -> &'tcx List<Predicate<'tcx>> {
1241 self.packed.pointer()
1242 }
1243
1244 #[inline]
1245 pub fn reveal(self) -> traits::Reveal {
1246 self.packed.tag()
1247 }
1248
1249 /// Construct a trait environment with no where-clauses in scope
1250 /// where the values of all `impl Trait` and other hidden types
1251 /// are revealed. This is suitable for monomorphized, post-typeck
1252 /// environments like codegen or doing optimizations.
1253 ///
1254 /// N.B., if you want to have predicates in scope, use `ParamEnv::new`,
1255 /// or invoke `param_env.with_reveal_all()`.
1256 #[inline]
1257 pub fn reveal_all() -> Self {
1258 Self::new(List::empty(), Reveal::All)
1259 }
1260
1261 /// Construct a trait environment with the given set of predicates.
1262 #[inline]
1263 pub fn new(caller_bounds: &'tcx List<Predicate<'tcx>>, reveal: Reveal) -> Self {
1264 ty::ParamEnv { packed: CopyTaggedPtr::new(caller_bounds, reveal) }
1265 }
1266
1267 pub fn with_user_facing(mut self) -> Self {
1268 self.packed.set_tag(Reveal::UserFacing);
1269 self
1270 }
1271
1272 /// Returns a new parameter environment with the same clauses, but
1273 /// which "reveals" the true results of projections in all cases
1274 /// (even for associated types that are specializable). This is
1275 /// the desired behavior during codegen and certain other special
1276 /// contexts; normally though we want to use `Reveal::UserFacing`,
1277 /// which is the default.
1278 /// All opaque types in the caller_bounds of the `ParamEnv`
1279 /// will be normalized to their underlying types.
1280 /// See PR #65989 and issue #65918 for more details
1281 pub fn with_reveal_all_normalized(self, tcx: TyCtxt<'tcx>) -> Self {
1282 if self.packed.tag() == traits::Reveal::All {
1283 return self;
1284 }
1285
1286 ParamEnv::new(tcx.normalize_opaque_types(self.caller_bounds()), Reveal::All)
1287 }
1288
1289 /// Returns this same environment but with no caller bounds.
1290 #[inline]
1291 pub fn without_caller_bounds(self) -> Self {
1292 Self::new(List::empty(), self.reveal())
1293 }
1294
1295 /// Creates a suitable environment in which to perform trait
1296 /// queries on the given value. When type-checking, this is simply
1297 /// the pair of the environment plus value. But when reveal is set to
1298 /// All, then if `value` does not reference any type parameters, we will
1299 /// pair it with the empty environment. This improves caching and is generally
1300 /// invisible.
1301 ///
1302 /// N.B., we preserve the environment when type-checking because it
1303 /// is possible for the user to have wacky where-clauses like
1304 /// `where Box<u32>: Copy`, which are clearly never
1305 /// satisfiable. We generally want to behave as if they were true,
1306 /// although the surrounding function is never reachable.
1307 pub fn and<T: TypeFoldable<'tcx>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
1308 match self.reveal() {
1309 Reveal::UserFacing => ParamEnvAnd { param_env: self, value },
1310
1311 Reveal::All => {
1312 if value.is_known_global() {
1313 ParamEnvAnd { param_env: self.without_caller_bounds(), value }
1314 } else {
1315 ParamEnvAnd { param_env: self, value }
1316 }
1317 }
1318 }
1319 }
1320 }
1321
1322 #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TypeFoldable)]
1323 pub struct ConstnessAnd<T> {
1324 pub constness: BoundConstness,
1325 pub value: T,
1326 }
1327
1328 // FIXME(ecstaticmorse): Audit all occurrences of `without_const().to_predicate(tcx)` to ensure that
1329 // the constness of trait bounds is being propagated correctly.
