]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_middle/src/ty/walk.rs
New upstream version 1.64.0+dfsg1
[rustc.git] / compiler / rustc_middle / src / ty / walk.rs
1 //! An iterator over the type substructure.
2 //! WARNING: this does not keep track of the region depth.
3
4 use crate::ty::subst::{GenericArg, GenericArgKind};
5 use crate::ty::{self, Ty};
6 use rustc_data_structures::sso::SsoHashSet;
7 use smallvec::{self, SmallVec};
8
9 // The TypeWalker's stack is hot enough that it's worth going to some effort to
10 // avoid heap allocations.
11 type TypeWalkerStack<'tcx> = SmallVec<[GenericArg<'tcx>; 8]>;
12
13 pub struct TypeWalker<'tcx> {
14 stack: TypeWalkerStack<'tcx>,
15 last_subtree: usize,
16 pub visited: SsoHashSet<GenericArg<'tcx>>,
17 }
18
19 /// An iterator for walking the type tree.
20 ///
21 /// It's very easy to produce a deeply
22 /// nested type tree with a lot of
23 /// identical subtrees. In order to work efficiently
24 /// in this situation walker only visits each type once.
25 /// It maintains a set of visited types and
26 /// skips any types that are already there.
27 impl<'tcx> TypeWalker<'tcx> {
28 pub fn new(root: GenericArg<'tcx>) -> Self {
29 Self { stack: smallvec![root], last_subtree: 1, visited: SsoHashSet::new() }
30 }
31
32 /// Skips the subtree corresponding to the last type
33 /// returned by `next()`.
34 ///
35 /// Example: Imagine you are walking `Foo<Bar<i32>, usize>`.
36 ///
37 /// ```ignore (illustrative)
38 /// let mut iter: TypeWalker = ...;
39 /// iter.next(); // yields Foo
40 /// iter.next(); // yields Bar<i32>
41 /// iter.skip_current_subtree(); // skips i32
42 /// iter.next(); // yields usize
43 /// ```
44 pub fn skip_current_subtree(&mut self) {
45 self.stack.truncate(self.last_subtree);
46 }
47 }
48
49 impl<'tcx> Iterator for TypeWalker<'tcx> {
50 type Item = GenericArg<'tcx>;
51
52 fn next(&mut self) -> Option<GenericArg<'tcx>> {
53 debug!("next(): stack={:?}", self.stack);
54 loop {
55 let next = self.stack.pop()?;
56 self.last_subtree = self.stack.len();
57 if self.visited.insert(next) {
58 push_inner(&mut self.stack, next);
59 debug!("next: stack={:?}", self.stack);
60 return Some(next);
61 }
62 }
63 }
64 }
65
66 impl<'tcx> GenericArg<'tcx> {
67 /// Iterator that walks `self` and any types reachable from
68 /// `self`, in depth-first order. Note that just walks the types
69 /// that appear in `self`, it does not descend into the fields of
70 /// structs or variants. For example:
71 ///
72 /// ```text
73 /// isize => { isize }
74 /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
75 /// [isize] => { [isize], isize }
76 /// ```
77 pub fn walk(self) -> TypeWalker<'tcx> {
78 TypeWalker::new(self)
79 }
80
81 /// Iterator that walks the immediate children of `self`. Hence
82 /// `Foo<Bar<i32>, u32>` yields the sequence `[Bar<i32>, u32]`
83 /// (but not `i32`, like `walk`).
84 ///
85 /// Iterator only walks items once.
86 /// It accepts visited set, updates it with all visited types
87 /// and skips any types that are already there.
