]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_mir_build/src/thir/pattern/deconstruct_pat.rs
New upstream version 1.61.0+dfsg1
[rustc.git] / compiler / rustc_mir_build / src / thir / pattern / deconstruct_pat.rs
1 //! [`super::usefulness`] explains most of what is happening in this file. As explained there,
2 //! values and patterns are made from constructors applied to fields. This file defines a
3 //! `Constructor` enum, a `Fields` struct, and various operations to manipulate them and convert
4 //! them from/to patterns.
5 //!
6 //! There's one idea that is not detailed in [`super::usefulness`] because the details are not
7 //! needed there: _constructor splitting_.
8 //!
9 //! # Constructor splitting
10 //!
11 //! The idea is as follows: given a constructor `c` and a matrix, we want to specialize in turn
12 //! with all the value constructors that are covered by `c`, and compute usefulness for each.
13 //! Instead of listing all those constructors (which is intractable), we group those value
14 //! constructors together as much as possible. Example:
15 //!
16 //! ```
17 //! match (0, false) {
18 //! (0 ..=100, true) => {} // `p_1`
19 //! (50..=150, false) => {} // `p_2`
20 //! (0 ..=200, _) => {} // `q`
21 //! }
22 //! ```
23 //!
24 //! The naive approach would try all numbers in the range `0..=200`. But we can be a lot more
25 //! clever: `0` and `1` for example will match the exact same rows, and return equivalent
26 //! witnesses. In fact all of `0..50` would. We can thus restrict our exploration to 4
27 //! constructors: `0..50`, `50..=100`, `101..=150` and `151..=200`. That is enough and infinitely
28 //! more tractable.
29 //!
30 //! We capture this idea in a function `split(p_1 ... p_n, c)` which returns a list of constructors
31 //! `c'` covered by `c`. Given such a `c'`, we require that all value ctors `c''` covered by `c'`
32 //! return an equivalent set of witnesses after specializing and computing usefulness.
33 //! In the example above, witnesses for specializing by `c''` covered by `0..50` will only differ
34 //! in their first element.
35 //!
36 //! We usually also ask that the `c'` together cover all of the original `c`. However we allow
37 //! skipping some constructors as long as it doesn't change whether the resulting list of witnesses
38 //! is empty of not. We use this in the wildcard `_` case.
39 //!
40 //! Splitting is implemented in the [`Constructor::split`] function. We don't do splitting for
41 //! or-patterns; instead we just try the alternatives one-by-one. For details on splitting
42 //! wildcards, see [`SplitWildcard`]; for integer ranges, see [`SplitIntRange`]; for slices, see
43 //! [`SplitVarLenSlice`].
44
45 use self::Constructor::*;
46 use self::SliceKind::*;
47
48 use super::compare_const_vals;
49 use super::usefulness::{MatchCheckCtxt, PatCtxt};
50
51 use rustc_data_structures::captures::Captures;
52 use rustc_index::vec::Idx;
53
54 use rustc_hir::{HirId, RangeEnd};
55 use rustc_middle::mir::Field;
56 use rustc_middle::thir::{FieldPat, Pat, PatKind, PatRange};
57 use rustc_middle::ty::layout::IntegerExt;
58 use rustc_middle::ty::{self, Const, Ty, TyCtxt, VariantDef};
59 use rustc_middle::{middle::stability::EvalResult, mir::interpret::ConstValue};
60 use rustc_session::lint;
61 use rustc_span::{Span, DUMMY_SP};
62 use rustc_target::abi::{Integer, Size, VariantIdx};
63
64 use smallvec::{smallvec, SmallVec};
65 use std::cell::Cell;
66 use std::cmp::{self, max, min, Ordering};
67 use std::fmt;
68 use std::iter::{once, IntoIterator};
69 use std::ops::RangeInclusive;
70
71 /// Recursively expand this pattern into its subpatterns. Only useful for or-patterns.
72 fn expand_or_pat<'p, 'tcx>(pat: &'p Pat<'tcx>) -> Vec<&'p Pat<'tcx>> {
73 fn expand<'p, 'tcx>(pat: &'p Pat<'tcx>, vec: &mut Vec<&'p Pat<'tcx>>) {
74 if let PatKind::Or { pats } = pat.kind.as_ref() {
75 for pat in pats {
76 expand(pat, vec);
77 }
78 } else {
79 vec.push(pat)
80 }
81 }
82
83 let mut pats = Vec::new();
84 expand(pat, &mut pats);
85 pats
86 }
87
88 /// An inclusive interval, used for precise integer exhaustiveness checking.
89 /// `IntRange`s always store a contiguous range. This means that values are
90 /// encoded such that `0` encodes the minimum value for the integer,
91 /// regardless of the signedness.
92 /// For example, the pattern `-128..=127i8` is encoded as `0..=255`.
93 /// This makes comparisons and arithmetic on interval endpoints much more
94 /// straightforward. See `signed_bias` for details.
95 ///
96 /// `IntRange` is never used to encode an empty range or a "range" that wraps
97 /// around the (offset) space: i.e., `range.lo <= range.hi`.
98 #[derive(Clone, PartialEq, Eq)]
99 pub(super) struct IntRange {
100 range: RangeInclusive<u128>,
101 /// Keeps the bias used for encoding the range. It depends on the type of the range and
102 /// possibly the pointer size of the current architecture. The algorithm ensures we never
103 /// compare `IntRange`s with different types/architectures.
104 bias: u128,
105 }
106
107 impl IntRange {
108 #[inline]
109 fn is_integral(ty: Ty<'_>) -> bool {
110 matches!(ty.kind(), ty::Char | ty::Int(_) | ty::Uint(_) | ty::Bool)
111 }
112
113 fn is_singleton(&self) -> bool {
114 self.range.start() == self.range.end()
115 }
116
117 fn boundaries(&self) -> (u128, u128) {
118 (*self.range.start(), *self.range.end())
119 }
120
121 #[inline]
122 fn integral_size_and_signed_bias(tcx: TyCtxt<'_>, ty: Ty<'_>) -> Option<(Size, u128)> {
123 match *ty.kind() {
124 ty::Bool => Some((Size::from_bytes(1), 0)),
125 ty::Char => Some((Size::from_bytes(4), 0)),
126 ty::Int(ity) => {
127 let size = Integer::from_int_ty(&tcx, ity).size();
128 Some((size, 1u128 << (size.bits() as u128 - 1)))
129 }
130 ty::Uint(uty) => Some((Integer::from_uint_ty(&tcx, uty).size(), 0)),
131 _ => None,
132 }
133 }
134
135 #[inline]
136 fn from_const<'tcx>(
137 tcx: TyCtxt<'tcx>,
138 param_env: ty::ParamEnv<'tcx>,
139 value: Const<'tcx>,
140 ) -> Option<IntRange> {
141 let ty = value.ty();
142 if let Some((target_size, bias)) = Self::integral_size_and_signed_bias(tcx, ty) {
143 let val = (|| {
144 if let ty::ConstKind::Value(ConstValue::Scalar(scalar)) = value.val() {
145 // For this specific pattern we can skip a lot of effort and go
146 // straight to the result, after doing a bit of checking. (We
147 // could remove this branch and just fall through, which
148 // is more general but much slower.)
149 if let Ok(bits) = scalar.to_bits_or_ptr_internal(target_size) {
150 return Some(bits);
151 }
152 }
153 // This is a more general form of the previous case.
154 value.try_eval_bits(tcx, param_env, ty)
155 })()?;
156 let val = val ^ bias;
157 Some(IntRange { range: val..=val, bias })
158 } else {
159 None
160 }
161 }
162
163 #[inline]
164 fn from_range<'tcx>(
165 tcx: TyCtxt<'tcx>,
166 lo: u128,
167 hi: u128,
168 ty: Ty<'tcx>,
169 end: &RangeEnd,
170 ) -> Option<IntRange> {
171 if Self::is_integral(ty) {
172 // Perform a shift if the underlying types are signed,
173 // which makes the interval arithmetic simpler.
174 let bias = IntRange::signed_bias(tcx, ty);
175 let (lo, hi) = (lo ^ bias, hi ^ bias);
176 let offset = (*end == RangeEnd::Excluded) as u128;
177 if lo > hi || (lo == hi && *end == RangeEnd::Excluded) {
178 // This should have been caught earlier by E0030.
179 bug!("malformed range pattern: {}..={}", lo, (hi - offset));
180 }
181 Some(IntRange { range: lo..=(hi - offset), bias })
182 } else {
183 None
184 }
185 }
186
187 // The return value of `signed_bias` should be XORed with an endpoint to encode/decode it.
188 fn signed_bias(tcx: TyCtxt<'_>, ty: Ty<'_>) -> u128 {
189 match *ty.kind() {
190 ty::Int(ity) => {
191 let bits = Integer::from_int_ty(&tcx, ity).size().bits() as u128;
192 1u128 << (bits - 1)
193 }
194 _ => 0,
195 }
196 }
197
198 fn is_subrange(&self, other: &Self) -> bool {
199 other.range.start() <= self.range.start() && self.range.end() <= other.range.end()
200 }
201
202 fn intersection(&self, other: &Self) -> Option<Self> {
203 let (lo, hi) = self.boundaries();
204 let (other_lo, other_hi) = other.boundaries();
205 if lo <= other_hi && other_lo <= hi {
206 Some(IntRange { range: max(lo, other_lo)..=min(hi, other_hi), bias: self.bias })
207 } else {
208 None
209 }
210 }
211
212 fn suspicious_intersection(&self, other: &Self) -> bool {
213 // `false` in the following cases:
214 // 1 ---- // 1 ---------- // 1 ---- // 1 ----
215 // 2 ---------- // 2 ---- // 2 ---- // 2 ----
216 //
217 // The following are currently `false`, but could be `true` in the future (#64007):
218 // 1 --------- // 1 ---------
219 // 2 ---------- // 2 ----------
220 //
221 // `true` in the following cases:
222 // 1 ------- // 1 -------
223 // 2 -------- // 2 -------
224 let (lo, hi) = self.boundaries();
225 let (other_lo, other_hi) = other.boundaries();
226 (lo == other_hi || hi == other_lo) && !self.is_singleton() && !other.is_singleton()
227 }
228
229 /// Only used for displaying the range properly.
