]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_mir/src/monomorphize/collector.rs
New upstream version 1.48.0~beta.8+dfsg1
[rustc.git] / compiler / rustc_mir / src / monomorphize / collector.rs
1 //! Mono Item Collection
2 //! ====================
3 //!
4 //! This module is responsible for discovering all items that will contribute
5 //! to code generation of the crate. The important part here is that it not only
6 //! needs to find syntax-level items (functions, structs, etc) but also all
7 //! their monomorphized instantiations. Every non-generic, non-const function
8 //! maps to one LLVM artifact. Every generic function can produce
9 //! from zero to N artifacts, depending on the sets of type arguments it
10 //! is instantiated with.
11 //! This also applies to generic items from other crates: A generic definition
12 //! in crate X might produce monomorphizations that are compiled into crate Y.
13 //! We also have to collect these here.
14 //!
15 //! The following kinds of "mono items" are handled here:
16 //!
17 //! - Functions
18 //! - Methods
19 //! - Closures
20 //! - Statics
21 //! - Drop glue
22 //!
23 //! The following things also result in LLVM artifacts, but are not collected
24 //! here, since we instantiate them locally on demand when needed in a given
25 //! codegen unit:
26 //!
27 //! - Constants
28 //! - Vtables
29 //! - Object Shims
30 //!
31 //!
32 //! General Algorithm
33 //! -----------------
34 //! Let's define some terms first:
35 //!
36 //! - A "mono item" is something that results in a function or global in
37 //! the LLVM IR of a codegen unit. Mono items do not stand on their
38 //! own, they can reference other mono items. For example, if function
39 //! `foo()` calls function `bar()` then the mono item for `foo()`
40 //! references the mono item for function `bar()`. In general, the
41 //! definition for mono item A referencing a mono item B is that
42 //! the LLVM artifact produced for A references the LLVM artifact produced
43 //! for B.
44 //!
45 //! - Mono items and the references between them form a directed graph,
46 //! where the mono items are the nodes and references form the edges.
47 //! Let's call this graph the "mono item graph".
48 //!
49 //! - The mono item graph for a program contains all mono items
50 //! that are needed in order to produce the complete LLVM IR of the program.
51 //!
52 //! The purpose of the algorithm implemented in this module is to build the
53 //! mono item graph for the current crate. It runs in two phases:
54 //!
55 //! 1. Discover the roots of the graph by traversing the HIR of the crate.
56 //! 2. Starting from the roots, find neighboring nodes by inspecting the MIR
57 //! representation of the item corresponding to a given node, until no more
58 //! new nodes are found.
59 //!
60 //! ### Discovering roots
61 //!
62 //! The roots of the mono item graph correspond to the non-generic
63 //! syntactic items in the source code. We find them by walking the HIR of the
64 //! crate, and whenever we hit upon a function, method, or static item, we
65 //! create a mono item consisting of the items DefId and, since we only
66 //! consider non-generic items, an empty type-substitution set.
67 //!
68 //! ### Finding neighbor nodes
69 //! Given a mono item node, we can discover neighbors by inspecting its
70 //! MIR. We walk the MIR and any time we hit upon something that signifies a
71 //! reference to another mono item, we have found a neighbor. Since the
72 //! mono item we are currently at is always monomorphic, we also know the
73 //! concrete type arguments of its neighbors, and so all neighbors again will be
74 //! monomorphic. The specific forms a reference to a neighboring node can take
75 //! in MIR are quite diverse. Here is an overview:
76 //!
77 //! #### Calling Functions/Methods
78 //! The most obvious form of one mono item referencing another is a
79 //! function or method call (represented by a CALL terminator in MIR). But
80 //! calls are not the only thing that might introduce a reference between two
81 //! function mono items, and as we will see below, they are just a
82 //! specialization of the form described next, and consequently will not get any
83 //! special treatment in the algorithm.
84 //!
85 //! #### Taking a reference to a function or method
86 //! A function does not need to actually be called in order to be a neighbor of
87 //! another function. It suffices to just take a reference in order to introduce
88 //! an edge. Consider the following example:
89 //!
90 //! ```rust
91 //! fn print_val<T: Display>(x: T) {
92 //! println!("{}", x);
93 //! }
94 //!
95 //! fn call_fn(f: &Fn(i32), x: i32) {
96 //! f(x);
97 //! }
98 //!
99 //! fn main() {
100 //! let print_i32 = print_val::<i32>;
101 //! call_fn(&print_i32, 0);
102 //! }
103 //! ```
104 //! The MIR of none of these functions will contain an explicit call to
105 //! `print_val::<i32>`. Nonetheless, in order to mono this program, we need
106 //! an instance of this function. Thus, whenever we encounter a function or
107 //! method in operand position, we treat it as a neighbor of the current
108 //! mono item. Calls are just a special case of that.
109 //!
110 //! #### Closures
111 //! In a way, closures are a simple case. Since every closure object needs to be
112 //! constructed somewhere, we can reliably discover them by observing
113 //! `RValue::Aggregate` expressions with `AggregateKind::Closure`. This is also
114 //! true for closures inlined from other crates.
115 //!
116 //! #### Drop glue
117 //! Drop glue mono items are introduced by MIR drop-statements. The
118 //! generated mono item will again have drop-glue item neighbors if the
119 //! type to be dropped contains nested values that also need to be dropped. It
120 //! might also have a function item neighbor for the explicit `Drop::drop`
121 //! implementation of its type.
122 //!
123 //! #### Unsizing Casts
124 //! A subtle way of introducing neighbor edges is by casting to a trait object.
125 //! Since the resulting fat-pointer contains a reference to a vtable, we need to
126 //! instantiate all object-save methods of the trait, as we need to store
127 //! pointers to these functions even if they never get called anywhere. This can
128 //! be seen as a special case of taking a function reference.
129 //!
130 //! #### Boxes
131 //! Since `Box` expression have special compiler support, no explicit calls to
132 //! `exchange_malloc()` and `box_free()` may show up in MIR, even if the
133 //! compiler will generate them. We have to observe `Rvalue::Box` expressions
134 //! and Box-typed drop-statements for that purpose.
135 //!
136 //!
137 //! Interaction with Cross-Crate Inlining
138 //! -------------------------------------
139 //! The binary of a crate will not only contain machine code for the items
140 //! defined in the source code of that crate. It will also contain monomorphic
141 //! instantiations of any extern generic functions and of functions marked with
142 //! `#[inline]`.
143 //! The collection algorithm handles this more or less mono. If it is
144 //! about to create a mono item for something with an external `DefId`,
145 //! it will take a look if the MIR for that item is available, and if so just
146 //! proceed normally. If the MIR is not available, it assumes that the item is
147 //! just linked to and no node is created; which is exactly what we want, since
148 //! no machine code should be generated in the current crate for such an item.