88 pub fn walk_shallow(
89 self,
90 visited: &mut SsoHashSet<GenericArg<'tcx>>,
91 ) -> impl Iterator<Item = GenericArg<'tcx>> {
92 let mut stack = SmallVec::new();
93 push_inner(&mut stack, self);
94 stack.retain(|a| visited.insert(*a));
95 stack.into_iter()
96 }
97 }
98
99 impl<'tcx> Ty<'tcx> {
100 /// Iterator that walks `self` and any types reachable from
101 /// `self`, in depth-first order. Note that just walks the types
102 /// that appear in `self`, it does not descend into the fields of
103 /// structs or variants. For example:
104 ///
105 /// ```text
106 /// isize => { isize }
107 /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
108 /// [isize] => { [isize], isize }
109 /// ```
110 pub fn walk(self) -> TypeWalker<'tcx> {
111 TypeWalker::new(self.into())
112 }
113 }
114
115 /// We push `GenericArg`s on the stack in reverse order so as to
116 /// maintain a pre-order traversal. As of the time of this
117 /// writing, the fact that the traversal is pre-order is not
118 /// known to be significant to any code, but it seems like the
119 /// natural order one would expect (basically, the order of the
120 /// types as they are written).
121 fn push_inner<'tcx>(stack: &mut TypeWalkerStack<'tcx>, parent: GenericArg<'tcx>) {
122 match parent.unpack() {
123 GenericArgKind::Type(parent_ty) => match *parent_ty.kind() {
124 ty::Bool
125 | ty::Char
126 | ty::Int(_)
127 | ty::Uint(_)
128 | ty::Float(_)
129 | ty::Str
130 | ty::Infer(_)
131 | ty::Param(_)
132 | ty::Never
133 | ty::Error(_)
134 | ty::Placeholder(..)
135 | ty::Bound(..)
136 | ty::Foreign(..) => {}
137
138 ty::Array(ty, len) => {
139 stack.push(len.into());
140 stack.push(ty.into());
141 }
142 ty::Slice(ty) => {
143 stack.push(ty.into());
144 }
145 ty::RawPtr(mt) => {
146 stack.push(mt.ty.into());
147 }
148 ty::Ref(lt, ty, _) => {
149 stack.push(ty.into());
150 stack.push(lt.into());
151 }
152 ty::Projection(data) => {
153 stack.extend(data.substs.iter().rev());
154 }
155 ty::Dynamic(obj, lt) => {
156 stack.push(lt.into());
157 stack.extend(obj.iter().rev().flat_map(|predicate| {
158 let (substs, opt_ty) = match predicate.skip_binder() {
159 ty::ExistentialPredicate::Trait(tr) => (tr.substs, None),
160 ty::ExistentialPredicate::Projection(p) => (p.substs, Some(p.term)),
161 ty::ExistentialPredicate::AutoTrait(_) =>
162 // Empty iterator
163 {
164 (ty::InternalSubsts::empty(), None)
165 }
166 };
167
168 substs.iter().rev().chain(opt_ty.map(|term| match term {
169 ty::Term::Ty(ty) => ty.into(),
170 ty::Term::Const(ct) => ct.into(),
171 }))
172 }));
173 }
174 ty::Adt(_, substs)
175 | ty::Opaque(_, substs)
176 | ty::Closure(_, substs)
177 | ty::Generator(_, substs, _)
178 | ty::FnDef(_, substs) => {
179 stack.extend(substs.iter().rev());
180 }
181 ty::Tuple(ts) => stack.extend(ts.as_substs().iter().rev()),
182 ty::GeneratorWitness(ts) => {
183 stack.extend(ts.skip_binder().iter().rev().map(|ty| ty.into()));
184 }
185 ty::FnPtr(sig) => {
186 stack.push(sig.skip_binder().output().into());
187 stack.extend(sig.skip_binder().inputs().iter().copied().rev().map(|ty| ty.into()));
188 }
189 },
190 GenericArgKind::Lifetime(_) => {}
191 GenericArgKind::Const(parent_ct) => {
192 stack.push(parent_ct.ty().into());
193 match parent_ct.kind() {
194 ty::ConstKind::Infer(_)
195 | ty::ConstKind::Param(_)
196 | ty::ConstKind::Placeholder(_)
197 | ty::ConstKind::Bound(..)
198 | ty::ConstKind::Value(_)
199 | ty::ConstKind::Error(_) => {}
200
201 ty::ConstKind::Unevaluated(ct) => {
202 stack.extend(ct.substs.iter().rev());
203 }
204 }
205 }
206 }
207 }