1330 pub trait WithConstness: Sized {
1331 #[inline]
1332 fn with_constness(self, constness: BoundConstness) -> ConstnessAnd<Self> {
1333 ConstnessAnd { constness, value: self }
1334 }
1335
1336 #[inline]
1337 fn with_const_if_const(self) -> ConstnessAnd<Self> {
1338 self.with_constness(BoundConstness::ConstIfConst)
1339 }
1340
1341 #[inline]
1342 fn without_const(self) -> ConstnessAnd<Self> {
1343 self.with_constness(BoundConstness::NotConst)
1344 }
1345 }
1346
1347 impl<T> WithConstness for T {}
1348
1349 #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TypeFoldable)]
1350 pub struct ParamEnvAnd<'tcx, T> {
1351 pub param_env: ParamEnv<'tcx>,
1352 pub value: T,
1353 }
1354
1355 impl<'tcx, T> ParamEnvAnd<'tcx, T> {
1356 pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
1357 (self.param_env, self.value)
1358 }
1359 }
1360
1361 impl<'a, 'tcx, T> HashStable<StableHashingContext<'a>> for ParamEnvAnd<'tcx, T>
1362 where
1363 T: HashStable<StableHashingContext<'a>>,
1364 {
1365 fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
1366 let ParamEnvAnd { ref param_env, ref value } = *self;
1367
1368 param_env.hash_stable(hcx, hasher);
1369 value.hash_stable(hcx, hasher);
1370 }
1371 }
1372
1373 #[derive(Copy, Clone, Debug, HashStable)]
1374 pub struct Destructor {
1375 /// The `DefId` of the destructor method
1376 pub did: DefId,
1377 }
1378
1379 bitflags! {
1380 #[derive(HashStable)]
1381 pub struct VariantFlags: u32 {
1382 const NO_VARIANT_FLAGS = 0;
1383 /// Indicates whether the field list of this variant is `#[non_exhaustive]`.
1384 const IS_FIELD_LIST_NON_EXHAUSTIVE = 1 << 0;
1385 /// Indicates whether this variant was obtained as part of recovering from
1386 /// a syntactic error. May be incomplete or bogus.
1387 const IS_RECOVERED = 1 << 1;
1388 }
1389 }
1390
1391 /// Definition of a variant -- a struct's fields or an enum variant.
1392 #[derive(Debug, HashStable)]
1393 pub struct VariantDef {
1394 /// `DefId` that identifies the variant itself.
1395 /// If this variant belongs to a struct or union, then this is a copy of its `DefId`.
1396 pub def_id: DefId,
1397 /// `DefId` that identifies the variant's constructor.
1398 /// If this variant is a struct variant, then this is `None`.
1399 pub ctor_def_id: Option<DefId>,
1400 /// Variant or struct name.
1401 #[stable_hasher(project(name))]
1402 pub ident: Ident,
1403 /// Discriminant of this variant.
1404 pub discr: VariantDiscr,
1405 /// Fields of this variant.
1406 pub fields: Vec<FieldDef>,
1407 /// Type of constructor of variant.
1408 pub ctor_kind: CtorKind,
1409 /// Flags of the variant (e.g. is field list non-exhaustive)?
1410 flags: VariantFlags,
1411 }
1412
1413 impl VariantDef {
1414 /// Creates a new `VariantDef`.
1415 ///
1416 /// `variant_did` is the `DefId` that identifies the enum variant (if this `VariantDef`
1417 /// represents an enum variant).
1418 ///
1419 /// `ctor_did` is the `DefId` that identifies the constructor of unit or
1420 /// tuple-variants/structs. If this is a `struct`-variant then this should be `None`.
1421 ///
1422 /// `parent_did` is the `DefId` of the `AdtDef` representing the enum or struct that
1423 /// owns this variant. It is used for checking if a struct has `#[non_exhaustive]` w/out having
1424 /// to go through the redirect of checking the ctor's attributes - but compiling a small crate
1425 /// requires loading the `AdtDef`s for all the structs in the universe (e.g., coherence for any
1426 /// built-in trait), and we do not want to load attributes twice.
1427 ///
1428 /// If someone speeds up attribute loading to not be a performance concern, they can
1429 /// remove this hack and use the constructor `DefId` everywhere.
1430 pub fn new(
1431 ident: Ident,
1432 variant_did: Option<DefId>,
1433 ctor_def_id: Option<DefId>,
1434 discr: VariantDiscr,
1435 fields: Vec<FieldDef>,
1436 ctor_kind: CtorKind,
1437 adt_kind: AdtKind,
1438 parent_did: DefId,
1439 recovered: bool,
1440 is_field_list_non_exhaustive: bool,
1441 ) -> Self {
1442 debug!(
1443 "VariantDef::new(ident = {:?}, variant_did = {:?}, ctor_def_id = {:?}, discr = {:?},
1444 fields = {:?}, ctor_kind = {:?}, adt_kind = {:?}, parent_did = {:?})",
1445 ident, variant_did, ctor_def_id, discr, fields, ctor_kind, adt_kind, parent_did,
1446 );
1447
1448 let mut flags = VariantFlags::NO_VARIANT_FLAGS;
1449 if is_field_list_non_exhaustive {
1450 flags |= VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE;
1451 }
1452
1453 if recovered {
1454 flags |= VariantFlags::IS_RECOVERED;
1455 }
1456
1457 VariantDef {
1458 def_id: variant_did.unwrap_or(parent_did),
1459 ctor_def_id,
1460 ident,
1461 discr,
1462 fields,
1463 ctor_kind,
1464 flags,
1465 }
1466 }
1467
1468 /// Is this field list non-exhaustive?