149 //!
150 //! Eager and Lazy Collection Mode
151 //! ------------------------------
152 //! Mono item collection can be performed in one of two modes:
153 //!
154 //! - Lazy mode means that items will only be instantiated when actually
155 //! referenced. The goal is to produce the least amount of machine code
156 //! possible.
157 //!
158 //! - Eager mode is meant to be used in conjunction with incremental compilation
159 //! where a stable set of mono items is more important than a minimal
160 //! one. Thus, eager mode will instantiate drop-glue for every drop-able type
161 //! in the crate, even if no drop call for that type exists (yet). It will
162 //! also instantiate default implementations of trait methods, something that
163 //! otherwise is only done on demand.
164 //!
165 //!
166 //! Open Issues
167 //! -----------
168 //! Some things are not yet fully implemented in the current version of this
169 //! module.
170 //!
171 //! ### Const Fns
172 //! Ideally, no mono item should be generated for const fns unless there
173 //! is a call to them that cannot be evaluated at compile time. At the moment
174 //! this is not implemented however: a mono item will be produced
175 //! regardless of whether it is actually needed or not.
176
177 use crate::monomorphize;
178
179 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
180 use rustc_data_structures::sync::{par_iter, MTLock, MTRef, ParallelIterator};
181 use rustc_errors::{ErrorReported, FatalError};
182 use rustc_hir as hir;
183 use rustc_hir::def_id::{DefId, DefIdMap, LocalDefId, LOCAL_CRATE};
184 use rustc_hir::itemlikevisit::ItemLikeVisitor;
185 use rustc_hir::lang_items::LangItem;
186 use rustc_index::bit_set::GrowableBitSet;
187 use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
188 use rustc_middle::mir::interpret::{AllocId, ConstValue};
189 use rustc_middle::mir::interpret::{ErrorHandled, GlobalAlloc, Scalar};
190 use rustc_middle::mir::mono::{InstantiationMode, MonoItem};
191 use rustc_middle::mir::visit::Visitor as MirVisitor;
192 use rustc_middle::mir::{self, Local, Location};
193 use rustc_middle::ty::adjustment::{CustomCoerceUnsized, PointerCast};
194 use rustc_middle::ty::subst::{GenericArgKind, InternalSubsts};
195 use rustc_middle::ty::{self, GenericParamDefKind, Instance, Ty, TyCtxt, TypeFoldable};
196 use rustc_session::config::EntryFnType;
197 use rustc_span::source_map::{dummy_spanned, respan, Span, Spanned, DUMMY_SP};
198 use smallvec::SmallVec;
199 use std::iter;
200 use std::path::PathBuf;
201
202 #[derive(PartialEq)]
203 pub enum MonoItemCollectionMode {
204 Eager,
205 Lazy,
206 }
207
208 /// Maps every mono item to all mono items it references in its
209 /// body.
210 pub struct InliningMap<'tcx> {
211 // Maps a source mono item to the range of mono items
212 // accessed by it.
213 // The two numbers in the tuple are the start (inclusive) and
214 // end index (exclusive) within the `targets` vecs.
215 index: FxHashMap<MonoItem<'tcx>, (usize, usize)>,
216 targets: Vec<MonoItem<'tcx>>,
217
218 // Contains one bit per mono item in the `targets` field. That bit
219 // is true if that mono item needs to be inlined into every CGU.
220 inlines: GrowableBitSet<usize>,
221 }
222
223 impl<'tcx> InliningMap<'tcx> {
224 fn new() -> InliningMap<'tcx> {
225 InliningMap {
226 index: FxHashMap::default(),
227 targets: Vec::new(),
228 inlines: GrowableBitSet::with_capacity(1024),
229 }
230 }
231
232 fn record_accesses(&mut self, source: MonoItem<'tcx>, new_targets: &[(MonoItem<'tcx>, bool)]) {
233 let start_index = self.targets.len();
234 let new_items_count = new_targets.len();
235 let new_items_count_total = new_items_count + self.targets.len();
236
237 self.targets.reserve(new_items_count);
238 self.inlines.ensure(new_items_count_total);
239
240 for (i, (target, inline)) in new_targets.iter().enumerate() {
241 self.targets.push(*target);
242 if *inline {
243 self.inlines.insert(i + start_index);
244 }
245 }
246
247 let end_index = self.targets.len();
248 assert!(self.index.insert(source, (start_index, end_index)).is_none());
249 }
250
251 // Internally iterate over all items referenced by `source` which will be
252 // made available for inlining.
253 pub fn with_inlining_candidates<F>(&self, source: MonoItem<'tcx>, mut f: F)
254 where
255 F: FnMut(MonoItem<'tcx>),
256 {
257 if let Some(&(start_index, end_index)) = self.index.get(&source) {
258 for (i, candidate) in self.targets[start_index..end_index].iter().enumerate() {
259 if self.inlines.contains(start_index + i) {
260 f(*candidate);
261 }
262 }
263 }
264 }
265
266 // Internally iterate over all items and the things each accesses.
267 pub fn iter_accesses<F>(&self, mut f: F)
268 where
269 F: FnMut(MonoItem<'tcx>, &[MonoItem<'tcx>]),
270 {
271 for (&accessor, &(start_index, end_index)) in &self.index {
272 f(accessor, &self.targets[start_index..end_index])
273 }
274 }
275 }
276
277 pub fn collect_crate_mono_items(
278 tcx: TyCtxt<'_>,
279 mode: MonoItemCollectionMode,
280 ) -> (FxHashSet<MonoItem<'_>>, InliningMap<'_>) {
281 let _prof_timer = tcx.prof.generic_activity("monomorphization_collector");
282
283 let roots =
284 tcx.sess.time("monomorphization_collector_root_collections", || collect_roots(tcx, mode));
285
286 debug!("building mono item graph, beginning at roots");
287
288 let mut visited = MTLock::new(FxHashSet::default());
289 let mut inlining_map = MTLock::new(InliningMap::new());
290
291 {
292 let visited: MTRef<'_, _> = &mut visited;
293 let inlining_map: MTRef<'_, _> = &mut inlining_map;
294
295 tcx.sess.time("monomorphization_collector_graph_walk", || {
296 par_iter(roots).for_each(|root| {
297 let mut recursion_depths = DefIdMap::default();
298 collect_items_rec(
299 tcx,
300 dummy_spanned(root),
301 visited,
302 &mut recursion_depths,
303 inlining_map,
304 );
305 });
306 });
307 }
308
309 (visited.into_inner(), inlining_map.into_inner())
310 }
311
312 // Find all non-generic items by walking the HIR. These items serve as roots to
313 // start monomorphizing from.
