]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_mir_build/src/thir/pattern/usefulness.rs
New upstream version 1.63.0+dfsg1
[rustc.git] / compiler / rustc_mir_build / src / thir / pattern / usefulness.rs
1 //! Note: tests specific to this file can be found in:
2 //!
3 //! - `ui/pattern/usefulness`
4 //! - `ui/or-patterns`
5 //! - `ui/consts/const_in_pattern`
6 //! - `ui/rfc-2008-non-exhaustive`
7 //! - `ui/half-open-range-patterns`
8 //! - probably many others
9 //!
10 //! I (Nadrieril) prefer to put new tests in `ui/pattern/usefulness` unless there's a specific
11 //! reason not to, for example if they depend on a particular feature like `or_patterns`.
12 //!
13 //! -----
14 //!
15 //! This file includes the logic for exhaustiveness and reachability checking for pattern-matching.
16 //! Specifically, given a list of patterns for a type, we can tell whether:
17 //! (a) each pattern is reachable (reachability)
18 //! (b) the patterns cover every possible value for the type (exhaustiveness)
19 //!
20 //! The algorithm implemented here is a modified version of the one described in [this
21 //! paper](http://moscova.inria.fr/~maranget/papers/warn/index.html). We have however generalized
22 //! it to accommodate the variety of patterns that Rust supports. We thus explain our version here,
23 //! without being as rigorous.
24 //!
25 //!
26 //! # Summary
27 //!
28 //! The core of the algorithm is the notion of "usefulness". A pattern `q` is said to be *useful*
29 //! relative to another pattern `p` of the same type if there is a value that is matched by `q` and
30 //! not matched by `p`. This generalizes to many `p`s: `q` is useful w.r.t. a list of patterns
31 //! `p_1 .. p_n` if there is a value that is matched by `q` and by none of the `p_i`. We write
32 //! `usefulness(p_1 .. p_n, q)` for a function that returns a list of such values. The aim of this
33 //! file is to compute it efficiently.
34 //!
35 //! This is enough to compute reachability: a pattern in a `match` expression is reachable iff it
36 //! is useful w.r.t. the patterns above it:
37 //! ```rust
38 //! # fn foo(x: Option<i32>) {
39 //! match x {
40 //! Some(_) => {},
41 //! None => {}, // reachable: `None` is matched by this but not the branch above
42 //! Some(0) => {}, // unreachable: all the values this matches are already matched by
43 //! // `Some(_)` above
44 //! }
45 //! # }
46 //! ```
47 //!
48 //! This is also enough to compute exhaustiveness: a match is exhaustive iff the wildcard `_`
49 //! pattern is _not_ useful w.r.t. the patterns in the match. The values returned by `usefulness`
50 //! are used to tell the user which values are missing.
51 //! ```compile_fail,E0004
52 //! # fn foo(x: Option<i32>) {
53 //! match x {
54 //! Some(0) => {},
55 //! None => {},
56 //! // not exhaustive: `_` is useful because it matches `Some(1)`
57 //! }
58 //! # }
59 //! ```
60 //!
61 //! The entrypoint of this file is the [`compute_match_usefulness`] function, which computes
62 //! reachability for each match branch and exhaustiveness for the whole match.
63 //!
64 //!
65 //! # Constructors and fields
66 //!
67 //! Note: we will often abbreviate "constructor" as "ctor".
68 //!
69 //! The idea that powers everything that is done in this file is the following: a (matchable)
70 //! value is made from a constructor applied to a number of subvalues. Examples of constructors are
71 //! `Some`, `None`, `(,)` (the 2-tuple constructor), `Foo {..}` (the constructor for a struct
72 //! `Foo`), and `2` (the constructor for the number `2`). This is natural when we think of
73 //! pattern-matching, and this is the basis for what follows.
74 //!
75 //! Some of the ctors listed above might feel weird: `None` and `2` don't take any arguments.
76 //! That's ok: those are ctors that take a list of 0 arguments; they are the simplest case of
77 //! ctors. We treat `2` as a ctor because `u64` and other number types behave exactly like a huge
78 //! `enum`, with one variant for each number. This allows us to see any matchable value as made up
79 //! from a tree of ctors, each having a set number of children. For example: `Foo { bar: None,
80 //! baz: Ok(0) }` is made from 4 different ctors, namely `Foo{..}`, `None`, `Ok` and `0`.
81 //!
82 //! This idea can be extended to patterns: they are also made from constructors applied to fields.
83 //! A pattern for a given type is allowed to use all the ctors for values of that type (which we
84 //! call "value constructors"), but there are also pattern-only ctors. The most important one is
85 //! the wildcard (`_`), and the others are integer ranges (`0..=10`), variable-length slices (`[x,
86 //! ..]`), and or-patterns (`Ok(0) | Err(_)`). Examples of valid patterns are `42`, `Some(_)`, `Foo
87 //! { bar: Some(0) | None, baz: _ }`. Note that a binder in a pattern (e.g. `Some(x)`) matches the
88 //! same values as a wildcard (e.g. `Some(_)`), so we treat both as wildcards.
89 //!
90 //! From this deconstruction we can compute whether a given value matches a given pattern; we
91 //! simply look at ctors one at a time. Given a pattern `p` and a value `v`, we want to compute
92 //! `matches!(v, p)`. It's mostly straightforward: we compare the head ctors and when they match
93 //! we compare their fields recursively. A few representative examples:
94 //!