1469 #[inline]
1470 pub fn is_field_list_non_exhaustive(&self) -> bool {
1471 self.flags.intersects(VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE)
1472 }
1473
1474 /// Was this variant obtained as part of recovering from a syntactic error?
1475 #[inline]
1476 pub fn is_recovered(&self) -> bool {
1477 self.flags.intersects(VariantFlags::IS_RECOVERED)
1478 }
1479 }
1480
1481 #[derive(Copy, Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)]
1482 pub enum VariantDiscr {
1483 /// Explicit value for this variant, i.e., `X = 123`.
1484 /// The `DefId` corresponds to the embedded constant.
1485 Explicit(DefId),
1486
1487 /// The previous variant's discriminant plus one.
1488 /// For efficiency reasons, the distance from the
1489 /// last `Explicit` discriminant is being stored,
1490 /// or `0` for the first variant, if it has none.
1491 Relative(u32),
1492 }
1493
1494 #[derive(Debug, HashStable)]
1495 pub struct FieldDef {
1496 pub did: DefId,
1497 #[stable_hasher(project(name))]
1498 pub ident: Ident,
1499 pub vis: Visibility,
1500 }
1501
1502 bitflags! {
1503 #[derive(TyEncodable, TyDecodable, Default, HashStable)]
1504 pub struct ReprFlags: u8 {
1505 const IS_C = 1 << 0;
1506 const IS_SIMD = 1 << 1;
1507 const IS_TRANSPARENT = 1 << 2;
1508 // Internal only for now. If true, don't reorder fields.
1509 const IS_LINEAR = 1 << 3;
1510 // If true, don't expose any niche to type's context.
1511 const HIDE_NICHE = 1 << 4;
1512 // Any of these flags being set prevent field reordering optimisation.
1513 const IS_UNOPTIMISABLE = ReprFlags::IS_C.bits |
1514 ReprFlags::IS_SIMD.bits |
1515 ReprFlags::IS_LINEAR.bits;
1516 }
1517 }
1518
1519 /// Represents the repr options provided by the user,
1520 #[derive(Copy, Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Default, HashStable)]
1521 pub struct ReprOptions {
1522 pub int: Option<attr::IntType>,
1523 pub align: Option<Align>,
1524 pub pack: Option<Align>,
1525 pub flags: ReprFlags,
1526 }
1527
1528 impl ReprOptions {
1529 pub fn new(tcx: TyCtxt<'_>, did: DefId) -> ReprOptions {
1530 let mut flags = ReprFlags::empty();
1531 let mut size = None;
1532 let mut max_align: Option<Align> = None;
1533 let mut min_pack: Option<Align> = None;
1534 for attr in tcx.get_attrs(did).iter() {
1535 for r in attr::find_repr_attrs(&tcx.sess, attr) {
1536 flags.insert(match r {
1537 attr::ReprC => ReprFlags::IS_C,
1538 attr::ReprPacked(pack) => {
1539 let pack = Align::from_bytes(pack as u64).unwrap();
1540 min_pack = Some(if let Some(min_pack) = min_pack {
1541 min_pack.min(pack)
1542 } else {
1543 pack
1544 });
1545 ReprFlags::empty()
1546 }
1547 attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
1548 attr::ReprNoNiche => ReprFlags::HIDE_NICHE,
1549 attr::ReprSimd => ReprFlags::IS_SIMD,
1550 attr::ReprInt(i) => {
1551 size = Some(i);
1552 ReprFlags::empty()
1553 }
1554 attr::ReprAlign(align) => {
1555 max_align = max_align.max(Some(Align::from_bytes(align as u64).unwrap()));
1556 ReprFlags::empty()
1557 }
1558 });
1559 }
1560 }
1561
1562 // This is here instead of layout because the choice must make it into metadata.
1563 if !tcx.consider_optimizing(|| format!("Reorder fields of {:?}", tcx.def_path_str(did))) {
1564 flags.insert(ReprFlags::IS_LINEAR);
1565 }
1566 ReprOptions { int: size, align: max_align, pack: min_pack, flags }
1567 }
1568
1569 #[inline]
1570 pub fn simd(&self) -> bool {
1571 self.flags.contains(ReprFlags::IS_SIMD)
1572 }
1573 #[inline]
1574 pub fn c(&self) -> bool {
1575 self.flags.contains(ReprFlags::IS_C)
1576 }
1577 #[inline]
1578 pub fn packed(&self) -> bool {
1579 self.pack.is_some()
1580 }
1581 #[inline]
1582 pub fn transparent(&self) -> bool {
1583 self.flags.contains(ReprFlags::IS_TRANSPARENT)
1584 }
1585 #[inline]
1586 pub fn linear(&self) -> bool {
1587 self.flags.contains(ReprFlags::IS_LINEAR)
1588 }
1589 #[inline]
1590 pub fn hide_niche(&self) -> bool {
1591 self.flags.contains(ReprFlags::HIDE_NICHE)
1592 }
1593
1594 /// Returns the discriminant type, given these `repr` options.