314 fn collect_roots(tcx: TyCtxt<'_>, mode: MonoItemCollectionMode) -> Vec<MonoItem<'_>> {
315 debug!("collecting roots");
316 let mut roots = Vec::new();
317
318 {
319 let entry_fn = tcx.entry_fn(LOCAL_CRATE);
320
321 debug!("collect_roots: entry_fn = {:?}", entry_fn);
322
323 let mut visitor = RootCollector { tcx, mode, entry_fn, output: &mut roots };
324
325 tcx.hir().krate().visit_all_item_likes(&mut visitor);
326
327 visitor.push_extra_entry_roots();
328 }
329
330 // We can only codegen items that are instantiable - items all of
331 // whose predicates hold. Luckily, items that aren't instantiable
332 // can't actually be used, so we can just skip codegenning them.
333 roots
334 .into_iter()
335 .filter_map(|root| root.node.is_instantiable(tcx).then_some(root.node))
336 .collect()
337 }
338
339 // Collect all monomorphized items reachable from `starting_point`
340 fn collect_items_rec<'tcx>(
341 tcx: TyCtxt<'tcx>,
342 starting_point: Spanned<MonoItem<'tcx>>,
343 visited: MTRef<'_, MTLock<FxHashSet<MonoItem<'tcx>>>>,
344 recursion_depths: &mut DefIdMap<usize>,
345 inlining_map: MTRef<'_, MTLock<InliningMap<'tcx>>>,
346 ) {
347 if !visited.lock_mut().insert(starting_point.node) {
348 // We've been here already, no need to search again.
349 return;
350 }
351 debug!("BEGIN collect_items_rec({})", starting_point.node);
352
353 let mut neighbors = Vec::new();
354 let recursion_depth_reset;
355
356 match starting_point.node {
357 MonoItem::Static(def_id) => {
358 let instance = Instance::mono(tcx, def_id);
359
360 // Sanity check whether this ended up being collected accidentally
361 debug_assert!(should_codegen_locally(tcx, &instance));
362
363 let ty = instance.ty(tcx, ty::ParamEnv::reveal_all());
364 visit_drop_use(tcx, ty, true, starting_point.span, &mut neighbors);
365
366 recursion_depth_reset = None;
367
368 if let Ok(alloc) = tcx.eval_static_initializer(def_id) {
369 for &((), id) in alloc.relocations().values() {
370 collect_miri(tcx, id, &mut neighbors);
371 }
372 }
373 }
374 MonoItem::Fn(instance) => {
375 // Sanity check whether this ended up being collected accidentally
376 debug_assert!(should_codegen_locally(tcx, &instance));
377
378 // Keep track of the monomorphization recursion depth
379 recursion_depth_reset =
380 Some(check_recursion_limit(tcx, instance, starting_point.span, recursion_depths));
381 check_type_length_limit(tcx, instance);
382
383 rustc_data_structures::stack::ensure_sufficient_stack(|| {
384 collect_neighbours(tcx, instance, &mut neighbors);
385 });
386 }
387 MonoItem::GlobalAsm(..) => {
388 recursion_depth_reset = None;
389 }
390 }
391
392 record_accesses(tcx, starting_point.node, neighbors.iter().map(|i| &i.node), inlining_map);
393
394 for neighbour in neighbors {
395 collect_items_rec(tcx, neighbour, visited, recursion_depths, inlining_map);
396 }
397
398 if let Some((def_id, depth)) = recursion_depth_reset {
399 recursion_depths.insert(def_id, depth);
400 }
401
402 debug!("END collect_items_rec({})", starting_point.node);
403 }
404
405 fn record_accesses<'a, 'tcx: 'a>(
406 tcx: TyCtxt<'tcx>,
407 caller: MonoItem<'tcx>,
408 callees: impl Iterator<Item = &'a MonoItem<'tcx>>,
409 inlining_map: MTRef<'_, MTLock<InliningMap<'tcx>>>,
410 ) {
411 let is_inlining_candidate = |mono_item: &MonoItem<'tcx>| {
412 mono_item.instantiation_mode(tcx) == InstantiationMode::LocalCopy
413 };
414
415 // We collect this into a `SmallVec` to avoid calling `is_inlining_candidate` in the lock.
416 // FIXME: Call `is_inlining_candidate` when pushing to `neighbors` in `collect_items_rec`
417 // instead to avoid creating this `SmallVec`.
418 let accesses: SmallVec<[_; 128]> =
419 callees.map(|mono_item| (*mono_item, is_inlining_candidate(mono_item))).collect();
420
421 inlining_map.lock_mut().record_accesses(caller, &accesses);
422 }
423
424 /// Format instance name that is already known to be too long for rustc.
425 /// Show only the first and last 32 characters to avoid blasting
426 /// the user's terminal with thousands of lines of type-name.
427 ///
428 /// If the type name is longer than before+after, it will be written to a file.
429 fn shrunk_instance_name(
430 tcx: TyCtxt<'tcx>,
431 instance: &Instance<'tcx>,
432 before: usize,
433 after: usize,
434 ) -> (String, Option<PathBuf>) {
435 let s = instance.to_string();
436
437 // Only use the shrunk version if it's really shorter.
438 // This also avoids the case where before and after slices overlap.
439 if s.chars().nth(before + after + 1).is_some() {
440 // An iterator of all byte positions including the end of the string.
441 let positions = || s.char_indices().map(|(i, _)| i).chain(iter::once(s.len()));
442
443 let shrunk = format!(
444 "{before}...{after}",
445 before = &s[..positions().nth(before).unwrap_or(s.len())],
446 after = &s[positions().rev().nth(after).unwrap_or(0)..],
447 );
448
449 let path = tcx.output_filenames(LOCAL_CRATE).temp_path_ext("long-type.txt", None);
450 let written_to_path = std::fs::write(&path, s).ok().map(|_| path);
451
452 (shrunk, written_to_path)
453 } else {
454 (s, None)
455 }
456 }
457
458 fn check_recursion_limit<'tcx>(
459 tcx: TyCtxt<'tcx>,
460 instance: Instance<'tcx>,
461 span: Span,
462 recursion_depths: &mut DefIdMap<usize>,
463 ) -> (DefId, usize) {
464 let def_id = instance.def_id();
465 let recursion_depth = recursion_depths.get(&def_id).cloned().unwrap_or(0);
466 debug!(" => recursion depth={}", recursion_depth);
467
468 let adjusted_recursion_depth = if Some(def_id) == tcx.lang_items().drop_in_place_fn() {
469 // HACK: drop_in_place creates tight monomorphization loops. Give
470 // it more margin.
