]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_mir/src/interpret/intrinsics.rs
New upstream version 1.50.0+dfsg1
[rustc.git] / compiler / rustc_mir / src / interpret / intrinsics.rs
1 //! Intrinsics and other functions that the miri engine executes without
2 //! looking at their MIR. Intrinsics/functions supported here are shared by CTFE
3 //! and miri.
4
5 use std::convert::TryFrom;
6
7 use rustc_hir::def_id::DefId;
8 use rustc_middle::mir::{
9 self,
10 interpret::{uabs, ConstValue, GlobalId, InterpResult, Scalar},
11 BinOp,
12 };
13 use rustc_middle::ty;
14 use rustc_middle::ty::subst::SubstsRef;
15 use rustc_middle::ty::{Ty, TyCtxt};
16 use rustc_span::symbol::{sym, Symbol};
17 use rustc_target::abi::{Abi, LayoutOf as _, Primitive, Size};
18
19 use super::{
20 util::ensure_monomorphic_enough, CheckInAllocMsg, ImmTy, InterpCx, Machine, OpTy, PlaceTy,
21 };
22
23 mod caller_location;
24 mod type_name;
25
26 fn numeric_intrinsic<'tcx, Tag>(
27 name: Symbol,
28 bits: u128,
29 kind: Primitive,
30 ) -> InterpResult<'tcx, Scalar<Tag>> {
31 let size = match kind {
32 Primitive::Int(integer, _) => integer.size(),
33 _ => bug!("invalid `{}` argument: {:?}", name, bits),
34 };
35 let extra = 128 - u128::from(size.bits());
36 let bits_out = match name {
37 sym::ctpop => u128::from(bits.count_ones()),
38 sym::ctlz => u128::from(bits.leading_zeros()) - extra,
39 sym::cttz => u128::from((bits << extra).trailing_zeros()) - extra,
40 sym::bswap => (bits << extra).swap_bytes(),
41 sym::bitreverse => (bits << extra).reverse_bits(),
42 _ => bug!("not a numeric intrinsic: {}", name),
43 };
44 Ok(Scalar::from_uint(bits_out, size))
45 }
46
47 /// The logic for all nullary intrinsics is implemented here. These intrinsics don't get evaluated
48 /// inside an `InterpCx` and instead have their value computed directly from rustc internal info.
49 crate fn eval_nullary_intrinsic<'tcx>(
50 tcx: TyCtxt<'tcx>,
51 param_env: ty::ParamEnv<'tcx>,
52 def_id: DefId,
53 substs: SubstsRef<'tcx>,
54 ) -> InterpResult<'tcx, ConstValue<'tcx>> {
55 let tp_ty = substs.type_at(0);
56 let name = tcx.item_name(def_id);
57 Ok(match name {
58 sym::type_name => {
59 ensure_monomorphic_enough(tcx, tp_ty)?;
60 let alloc = type_name::alloc_type_name(tcx, tp_ty);
61 ConstValue::Slice { data: alloc, start: 0, end: alloc.len() }
62 }
63 sym::needs_drop => ConstValue::from_bool(tp_ty.needs_drop(tcx, param_env)),
64 sym::min_align_of | sym::pref_align_of => {
65 let layout = tcx.layout_of(param_env.and(tp_ty)).map_err(|e| err_inval!(Layout(e)))?;
66 let n = match name {
67 sym::pref_align_of => layout.align.pref.bytes(),
68 sym::min_align_of => layout.align.abi.bytes(),
69 _ => bug!(),
70 };
71 ConstValue::from_machine_usize(n, &tcx)
72 }
73 sym::type_id => {
74 ensure_monomorphic_enough(tcx, tp_ty)?;
75 ConstValue::from_u64(tcx.type_id_hash(tp_ty))
76 }
77 sym::variant_count => match tp_ty.kind() {
78 ty::Adt(ref adt, _) => ConstValue::from_machine_usize(adt.variants.len() as u64, &tcx),
79 ty::Projection(_)
80 | ty::Opaque(_, _)
81 | ty::Param(_)
82 | ty::Bound(_, _)
83 | ty::Placeholder(_)
84 | ty::Infer(_) => throw_inval!(TooGeneric),
85 ty::Bool
86 | ty::Char
87 | ty::Int(_)