1595 /// This must only be called on enums!
1596 pub fn discr_type(&self) -> attr::IntType {
1597 self.int.unwrap_or(attr::SignedInt(ast::IntTy::Isize))
1598 }
1599
1600 /// Returns `true` if this `#[repr()]` should inhabit "smart enum
1601 /// layout" optimizations, such as representing `Foo<&T>` as a
1602 /// single pointer.
1603 pub fn inhibit_enum_layout_opt(&self) -> bool {
1604 self.c() || self.int.is_some()
1605 }
1606
1607 /// Returns `true` if this `#[repr()]` should inhibit struct field reordering
1608 /// optimizations, such as with `repr(C)`, `repr(packed(1))`, or `repr(<int>)`.
1609 pub fn inhibit_struct_field_reordering_opt(&self) -> bool {
1610 if let Some(pack) = self.pack {
1611 if pack.bytes() == 1 {
1612 return true;
1613 }
1614 }
1615 self.flags.intersects(ReprFlags::IS_UNOPTIMISABLE) || self.int.is_some()
1616 }
1617
1618 /// Returns `true` if this `#[repr()]` should inhibit union ABI optimisations.
1619 pub fn inhibit_union_abi_opt(&self) -> bool {
1620 self.c()
1621 }
1622 }
1623
1624 impl<'tcx> FieldDef {
1625 /// Returns the type of this field. The `subst` is typically obtained
1626 /// via the second field of `TyKind::AdtDef`.
1627 pub fn ty(&self, tcx: TyCtxt<'tcx>, subst: SubstsRef<'tcx>) -> Ty<'tcx> {
1628 tcx.type_of(self.did).subst(tcx, subst)
1629 }
1630 }
1631
1632 pub type Attributes<'tcx> = &'tcx [ast::Attribute];
1633
1634 #[derive(Debug, PartialEq, Eq)]
1635 pub enum ImplOverlapKind {
1636 /// These impls are always allowed to overlap.
1637 Permitted {
1638 /// Whether or not the impl is permitted due to the trait being a `#[marker]` trait
1639 marker: bool,
1640 },
1641 /// These impls are allowed to overlap, but that raises
1642 /// an issue #33140 future-compatibility warning.
1643 ///
1644 /// Some background: in Rust 1.0, the trait-object types `Send + Sync` (today's
1645 /// `dyn Send + Sync`) and `Sync + Send` (now `dyn Sync + Send`) were different.
1646 ///
1647 /// The widely-used version 0.1.0 of the crate `traitobject` had accidentally relied
1648 /// that difference, making what reduces to the following set of impls:
1649 ///
1650 /// ```
1651 /// trait Trait {}
1652 /// impl Trait for dyn Send + Sync {}
1653 /// impl Trait for dyn Sync + Send {}
1654 /// ```
1655 ///
1656 /// Obviously, once we made these types be identical, that code causes a coherence
1657 /// error and a fairly big headache for us. However, luckily for us, the trait
1658 /// `Trait` used in this case is basically a marker trait, and therefore having
1659 /// overlapping impls for it is sound.
1660 ///
1661 /// To handle this, we basically regard the trait as a marker trait, with an additional
1662 /// future-compatibility warning. To avoid accidentally "stabilizing" this feature,
1663 /// it has the following restrictions:
1664 ///
1665 /// 1. The trait must indeed be a marker-like trait (i.e., no items), and must be
1666 /// positive impls.
1667 /// 2. The trait-ref of both impls must be equal.
1668 /// 3. The trait-ref of both impls must be a trait object type consisting only of
1669 /// marker traits.
1670 /// 4. Neither of the impls can have any where-clauses.
1671 ///
1672 /// Once `traitobject` 0.1.0 is no longer an active concern, this hack can be removed.
1673 Issue33140,
1674 }
1675
1676 impl<'tcx> TyCtxt<'tcx> {
1677 pub fn typeck_body(self, body: hir::BodyId) -> &'tcx TypeckResults<'tcx> {
1678 self.typeck(self.hir().body_owner_def_id(body))
1679 }
1680
1681 /// Returns an iterator of the `DefId`s for all body-owners in this
1682 /// crate. If you would prefer to iterate over the bodies
1683 /// themselves, you can do `self.hir().krate().body_ids.iter()`.