471 recursion_depth / 4
472 } else {
473 recursion_depth
474 };
475
476 // Code that needs to instantiate the same function recursively
477 // more than the recursion limit is assumed to be causing an
478 // infinite expansion.
479 if !tcx.sess.recursion_limit().value_within_limit(adjusted_recursion_depth) {
480 let (shrunk, written_to_path) = shrunk_instance_name(tcx, &instance, 32, 32);
481 let error = format!("reached the recursion limit while instantiating `{}`", shrunk);
482 let mut err = tcx.sess.struct_span_fatal(span, &error);
483 err.span_note(
484 tcx.def_span(def_id),
485 &format!("`{}` defined here", tcx.def_path_str(def_id)),
486 );
487 if let Some(path) = written_to_path {
488 err.note(&format!("the full type name has been written to '{}'", path.display()));
489 }
490 err.emit();
491 FatalError.raise();
492 }
493
494 recursion_depths.insert(def_id, recursion_depth + 1);
495
496 (def_id, recursion_depth)
497 }
498
499 fn check_type_length_limit<'tcx>(tcx: TyCtxt<'tcx>, instance: Instance<'tcx>) {
500 let type_length = instance
501 .substs
502 .iter()
503 .flat_map(|arg| arg.walk())
504 .filter(|arg| match arg.unpack() {
505 GenericArgKind::Type(_) | GenericArgKind::Const(_) => true,
506 GenericArgKind::Lifetime(_) => false,
507 })
508 .count();
509 debug!(" => type length={}", type_length);
510
511 // Rust code can easily create exponentially-long types using only a
512 // polynomial recursion depth. Even with the default recursion
513 // depth, you can easily get cases that take >2^60 steps to run,
514 // which means that rustc basically hangs.
515 //
516 // Bail out in these cases to avoid that bad user experience.
517 if !tcx.sess.type_length_limit().value_within_limit(type_length) {
518 let (shrunk, written_to_path) = shrunk_instance_name(tcx, &instance, 32, 32);
519 let msg = format!("reached the type-length limit while instantiating `{}`", shrunk);
520 let mut diag = tcx.sess.struct_span_fatal(tcx.def_span(instance.def_id()), &msg);
521 if let Some(path) = written_to_path {
522 diag.note(&format!("the full type name has been written to '{}'", path.display()));
523 }
524 diag.help(&format!(
525 "consider adding a `#![type_length_limit=\"{}\"]` attribute to your crate",
526 type_length
527 ));
528 diag.emit();
529 tcx.sess.abort_if_errors();
530 }
531 }
532
533 struct MirNeighborCollector<'a, 'tcx> {
534 tcx: TyCtxt<'tcx>,
535 body: &'a mir::Body<'tcx>,
536 output: &'a mut Vec<Spanned<MonoItem<'tcx>>>,
537 instance: Instance<'tcx>,
538 }
539
540 impl<'a, 'tcx> MirNeighborCollector<'a, 'tcx> {
541 pub fn monomorphize<T>(&self, value: T) -> T
542 where
543 T: TypeFoldable<'tcx>,
544 {
545 debug!("monomorphize: self.instance={:?}", self.instance);
546 if let Some(substs) = self.instance.substs_for_mir_body() {
547 self.tcx.subst_and_normalize_erasing_regions(substs, ty::ParamEnv::reveal_all(), &value)
548 } else {
549 self.tcx.normalize_erasing_regions(ty::ParamEnv::reveal_all(), value)
550 }
551 }
552 }
553
554 impl<'a, 'tcx> MirVisitor<'tcx> for MirNeighborCollector<'a, 'tcx> {
555 fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>, location: Location) {
556 debug!("visiting rvalue {:?}", *rvalue);
557
558 let span = self.body.source_info(location).span;
559
560 match *rvalue {
561 // When doing an cast from a regular pointer to a fat pointer, we
562 // have to instantiate all methods of the trait being cast to, so we
563 // can build the appropriate vtable.
564 mir::Rvalue::Cast(
565 mir::CastKind::Pointer(PointerCast::Unsize),
566 ref operand,
567 target_ty,
568 ) => {
569 let target_ty = self.monomorphize(target_ty);
570 let source_ty = operand.ty(self.body, self.tcx);
571 let source_ty = self.monomorphize(source_ty);
572 let (source_ty, target_ty) =
573 find_vtable_types_for_unsizing(self.tcx, source_ty, target_ty);
574 // This could also be a different Unsize instruction, like
575 // from a fixed sized array to a slice. But we are only
576 // interested in things that produce a vtable.
577 if target_ty.is_trait() && !source_ty.is_trait() {
578 create_mono_items_for_vtable_methods(
579 self.tcx,
580 target_ty,
581 source_ty,
582 span,
583 self.output,
584 );
585 }
586 }
587 mir::Rvalue::Cast(
588 mir::CastKind::Pointer(PointerCast::ReifyFnPointer),
589 ref operand,
590 _,
591 ) => {
592 let fn_ty = operand.ty(self.body, self.tcx);
593 let fn_ty = self.monomorphize(fn_ty);
594 visit_fn_use(self.tcx, fn_ty, false, span, &mut self.output);
595 }
596 mir::Rvalue::Cast(
597 mir::CastKind::Pointer(PointerCast::ClosureFnPointer(_)),
598 ref operand,
599 _,
600 ) => {
601 let source_ty = operand.ty(self.body, self.tcx);
602 let source_ty = self.monomorphize(source_ty);
603 match *source_ty.kind() {
604 ty::Closure(def_id, substs) => {
605 let instance = Instance::resolve_closure(
606 self.tcx,
607 def_id,
608 substs,
609 ty::ClosureKind::FnOnce,
610 );
611 if should_codegen_locally(self.tcx, &instance) {
612 self.output.push(create_fn_mono_item(self.tcx, instance, span));
613 }
614 }
615 _ => bug!(),
616 }
617 }
618 mir::Rvalue::NullaryOp(mir::NullOp::Box, _) => {
619 let tcx = self.tcx;
620 let exchange_malloc_fn_def_id =
621 tcx.require_lang_item(LangItem::ExchangeMalloc, None);
622 let instance = Instance::mono(tcx, exchange_malloc_fn_def_id);
623 if should_codegen_locally(tcx, &instance) {
624 self.output.push(create_fn_mono_item(self.tcx, instance, span));
625 }
626 }
627 mir::Rvalue::ThreadLocalRef(def_id) => {