88 | ty::Uint(_)
89 | ty::Float(_)
90 | ty::Foreign(_)
91 | ty::Str
92 | ty::Array(_, _)
93 | ty::Slice(_)
94 | ty::RawPtr(_)
95 | ty::Ref(_, _, _)
96 | ty::FnDef(_, _)
97 | ty::FnPtr(_)
98 | ty::Dynamic(_, _)
99 | ty::Closure(_, _)
100 | ty::Generator(_, _, _)
101 | ty::GeneratorWitness(_)
102 | ty::Never
103 | ty::Tuple(_)
104 | ty::Error(_) => ConstValue::from_machine_usize(0u64, &tcx),
105 },
106 other => bug!("`{}` is not a zero arg intrinsic", other),
107 })
108 }
109
110 impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
111 /// Returns `true` if emulation happened.
112 /// Here we implement the intrinsics that are common to all Miri instances; individual machines can add their own
113 /// intrinsic handling.
114 pub fn emulate_intrinsic(
115 &mut self,
116 instance: ty::Instance<'tcx>,
117 args: &[OpTy<'tcx, M::PointerTag>],
118 ret: Option<(PlaceTy<'tcx, M::PointerTag>, mir::BasicBlock)>,
119 ) -> InterpResult<'tcx, bool> {
120 let substs = instance.substs;
121 let intrinsic_name = self.tcx.item_name(instance.def_id());
122
123 // First handle intrinsics without return place.
124 let (dest, ret) = match ret {
125 None => match intrinsic_name {
126 sym::transmute => throw_ub_format!("transmuting to uninhabited type"),
127 sym::abort => M::abort(self, "the program aborted execution".to_owned())?,
128 // Unsupported diverging intrinsic.
129 _ => return Ok(false),
130 },
131 Some(p) => p,
132 };
133
134 // Keep the patterns in this match ordered the same as the list in
135 // `src/librustc_middle/ty/constness.rs`
136 match intrinsic_name {
137 sym::caller_location => {
138 let span = self.find_closest_untracked_caller_location();
139 let location = self.alloc_caller_location_for_span(span);
140 self.write_scalar(location.ptr, dest)?;
141 }
142
143 sym::min_align_of_val | sym::size_of_val => {
144 let place = self.deref_operand(args[0])?;
145 let (size, align) = self
146 .size_and_align_of(place.meta, place.layout)?
147 .ok_or_else(|| err_unsup_format!("`extern type` does not have known layout"))?;
148
149 let result = match intrinsic_name {
150 sym::min_align_of_val => align.bytes(),
151 sym::size_of_val => size.bytes(),
152 _ => bug!(),
153 };
154
155 self.write_scalar(Scalar::from_machine_usize(result, self), dest)?;
156 }
157
158 sym::min_align_of
159 | sym::pref_align_of
160 | sym::needs_drop
161 | sym::type_id
162 | sym::type_name
163 | sym::variant_count => {
164 let gid = GlobalId { instance, promoted: None };
165 let ty = match intrinsic_name {
166 sym::min_align_of | sym::pref_align_of | sym::variant_count => {
167 self.tcx.types.usize
168 }
169 sym::needs_drop => self.tcx.types.bool,
170 sym::type_id => self.tcx.types.u64,
171 sym::type_name => self.tcx.mk_static_str(),
172 _ => bug!("already checked for nullary intrinsics"),
173 };
174 let val =
175 self.tcx.const_eval_global_id(self.param_env, gid, Some(self.tcx.span))?;
176 let const_ = ty::Const { val: ty::ConstKind::Value(val), ty };
177 let val = self.const_to_op(&const_, None)?;
178 self.copy_op(val, dest)?;
179 }
180
181 sym::ctpop
182 | sym::cttz
183 | sym::cttz_nonzero
184 | sym::ctlz
185 | sym::ctlz_nonzero
186 | sym::bswap
187 | sym::bitreverse => {