230 fn to_pat<'tcx>(&self, tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Pat<'tcx> {
231 let (lo, hi) = self.boundaries();
232
233 let bias = self.bias;
234 let (lo, hi) = (lo ^ bias, hi ^ bias);
235
236 let env = ty::ParamEnv::empty().and(ty);
237 let lo_const = ty::Const::from_bits(tcx, lo, env);
238 let hi_const = ty::Const::from_bits(tcx, hi, env);
239
240 let kind = if lo == hi {
241 PatKind::Constant { value: lo_const }
242 } else {
243 PatKind::Range(PatRange { lo: lo_const, hi: hi_const, end: RangeEnd::Included })
244 };
245
246 Pat { ty, span: DUMMY_SP, kind: Box::new(kind) }
247 }
248
249 /// Lint on likely incorrect range patterns (#63987)
250 pub(super) fn lint_overlapping_range_endpoints<'a, 'p: 'a, 'tcx: 'a>(
251 &self,
252 pcx: PatCtxt<'_, 'p, 'tcx>,
253 pats: impl Iterator<Item = &'a DeconstructedPat<'p, 'tcx>>,
254 column_count: usize,
255 hir_id: HirId,
256 ) {
257 if self.is_singleton() {
258 return;
259 }
260
261 if column_count != 1 {
262 // FIXME: for now, only check for overlapping ranges on simple range
263 // patterns. Otherwise with the current logic the following is detected
264 // as overlapping:
265 // ```
266 // match (0u8, true) {
267 // (0 ..= 125, false) => {}
268 // (125 ..= 255, true) => {}
269 // _ => {}
270 // }
271 // ```
272 return;
273 }
274
275 let overlaps: Vec<_> = pats
276 .filter_map(|pat| Some((pat.ctor().as_int_range()?, pat.span())))
277 .filter(|(range, _)| self.suspicious_intersection(range))
278 .map(|(range, span)| (self.intersection(&range).unwrap(), span))
279 .collect();
280
281 if !overlaps.is_empty() {
282 pcx.cx.tcx.struct_span_lint_hir(
283 lint::builtin::OVERLAPPING_RANGE_ENDPOINTS,
284 hir_id,
285 pcx.span,
286 |lint| {
287 let mut err = lint.build("multiple patterns overlap on their endpoints");
288 for (int_range, span) in overlaps {
289 err.span_label(
290 span,
291 &format!(
292 "this range overlaps on `{}`...",
293 int_range.to_pat(pcx.cx.tcx, pcx.ty)
294 ),
295 );
296 }
297 err.span_label(pcx.span, "... with this range");
298 err.note("you likely meant to write mutually exclusive ranges");
299 err.emit();
300 },
301 );
302 }
303 }
304
305 /// See `Constructor::is_covered_by`
306 fn is_covered_by(&self, other: &Self) -> bool {
307 if self.intersection(other).is_some() {
308 // Constructor splitting should ensure that all intersections we encounter are actually
309 // inclusions.
310 assert!(self.is_subrange(other));
311 true
312 } else {
313 false
314 }
315 }
316 }
317
318 /// Note: this is often not what we want: e.g. `false` is converted into the range `0..=0` and
319 /// would be displayed as such. To render properly, convert to a pattern first.
320 impl fmt::Debug for IntRange {
321 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
322 let (lo, hi) = self.boundaries();
323 let bias = self.bias;
324 let (lo, hi) = (lo ^ bias, hi ^ bias);
325 write!(f, "{}", lo)?;
326 write!(f, "{}", RangeEnd::Included)?;
327 write!(f, "{}", hi)
328 }
329 }
330
331 /// Represents a border between 2 integers. Because the intervals spanning borders must be able to
332 /// cover every integer, we need to be able to represent 2^128 + 1 such borders.
333 #[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
334 enum IntBorder {
335 JustBefore(u128),
336 AfterMax,
337 }
338
339 /// A range of integers that is partitioned into disjoint subranges. This does constructor
340 /// splitting for integer ranges as explained at the top of the file.
341 ///
342 /// This is fed multiple ranges, and returns an output that covers the input, but is split so that
343 /// the only intersections between an output range and a seen range are inclusions. No output range
344 /// straddles the boundary of one of the inputs.
345 ///
346 /// The following input:
347 /// ```
348 /// |-------------------------| // `self`
349 /// |------| |----------| |----|
350 /// |-------| |-------|
351 /// ```
352 /// would be iterated over as follows:
353 /// ```
354 /// ||---|--||-|---|---|---|--|
355 /// ```
356 #[derive(Debug, Clone)]
357 struct SplitIntRange {
358 /// The range we are splitting
359 range: IntRange,
360 /// The borders of ranges we have seen. They are all contained within `range`. This is kept
361 /// sorted.
362 borders: Vec<IntBorder>,
363 }
364
365 impl SplitIntRange {
366 fn new(range: IntRange) -> Self {
367 SplitIntRange { range, borders: Vec::new() }
368 }
369
370 /// Internal use
371 fn to_borders(r: IntRange) -> [IntBorder; 2] {
372 use IntBorder::*;
373 let (lo, hi) = r.boundaries();
374 let lo = JustBefore(lo);
375 let hi = match hi.checked_add(1) {
376 Some(m) => JustBefore(m),
377 None => AfterMax,
378 };
379 [lo, hi]
380 }
381
382 /// Add ranges relative to which we split.
383 fn split(&mut self, ranges: impl Iterator<Item = IntRange>) {
384 let this_range = &self.range;
385 let included_ranges = ranges.filter_map(|r| this_range.intersection(&r));
386 let included_borders = included_ranges.flat_map(|r| {
387 let borders = Self::to_borders(r);
388 once(borders[0]).chain(once(borders[1]))
389 });
390 self.borders.extend(included_borders);
391 self.borders.sort_unstable();
392 }
393
394 /// Iterate over the contained ranges.
395 fn iter<'a>(&'a self) -> impl Iterator<Item = IntRange> + Captures<'a> {
396 use IntBorder::*;
397
398 let self_range = Self::to_borders(self.range.clone());
399 // Start with the start of the range.
400 let mut prev_border = self_range[0];
401 self.borders
402 .iter()
403 .copied()
404 // End with the end of the range.
405 .chain(once(self_range[1]))
406 // List pairs of adjacent borders.
407 .map(move |border| {
408 let ret = (prev_border, border);
409 prev_border = border;
410 ret
411 })
412 // Skip duplicates.
413 .filter(|(prev_border, border)| prev_border != border)
414 // Finally, convert to ranges.
415 .map(move |(prev_border, border)| {
416 let range = match (prev_border, border) {
417 (JustBefore(n), JustBefore(m)) if n < m => n..=(m - 1),
418 (JustBefore(n), AfterMax) => n..=u128::MAX,
419 _ => unreachable!(), // Ruled out by the sorting and filtering we did
420 };
421 IntRange { range, bias: self.range.bias }
422 })
423 }
424 }
425
426 #[derive(Copy, Clone, Debug, PartialEq, Eq)]
427 enum SliceKind {
428 /// Patterns of length `n` (`[x, y]`).
429 FixedLen(usize),
430 /// Patterns using the `..` notation (`[x, .., y]`).
431 /// Captures any array constructor of `length >= i + j`.
432 /// In the case where `array_len` is `Some(_)`,
433 /// this indicates that we only care about the first `i` and the last `j` values of the array,
434 /// and everything in between is a wildcard `_`.
435 VarLen(usize, usize),
436 }
437
438 impl SliceKind {
439 fn arity(self) -> usize {
440 match self {
441 FixedLen(length) => length,
442 VarLen(prefix, suffix) => prefix + suffix,
443 }
444 }
445
446 /// Whether this pattern includes patterns of length `other_len`.
447 fn covers_length(self, other_len: usize) -> bool {
448 match self {
449 FixedLen(len) => len == other_len,
450 VarLen(prefix, suffix) => prefix + suffix <= other_len,
451 }
452 }
453 }
454
455 /// A constructor for array and slice patterns.
456 #[derive(Copy, Clone, Debug, PartialEq, Eq)]
457 pub(super) struct Slice {
458 /// `None` if the matched value is a slice, `Some(n)` if it is an array of size `n`.
459 array_len: Option<usize>,
460 /// The kind of pattern it is: fixed-length `[x, y]` or variable length `[x, .., y]`.
461 kind: SliceKind,
462 }
463
464 impl Slice {
465 fn new(array_len: Option<usize>, kind: SliceKind) -> Self {
466 let kind = match (array_len, kind) {
467 // If the middle `..` is empty, we effectively have a fixed-length pattern.