628 assert!(self.tcx.is_thread_local_static(def_id));
629 let instance = Instance::mono(self.tcx, def_id);
630 if should_codegen_locally(self.tcx, &instance) {
631 trace!("collecting thread-local static {:?}", def_id);
632 self.output.push(respan(span, MonoItem::Static(def_id)));
633 }
634 }
635 _ => { /* not interesting */ }
636 }
637
638 self.super_rvalue(rvalue, location);
639 }
640
641 fn visit_const(&mut self, constant: &&'tcx ty::Const<'tcx>, location: Location) {
642 debug!("visiting const {:?} @ {:?}", *constant, location);
643
644 let substituted_constant = self.monomorphize(*constant);
645 let param_env = ty::ParamEnv::reveal_all();
646
647 match substituted_constant.val {
648 ty::ConstKind::Value(val) => collect_const_value(self.tcx, val, self.output),
649 ty::ConstKind::Unevaluated(def, substs, promoted) => {
650 match self.tcx.const_eval_resolve(param_env, def, substs, promoted, None) {
651 Ok(val) => collect_const_value(self.tcx, val, self.output),
652 Err(ErrorHandled::Reported(ErrorReported) | ErrorHandled::Linted) => {}
653 Err(ErrorHandled::TooGeneric) => span_bug!(
654 self.body.source_info(location).span,
655 "collection encountered polymorphic constant: {}",
656 substituted_constant
657 ),
658 }
659 }
660 _ => {}
661 }
662
663 self.super_const(constant);
664 }
665
666 fn visit_terminator(&mut self, terminator: &mir::Terminator<'tcx>, location: Location) {
667 debug!("visiting terminator {:?} @ {:?}", terminator, location);
668 let source = self.body.source_info(location).span;
669
670 let tcx = self.tcx;
671 match terminator.kind {
672 mir::TerminatorKind::Call { ref func, .. } => {
673 let callee_ty = func.ty(self.body, tcx);
674 let callee_ty = self.monomorphize(callee_ty);
675 visit_fn_use(self.tcx, callee_ty, true, source, &mut self.output);
676 }
677 mir::TerminatorKind::Drop { ref place, .. }
678 | mir::TerminatorKind::DropAndReplace { ref place, .. } => {
679 let ty = place.ty(self.body, self.tcx).ty;
680 let ty = self.monomorphize(ty);
681 visit_drop_use(self.tcx, ty, true, source, self.output);
682 }
683 mir::TerminatorKind::InlineAsm { ref operands, .. } => {
684 for op in operands {
685 match *op {
686 mir::InlineAsmOperand::SymFn { ref value } => {
687 let fn_ty = self.monomorphize(value.literal.ty);
688 visit_fn_use(self.tcx, fn_ty, false, source, &mut self.output);
689 }
690 mir::InlineAsmOperand::SymStatic { def_id } => {
691 let instance = Instance::mono(self.tcx, def_id);
692 if should_codegen_locally(self.tcx, &instance) {
693 trace!("collecting asm sym static {:?}", def_id);
694 self.output.push(respan(source, MonoItem::Static(def_id)));
695 }
696 }
697 _ => {}
698 }
699 }
700 }
701 mir::TerminatorKind::Goto { .. }
702 | mir::TerminatorKind::SwitchInt { .. }
703 | mir::TerminatorKind::Resume
704 | mir::TerminatorKind::Abort
705 | mir::TerminatorKind::Return
706 | mir::TerminatorKind::Unreachable
707 | mir::TerminatorKind::Assert { .. } => {}
708 mir::TerminatorKind::GeneratorDrop
709 | mir::TerminatorKind::Yield { .. }
710 | mir::TerminatorKind::FalseEdge { .. }
711 | mir::TerminatorKind::FalseUnwind { .. } => bug!(),
712 }
713
714 self.super_terminator(terminator, location);
715 }
716
717 fn visit_local(
718 &mut self,
719 _place_local: &Local,
720 _context: mir::visit::PlaceContext,
721 _location: Location,
722 ) {
723 }
724 }
725
726 fn visit_drop_use<'tcx>(
727 tcx: TyCtxt<'tcx>,
728 ty: Ty<'tcx>,
729 is_direct_call: bool,
730 source: Span,
731 output: &mut Vec<Spanned<MonoItem<'tcx>>>,
732 ) {
733 let instance = Instance::resolve_drop_in_place(tcx, ty);
734 visit_instance_use(tcx, instance, is_direct_call, source, output);
735 }
736
737 fn visit_fn_use<'tcx>(
738 tcx: TyCtxt<'tcx>,
739 ty: Ty<'tcx>,
740 is_direct_call: bool,
741 source: Span,
742 output: &mut Vec<Spanned<MonoItem<'tcx>>>,
743 ) {
744 if let ty::FnDef(def_id, substs) = *ty.kind() {
745 let instance = if is_direct_call {
746 ty::Instance::resolve(tcx, ty::ParamEnv::reveal_all(), def_id, substs).unwrap().unwrap()
747 } else {
748 ty::Instance::resolve_for_fn_ptr(tcx, ty::ParamEnv::reveal_all(), def_id, substs)
749 .unwrap()
750 };
751 visit_instance_use(tcx, instance, is_direct_call, source, output);
752 }
753 }
754
755 fn visit_instance_use<'tcx>(
756 tcx: TyCtxt<'tcx>,
757 instance: ty::Instance<'tcx>,
758 is_direct_call: bool,
759 source: Span,
760 output: &mut Vec<Spanned<MonoItem<'tcx>>>,
761 ) {
762 debug!("visit_item_use({:?}, is_direct_call={:?})", instance, is_direct_call);
763 if !should_codegen_locally(tcx, &instance) {
764 return;
765 }
766
767 match instance.def {
768 ty::InstanceDef::Virtual(..) | ty::InstanceDef::Intrinsic(_) => {
769 if !is_direct_call {
770 bug!("{:?} being reified", instance);
771 }
772 }
773 ty::InstanceDef::DropGlue(_, None) => {
774 // Don't need to emit noop drop glue if we are calling directly.
775 if !is_direct_call {
776 output.push(create_fn_mono_item(tcx, instance, source));
777 }
778 }
779 ty::InstanceDef::DropGlue(_, Some(_))
780 | ty::InstanceDef::VtableShim(..)
781 | ty::InstanceDef::ReifyShim(..)
782 | ty::InstanceDef::ClosureOnceShim { .. }
783 | ty::InstanceDef::Item(..)
784 | ty::InstanceDef::FnPtrShim(..)
785 | ty::InstanceDef::CloneShim(..) => {
786 output.push(create_fn_mono_item(tcx, instance, source));
787 }
788 }
789 }
790
791 // Returns `true` if we should codegen an instance in the local crate.
792 // Returns `false` if we can just link to the upstream crate and therefore don't
793 // need a mono item.