188 let ty = substs.type_at(0);
189 let layout_of = self.layout_of(ty)?;
190 let val = self.read_scalar(args[0])?.check_init()?;
191 let bits = self.force_bits(val, layout_of.size)?;
192 let kind = match layout_of.abi {
193 Abi::Scalar(ref scalar) => scalar.value,
194 _ => span_bug!(
195 self.cur_span(),
196 "{} called on invalid type {:?}",
197 intrinsic_name,
198 ty
199 ),
200 };
201 let (nonzero, intrinsic_name) = match intrinsic_name {
202 sym::cttz_nonzero => (true, sym::cttz),
203 sym::ctlz_nonzero => (true, sym::ctlz),
204 other => (false, other),
205 };
206 if nonzero && bits == 0 {
207 throw_ub_format!("`{}_nonzero` called on 0", intrinsic_name);
208 }
209 let out_val = numeric_intrinsic(intrinsic_name, bits, kind)?;
210 self.write_scalar(out_val, dest)?;
211 }
212 sym::add_with_overflow | sym::sub_with_overflow | sym::mul_with_overflow => {
213 let lhs = self.read_immediate(args[0])?;
214 let rhs = self.read_immediate(args[1])?;
215 let bin_op = match intrinsic_name {
216 sym::add_with_overflow => BinOp::Add,
217 sym::sub_with_overflow => BinOp::Sub,
218 sym::mul_with_overflow => BinOp::Mul,
219 _ => bug!("Already checked for int ops"),
220 };
221 self.binop_with_overflow(bin_op, lhs, rhs, dest)?;
222 }
223 sym::saturating_add | sym::saturating_sub => {
224 let l = self.read_immediate(args[0])?;
225 let r = self.read_immediate(args[1])?;
226 let is_add = intrinsic_name == sym::saturating_add;
227 let (val, overflowed, _ty) =
228 self.overflowing_binary_op(if is_add { BinOp::Add } else { BinOp::Sub }, l, r)?;
229 let val = if overflowed {
230 let num_bits = l.layout.size.bits();
231 if l.layout.abi.is_signed() {
232 // For signed ints the saturated value depends on the sign of the first
233 // term since the sign of the second term can be inferred from this and
234 // the fact that the operation has overflowed (if either is 0 no
235 // overflow can occur)
236 let first_term: u128 = self.force_bits(l.to_scalar()?, l.layout.size)?;
237 let first_term_positive = first_term & (1 << (num_bits - 1)) == 0;
238 if first_term_positive {
239 // Negative overflow not possible since the positive first term
240 // can only increase an (in range) negative term for addition
241 // or corresponding negated positive term for subtraction
242 Scalar::from_uint(
243 (1u128 << (num_bits - 1)) - 1, // max positive
244 Size::from_bits(num_bits),
245 )
246 } else {
247 // Positive overflow not possible for similar reason
248 // max negative
249 Scalar::from_uint(1u128 << (num_bits - 1), Size::from_bits(num_bits))
250 }
251 } else {
252 // unsigned
253 if is_add {
254 // max unsigned
255 Scalar::from_uint(
256 u128::MAX >> (128 - num_bits),
257 Size::from_bits(num_bits),
258 )
259 } else {
260 // underflow to 0
261 Scalar::from_uint(0u128, Size::from_bits(num_bits))
262 }
263 }
264 } else {
265 val
266 };
267 self.write_scalar(val, dest)?;
268 }
269 sym::discriminant_value => {
270 let place = self.deref_operand(args[0])?;
271 let discr_val = self.read_discriminant(place.into())?.0;
272 self.write_scalar(discr_val, dest)?;
273 }
274 sym::unchecked_shl
275 | sym::unchecked_shr
276 | sym::unchecked_add
277 | sym::unchecked_sub
278 | sym::unchecked_mul