1684 pub fn body_owners(self) -> impl Iterator<Item = LocalDefId> + Captures<'tcx> + 'tcx {
1685 self.hir().krate().bodies.keys().map(move |&body_id| self.hir().body_owner_def_id(body_id))
1686 }
1687
1688 pub fn par_body_owners<F: Fn(LocalDefId) + sync::Sync + sync::Send>(self, f: F) {
1689 par_iter(&self.hir().krate().bodies)
1690 .for_each(|(&body_id, _)| f(self.hir().body_owner_def_id(body_id)));
1691 }
1692
1693 pub fn provided_trait_methods(self, id: DefId) -> impl 'tcx + Iterator<Item = &'tcx AssocItem> {
1694 self.associated_items(id)
1695 .in_definition_order()
1696 .filter(|item| item.kind == AssocKind::Fn && item.defaultness.has_value())
1697 }
1698
1699 fn item_name_from_hir(self, def_id: DefId) -> Option<Ident> {
1700 self.hir().get_if_local(def_id).and_then(|node| node.ident())
1701 }
1702
1703 fn item_name_from_def_id(self, def_id: DefId) -> Option<Symbol> {
1704 if def_id.index == CRATE_DEF_INDEX {
1705 Some(self.crate_name(def_id.krate))
1706 } else {
1707 let def_key = self.def_key(def_id);
1708 match def_key.disambiguated_data.data {
1709 // The name of a constructor is that of its parent.
1710 rustc_hir::definitions::DefPathData::Ctor => self.item_name_from_def_id(DefId {
1711 krate: def_id.krate,
1712 index: def_key.parent.unwrap(),
1713 }),
1714 _ => def_key.disambiguated_data.data.get_opt_name(),
1715 }
1716 }
1717 }
1718
1719 /// Look up the name of an item across crates. This does not look at HIR.
1720 ///
1721 /// When possible, this function should be used for cross-crate lookups over
1722 /// [`opt_item_name`] to avoid invalidating the incremental cache. If you
1723 /// need to handle items without a name, or HIR items that will not be
1724 /// serialized cross-crate, or if you need the span of the item, use
1725 /// [`opt_item_name`] instead.
1726 ///
1727 /// [`opt_item_name`]: Self::opt_item_name
1728 pub fn item_name(self, id: DefId) -> Symbol {
1729 // Look at cross-crate items first to avoid invalidating the incremental cache
1730 // unless we have to.
1731 self.item_name_from_def_id(id).unwrap_or_else(|| {
1732 bug!("item_name: no name for {:?}", self.def_path(id));
1733 })
1734 }
1735
1736 /// Look up the name and span of an item or [`Node`].
1737 ///
1738 /// See [`item_name`][Self::item_name] for more information.
1739 pub fn opt_item_name(self, def_id: DefId) -> Option<Ident> {
1740 // Look at the HIR first so the span will be correct if this is a local item.
1741 self.item_name_from_hir(def_id)
1742 .or_else(|| self.item_name_from_def_id(def_id).map(Ident::with_dummy_span))
1743 }
1744
1745 pub fn opt_associated_item(self, def_id: DefId) -> Option<&'tcx AssocItem> {
1746 if let DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy = self.def_kind(def_id) {
1747 Some(self.associated_item(def_id))
1748 } else {
1749 None
1750 }
1751 }
1752
1753 pub fn field_index(self, hir_id: hir::HirId, typeck_results: &TypeckResults<'_>) -> usize {
1754 typeck_results.field_indices().get(hir_id).cloned().expect("no index for a field")
1755 }
1756
1757 pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<usize> {
1758 variant.fields.iter().position(|field| self.hygienic_eq(ident, field.ident, variant.def_id))
1759 }
1760
1761 /// Returns `true` if the impls are the same polarity and the trait either
1762 /// has no items or is annotated `#[marker]` and prevents item overrides.
1763 pub fn impls_are_allowed_to_overlap(
1764 self,
1765 def_id1: DefId,
1766 def_id2: DefId,
1767 ) -> Option<ImplOverlapKind> {
1768 // If either trait impl references an error, they're allowed to overlap,
1769 // as one of them essentially doesn't exist.