468 (Some(len), VarLen(prefix, suffix)) if prefix + suffix >= len => FixedLen(len),
469 _ => kind,
470 };
471 Slice { array_len, kind }
472 }
473
474 fn arity(self) -> usize {
475 self.kind.arity()
476 }
477
478 /// See `Constructor::is_covered_by`
479 fn is_covered_by(self, other: Self) -> bool {
480 other.kind.covers_length(self.arity())
481 }
482 }
483
484 /// This computes constructor splitting for variable-length slices, as explained at the top of the
485 /// file.
486 ///
487 /// A slice pattern `[x, .., y]` behaves like the infinite or-pattern `[x, y] | [x, _, y] | [x, _,
488 /// _, y] | ...`. The corresponding value constructors are fixed-length array constructors above a
489 /// given minimum length. We obviously can't list this infinitude of constructors. Thankfully,
490 /// it turns out that for each finite set of slice patterns, all sufficiently large array lengths
491 /// are equivalent.
492 ///
493 /// Let's look at an example, where we are trying to split the last pattern:
494 /// ```
495 /// match x {
496 /// [true, true, ..] => {}
497 /// [.., false, false] => {}
498 /// [..] => {}
499 /// }
500 /// ```
501 /// Here are the results of specialization for the first few lengths:
502 /// ```
503 /// // length 0
504 /// [] => {}
505 /// // length 1
506 /// [_] => {}
507 /// // length 2
508 /// [true, true] => {}
509 /// [false, false] => {}
510 /// [_, _] => {}
511 /// // length 3
512 /// [true, true, _ ] => {}
513 /// [_, false, false] => {}
514 /// [_, _, _ ] => {}
515 /// // length 4
516 /// [true, true, _, _ ] => {}
517 /// [_, _, false, false] => {}
518 /// [_, _, _, _ ] => {}
519 /// // length 5
520 /// [true, true, _, _, _ ] => {}
521 /// [_, _, _, false, false] => {}
522 /// [_, _, _, _, _ ] => {}
523 /// ```
524 ///
525 /// If we went above length 5, we would simply be inserting more columns full of wildcards in the
526 /// middle. This means that the set of witnesses for length `l >= 5` if equivalent to the set for
527 /// any other `l' >= 5`: simply add or remove wildcards in the middle to convert between them.
528 ///
529 /// This applies to any set of slice patterns: there will be a length `L` above which all lengths
530 /// behave the same. This is exactly what we need for constructor splitting. Therefore a
531 /// variable-length slice can be split into a variable-length slice of minimal length `L`, and many
532 /// fixed-length slices of lengths `< L`.
533 ///
534 /// For each variable-length pattern `p` with a prefix of length `plâ‚š` and suffix of length `slâ‚š`,
535 /// only the first `plâ‚š` and the last `slâ‚š` elements are examined. Therefore, as long as `L` is
536 /// positive (to avoid concerns about empty types), all elements after the maximum prefix length
537 /// and before the maximum suffix length are not examined by any variable-length pattern, and
538 /// therefore can be added/removed without affecting them - creating equivalent patterns from any
539 /// sufficiently-large length.
540 ///
541 /// Of course, if fixed-length patterns exist, we must be sure that our length is large enough to
542 /// miss them all, so we can pick `L = max(max(FIXED_LEN)+1, max(PREFIX_LEN) + max(SUFFIX_LEN))`
543 ///
544 /// `max_slice` below will be made to have arity `L`.
545 #[derive(Debug)]
546 struct SplitVarLenSlice {
547 /// If the type is an array, this is its size.
548 array_len: Option<usize>,
549 /// The arity of the input slice.
550 arity: usize,
551 /// The smallest slice bigger than any slice seen. `max_slice.arity()` is the length `L`
552 /// described above.
553 max_slice: SliceKind,
554 }
555
556 impl SplitVarLenSlice {
557 fn new(prefix: usize, suffix: usize, array_len: Option<usize>) -> Self {
558 SplitVarLenSlice { array_len, arity: prefix + suffix, max_slice: VarLen(prefix, suffix) }
559 }
560
561 /// Pass a set of slices relative to which to split this one.
562 fn split(&mut self, slices: impl Iterator<Item = SliceKind>) {
563 let VarLen(max_prefix_len, max_suffix_len) = &mut self.max_slice else {
564 // No need to split
565 return;
566 };
567 // We grow `self.max_slice` to be larger than all slices encountered, as described above.
568 // For diagnostics, we keep the prefix and suffix lengths separate, but grow them so that
569 // `L = max_prefix_len + max_suffix_len`.
570 let mut max_fixed_len = 0;
571 for slice in slices {
572 match slice {
573 FixedLen(len) => {
574 max_fixed_len = cmp::max(max_fixed_len, len);
575 }
576 VarLen(prefix, suffix) => {
577 *max_prefix_len = cmp::max(*max_prefix_len, prefix);
578 *max_suffix_len = cmp::max(*max_suffix_len, suffix);
579 }
580 }
581 }
582 // We want `L = max(L, max_fixed_len + 1)`, modulo the fact that we keep prefix and
583 // suffix separate.
584 if max_fixed_len + 1 >= *max_prefix_len + *max_suffix_len {
585 // The subtraction can't overflow thanks to the above check.
586 // The new `max_prefix_len` is larger than its previous value.
587 *max_prefix_len = max_fixed_len + 1 - *max_suffix_len;
588 }
589
590 // We cap the arity of `max_slice` at the array size.
591 match self.array_len {
592 Some(len) if self.max_slice.arity() >= len => self.max_slice = FixedLen(len),
593 _ => {}
594 }
595 }
596
597 /// Iterate over the partition of this slice.
598 fn iter<'a>(&'a self) -> impl Iterator<Item = Slice> + Captures<'a> {
599 let smaller_lengths = match self.array_len {
600 // The only admissible fixed-length slice is one of the array size. Whether `max_slice`
601 // is fixed-length or variable-length, it will be the only relevant slice to output
602 // here.
603 Some(_) => (0..0), // empty range
604 // We cover all arities in the range `(self.arity..infinity)`. We split that range into
605 // two: lengths smaller than `max_slice.arity()` are treated independently as
606 // fixed-lengths slices, and lengths above are captured by `max_slice`.
607 None => self.arity..self.max_slice.arity(),
608 };
609 smaller_lengths
610 .map(FixedLen)
611 .chain(once(self.max_slice))
612 .map(move |kind| Slice::new(self.array_len, kind))
613 }
614 }
615
616 /// A value can be decomposed into a constructor applied to some fields. This struct represents
617 /// the constructor. See also `Fields`.
618 ///
619 /// `pat_constructor` retrieves the constructor corresponding to a pattern.
620 /// `specialize_constructor` returns the list of fields corresponding to a pattern, given a
621 /// constructor. `Constructor::apply` reconstructs the pattern from a pair of `Constructor` and
622 /// `Fields`.
623 #[derive(Clone, Debug, PartialEq)]
624 pub(super) enum Constructor<'tcx> {
625 /// The constructor for patterns that have a single constructor, like tuples, struct patterns
626 /// and fixed-length arrays.
627 Single,
628 /// Enum variants.
629 Variant(VariantIdx),
630 /// Ranges of integer literal values (`2`, `2..=5` or `2..5`).
631 IntRange(IntRange),
632 /// Ranges of floating-point literal values (`2.0..=5.2`).
633 FloatRange(ty::Const<'tcx>, ty::Const<'tcx>, RangeEnd),
634 /// String literals. Strings are not quite the same as `&[u8]` so we treat them separately.
635 Str(ty::Const<'tcx>),
636 /// Array and slice patterns.
637 Slice(Slice),
638 /// Constants that must not be matched structurally. They are treated as black
639 /// boxes for the purposes of exhaustiveness: we must not inspect them, and they
640 /// don't count towards making a match exhaustive.
641 Opaque,
642 /// Fake extra constructor for enums that aren't allowed to be matched exhaustively. Also used
643 /// for those types for which we cannot list constructors explicitly, like `f64` and `str`.
644 NonExhaustive,
645 /// Stands for constructors that are not seen in the matrix, as explained in the documentation
646 /// for [`SplitWildcard`]. The carried `bool` is used for the `non_exhaustive_omitted_patterns`
647 /// lint.
648 Missing { nonexhaustive_enum_missing_real_variants: bool },
649 /// Wildcard pattern.
650 Wildcard,
651 /// Or-pattern.
652 Or,
653 }
654
655 impl<'tcx> Constructor<'tcx> {
656 pub(super) fn is_wildcard(&self) -> bool {
657 matches!(self, Wildcard)
658 }
659
660 pub(super) fn is_non_exhaustive(&self) -> bool {
661 matches!(self, NonExhaustive)
662 }
663
664 fn as_int_range(&self) -> Option<&IntRange> {
665 match self {
666 IntRange(range) => Some(range),
667 _ => None,
668 }
669 }
670
671 fn as_slice(&self) -> Option<Slice> {
672 match self {
673 Slice(slice) => Some(*slice),
674 _ => None,
675 }
676 }
677
678 /// Checks if the `Constructor` is a variant and `TyCtxt::eval_stability` returns
679 /// `EvalResult::Deny { .. }`.
680 ///
681 /// This means that the variant has a stdlib unstable feature marking it.
682 pub(super) fn is_unstable_variant(&self, pcx: PatCtxt<'_, '_, 'tcx>) -> bool {
683 if let Constructor::Variant(idx) = self && let ty::Adt(adt, _) = pcx.ty.kind() {
684 let variant_def_id = adt.variant(*idx).def_id;
685 // Filter variants that depend on a disabled unstable feature.