279 | sym::unchecked_div
280 | sym::unchecked_rem => {
281 let l = self.read_immediate(args[0])?;
282 let r = self.read_immediate(args[1])?;
283 let bin_op = match intrinsic_name {
284 sym::unchecked_shl => BinOp::Shl,
285 sym::unchecked_shr => BinOp::Shr,
286 sym::unchecked_add => BinOp::Add,
287 sym::unchecked_sub => BinOp::Sub,
288 sym::unchecked_mul => BinOp::Mul,
289 sym::unchecked_div => BinOp::Div,
290 sym::unchecked_rem => BinOp::Rem,
291 _ => bug!("Already checked for int ops"),
292 };
293 let (val, overflowed, _ty) = self.overflowing_binary_op(bin_op, l, r)?;
294 if overflowed {
295 let layout = self.layout_of(substs.type_at(0))?;
296 let r_val = self.force_bits(r.to_scalar()?, layout.size)?;
297 if let sym::unchecked_shl | sym::unchecked_shr = intrinsic_name {
298 throw_ub_format!("overflowing shift by {} in `{}`", r_val, intrinsic_name);
299 } else {
300 throw_ub_format!("overflow executing `{}`", intrinsic_name);
301 }
302 }
303 self.write_scalar(val, dest)?;
304 }
305 sym::rotate_left | sym::rotate_right => {
306 // rotate_left: (X << (S % BW)) | (X >> ((BW - S) % BW))
307 // rotate_right: (X << ((BW - S) % BW)) | (X >> (S % BW))
308 let layout = self.layout_of(substs.type_at(0))?;
309 let val = self.read_scalar(args[0])?.check_init()?;
310 let val_bits = self.force_bits(val, layout.size)?;
311 let raw_shift = self.read_scalar(args[1])?.check_init()?;
312 let raw_shift_bits = self.force_bits(raw_shift, layout.size)?;
313 let width_bits = u128::from(layout.size.bits());
314 let shift_bits = raw_shift_bits % width_bits;
315 let inv_shift_bits = (width_bits - shift_bits) % width_bits;
316 let result_bits = if intrinsic_name == sym::rotate_left {
317 (val_bits << shift_bits) | (val_bits >> inv_shift_bits)
318 } else {
319 (val_bits >> shift_bits) | (val_bits << inv_shift_bits)
320 };
321 let truncated_bits = self.truncate(result_bits, layout);
322 let result = Scalar::from_uint(truncated_bits, layout.size);
323 self.write_scalar(result, dest)?;
324 }
325 sym::offset => {
326 let ptr = self.read_scalar(args[0])?.check_init()?;
327 let offset_count = self.read_scalar(args[1])?.to_machine_isize(self)?;
328 let pointee_ty = substs.type_at(0);
329
330 let offset_ptr = self.ptr_offset_inbounds(ptr, pointee_ty, offset_count)?;
331 self.write_scalar(offset_ptr, dest)?;
332 }
333 sym::arith_offset => {
334 let ptr = self.read_scalar(args[0])?.check_init()?;
335 let offset_count = self.read_scalar(args[1])?.to_machine_isize(self)?;
336 let pointee_ty = substs.type_at(0);
337
338 let pointee_size = i64::try_from(self.layout_of(pointee_ty)?.size.bytes()).unwrap();
339 let offset_bytes = offset_count.wrapping_mul(pointee_size);
340 let offset_ptr = ptr.ptr_wrapping_signed_offset(offset_bytes, self);
341 self.write_scalar(offset_ptr, dest)?;
342 }
343 sym::ptr_offset_from => {
344 let a = self.read_immediate(args[0])?.to_scalar()?;
345 let b = self.read_immediate(args[1])?.to_scalar()?;
346
347 // Special case: if both scalars are *equal integers*
348 // and not NULL, we pretend there is an allocation of size 0 right there,
349 // and their offset is 0. (There's never a valid object at NULL, making it an
350 // exception from the exception.)