1770 if self.impl_trait_ref(def_id1).map_or(false, |tr| tr.references_error())
1771 || self.impl_trait_ref(def_id2).map_or(false, |tr| tr.references_error())
1772 {
1773 return Some(ImplOverlapKind::Permitted { marker: false });
1774 }
1775
1776 match (self.impl_polarity(def_id1), self.impl_polarity(def_id2)) {
1777 (ImplPolarity::Reservation, _) | (_, ImplPolarity::Reservation) => {
1778 // `#[rustc_reservation_impl]` impls don't overlap with anything
1779 debug!(
1780 "impls_are_allowed_to_overlap({:?}, {:?}) = Some(Permitted) (reservations)",
1781 def_id1, def_id2
1782 );
1783 return Some(ImplOverlapKind::Permitted { marker: false });
1784 }
1785 (ImplPolarity::Positive, ImplPolarity::Negative)
1786 | (ImplPolarity::Negative, ImplPolarity::Positive) => {
1787 // `impl AutoTrait for Type` + `impl !AutoTrait for Type`
1788 debug!(
1789 "impls_are_allowed_to_overlap({:?}, {:?}) - None (differing polarities)",
1790 def_id1, def_id2
1791 );
1792 return None;
1793 }
1794 (ImplPolarity::Positive, ImplPolarity::Positive)
1795 | (ImplPolarity::Negative, ImplPolarity::Negative) => {}
1796 };
1797
1798 let is_marker_overlap = {
1799 let is_marker_impl = |def_id: DefId| -> bool {
1800 let trait_ref = self.impl_trait_ref(def_id);
1801 trait_ref.map_or(false, |tr| self.trait_def(tr.def_id).is_marker)
1802 };
1803 is_marker_impl(def_id1) && is_marker_impl(def_id2)
1804 };
1805
1806 if is_marker_overlap {
1807 debug!(
1808 "impls_are_allowed_to_overlap({:?}, {:?}) = Some(Permitted) (marker overlap)",
1809 def_id1, def_id2
1810 );
1811 Some(ImplOverlapKind::Permitted { marker: true })
1812 } else {
1813 if let Some(self_ty1) = self.issue33140_self_ty(def_id1) {
1814 if let Some(self_ty2) = self.issue33140_self_ty(def_id2) {
1815 if self_ty1 == self_ty2 {
1816 debug!(
1817 "impls_are_allowed_to_overlap({:?}, {:?}) - issue #33140 HACK",
1818 def_id1, def_id2
1819 );
1820 return Some(ImplOverlapKind::Issue33140);
1821 } else {
1822 debug!(
1823 "impls_are_allowed_to_overlap({:?}, {:?}) - found {:?} != {:?}",
1824 def_id1, def_id2, self_ty1, self_ty2
1825 );
1826 }
1827 }
1828 }
1829
1830 debug!("impls_are_allowed_to_overlap({:?}, {:?}) = None", def_id1, def_id2);
1831 None
1832 }
1833 }
1834
1835 /// Returns `ty::VariantDef` if `res` refers to a struct,
1836 /// or variant or their constructors, panics otherwise.
1837 pub fn expect_variant_res(self, res: Res) -> &'tcx VariantDef {
1838 match res {
1839 Res::Def(DefKind::Variant, did) => {
1840 let enum_did = self.parent(did).unwrap();
1841 self.adt_def(enum_did).variant_with_id(did)
1842 }
1843 Res::Def(DefKind::Struct | DefKind::Union, did) => self.adt_def(did).non_enum_variant(),
1844 Res::Def(DefKind::Ctor(CtorOf::Variant, ..), variant_ctor_did) => {
1845 let variant_did = self.parent(variant_ctor_did).unwrap();
1846 let enum_did = self.parent(variant_did).unwrap();
1847 self.adt_def(enum_did).variant_with_ctor_id(variant_ctor_did)
1848 }
1849 Res::Def(DefKind::Ctor(CtorOf::Struct, ..), ctor_did) => {
1850 let struct_did = self.parent(ctor_did).expect("struct ctor has no parent");
1851 self.adt_def(struct_did).non_enum_variant()
1852 }
1853 _ => bug!("expect_variant_res used with unexpected res {:?}", res),
1854 }
1855 }
1856
1857 /// Returns the possibly-auto-generated MIR of a `(DefId, Subst)` pair.
1858 pub fn instance_mir(self, instance: ty::InstanceDef<'tcx>) -> &'tcx Body<'tcx> {
1859 match instance {
1860 ty::InstanceDef::Item(def) => match self.def_kind(def.did) {
1861 DefKind::Const
1862 | DefKind::Static
1863 | DefKind::AssocConst
1864 | DefKind::Ctor(..)
1865 | DefKind::AnonConst => self.mir_for_ctfe_opt_const_arg(def),
1866 // If the caller wants `mir_for_ctfe` of a function they should not be using
1867 // `instance_mir`, so we'll assume const fn also wants the optimized version.
1868 _ => {
1869 assert_eq!(def.const_param_did, None);
1870 self.optimized_mir(def.did)
1871 }
1872 },
1873 ty::InstanceDef::VtableShim(..)