686 return matches!(
687 pcx.cx.tcx.eval_stability(variant_def_id, None, DUMMY_SP, None),
688 EvalResult::Deny { .. }
689 );
690 }
691 false
692 }
693
694 /// Checks if the `Constructor` is a `Constructor::Variant` with a `#[doc(hidden)]`
695 /// attribute from a type not local to the current crate.
696 pub(super) fn is_doc_hidden_variant(&self, pcx: PatCtxt<'_, '_, 'tcx>) -> bool {
697 if let Constructor::Variant(idx) = self && let ty::Adt(adt, _) = pcx.ty.kind() {
698 let variant_def_id = adt.variants()[*idx].def_id;
699 return pcx.cx.tcx.is_doc_hidden(variant_def_id) && !variant_def_id.is_local();
700 }
701 false
702 }
703
704 fn variant_index_for_adt(&self, adt: ty::AdtDef<'tcx>) -> VariantIdx {
705 match *self {
706 Variant(idx) => idx,
707 Single => {
708 assert!(!adt.is_enum());
709 VariantIdx::new(0)
710 }
711 _ => bug!("bad constructor {:?} for adt {:?}", self, adt),
712 }
713 }
714
715 /// The number of fields for this constructor. This must be kept in sync with
716 /// `Fields::wildcards`.
717 pub(super) fn arity(&self, pcx: PatCtxt<'_, '_, 'tcx>) -> usize {
718 match self {
719 Single | Variant(_) => match pcx.ty.kind() {
720 ty::Tuple(fs) => fs.len(),
721 ty::Ref(..) => 1,
722 ty::Adt(adt, ..) => {
723 if adt.is_box() {
724 // The only legal patterns of type `Box` (outside `std`) are `_` and box
725 // patterns. If we're here we can assume this is a box pattern.
726 1
727 } else {
728 let variant = &adt.variant(self.variant_index_for_adt(*adt));
729 Fields::list_variant_nonhidden_fields(pcx.cx, pcx.ty, variant).count()
730 }
731 }
732 _ => bug!("Unexpected type for `Single` constructor: {:?}", pcx.ty),
733 },
734 Slice(slice) => slice.arity(),
735 Str(..)
736 | FloatRange(..)
737 | IntRange(..)
738 | NonExhaustive
739 | Opaque
740 | Missing { .. }
741 | Wildcard => 0,
742 Or => bug!("The `Or` constructor doesn't have a fixed arity"),
743 }
744 }
745
746 /// Some constructors (namely `Wildcard`, `IntRange` and `Slice`) actually stand for a set of actual
747 /// constructors (like variants, integers or fixed-sized slices). When specializing for these
748 /// constructors, we want to be specialising for the actual underlying constructors.
749 /// Naively, we would simply return the list of constructors they correspond to. We instead are
750 /// more clever: if there are constructors that we know will behave the same wrt the current
751 /// matrix, we keep them grouped. For example, all slices of a sufficiently large length
752 /// will either be all useful or all non-useful with a given matrix.
753 ///
754 /// See the branches for details on how the splitting is done.
755 ///
756 /// This function may discard some irrelevant constructors if this preserves behavior and
757 /// diagnostics. Eg. for the `_` case, we ignore the constructors already present in the
758 /// matrix, unless all of them are.
759 pub(super) fn split<'a>(
760 &self,
761 pcx: PatCtxt<'_, '_, 'tcx>,
762 ctors: impl Iterator<Item = &'a Constructor<'tcx>> + Clone,
763 ) -> SmallVec<[Self; 1]>
764 where
765 'tcx: 'a,
766 {
767 match self {
768 Wildcard => {
769 let mut split_wildcard = SplitWildcard::new(pcx);
770 split_wildcard.split(pcx, ctors);
771 split_wildcard.into_ctors(pcx)
772 }
773 // Fast-track if the range is trivial. In particular, we don't do the overlapping
774 // ranges check.
775 IntRange(ctor_range) if !ctor_range.is_singleton() => {
776 let mut split_range = SplitIntRange::new(ctor_range.clone());
777 let int_ranges = ctors.filter_map(|ctor| ctor.as_int_range());
778 split_range.split(int_ranges.cloned());
779 split_range.iter().map(IntRange).collect()
780 }
781 &Slice(Slice { kind: VarLen(self_prefix, self_suffix), array_len }) => {
782 let mut split_self = SplitVarLenSlice::new(self_prefix, self_suffix, array_len);
783 let slices = ctors.filter_map(|c| c.as_slice()).map(|s| s.kind);
784 split_self.split(slices);
785 split_self.iter().map(Slice).collect()
786 }
787 // Any other constructor can be used unchanged.
788 _ => smallvec![self.clone()],
789 }
790 }
791
792 /// Returns whether `self` is covered by `other`, i.e. whether `self` is a subset of `other`.
793 /// For the simple cases, this is simply checking for equality. For the "grouped" constructors,
794 /// this checks for inclusion.
795 // We inline because this has a single call site in `Matrix::specialize_constructor`.
796 #[inline]
797 pub(super) fn is_covered_by<'p>(&self, pcx: PatCtxt<'_, 'p, 'tcx>, other: &Self) -> bool {
798 // This must be kept in sync with `is_covered_by_any`.
799 match (self, other) {
800 // Wildcards cover anything
801 (_, Wildcard) => true,
802 // The missing ctors are not covered by anything in the matrix except wildcards.
803 (Missing { .. } | Wildcard, _) => false,
804
805 (Single, Single) => true,
806 (Variant(self_id), Variant(other_id)) => self_id == other_id,
807
808 (IntRange(self_range), IntRange(other_range)) => self_range.is_covered_by(other_range),
809 (
810 FloatRange(self_from, self_to, self_end),
811 FloatRange(other_from, other_to, other_end),
812 ) => {
813 match (
814 compare_const_vals(pcx.cx.tcx, *self_to, *other_to, pcx.cx.param_env, pcx.ty),
815 compare_const_vals(
816 pcx.cx.tcx,
817 *self_from,
818 *other_from,
819 pcx.cx.param_env,
820 pcx.ty,
821 ),
822 ) {
823 (Some(to), Some(from)) => {
824 (from == Ordering::Greater || from == Ordering::Equal)
825 && (to == Ordering::Less
826 || (other_end == self_end && to == Ordering::Equal))
827 }
828 _ => false,
829 }
830 }
831 (Str(self_val), Str(other_val)) => {
832 // FIXME: there's probably a more direct way of comparing for equality
833 match compare_const_vals(
834 pcx.cx.tcx,
835 *self_val,
836 *other_val,
837 pcx.cx.param_env,
838 pcx.ty,
839 ) {
840 Some(comparison) => comparison == Ordering::Equal,
841 None => false,
842 }
843 }
844 (Slice(self_slice), Slice(other_slice)) => self_slice.is_covered_by(*other_slice),
845
846 // We are trying to inspect an opaque constant. Thus we skip the row.
847 (Opaque, _) | (_, Opaque) => false,
848 // Only a wildcard pattern can match the special extra constructor.
849 (NonExhaustive, _) => false,
850
851 _ => span_bug!(
852 pcx.span,
853 "trying to compare incompatible constructors {:?} and {:?}",
854 self,
855 other
856 ),
857 }
858 }
859
860 /// Faster version of `is_covered_by` when applied to many constructors. `used_ctors` is
861 /// assumed to be built from `matrix.head_ctors()` with wildcards filtered out, and `self` is
862 /// assumed to have been split from a wildcard.
863 fn is_covered_by_any<'p>(
864 &self,
865 pcx: PatCtxt<'_, 'p, 'tcx>,
866 used_ctors: &[Constructor<'tcx>],
867 ) -> bool {
868 if used_ctors.is_empty() {
869 return false;
870 }
871
872 // This must be kept in sync with `is_covered_by`.
873 match self {
874 // If `self` is `Single`, `used_ctors` cannot contain anything else than `Single`s.
875 Single => !used_ctors.is_empty(),
876 Variant(vid) => used_ctors.iter().any(|c| matches!(c, Variant(i) if i == vid)),
877 IntRange(range) => used_ctors
878 .iter()
879 .filter_map(|c| c.as_int_range())
880 .any(|other| range.is_covered_by(other)),
881 Slice(slice) => used_ctors
882 .iter()
883 .filter_map(|c| c.as_slice())
884 .any(|other| slice.is_covered_by(other)),
885 // This constructor is never covered by anything else
886 NonExhaustive => false,
887 Str(..) | FloatRange(..) | Opaque | Missing { .. } | Wildcard | Or => {
888 span_bug!(pcx.span, "found unexpected ctor in all_ctors: {:?}", self)
889 }
890 }
891 }
892 }
893
894 /// A wildcard constructor that we split relative to the constructors in the matrix, as explained
895 /// at the top of the file.
896 ///
897 /// A constructor that is not present in the matrix rows will only be covered by the rows that have
898 /// wildcards. Thus we can group all of those constructors together; we call them "missing
899 /// constructors". Splitting a wildcard would therefore list all present constructors individually
900 /// (or grouped if they are integers or slices), and then all missing constructors together as a
901 /// group.
902 ///
903 /// However we can go further: since any constructor will match the wildcard rows, and having more
904 /// rows can only reduce the amount of usefulness witnesses, we can skip the present constructors
905 /// and only try the missing ones.