351 // This is the dual to the special exception for offset-by-0
352 // in the inbounds pointer offset operation (see the Miri code, `src/operator.rs`).
353 //
354 // Control flow is weird because we cannot early-return (to reach the
355 // `go_to_block` at the end).
356 let done = if a.is_bits() && b.is_bits() {
357 let a = a.to_machine_usize(self)?;
358 let b = b.to_machine_usize(self)?;
359 if a == b && a != 0 {
360 self.write_scalar(Scalar::from_machine_isize(0, self), dest)?;
361 true
362 } else {
363 false
364 }
365 } else {
366 false
367 };
368
369 if !done {
370 // General case: we need two pointers.
371 let a = self.force_ptr(a)?;
372 let b = self.force_ptr(b)?;
373 if a.alloc_id != b.alloc_id {
374 throw_ub_format!(
375 "ptr_offset_from cannot compute offset of pointers into different \
376 allocations.",
377 );
378 }
379 let usize_layout = self.layout_of(self.tcx.types.usize)?;
380 let isize_layout = self.layout_of(self.tcx.types.isize)?;
381 let a_offset = ImmTy::from_uint(a.offset.bytes(), usize_layout);
382 let b_offset = ImmTy::from_uint(b.offset.bytes(), usize_layout);
383 let (val, _overflowed, _ty) =
384 self.overflowing_binary_op(BinOp::Sub, a_offset, b_offset)?;
385 let pointee_layout = self.layout_of(substs.type_at(0))?;
386 let val = ImmTy::from_scalar(val, isize_layout);
387 let size = ImmTy::from_int(pointee_layout.size.bytes(), isize_layout);
388 self.exact_div(val, size, dest)?;
389 }
390 }
391
392 sym::transmute => {
393 self.copy_op_transmute(args[0], dest)?;
394 }
395 sym::assert_inhabited => {
396 let ty = instance.substs.type_at(0);
397 let layout = self.layout_of(ty)?;
398
399 if layout.abi.is_uninhabited() {
400 // The run-time intrinsic panics just to get a good backtrace; here we abort
401 // since there is no problem showing a backtrace even for aborts.
402 M::abort(
403 self,
404 format!(
405 "aborted execution: attempted to instantiate uninhabited type `{}`",
406 ty
407 ),
408 )?;
409 }
410 }
411 sym::simd_insert => {
412 let index = u64::from(self.read_scalar(args[1])?.to_u32()?);
413 let elem = args[2];
414 let input = args[0];
415 let (len, e_ty) = input.layout.ty.simd_size_and_type(*self.tcx);
416 assert!(
417 index < len,
418 "Index `{}` must be in bounds of vector type `{}`: `[0, {})`",
419 index,
420 e_ty,
421 len
422 );
423 assert_eq!(
424 input.layout, dest.layout,
425 "Return type `{}` must match vector type `{}`",
426 dest.layout.ty, input.layout.ty
427 );
428 assert_eq!(
429 elem.layout.ty, e_ty,
430 "Scalar element type `{}` must match vector element type `{}`",
431 elem.layout.ty, e_ty
432 );
433
434 for i in 0..len {
435 let place = self.place_index(dest, i)?;
436 let value = if i == index { elem } else { self.operand_index(input, i)? };
437 self.copy_op(value, place)?;
438 }
439 }
440 sym::simd_extract => {
441 let index = u64::from(self.read_scalar(args[1])?.to_u32()?);
442 let (len, e_ty) = args[0].layout.ty.simd_size_and_type(*self.tcx);
443 assert!(
444 index < len,
445 "index `{}` is out-of-bounds of vector type `{}` with length `{}`",
446 index,
447 e_ty,
448 len
449 );
450 assert_eq!(
451 e_ty, dest.layout.ty,
452 "Return type `{}` must match vector element type `{}`",