1874 | ty::InstanceDef::ReifyShim(..)
1875 | ty::InstanceDef::Intrinsic(..)
1876 | ty::InstanceDef::FnPtrShim(..)
1877 | ty::InstanceDef::Virtual(..)
1878 | ty::InstanceDef::ClosureOnceShim { .. }
1879 | ty::InstanceDef::DropGlue(..)
1880 | ty::InstanceDef::CloneShim(..) => self.mir_shims(instance),
1881 }
1882 }
1883
1884 /// Gets the attributes of a definition.
1885 pub fn get_attrs(self, did: DefId) -> Attributes<'tcx> {
1886 if let Some(did) = did.as_local() {
1887 self.hir().attrs(self.hir().local_def_id_to_hir_id(did))
1888 } else {
1889 self.item_attrs(did)
1890 }
1891 }
1892
1893 /// Determines whether an item is annotated with an attribute.
1894 pub fn has_attr(self, did: DefId, attr: Symbol) -> bool {
1895 self.sess.contains_name(&self.get_attrs(did), attr)
1896 }
1897
1898 /// Returns `true` if this is an `auto trait`.
1899 pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
1900 self.trait_def(trait_def_id).has_auto_impl
1901 }
1902
1903 /// Returns layout of a generator. Layout might be unavailable if the
1904 /// generator is tainted by errors.
1905 pub fn generator_layout(self, def_id: DefId) -> Option<&'tcx GeneratorLayout<'tcx>> {
1906 self.optimized_mir(def_id).generator_layout()
1907 }
1908
1909 /// Given the `DefId` of an impl, returns the `DefId` of the trait it implements.
1910 /// If it implements no trait, returns `None`.
1911 pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
1912 self.impl_trait_ref(def_id).map(|tr| tr.def_id)
1913 }
1914
1915 /// If the given defid describes a method belonging to an impl, returns the
1916 /// `DefId` of the impl that the method belongs to; otherwise, returns `None`.
1917 pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
1918 self.opt_associated_item(def_id).and_then(|trait_item| match trait_item.container {
1919 TraitContainer(_) => None,
1920 ImplContainer(def_id) => Some(def_id),
1921 })
1922 }
1923
1924 /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
1925 /// with the name of the crate containing the impl.
1926 pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol> {
1927 if let Some(impl_did) = impl_did.as_local() {
1928 let hir_id = self.hir().local_def_id_to_hir_id(impl_did);
1929 Ok(self.hir().span(hir_id))
1930 } else {
1931 Err(self.crate_name(impl_did.krate))
1932 }
1933 }
1934
1935 /// Hygienically compares a use-site name (`use_name`) for a field or an associated item with
1936 /// its supposed definition name (`def_name`). The method also needs `DefId` of the supposed
1937 /// definition's parent/scope to perform comparison.
1938 pub fn hygienic_eq(self, use_name: Ident, def_name: Ident, def_parent_def_id: DefId) -> bool {
1939 // We could use `Ident::eq` here, but we deliberately don't. The name
1940 // comparison fails frequently, and we want to avoid the expensive
1941 // `normalize_to_macros_2_0()` calls required for the span comparison whenever possible.
1942 use_name.name == def_name.name
1943 && use_name
1944 .span
1945 .ctxt()
1946 .hygienic_eq(def_name.span.ctxt(), self.expn_that_defined(def_parent_def_id))
1947 }
1948
1949 pub fn adjust_ident(self, mut ident: Ident, scope: DefId) -> Ident {
1950 ident.span.normalize_to_macros_2_0_and_adjust(self.expn_that_defined(scope));
1951 ident
1952 }
1953
1954 pub fn adjust_ident_and_get_scope(
1955 self,
1956 mut ident: Ident,
1957 scope: DefId,
1958 block: hir::HirId,
1959 ) -> (Ident, DefId) {
1960 let scope = ident
1961 .span
1962 .normalize_to_macros_2_0_and_adjust(self.expn_that_defined(scope))
1963 .and_then(|actual_expansion| actual_expansion.expn_data().parent_module)
1964 .unwrap_or_else(|| self.parent_module(block).to_def_id());
1965 (ident, scope)
1966 }
1967
1968 pub fn is_object_safe(self, key: DefId) -> bool {
1969 self.object_safety_violations(key).is_empty()
1970 }
1971 }
1972
1973 /// Yields the parent function's `DefId` if `def_id` is an `impl Trait` definition.