906 /// This will not preserve the whole list of witnesses, but will preserve whether the list is empty
907 /// or not. In fact this is quite natural from the point of view of diagnostics too. This is done
908 /// in `to_ctors`: in some cases we only return `Missing`.
909 #[derive(Debug)]
910 pub(super) struct SplitWildcard<'tcx> {
911 /// Constructors seen in the matrix.
912 matrix_ctors: Vec<Constructor<'tcx>>,
913 /// All the constructors for this type
914 all_ctors: SmallVec<[Constructor<'tcx>; 1]>,
915 }
916
917 impl<'tcx> SplitWildcard<'tcx> {
918 pub(super) fn new<'p>(pcx: PatCtxt<'_, 'p, 'tcx>) -> Self {
919 debug!("SplitWildcard::new({:?})", pcx.ty);
920 let cx = pcx.cx;
921 let make_range = |start, end| {
922 IntRange(
923 // `unwrap()` is ok because we know the type is an integer.
924 IntRange::from_range(cx.tcx, start, end, pcx.ty, &RangeEnd::Included).unwrap(),
925 )
926 };
927 // This determines the set of all possible constructors for the type `pcx.ty`. For numbers,
928 // arrays and slices we use ranges and variable-length slices when appropriate.
929 //
930 // If the `exhaustive_patterns` feature is enabled, we make sure to omit constructors that
931 // are statically impossible. E.g., for `Option<!>`, we do not include `Some(_)` in the
932 // returned list of constructors.
933 // Invariant: this is empty if and only if the type is uninhabited (as determined by
934 // `cx.is_uninhabited()`).
935 let all_ctors = match pcx.ty.kind() {
936 ty::Bool => smallvec![make_range(0, 1)],
937 ty::Array(sub_ty, len) if len.try_eval_usize(cx.tcx, cx.param_env).is_some() => {
938 let len = len.eval_usize(cx.tcx, cx.param_env) as usize;
939 if len != 0 && cx.is_uninhabited(*sub_ty) {
940 smallvec![]
941 } else {
942 smallvec![Slice(Slice::new(Some(len), VarLen(0, 0)))]
943 }
944 }
945 // Treat arrays of a constant but unknown length like slices.
946 ty::Array(sub_ty, _) | ty::Slice(sub_ty) => {
947 let kind = if cx.is_uninhabited(*sub_ty) { FixedLen(0) } else { VarLen(0, 0) };
948 smallvec![Slice(Slice::new(None, kind))]
949 }
950 ty::Adt(def, substs) if def.is_enum() => {
951 // If the enum is declared as `#[non_exhaustive]`, we treat it as if it had an
952 // additional "unknown" constructor.
953 // There is no point in enumerating all possible variants, because the user can't
954 // actually match against them all themselves. So we always return only the fictitious
955 // constructor.
956 // E.g., in an example like:
957 //
958 // ```
959 // let err: io::ErrorKind = ...;
960 // match err {
961 // io::ErrorKind::NotFound => {},
962 // }
963 // ```
964 //
965 // we don't want to show every possible IO error, but instead have only `_` as the
966 // witness.
967 let is_declared_nonexhaustive = cx.is_foreign_non_exhaustive_enum(pcx.ty);
968
969 let is_exhaustive_pat_feature = cx.tcx.features().exhaustive_patterns;
970
971 // If `exhaustive_patterns` is disabled and our scrutinee is an empty enum, we treat it
972 // as though it had an "unknown" constructor to avoid exposing its emptiness. The
973 // exception is if the pattern is at the top level, because we want empty matches to be
974 // considered exhaustive.
975 let is_secretly_empty =
976 def.variants().is_empty() && !is_exhaustive_pat_feature && !pcx.is_top_level;
977
978 let mut ctors: SmallVec<[_; 1]> = def
979 .variants()
980 .iter_enumerated()
981 .filter(|(_, v)| {
982 // If `exhaustive_patterns` is enabled, we exclude variants known to be
983 // uninhabited.
984 let is_uninhabited = is_exhaustive_pat_feature
985 && v.uninhabited_from(cx.tcx, substs, def.adt_kind(), cx.param_env)
986 .contains(cx.tcx, cx.module);
987 !is_uninhabited
988 })
989 .map(|(idx, _)| Variant(idx))
990 .collect();
991
992 if is_secretly_empty || is_declared_nonexhaustive {
993 ctors.push(NonExhaustive);
994 }
995 ctors
996 }
997 ty::Char => {
998 smallvec![
999 // The valid Unicode Scalar Value ranges.
1000 make_range('\u{0000}' as u128, '\u{D7FF}' as u128),
1001 make_range('\u{E000}' as u128, '\u{10FFFF}' as u128),
1002 ]
1003 }
1004 ty::Int(_) | ty::Uint(_)
1005 if pcx.ty.is_ptr_sized_integral()
1006 && !cx.tcx.features().precise_pointer_size_matching =>
1007 {
1008 // `usize`/`isize` are not allowed to be matched exhaustively unless the
1009 // `precise_pointer_size_matching` feature is enabled. So we treat those types like
1010 // `#[non_exhaustive]` enums by returning a special unmatchable constructor.
1011 smallvec![NonExhaustive]
1012 }
1013 &ty::Int(ity) => {
1014 let bits = Integer::from_int_ty(&cx.tcx, ity).size().bits() as u128;
1015 let min = 1u128 << (bits - 1);
1016 let max = min - 1;
1017 smallvec![make_range(min, max)]
1018 }
1019 &ty::Uint(uty) => {
1020 let size = Integer::from_uint_ty(&cx.tcx, uty).size();
1021 let max = size.truncate(u128::MAX);
1022 smallvec![make_range(0, max)]
1023 }
1024 // If `exhaustive_patterns` is disabled and our scrutinee is the never type, we cannot
1025 // expose its emptiness. The exception is if the pattern is at the top level, because we
1026 // want empty matches to be considered exhaustive.
1027 ty::Never if !cx.tcx.features().exhaustive_patterns && !pcx.is_top_level => {
1028 smallvec![NonExhaustive]
1029 }
1030 ty::Never => smallvec![],
1031 _ if cx.is_uninhabited(pcx.ty) => smallvec![],
1032 ty::Adt(..) | ty::Tuple(..) | ty::Ref(..) => smallvec![Single],
1033 // This type is one for which we cannot list constructors, like `str` or `f64`.
1034 _ => smallvec![NonExhaustive],
1035 };
1036
1037 SplitWildcard { matrix_ctors: Vec::new(), all_ctors }
1038 }
1039
1040 /// Pass a set of constructors relative to which to split this one. Don't call twice, it won't
1041 /// do what you want.
1042 pub(super) fn split<'a>(
1043 &mut self,
1044 pcx: PatCtxt<'_, '_, 'tcx>,
1045 ctors: impl Iterator<Item = &'a Constructor<'tcx>> + Clone,
1046 ) where
1047 'tcx: 'a,
1048 {
1049 // Since `all_ctors` never contains wildcards, this won't recurse further.
1050 self.all_ctors =
1051 self.all_ctors.iter().flat_map(|ctor| ctor.split(pcx, ctors.clone())).collect();
1052 self.matrix_ctors = ctors.filter(|c| !c.is_wildcard()).cloned().collect();
1053 }
1054
1055 /// Whether there are any value constructors for this type that are not present in the matrix.
1056 fn any_missing(&self, pcx: PatCtxt<'_, '_, 'tcx>) -> bool {
1057 self.iter_missing(pcx).next().is_some()
1058 }
1059
1060 /// Iterate over the constructors for this type that are not present in the matrix.
1061 pub(super) fn iter_missing<'a, 'p>(
1062 &'a self,
1063 pcx: PatCtxt<'a, 'p, 'tcx>,
1064 ) -> impl Iterator<Item = &'a Constructor<'tcx>> + Captures<'p> {
1065 self.all_ctors.iter().filter(move |ctor| !ctor.is_covered_by_any(pcx, &self.matrix_ctors))
1066 }
1067
1068 /// Return the set of constructors resulting from splitting the wildcard. As explained at the
1069 /// top of the file, if any constructors are missing we can ignore the present ones.
1070 fn into_ctors(self, pcx: PatCtxt<'_, '_, 'tcx>) -> SmallVec<[Constructor<'tcx>; 1]> {
1071 if self.any_missing(pcx) {
1072 // Some constructors are missing, thus we can specialize with the special `Missing`
1073 // constructor, which stands for those constructors that are not seen in the matrix,
1074 // and matches the same rows as any of them (namely the wildcard rows). See the top of
1075 // the file for details.
1076 // However, when all constructors are missing we can also specialize with the full
1077 // `Wildcard` constructor. The difference will depend on what we want in diagnostics.
1078
1079 // If some constructors are missing, we typically want to report those constructors,
1080 // e.g.:
1081 // ```
1082 // enum Direction { N, S, E, W }
1083 // let Direction::N = ...;
1084 // ```
1085 // we can report 3 witnesses: `S`, `E`, and `W`.
1086 //
1087 // However, if the user didn't actually specify a constructor
1088 // in this arm, e.g., in
1089 // ```
1090 // let x: (Direction, Direction, bool) = ...;
1091 // let (_, _, false) = x;
1092 // ```
1093 // we don't want to show all 16 possible witnesses `(<direction-1>, <direction-2>,
1094 // true)` - we are satisfied with `(_, _, true)`. So if all constructors are missing we
1095 // prefer to report just a wildcard `_`.