794 fn should_codegen_locally<'tcx>(tcx: TyCtxt<'tcx>, instance: &Instance<'tcx>) -> bool {
795 let def_id = match instance.def {
796 ty::InstanceDef::Item(def) => def.did,
797 ty::InstanceDef::DropGlue(def_id, Some(_)) => def_id,
798 ty::InstanceDef::VtableShim(..)
799 | ty::InstanceDef::ReifyShim(..)
800 | ty::InstanceDef::ClosureOnceShim { .. }
801 | ty::InstanceDef::Virtual(..)
802 | ty::InstanceDef::FnPtrShim(..)
803 | ty::InstanceDef::DropGlue(..)
804 | ty::InstanceDef::Intrinsic(_)
805 | ty::InstanceDef::CloneShim(..) => return true,
806 };
807
808 if tcx.is_foreign_item(def_id) {
809 // Foreign items are always linked against, there's no way of instantiating them.
810 return false;
811 }
812
813 if def_id.is_local() {
814 // Local items cannot be referred to locally without monomorphizing them locally.
815 return true;
816 }
817
818 if tcx.is_reachable_non_generic(def_id)
819 || instance.polymorphize(tcx).upstream_monomorphization(tcx).is_some()
820 {
821 // We can link to the item in question, no instance needed in this crate.
822 return false;
823 }
824
825 if !tcx.is_mir_available(def_id) {
826 bug!("cannot create local mono-item for {:?}", def_id)
827 }
828
829 true
830 }
831
832 /// For a given pair of source and target type that occur in an unsizing coercion,
833 /// this function finds the pair of types that determines the vtable linking
834 /// them.
835 ///
836 /// For example, the source type might be `&SomeStruct` and the target type\
837 /// might be `&SomeTrait` in a cast like:
838 ///
839 /// let src: &SomeStruct = ...;
840 /// let target = src as &SomeTrait;
841 ///
842 /// Then the output of this function would be (SomeStruct, SomeTrait) since for
843 /// constructing the `target` fat-pointer we need the vtable for that pair.
844 ///
845 /// Things can get more complicated though because there's also the case where
846 /// the unsized type occurs as a field:
847 ///
848 /// ```rust
849 /// struct ComplexStruct<T: ?Sized> {
850 /// a: u32,
851 /// b: f64,
852 /// c: T
853 /// }
854 /// ```
855 ///
856 /// In this case, if `T` is sized, `&ComplexStruct<T>` is a thin pointer. If `T`
857 /// is unsized, `&SomeStruct` is a fat pointer, and the vtable it points to is
858 /// for the pair of `T` (which is a trait) and the concrete type that `T` was
859 /// originally coerced from:
860 ///
861 /// let src: &ComplexStruct<SomeStruct> = ...;
862 /// let target = src as &ComplexStruct<SomeTrait>;
863 ///
864 /// Again, we want this `find_vtable_types_for_unsizing()` to provide the pair
865 /// `(SomeStruct, SomeTrait)`.
866 ///
867 /// Finally, there is also the case of custom unsizing coercions, e.g., for
868 /// smart pointers such as `Rc` and `Arc`.
869 fn find_vtable_types_for_unsizing<'tcx>(
870 tcx: TyCtxt<'tcx>,
871 source_ty: Ty<'tcx>,
872 target_ty: Ty<'tcx>,
873 ) -> (Ty<'tcx>, Ty<'tcx>) {
874 let ptr_vtable = |inner_source: Ty<'tcx>, inner_target: Ty<'tcx>| {
875 let param_env = ty::ParamEnv::reveal_all();
876 let type_has_metadata = |ty: Ty<'tcx>| -> bool {
877 if ty.is_sized(tcx.at(DUMMY_SP), param_env) {
878 return false;
879 }
880 let tail = tcx.struct_tail_erasing_lifetimes(ty, param_env);
881 match tail.kind() {
882 ty::Foreign(..) => false,
883 ty::Str | ty::Slice(..) | ty::Dynamic(..) => true,
884 _ => bug!("unexpected unsized tail: {:?}", tail),
885 }
886 };
887 if type_has_metadata(inner_source) {
888 (inner_source, inner_target)
889 } else {
890 tcx.struct_lockstep_tails_erasing_lifetimes(inner_source, inner_target, param_env)
891 }
892 };
893
894 match (&source_ty.kind(), &target_ty.kind()) {
895 (&ty::Ref(_, a, _), &ty::Ref(_, b, _) | &ty::RawPtr(ty::TypeAndMut { ty: b, .. }))
896 | (&ty::RawPtr(ty::TypeAndMut { ty: a, .. }), &ty::RawPtr(ty::TypeAndMut { ty: b, .. })) => {
897 ptr_vtable(a, b)
898 }
899 (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) if def_a.is_box() && def_b.is_box() => {
900 ptr_vtable(source_ty.boxed_ty(), target_ty.boxed_ty())
901 }
902
903 (&ty::Adt(source_adt_def, source_substs), &ty::Adt(target_adt_def, target_substs)) => {
904 assert_eq!(source_adt_def, target_adt_def);
905
906 let CustomCoerceUnsized::Struct(coerce_index) =
907 monomorphize::custom_coerce_unsize_info(tcx, source_ty, target_ty);
908
909 let source_fields = &source_adt_def.non_enum_variant().fields;
910 let target_fields = &target_adt_def.non_enum_variant().fields;
911
912 assert!(
913 coerce_index < source_fields.len() && source_fields.len() == target_fields.len()
914 );
915
916 find_vtable_types_for_unsizing(
917 tcx,
918 source_fields[coerce_index].ty(tcx, source_substs),
919 target_fields[coerce_index].ty(tcx, target_substs),
920 )
921 }
922 _ => bug!(
923 "find_vtable_types_for_unsizing: invalid coercion {:?} -> {:?}",
924 source_ty,
925 target_ty
926 ),
927 }
928 }
929
930 fn create_fn_mono_item<'tcx>(
931 tcx: TyCtxt<'tcx>,
932 instance: Instance<'tcx>,
933 source: Span,
934 ) -> Spanned<MonoItem<'tcx>> {
935 debug!("create_fn_mono_item(instance={})", instance);
936 respan(source, MonoItem::Fn(instance.polymorphize(tcx)))
937 }
938
939 /// Creates a `MonoItem` for each method that is referenced by the vtable for
940 /// the given trait/impl pair.