453 dest.layout.ty, e_ty
454 );
455 self.copy_op(self.operand_index(args[0], index)?, dest)?;
456 }
457 sym::likely | sym::unlikely => {
458 // These just return their argument
459 self.copy_op(args[0], dest)?;
460 }
461 sym::assume => {
462 let cond = self.read_scalar(args[0])?.check_init()?.to_bool()?;
463 if !cond {
464 throw_ub_format!("`assume` intrinsic called with `false`");
465 }
466 }
467 _ => return Ok(false),
468 }
469
470 trace!("{:?}", self.dump_place(*dest));
471 self.go_to_block(ret);
472 Ok(true)
473 }
474
475 pub fn exact_div(
476 &mut self,
477 a: ImmTy<'tcx, M::PointerTag>,
478 b: ImmTy<'tcx, M::PointerTag>,
479 dest: PlaceTy<'tcx, M::PointerTag>,
480 ) -> InterpResult<'tcx> {
481 // Performs an exact division, resulting in undefined behavior where
482 // `x % y != 0` or `y == 0` or `x == T::MIN && y == -1`.
483 // First, check x % y != 0 (or if that computation overflows).
484 let (res, overflow, _ty) = self.overflowing_binary_op(BinOp::Rem, a, b)?;
485 if overflow || res.assert_bits(a.layout.size) != 0 {
486 // Then, check if `b` is -1, which is the "MIN / -1" case.
487 let minus1 = Scalar::from_int(-1, dest.layout.size);
488 let b_scalar = b.to_scalar().unwrap();
489 if b_scalar == minus1 {
490 throw_ub_format!("exact_div: result of dividing MIN by -1 cannot be represented")
491 } else {
492 throw_ub_format!("exact_div: {} cannot be divided by {} without remainder", a, b,)
493 }
494 }
495 // `Rem` says this is all right, so we can let `Div` do its job.
496 self.binop_ignore_overflow(BinOp::Div, a, b, dest)
497 }
498
499 /// Offsets a pointer by some multiple of its type, returning an error if the pointer leaves its
500 /// allocation. For integer pointers, we consider each of them their own tiny allocation of size
501 /// 0, so offset-by-0 (and only 0) is okay -- except that NULL cannot be offset by _any_ value.
502 pub fn ptr_offset_inbounds(
503 &self,
504 ptr: Scalar<M::PointerTag>,
505 pointee_ty: Ty<'tcx>,
506 offset_count: i64,
507 ) -> InterpResult<'tcx, Scalar<M::PointerTag>> {
508 // We cannot overflow i64 as a type's size must be <= isize::MAX.
509 let pointee_size = i64::try_from(self.layout_of(pointee_ty)?.size.bytes()).unwrap();
510 // The computed offset, in bytes, cannot overflow an isize.
511 let offset_bytes =
512 offset_count.checked_mul(pointee_size).ok_or(err_ub!(PointerArithOverflow))?;
513 // The offset being in bounds cannot rely on "wrapping around" the address space.
514 // So, first rule out overflows in the pointer arithmetic.
515 let offset_ptr = ptr.ptr_signed_offset(offset_bytes, self)?;
516 // ptr and offset_ptr must be in bounds of the same allocated object. This means all of the
517 // memory between these pointers must be accessible. Note that we do not require the
518 // pointers to be properly aligned (unlike a read/write operation).
519 let min_ptr = if offset_bytes >= 0 { ptr } else { offset_ptr };
520 let size: u64 = uabs(offset_bytes);
521 // This call handles checking for integer/NULL pointers.
522 self.memory.check_ptr_access_align(
523 min_ptr,
524 Size::from_bytes(size),
525 None,
526 CheckInAllocMsg::InboundsTest,
527 )?;
528 Ok(offset_ptr)
529 }
530 }