1096 //
1097 // The exception is: if we are at the top-level, for example in an empty match, we
1098 // sometimes prefer reporting the list of constructors instead of just `_`.
1099 let report_when_all_missing = pcx.is_top_level && !IntRange::is_integral(pcx.ty);
1100 let ctor = if !self.matrix_ctors.is_empty() || report_when_all_missing {
1101 if pcx.is_non_exhaustive {
1102 Missing {
1103 nonexhaustive_enum_missing_real_variants: self
1104 .iter_missing(pcx)
1105 .any(|c| !(c.is_non_exhaustive() || c.is_unstable_variant(pcx))),
1106 }
1107 } else {
1108 Missing { nonexhaustive_enum_missing_real_variants: false }
1109 }
1110 } else {
1111 Wildcard
1112 };
1113 return smallvec![ctor];
1114 }
1115
1116 // All the constructors are present in the matrix, so we just go through them all.
1117 self.all_ctors
1118 }
1119 }
1120
1121 /// A value can be decomposed into a constructor applied to some fields. This struct represents
1122 /// those fields, generalized to allow patterns in each field. See also `Constructor`.
1123 ///
1124 /// This is constructed for a constructor using [`Fields::wildcards()`]. The idea is that
1125 /// [`Fields::wildcards()`] constructs a list of fields where all entries are wildcards, and then
1126 /// given a pattern we fill some of the fields with its subpatterns.
1127 /// In the following example `Fields::wildcards` returns `[_, _, _, _]`. Then in
1128 /// `extract_pattern_arguments` we fill some of the entries, and the result is
1129 /// `[Some(0), _, _, _]`.
1130 /// ```rust
1131 /// let x: [Option<u8>; 4] = foo();
1132 /// match x {
1133 /// [Some(0), ..] => {}
1134 /// }
1135 /// ```
1136 ///
1137 /// Note that the number of fields of a constructor may not match the fields declared in the
1138 /// original struct/variant. This happens if a private or `non_exhaustive` field is uninhabited,
1139 /// because the code mustn't observe that it is uninhabited. In that case that field is not
1140 /// included in `fields`. For that reason, when you have a `mir::Field` you must use
1141 /// `index_with_declared_idx`.
1142 #[derive(Debug, Clone, Copy)]
1143 pub(super) struct Fields<'p, 'tcx> {
1144 fields: &'p [DeconstructedPat<'p, 'tcx>],
1145 }
1146
1147 impl<'p, 'tcx> Fields<'p, 'tcx> {
1148 fn empty() -> Self {
1149 Fields { fields: &[] }
1150 }
1151
1152 fn singleton(cx: &MatchCheckCtxt<'p, 'tcx>, field: DeconstructedPat<'p, 'tcx>) -> Self {
1153 let field: &_ = cx.pattern_arena.alloc(field);
1154 Fields { fields: std::slice::from_ref(field) }
1155 }
1156
1157 pub(super) fn from_iter(
1158 cx: &MatchCheckCtxt<'p, 'tcx>,
1159 fields: impl IntoIterator<Item = DeconstructedPat<'p, 'tcx>>,
1160 ) -> Self {
1161 let fields: &[_] = cx.pattern_arena.alloc_from_iter(fields);
1162 Fields { fields }
1163 }
1164
1165 fn wildcards_from_tys(
1166 cx: &MatchCheckCtxt<'p, 'tcx>,
1167 tys: impl IntoIterator<Item = Ty<'tcx>>,
1168 ) -> Self {
1169 Fields::from_iter(cx, tys.into_iter().map(DeconstructedPat::wildcard))
1170 }
1171
1172 // In the cases of either a `#[non_exhaustive]` field list or a non-public field, we hide
1173 // uninhabited fields in order not to reveal the uninhabitedness of the whole variant.
1174 // This lists the fields we keep along with their types.
1175 fn list_variant_nonhidden_fields<'a>(
1176 cx: &'a MatchCheckCtxt<'p, 'tcx>,
1177 ty: Ty<'tcx>,
1178 variant: &'a VariantDef,
1179 ) -> impl Iterator<Item = (Field, Ty<'tcx>)> + Captures<'a> + Captures<'p> {
1180 let ty::Adt(adt, substs) = ty.kind() else { bug!() };
1181 // Whether we must not match the fields of this variant exhaustively.
1182 let is_non_exhaustive = variant.is_field_list_non_exhaustive() && !adt.did().is_local();
1183
1184 variant.fields.iter().enumerate().filter_map(move |(i, field)| {
1185 let ty = field.ty(cx.tcx, substs);
1186 // `field.ty()` doesn't normalize after substituting.
1187 let ty = cx.tcx.normalize_erasing_regions(cx.param_env, ty);
1188 let is_visible = adt.is_enum() || field.vis.is_accessible_from(cx.module, cx.tcx);
1189 let is_uninhabited = cx.is_uninhabited(ty);
1190
1191 if is_uninhabited && (!is_visible || is_non_exhaustive) {
1192 None
1193 } else {
1194 Some((Field::new(i), ty))
1195 }
1196 })
1197 }
1198
1199 /// Creates a new list of wildcard fields for a given constructor. The result must have a
1200 /// length of `constructor.arity()`.
1201 pub(super) fn wildcards(
1202 cx: &MatchCheckCtxt<'p, 'tcx>,
1203 ty: Ty<'tcx>,
1204 constructor: &Constructor<'tcx>,
1205 ) -> Self {
1206 let ret = match constructor {
1207 Single | Variant(_) => match ty.kind() {
1208 ty::Tuple(fs) => Fields::wildcards_from_tys(cx, fs.iter()),
1209 ty::Ref(_, rty, _) => Fields::wildcards_from_tys(cx, once(*rty)),
1210 ty::Adt(adt, substs) => {
1211 if adt.is_box() {
1212 // The only legal patterns of type `Box` (outside `std`) are `_` and box
1213 // patterns. If we're here we can assume this is a box pattern.
1214 Fields::wildcards_from_tys(cx, once(substs.type_at(0)))
1215 } else {
1216 let variant = &adt.variant(constructor.variant_index_for_adt(*adt));
1217 let tys = Fields::list_variant_nonhidden_fields(cx, ty, variant)
1218 .map(|(_, ty)| ty);
1219 Fields::wildcards_from_tys(cx, tys)
1220 }
1221 }
1222 _ => bug!("Unexpected type for `Single` constructor: {:?}", ty),
1223 },
1224 Slice(slice) => match *ty.kind() {
1225 ty::Slice(ty) | ty::Array(ty, _) => {
1226 let arity = slice.arity();
1227 Fields::wildcards_from_tys(cx, (0..arity).map(|_| ty))
1228 }
1229 _ => bug!("bad slice pattern {:?} {:?}", constructor, ty),
1230 },
1231 Str(..)
1232 | FloatRange(..)
1233 | IntRange(..)
1234 | NonExhaustive
1235 | Opaque
1236 | Missing { .. }
1237 | Wildcard => Fields::empty(),
1238 Or => {
1239 bug!("called `Fields::wildcards` on an `Or` ctor")
1240 }
1241 };
1242 debug!("Fields::wildcards({:?}, {:?}) = {:#?}", constructor, ty, ret);
1243 ret
1244 }
1245
1246 /// Returns the list of patterns.
1247 pub(super) fn iter_patterns<'a>(
1248 &'a self,
1249 ) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'a> {
1250 self.fields.iter()
1251 }
1252 }
1253
1254 /// Values and patterns can be represented as a constructor applied to some fields. This represents
1255 /// a pattern in this form.
1256 /// This also keeps track of whether the pattern has been found reachable during analysis. For this
1257 /// reason we should be careful not to clone patterns for which we care about that. Use
1258 /// `clone_and_forget_reachability` if you're sure.
1259 pub(crate) struct DeconstructedPat<'p, 'tcx> {
1260 ctor: Constructor<'tcx>,
1261 fields: Fields<'p, 'tcx>,
1262 ty: Ty<'tcx>,
1263 span: Span,
1264 reachable: Cell<bool>,
1265 }
1266
1267 impl<'p, 'tcx> DeconstructedPat<'p, 'tcx> {
1268 pub(super) fn wildcard(ty: Ty<'tcx>) -> Self {
1269 Self::new(Wildcard, Fields::empty(), ty, DUMMY_SP)
1270 }
1271
1272 pub(super) fn new(
1273 ctor: Constructor<'tcx>,
1274 fields: Fields<'p, 'tcx>,
1275 ty: Ty<'tcx>,
1276 span: Span,
1277 ) -> Self {
1278 DeconstructedPat { ctor, fields, ty, span, reachable: Cell::new(false) }
1279 }
1280
1281 /// Construct a pattern that matches everything that starts with this constructor.
1282 /// For example, if `ctor` is a `Constructor::Variant` for `Option::Some`, we get the pattern
1283 /// `Some(_)`.
1284 pub(super) fn wild_from_ctor(pcx: PatCtxt<'_, 'p, 'tcx>, ctor: Constructor<'tcx>) -> Self {
1285 let fields = Fields::wildcards(pcx.cx, pcx.ty, &ctor);
1286 DeconstructedPat::new(ctor, fields, pcx.ty, DUMMY_SP)
1287 }
1288
1289 /// Clone this value. This method emphasizes that cloning loses reachability information and
1290 /// should be done carefully.