941 fn create_mono_items_for_vtable_methods<'tcx>(
942 tcx: TyCtxt<'tcx>,
943 trait_ty: Ty<'tcx>,
944 impl_ty: Ty<'tcx>,
945 source: Span,
946 output: &mut Vec<Spanned<MonoItem<'tcx>>>,
947 ) {
948 assert!(!trait_ty.has_escaping_bound_vars() && !impl_ty.has_escaping_bound_vars());
949
950 if let ty::Dynamic(ref trait_ty, ..) = trait_ty.kind() {
951 if let Some(principal) = trait_ty.principal() {
952 let poly_trait_ref = principal.with_self_ty(tcx, impl_ty);
953 assert!(!poly_trait_ref.has_escaping_bound_vars());
954
955 // Walk all methods of the trait, including those of its supertraits
956 let methods = tcx.vtable_methods(poly_trait_ref);
957 let methods = methods
958 .iter()
959 .cloned()
960 .filter_map(|method| method)
961 .map(|(def_id, substs)| {
962 ty::Instance::resolve_for_vtable(
963 tcx,
964 ty::ParamEnv::reveal_all(),
965 def_id,
966 substs,
967 )
968 .unwrap()
969 })
970 .filter(|&instance| should_codegen_locally(tcx, &instance))
971 .map(|item| create_fn_mono_item(tcx, item, source));
972 output.extend(methods);
973 }
974
975 // Also add the destructor.
976 visit_drop_use(tcx, impl_ty, false, source, output);
977 }
978 }
979
980 //=-----------------------------------------------------------------------------
981 // Root Collection
982 //=-----------------------------------------------------------------------------
983
984 struct RootCollector<'a, 'tcx> {
985 tcx: TyCtxt<'tcx>,
986 mode: MonoItemCollectionMode,
987 output: &'a mut Vec<Spanned<MonoItem<'tcx>>>,
988 entry_fn: Option<(LocalDefId, EntryFnType)>,
989 }
990
991 impl ItemLikeVisitor<'v> for RootCollector<'_, 'v> {
992 fn visit_item(&mut self, item: &'v hir::Item<'v>) {
993 match item.kind {
994 hir::ItemKind::ExternCrate(..)
995 | hir::ItemKind::Use(..)
996 | hir::ItemKind::ForeignMod(..)
997 | hir::ItemKind::TyAlias(..)
998 | hir::ItemKind::Trait(..)
999 | hir::ItemKind::TraitAlias(..)
1000 | hir::ItemKind::OpaqueTy(..)
1001 | hir::ItemKind::Mod(..) => {
1002 // Nothing to do, just keep recursing.
1003 }
1004
1005 hir::ItemKind::Impl { .. } => {
1006 if self.mode == MonoItemCollectionMode::Eager {
1007 create_mono_items_for_default_impls(self.tcx, item, self.output);
1008 }
1009 }
1010
1011 hir::ItemKind::Enum(_, ref generics)
1012 | hir::ItemKind::Struct(_, ref generics)
1013 | hir::ItemKind::Union(_, ref generics) => {
1014 if generics.params.is_empty() {
1015 if self.mode == MonoItemCollectionMode::Eager {
1016 let def_id = self.tcx.hir().local_def_id(item.hir_id);
1017 debug!(
1018 "RootCollector: ADT drop-glue for {}",
1019 self.tcx.def_path_str(def_id.to_def_id())
1020 );
1021
1022 let ty = Instance::new(def_id.to_def_id(), InternalSubsts::empty())
1023 .ty(self.tcx, ty::ParamEnv::reveal_all());
1024 visit_drop_use(self.tcx, ty, true, DUMMY_SP, self.output);
1025 }
1026 }
1027 }
1028 hir::ItemKind::GlobalAsm(..) => {
1029 debug!(
1030 "RootCollector: ItemKind::GlobalAsm({})",
1031 self.tcx.def_path_str(self.tcx.hir().local_def_id(item.hir_id).to_def_id())
1032 );
1033 self.output.push(dummy_spanned(MonoItem::GlobalAsm(item.hir_id)));
1034 }
1035 hir::ItemKind::Static(..) => {
1036 let def_id = self.tcx.hir().local_def_id(item.hir_id).to_def_id();
1037 debug!("RootCollector: ItemKind::Static({})", self.tcx.def_path_str(def_id));
1038 self.output.push(dummy_spanned(MonoItem::Static(def_id)));
1039 }
1040 hir::ItemKind::Const(..) => {
1041 // const items only generate mono items if they are
1042 // actually used somewhere. Just declaring them is insufficient.
1043
1044 // but even just declaring them must collect the items they refer to
1045 let def_id = self.tcx.hir().local_def_id(item.hir_id);
1046
1047 if let Ok(val) = self.tcx.const_eval_poly(def_id.to_def_id()) {
1048 collect_const_value(self.tcx, val, &mut self.output);
1049 }
1050 }
1051 hir::ItemKind::Fn(..) => {
1052 let def_id = self.tcx.hir().local_def_id(item.hir_id);
1053 self.push_if_root(def_id);
1054 }
1055 }
1056 }
1057
1058 fn visit_trait_item(&mut self, _: &'v hir::TraitItem<'v>) {
1059 // Even if there's a default body with no explicit generics,
1060 // it's still generic over some `Self: Trait`, so not a root.
1061 }
1062
1063 fn visit_impl_item(&mut self, ii: &'v hir::ImplItem<'v>) {
1064 if let hir::ImplItemKind::Fn(hir::FnSig { .. }, _) = ii.kind {
1065 let def_id = self.tcx.hir().local_def_id(ii.hir_id);
1066 self.push_if_root(def_id);
1067 }
1068 }
1069 }
1070
1071 impl RootCollector<'_, 'v> {
1072 fn is_root(&self, def_id: LocalDefId) -> bool {
1073 !item_requires_monomorphization(self.tcx, def_id)
1074 && match self.mode {
1075 MonoItemCollectionMode::Eager => true,
1076 MonoItemCollectionMode::Lazy => {
1077 self.entry_fn.map(|(id, _)| id) == Some(def_id)
1078 || self.tcx.is_reachable_non_generic(def_id)
1079 || self
1080 .tcx
1081 .codegen_fn_attrs(def_id)
1082 .flags
1083 .contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL)
1084 }
1085 }
1086 }
1087
1088 /// If `def_id` represents a root, pushes it onto the list of
1089 /// outputs. (Note that all roots must be monomorphic.)
1090 fn push_if_root(&mut self, def_id: LocalDefId) {
1091 if self.is_root(def_id) {
1092 debug!("RootCollector::push_if_root: found root def_id={:?}", def_id);
1093
1094 let instance = Instance::mono(self.tcx, def_id.to_def_id());
1095 self.output.push(create_fn_mono_item(self.tcx, instance, DUMMY_SP));
1096 }
1097 }
1098
1099 /// As a special case, when/if we encounter the
1100 /// `main()` function, we also have to generate a
1101 /// monomorphized copy of the start lang item based on
1102 /// the return type of `main`. This is not needed when
1103 /// the user writes their own `start` manually.