1974 pub fn is_impl_trait_defn(tcx: TyCtxt<'_>, def_id: DefId) -> Option<DefId> {
1975 if let Some(def_id) = def_id.as_local() {
1976 if let Node::Item(item) = tcx.hir().get(tcx.hir().local_def_id_to_hir_id(def_id)) {
1977 if let hir::ItemKind::OpaqueTy(ref opaque_ty) = item.kind {
1978 return opaque_ty.impl_trait_fn;
1979 }
1980 }
1981 }
1982 None
1983 }
1984
1985 pub fn int_ty(ity: ast::IntTy) -> IntTy {
1986 match ity {
1987 ast::IntTy::Isize => IntTy::Isize,
1988 ast::IntTy::I8 => IntTy::I8,
1989 ast::IntTy::I16 => IntTy::I16,
1990 ast::IntTy::I32 => IntTy::I32,
1991 ast::IntTy::I64 => IntTy::I64,
1992 ast::IntTy::I128 => IntTy::I128,
1993 }
1994 }
1995
1996 pub fn uint_ty(uty: ast::UintTy) -> UintTy {
1997 match uty {
1998 ast::UintTy::Usize => UintTy::Usize,
1999 ast::UintTy::U8 => UintTy::U8,
2000 ast::UintTy::U16 => UintTy::U16,
2001 ast::UintTy::U32 => UintTy::U32,
2002 ast::UintTy::U64 => UintTy::U64,
2003 ast::UintTy::U128 => UintTy::U128,
2004 }
2005 }
2006
2007 pub fn float_ty(fty: ast::FloatTy) -> FloatTy {
2008 match fty {
2009 ast::FloatTy::F32 => FloatTy::F32,
2010 ast::FloatTy::F64 => FloatTy::F64,
2011 }
2012 }
2013
2014 pub fn ast_int_ty(ity: IntTy) -> ast::IntTy {
2015 match ity {
2016 IntTy::Isize => ast::IntTy::Isize,
2017 IntTy::I8 => ast::IntTy::I8,
2018 IntTy::I16 => ast::IntTy::I16,
2019 IntTy::I32 => ast::IntTy::I32,
2020 IntTy::I64 => ast::IntTy::I64,
2021 IntTy::I128 => ast::IntTy::I128,
2022 }
2023 }
2024
2025 pub fn ast_uint_ty(uty: UintTy) -> ast::UintTy {
2026 match uty {
2027 UintTy::Usize => ast::UintTy::Usize,
2028 UintTy::U8 => ast::UintTy::U8,
2029 UintTy::U16 => ast::UintTy::U16,
2030 UintTy::U32 => ast::UintTy::U32,
2031 UintTy::U64 => ast::UintTy::U64,
2032 UintTy::U128 => ast::UintTy::U128,
2033 }
2034 }
2035
2036 pub fn provide(providers: &mut ty::query::Providers) {
2037 closure::provide(providers);
2038 context::provide(providers);
2039 erase_regions::provide(providers);
2040 layout::provide(providers);
2041 util::provide(providers);
2042 print::provide(providers);
2043 super::util::bug::provide(providers);
2044 super::middle::provide(providers);
2045 *providers = ty::query::Providers {
2046 trait_impls_of: trait_def::trait_impls_of_provider,
2047 type_uninhabited_from: inhabitedness::type_uninhabited_from,
2048 const_param_default: consts::const_param_default,
2049 ..*providers
2050 };
2051 }
2052
2053 /// A map for the local crate mapping each type to a vector of its
2054 /// inherent impls. This is not meant to be used outside of coherence;
2055 /// rather, you should request the vector for a specific type via
2056 /// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
2057 /// (constructing this map requires touching the entire crate).
2058 #[derive(Clone, Debug, Default, HashStable)]
2059 pub struct CrateInherentImpls {
2060 pub inherent_impls: LocalDefIdMap<Vec<DefId>>,
2061 }
2062
2063 #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, HashStable)]
2064 pub struct SymbolName<'tcx> {
2065 /// `&str` gives a consistent ordering, which ensures reproducible builds.
2066 pub name: &'tcx str,
2067 }
2068
2069 impl<'tcx> SymbolName<'tcx> {
2070 pub fn new(tcx: TyCtxt<'tcx>, name: &str) -> SymbolName<'tcx> {
2071 SymbolName {
2072 name: unsafe { str::from_utf8_unchecked(tcx.arena.alloc_slice(name.as_bytes())) },
2073 }
2074 }
2075 }
2076
2077 impl<'tcx> fmt::Display for SymbolName<'tcx> {
2078 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2079 fmt::Display::fmt(&self.name, fmt)
2080 }
2081 }
2082
2083 impl<'tcx> fmt::Debug for SymbolName<'tcx> {
2084 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2085 fmt::Display::fmt(&self.name, fmt)
2086 }
2087 }