1291 pub(super) fn clone_and_forget_reachability(&self) -> Self {
1292 DeconstructedPat::new(self.ctor.clone(), self.fields, self.ty, self.span)
1293 }
1294
1295 pub(crate) fn from_pat(cx: &MatchCheckCtxt<'p, 'tcx>, pat: &Pat<'tcx>) -> Self {
1296 let mkpat = |pat| DeconstructedPat::from_pat(cx, pat);
1297 let ctor;
1298 let fields;
1299 match pat.kind.as_ref() {
1300 PatKind::AscribeUserType { subpattern, .. } => return mkpat(subpattern),
1301 PatKind::Binding { subpattern: Some(subpat), .. } => return mkpat(subpat),
1302 PatKind::Binding { subpattern: None, .. } | PatKind::Wild => {
1303 ctor = Wildcard;
1304 fields = Fields::empty();
1305 }
1306 PatKind::Deref { subpattern } => {
1307 ctor = Single;
1308 fields = Fields::singleton(cx, mkpat(subpattern));
1309 }
1310 PatKind::Leaf { subpatterns } | PatKind::Variant { subpatterns, .. } => {
1311 match pat.ty.kind() {
1312 ty::Tuple(fs) => {
1313 ctor = Single;
1314 let mut wilds: SmallVec<[_; 2]> =
1315 fs.iter().map(DeconstructedPat::wildcard).collect();
1316 for pat in subpatterns {
1317 wilds[pat.field.index()] = mkpat(&pat.pattern);
1318 }
1319 fields = Fields::from_iter(cx, wilds);
1320 }
1321 ty::Adt(adt, substs) if adt.is_box() => {
1322 // The only legal patterns of type `Box` (outside `std`) are `_` and box
1323 // patterns. If we're here we can assume this is a box pattern.
1324 // FIXME(Nadrieril): A `Box` can in theory be matched either with `Box(_,
1325 // _)` or a box pattern. As a hack to avoid an ICE with the former, we
1326 // ignore other fields than the first one. This will trigger an error later
1327 // anyway.
1328 // See https://github.com/rust-lang/rust/issues/82772 ,
1329 // explanation: https://github.com/rust-lang/rust/pull/82789#issuecomment-796921977
1330 // The problem is that we can't know from the type whether we'll match
1331 // normally or through box-patterns. We'll have to figure out a proper
1332 // solution when we introduce generalized deref patterns. Also need to
1333 // prevent mixing of those two options.
1334 let pat = subpatterns.into_iter().find(|pat| pat.field.index() == 0);
1335 let pat = if let Some(pat) = pat {
1336 mkpat(&pat.pattern)
1337 } else {
1338 DeconstructedPat::wildcard(substs.type_at(0))
1339 };
1340 ctor = Single;
1341 fields = Fields::singleton(cx, pat);
1342 }
1343 ty::Adt(adt, _) => {
1344 ctor = match pat.kind.as_ref() {
1345 PatKind::Leaf { .. } => Single,
1346 PatKind::Variant { variant_index, .. } => Variant(*variant_index),
1347 _ => bug!(),
1348 };
1349 let variant = &adt.variant(ctor.variant_index_for_adt(*adt));
1350 // For each field in the variant, we store the relevant index into `self.fields` if any.
1351 let mut field_id_to_id: Vec<Option<usize>> =
1352 (0..variant.fields.len()).map(|_| None).collect();
1353 let tys = Fields::list_variant_nonhidden_fields(cx, pat.ty, variant)
1354 .enumerate()
1355 .map(|(i, (field, ty))| {
1356 field_id_to_id[field.index()] = Some(i);
1357 ty
1358 });
1359 let mut wilds: SmallVec<[_; 2]> =
1360 tys.map(DeconstructedPat::wildcard).collect();
1361 for pat in subpatterns {
1362 if let Some(i) = field_id_to_id[pat.field.index()] {
1363 wilds[i] = mkpat(&pat.pattern);
1364 }
1365 }
1366 fields = Fields::from_iter(cx, wilds);
1367 }
1368 _ => bug!("pattern has unexpected type: pat: {:?}, ty: {:?}", pat, pat.ty),
1369 }
1370 }
1371 PatKind::Constant { value } => {
1372 if let Some(int_range) = IntRange::from_const(cx.tcx, cx.param_env, *value) {
1373 ctor = IntRange(int_range);
1374 fields = Fields::empty();
1375 } else {
1376 match pat.ty.kind() {
1377 ty::Float(_) => {
1378 ctor = FloatRange(*value, *value, RangeEnd::Included);
1379 fields = Fields::empty();
1380 }
1381 ty::Ref(_, t, _) if t.is_str() => {
1382 // We want a `&str` constant to behave like a `Deref` pattern, to be compatible
1383 // with other `Deref` patterns. This could have been done in `const_to_pat`,
1384 // but that causes issues with the rest of the matching code.
1385 // So here, the constructor for a `"foo"` pattern is `&` (represented by
1386 // `Single`), and has one field. That field has constructor `Str(value)` and no
1387 // fields.
1388 // Note: `t` is `str`, not `&str`.
1389 let subpattern =
1390 DeconstructedPat::new(Str(*value), Fields::empty(), *t, pat.span);
1391 ctor = Single;
1392 fields = Fields::singleton(cx, subpattern)
1393 }
1394 // All constants that can be structurally matched have already been expanded
1395 // into the corresponding `Pat`s by `const_to_pat`. Constants that remain are
1396 // opaque.
1397 _ => {
1398 ctor = Opaque;
1399 fields = Fields::empty();
1400 }
1401 }
1402 }
1403 }
1404 &PatKind::Range(PatRange { lo, hi, end }) => {
1405 let ty = lo.ty();
1406 ctor = if let Some(int_range) = IntRange::from_range(
1407 cx.tcx,
1408 lo.eval_bits(cx.tcx, cx.param_env, lo.ty()),
1409 hi.eval_bits(cx.tcx, cx.param_env, hi.ty()),
1410 ty,
1411 &end,
1412 ) {
1413 IntRange(int_range)
1414 } else {
1415 FloatRange(lo, hi, end)
1416 };
1417 fields = Fields::empty();
1418 }
1419 PatKind::Array { prefix, slice, suffix } | PatKind::Slice { prefix, slice, suffix } => {
1420 let array_len = match pat.ty.kind() {
1421 ty::Array(_, length) => Some(length.eval_usize(cx.tcx, cx.param_env) as usize),
1422 ty::Slice(_) => None,
1423 _ => span_bug!(pat.span, "bad ty {:?} for slice pattern", pat.ty),
1424 };
1425 let kind = if slice.is_some() {
1426 VarLen(prefix.len(), suffix.len())
1427 } else {
1428 FixedLen(prefix.len() + suffix.len())
1429 };
1430 ctor = Slice(Slice::new(array_len, kind));
1431 fields = Fields::from_iter(cx, prefix.iter().chain(suffix).map(mkpat));
1432 }
1433 PatKind::Or { .. } => {
1434 ctor = Or;
1435 let pats = expand_or_pat(pat);
1436 fields = Fields::from_iter(cx, pats.into_iter().map(mkpat));
1437 }
1438 }
1439 DeconstructedPat::new(ctor, fields, pat.ty, pat.span)
1440 }
1441
1442 pub(crate) fn to_pat(&self, cx: &MatchCheckCtxt<'p, 'tcx>) -> Pat<'tcx> {
1443 let is_wildcard = |pat: &Pat<'_>| {
1444 matches!(*pat.kind, PatKind::Binding { subpattern: None, .. } | PatKind::Wild)
1445 };
1446 let mut subpatterns = self.iter_fields().map(|p| p.to_pat(cx));
1447 let pat = match &self.ctor {
1448 Single | Variant(_) => match self.ty.kind() {
1449 ty::Tuple(..) => PatKind::Leaf {
1450 subpatterns: subpatterns
1451 .enumerate()
1452 .map(|(i, p)| FieldPat { field: Field::new(i), pattern: p })
1453 .collect(),
1454 },
1455 ty::Adt(adt_def, _) if adt_def.is_box() => {
1456 // Without `box_patterns`, the only legal pattern of type `Box` is `_` (outside
1457 // of `std`). So this branch is only reachable when the feature is enabled and
1458 // the pattern is a box pattern.
1459 PatKind::Deref { subpattern: subpatterns.next().unwrap() }
1460 }
1461 ty::Adt(adt_def, substs) => {
1462 let variant_index = self.ctor.variant_index_for_adt(*adt_def);
1463 let variant = &adt_def.variant(variant_index);
1464 let subpatterns = Fields::list_variant_nonhidden_fields(cx, self.ty, variant)
1465 .zip(subpatterns)
1466 .map(|((field, _ty), pattern)| FieldPat { field, pattern })
1467 .collect();
1468
1469 if adt_def.is_enum() {
1470 PatKind::Variant { adt_def: *adt_def, substs, variant_index, subpatterns }
1471 } else {
1472 PatKind::Leaf { subpatterns }
1473 }
1474 }
1475 // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
1476 // be careful to reconstruct the correct constant pattern here. However a string
1477 // literal pattern will never be reported as a non-exhaustiveness witness, so we
1478 // ignore this issue.
1479 ty::Ref(..) => PatKind::Deref { subpattern: subpatterns.next().unwrap() },
1480 _ => bug!("unexpected ctor for type {:?} {:?}", self.ctor, self.ty),
1481 },
1482 Slice(slice) => {
1483 match slice.kind {
1484 FixedLen(_) => PatKind::Slice {
1485 prefix: subpatterns.collect(),
1486 slice: None,
1487 suffix: vec![],
1488 },
1489 VarLen(prefix, _) => {
1490 let mut subpatterns = subpatterns.peekable();
1491 let mut prefix: Vec<_> = subpatterns.by_ref().take(prefix).collect();
1492 if slice.array_len.is_some() {
1493 // Improves diagnostics a bit: if the type is a known-size array, instead
1494 // of reporting `[x, _, .., _, y]`, we prefer to report `[x, .., y]`.