1104 fn push_extra_entry_roots(&mut self) {
1105 let main_def_id = match self.entry_fn {
1106 Some((def_id, EntryFnType::Main)) => def_id,
1107 _ => return,
1108 };
1109
1110 let start_def_id = match self.tcx.lang_items().require(LangItem::Start) {
1111 Ok(s) => s,
1112 Err(err) => self.tcx.sess.fatal(&err),
1113 };
1114 let main_ret_ty = self.tcx.fn_sig(main_def_id).output();
1115
1116 // Given that `main()` has no arguments,
1117 // then its return type cannot have
1118 // late-bound regions, since late-bound
1119 // regions must appear in the argument
1120 // listing.
1121 let main_ret_ty = self.tcx.erase_regions(&main_ret_ty.no_bound_vars().unwrap());
1122
1123 let start_instance = Instance::resolve(
1124 self.tcx,
1125 ty::ParamEnv::reveal_all(),
1126 start_def_id,
1127 self.tcx.intern_substs(&[main_ret_ty.into()]),
1128 )
1129 .unwrap()
1130 .unwrap();
1131
1132 self.output.push(create_fn_mono_item(self.tcx, start_instance, DUMMY_SP));
1133 }
1134 }
1135
1136 fn item_requires_monomorphization(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool {
1137 let generics = tcx.generics_of(def_id);
1138 generics.requires_monomorphization(tcx)
1139 }
1140
1141 fn create_mono_items_for_default_impls<'tcx>(
1142 tcx: TyCtxt<'tcx>,
1143 item: &'tcx hir::Item<'tcx>,
1144 output: &mut Vec<Spanned<MonoItem<'tcx>>>,
1145 ) {
1146 match item.kind {
1147 hir::ItemKind::Impl { ref generics, ref items, .. } => {
1148 for param in generics.params {
1149 match param.kind {
1150 hir::GenericParamKind::Lifetime { .. } => {}
1151 hir::GenericParamKind::Type { .. } | hir::GenericParamKind::Const { .. } => {
1152 return;
1153 }
1154 }
1155 }
1156
1157 let impl_def_id = tcx.hir().local_def_id(item.hir_id);
1158
1159 debug!(
1160 "create_mono_items_for_default_impls(item={})",
1161 tcx.def_path_str(impl_def_id.to_def_id())
1162 );
1163
1164 if let Some(trait_ref) = tcx.impl_trait_ref(impl_def_id) {
1165 let param_env = ty::ParamEnv::reveal_all();
1166 let trait_ref = tcx.normalize_erasing_regions(param_env, trait_ref);
1167 let overridden_methods: FxHashSet<_> =
1168 items.iter().map(|iiref| iiref.ident.normalize_to_macros_2_0()).collect();
1169 for method in tcx.provided_trait_methods(trait_ref.def_id) {
1170 if overridden_methods.contains(&method.ident.normalize_to_macros_2_0()) {
1171 continue;
1172 }
1173
1174 if tcx.generics_of(method.def_id).own_requires_monomorphization() {
1175 continue;
1176 }
1177
1178 let substs =
1179 InternalSubsts::for_item(tcx, method.def_id, |param, _| match param.kind {
1180 GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(),
1181 GenericParamDefKind::Type { .. } | GenericParamDefKind::Const => {
1182 trait_ref.substs[param.index as usize]
1183 }
1184 });
1185 let instance = ty::Instance::resolve(tcx, param_env, method.def_id, substs)
1186 .unwrap()
1187 .unwrap();
1188
1189 let mono_item = create_fn_mono_item(tcx, instance, DUMMY_SP);
1190 if mono_item.node.is_instantiable(tcx) && should_codegen_locally(tcx, &instance)
1191 {
1192 output.push(mono_item);
1193 }
1194 }
1195 }
1196 }
1197 _ => bug!(),
1198 }
1199 }
1200
1201 /// Scans the miri alloc in order to find function calls, closures, and drop-glue.
1202 fn collect_miri<'tcx>(
1203 tcx: TyCtxt<'tcx>,
1204 alloc_id: AllocId,
1205 output: &mut Vec<Spanned<MonoItem<'tcx>>>,
1206 ) {
1207 match tcx.global_alloc(alloc_id) {
1208 GlobalAlloc::Static(def_id) => {
1209 assert!(!tcx.is_thread_local_static(def_id));
1210 let instance = Instance::mono(tcx, def_id);
1211 if should_codegen_locally(tcx, &instance) {
1212 trace!("collecting static {:?}", def_id);
1213 output.push(dummy_spanned(MonoItem::Static(def_id)));
1214 }
1215 }
1216 GlobalAlloc::Memory(alloc) => {
1217 trace!("collecting {:?} with {:#?}", alloc_id, alloc);
1218 for &((), inner) in alloc.relocations().values() {
1219 rustc_data_structures::stack::ensure_sufficient_stack(|| {
1220 collect_miri(tcx, inner, output);
1221 });
1222 }
1223 }
1224 GlobalAlloc::Function(fn_instance) => {
1225 if should_codegen_locally(tcx, &fn_instance) {
1226 trace!("collecting {:?} with {:#?}", alloc_id, fn_instance);
1227 output.push(create_fn_mono_item(tcx, fn_instance, DUMMY_SP));
1228 }
1229 }
1230 }
1231 }
1232
1233 /// Scans the MIR in order to find function calls, closures, and drop-glue.
1234 fn collect_neighbours<'tcx>(
1235 tcx: TyCtxt<'tcx>,
1236 instance: Instance<'tcx>,
1237 output: &mut Vec<Spanned<MonoItem<'tcx>>>,
1238 ) {
1239 debug!("collect_neighbours: {:?}", instance.def_id());
1240 let body = tcx.instance_mir(instance.def);
1241
1242 MirNeighborCollector { tcx, body: &body, output, instance }.visit_body(&body);
1243 }
1244
1245 fn collect_const_value<'tcx>(
1246 tcx: TyCtxt<'tcx>,
1247 value: ConstValue<'tcx>,
1248 output: &mut Vec<Spanned<MonoItem<'tcx>>>,
1249 ) {
1250 match value {
1251 ConstValue::Scalar(Scalar::Ptr(ptr)) => collect_miri(tcx, ptr.alloc_id, output),
1252 ConstValue::Slice { data: alloc, start: _, end: _ } | ConstValue::ByRef { alloc, .. } => {
1253 for &((), id) in alloc.relocations().values() {
1254 collect_miri(tcx, id, output);
1255 }
1256 }
1257 _ => {}
1258 }
1259 }