1495 // This is incorrect if the size is not known, since `[_, ..]` captures
1496 // arrays of lengths `>= 1` whereas `[..]` captures any length.
1497 while !prefix.is_empty() && is_wildcard(prefix.last().unwrap()) {
1498 prefix.pop();
1499 }
1500 while subpatterns.peek().is_some()
1501 && is_wildcard(subpatterns.peek().unwrap())
1502 {
1503 subpatterns.next();
1504 }
1505 }
1506 let suffix: Vec<_> = subpatterns.collect();
1507 let wild = Pat::wildcard_from_ty(self.ty);
1508 PatKind::Slice { prefix, slice: Some(wild), suffix }
1509 }
1510 }
1511 }
1512 &Str(value) => PatKind::Constant { value },
1513 &FloatRange(lo, hi, end) => PatKind::Range(PatRange { lo, hi, end }),
1514 IntRange(range) => return range.to_pat(cx.tcx, self.ty),
1515 Wildcard | NonExhaustive => PatKind::Wild,
1516 Missing { .. } => bug!(
1517 "trying to convert a `Missing` constructor into a `Pat`; this is probably a bug,
1518 `Missing` should have been processed in `apply_constructors`"
1519 ),
1520 Opaque | Or => {
1521 bug!("can't convert to pattern: {:?}", self)
1522 }
1523 };
1524
1525 Pat { ty: self.ty, span: DUMMY_SP, kind: Box::new(pat) }
1526 }
1527
1528 pub(super) fn is_or_pat(&self) -> bool {
1529 matches!(self.ctor, Or)
1530 }
1531
1532 pub(super) fn ctor(&self) -> &Constructor<'tcx> {
1533 &self.ctor
1534 }
1535 pub(super) fn ty(&self) -> Ty<'tcx> {
1536 self.ty
1537 }
1538 pub(super) fn span(&self) -> Span {
1539 self.span
1540 }
1541
1542 pub(super) fn iter_fields<'a>(
1543 &'a self,
1544 ) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'a> {
1545 self.fields.iter_patterns()
1546 }
1547
1548 /// Specialize this pattern with a constructor.
1549 /// `other_ctor` can be different from `self.ctor`, but must be covered by it.
1550 pub(super) fn specialize<'a>(
1551 &'a self,
1552 cx: &MatchCheckCtxt<'p, 'tcx>,
1553 other_ctor: &Constructor<'tcx>,
1554 ) -> SmallVec<[&'p DeconstructedPat<'p, 'tcx>; 2]> {
1555 match (&self.ctor, other_ctor) {
1556 (Wildcard, _) => {
1557 // We return a wildcard for each field of `other_ctor`.
1558 Fields::wildcards(cx, self.ty, other_ctor).iter_patterns().collect()
1559 }
1560 (Slice(self_slice), Slice(other_slice))
1561 if self_slice.arity() != other_slice.arity() =>
1562 {
1563 // The only tricky case: two slices of different arity. Since `self_slice` covers
1564 // `other_slice`, `self_slice` must be `VarLen`, i.e. of the form
1565 // `[prefix, .., suffix]`. Moreover `other_slice` is guaranteed to have a larger
1566 // arity. So we fill the middle part with enough wildcards to reach the length of
1567 // the new, larger slice.
1568 match self_slice.kind {
1569 FixedLen(_) => bug!("{:?} doesn't cover {:?}", self_slice, other_slice),
1570 VarLen(prefix, suffix) => {
1571 let (ty::Slice(inner_ty) | ty::Array(inner_ty, _)) = *self.ty.kind() else {
1572 bug!("bad slice pattern {:?} {:?}", self.ctor, self.ty);
1573 };
1574 let prefix = &self.fields.fields[..prefix];
1575 let suffix = &self.fields.fields[self_slice.arity() - suffix..];
1576 let wildcard: &_ =
1577 cx.pattern_arena.alloc(DeconstructedPat::wildcard(inner_ty));
1578 let extra_wildcards = other_slice.arity() - self_slice.arity();
1579 let extra_wildcards = (0..extra_wildcards).map(|_| wildcard);
1580 prefix.iter().chain(extra_wildcards).chain(suffix).collect()
1581 }
1582 }
1583 }
1584 _ => self.fields.iter_patterns().collect(),
1585 }
1586 }
1587
1588 /// We keep track for each pattern if it was ever reachable during the analysis. This is used
1589 /// with `unreachable_spans` to report unreachable subpatterns arising from or patterns.
1590 pub(super) fn set_reachable(&self) {
1591 self.reachable.set(true)
1592 }
1593 pub(super) fn is_reachable(&self) -> bool {
1594 self.reachable.get()
1595 }
1596
1597 /// Report the spans of subpatterns that were not reachable, if any.
1598 pub(super) fn unreachable_spans(&self) -> Vec<Span> {
1599 let mut spans = Vec::new();
1600 self.collect_unreachable_spans(&mut spans);
1601 spans
1602 }
1603
1604 fn collect_unreachable_spans(&self, spans: &mut Vec<Span>) {
1605 // We don't look at subpatterns if we already reported the whole pattern as unreachable.
1606 if !self.is_reachable() {
1607 spans.push(self.span);
1608 } else {
1609 for p in self.iter_fields() {
1610 p.collect_unreachable_spans(spans);
1611 }
1612 }
1613 }
1614 }
1615
1616 /// This is mostly copied from the `Pat` impl. This is best effort and not good enough for a
1617 /// `Display` impl.
1618 impl<'p, 'tcx> fmt::Debug for DeconstructedPat<'p, 'tcx> {
1619 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1620 // Printing lists is a chore.
1621 let mut first = true;
1622 let mut start_or_continue = |s| {
1623 if first {
1624 first = false;
1625 ""
1626 } else {
1627 s
1628 }
1629 };
1630 let mut start_or_comma = || start_or_continue(", ");
1631
1632 match &self.ctor {
1633 Single | Variant(_) => match self.ty.kind() {
1634 ty::Adt(def, _) if def.is_box() => {
1635 // Without `box_patterns`, the only legal pattern of type `Box` is `_` (outside
1636 // of `std`). So this branch is only reachable when the feature is enabled and
1637 // the pattern is a box pattern.
1638 let subpattern = self.iter_fields().next().unwrap();
1639 write!(f, "box {:?}", subpattern)
1640 }
1641 ty::Adt(..) | ty::Tuple(..) => {
1642 let variant = match self.ty.kind() {
1643 ty::Adt(adt, _) => Some(adt.variant(self.ctor.variant_index_for_adt(*adt))),
1644 ty::Tuple(_) => None,
1645 _ => unreachable!(),
1646 };
1647
1648 if let Some(variant) = variant {
1649 write!(f, "{}", variant.name)?;
1650 }
1651
1652 // Without `cx`, we can't know which field corresponds to which, so we can't
1653 // get the names of the fields. Instead we just display everything as a tuple
1654 // struct, which should be good enough.
1655 write!(f, "(")?;
1656 for p in self.iter_fields() {
1657 write!(f, "{}", start_or_comma())?;
1658 write!(f, "{:?}", p)?;
1659 }
1660 write!(f, ")")
1661 }
1662 // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
1663 // be careful to detect strings here. However a string literal pattern will never
1664 // be reported as a non-exhaustiveness witness, so we can ignore this issue.
1665 ty::Ref(_, _, mutbl) => {
1666 let subpattern = self.iter_fields().next().unwrap();
1667 write!(f, "&{}{:?}", mutbl.prefix_str(), subpattern)
1668 }
1669 _ => write!(f, "_"),
1670 },
1671 Slice(slice) => {
1672 let mut subpatterns = self.fields.iter_patterns();
1673 write!(f, "[")?;
1674 match slice.kind {
1675 FixedLen(_) => {
1676 for p in subpatterns {
1677 write!(f, "{}{:?}", start_or_comma(), p)?;
1678 }
1679 }
1680 VarLen(prefix_len, _) => {
1681 for p in subpatterns.by_ref().take(prefix_len) {
1682 write!(f, "{}{:?}", start_or_comma(), p)?;
1683 }
1684 write!(f, "{}", start_or_comma())?;
1685 write!(f, "..")?;
1686 for p in subpatterns {
1687 write!(f, "{}{:?}", start_or_comma(), p)?;
1688 }
1689 }
1690 }
1691 write!(f, "]")
1692 }
1693 &FloatRange(lo, hi, end) => {
1694 write!(f, "{}", lo)?;
1695 write!(f, "{}", end)?;
1696 write!(f, "{}", hi)
1697 }
1698 IntRange(range) => write!(f, "{:?}", range), // Best-effort, will render e.g. `false` as `0..=0`
1699 Wildcard | Missing { .. } | NonExhaustive => write!(f, "_ : {:?}", self.ty),
1700 Or => {
1701 for pat in self.iter_fields() {
1702 write!(f, "{}{:?}", start_or_continue(" | "), pat)?;
1703 }
1704 Ok(())
1705 }
1706 Str(value) => write!(f, "{}", value),
1707 Opaque => write!(f, "<constant pattern>"),
1708 }
1709 }
1710 }