95 //! - `matches!(v, _) := true`
96 //! - `matches!((v0, v1), (p0, p1)) := matches!(v0, p0) && matches!(v1, p1)`
97 //! - `matches!(Foo { bar: v0, baz: v1 }, Foo { bar: p0, baz: p1 }) := matches!(v0, p0) && matches!(v1, p1)`
98 //! - `matches!(Ok(v0), Ok(p0)) := matches!(v0, p0)`
99 //! - `matches!(Ok(v0), Err(p0)) := false` (incompatible variants)
100 //! - `matches!(v, 1..=100) := matches!(v, 1) || ... || matches!(v, 100)`
101 //! - `matches!([v0], [p0, .., p1]) := false` (incompatible lengths)
102 //! - `matches!([v0, v1, v2], [p0, .., p1]) := matches!(v0, p0) && matches!(v2, p1)`
103 //! - `matches!(v, p0 | p1) := matches!(v, p0) || matches!(v, p1)`
104 //!
105 //! Constructors, fields and relevant operations are defined in the [`super::deconstruct_pat`] module.
106 //!
107 //! Note: this constructors/fields distinction may not straightforwardly apply to every Rust type.
108 //! For example a value of type `Rc<u64>` can't be deconstructed that way, and `&str` has an
109 //! infinitude of constructors. There are also subtleties with visibility of fields and
110 //! uninhabitedness and various other things. The constructors idea can be extended to handle most
111 //! of these subtleties though; caveats are documented where relevant throughout the code.
112 //!
113 //! Whether constructors cover each other is computed by [`Constructor::is_covered_by`].
114 //!
115 //!
116 //! # Specialization
117 //!
118 //! Recall that we wish to compute `usefulness(p_1 .. p_n, q)`: given a list of patterns `p_1 ..
119 //! p_n` and a pattern `q`, all of the same type, we want to find a list of values (called
120 //! "witnesses") that are matched by `q` and by none of the `p_i`. We obviously don't just
121 //! enumerate all possible values. From the discussion above we see that we can proceed
122 //! ctor-by-ctor: for each value ctor of the given type, we ask "is there a value that starts with
123 //! this constructor and matches `q` and none of the `p_i`?". As we saw above, there's a lot we can
124 //! say from knowing only the first constructor of our candidate value.
125 //!
126 //! Let's take the following example:
127 //! ```compile_fail,E0004
128 //! # enum Enum { Variant1(()), Variant2(Option<bool>, u32)}
129 //! # fn foo(x: Enum) {
130 //! match x {
131 //! Enum::Variant1(_) => {} // `p1`
132 //! Enum::Variant2(None, 0) => {} // `p2`
133 //! Enum::Variant2(Some(_), 0) => {} // `q`
134 //! }
135 //! # }
136 //! ```
137 //!
138 //! We can easily see that if our candidate value `v` starts with `Variant1` it will not match `q`.
139 //! If `v = Variant2(v0, v1)` however, whether or not it matches `p2` and `q` will depend on `v0`
140 //! and `v1`. In fact, such a `v` will be a witness of usefulness of `q` exactly when the tuple
141 //! `(v0, v1)` is a witness of usefulness of `q'` in the following reduced match:
142 //!
143 //! ```compile_fail,E0004
144 //! # fn foo(x: (Option<bool>, u32)) {
145 //! match x {
146 //! (None, 0) => {} // `p2'`
147 //! (Some(_), 0) => {} // `q'`
148 //! }
149 //! # }
150 //! ```
151 //!
152 //! This motivates a new step in computing usefulness, that we call _specialization_.
153 //! Specialization consist of filtering a list of patterns for those that match a constructor, and
154 //! then looking into the constructor's fields. This enables usefulness to be computed recursively.
155 //!
156 //! Instead of acting on a single pattern in each row, we will consider a list of patterns for each
157 //! row, and we call such a list a _pattern-stack_. The idea is that we will specialize the
158 //! leftmost pattern, which amounts to popping the constructor and pushing its fields, which feels
159 //! like a stack. We note a pattern-stack simply with `[p_1 ... p_n]`.
160 //! Here's a sequence of specializations of a list of pattern-stacks, to illustrate what's
161 //! happening:
162 //! ```ignore (illustrative)
163 //! [Enum::Variant1(_)]
164 //! [Enum::Variant2(None, 0)]
165 //! [Enum::Variant2(Some(_), 0)]
166 //! //==>> specialize with `Variant2`
167 //! [None, 0]
168 //! [Some(_), 0]
169 //! //==>> specialize with `Some`
170 //! [_, 0]
171 //! //==>> specialize with `true` (say the type was `bool`)
172 //! [0]
173 //! //==>> specialize with `0`
174 //! []
175 //! ```
176 //!
177 //! The function `specialize(c, p)` takes a value constructor `c` and a pattern `p`, and returns 0
178 //! or more pattern-stacks. If `c` does not match the head constructor of `p`, it returns nothing;
179 //! otherwise if returns the fields of the constructor. This only returns more than one
180 //! pattern-stack if `p` has a pattern-only constructor.
181 //!
182 //! - Specializing for the wrong constructor returns nothing
183 //!
184 //! `specialize(None, Some(p0)) := []`
185 //!
186 //! - Specializing for the correct constructor returns a single row with the fields
187 //!
188 //! `specialize(Variant1, Variant1(p0, p1, p2)) := [[p0, p1, p2]]`
189 //!
190 //! `specialize(Foo{..}, Foo { bar: p0, baz: p1 }) := [[p0, p1]]`
191 //!
192 //! - For or-patterns, we specialize each branch and concatenate the results
193 //!
194 //! `specialize(c, p0 | p1) := specialize(c, p0) ++ specialize(c, p1)`
195 //!
196 //! - We treat the other pattern constructors as if they were a large or-pattern of all the
197 //! possibilities:
198 //!
199 //! `specialize(c, _) := specialize(c, Variant1(_) | Variant2(_, _) | ...)`
200 //!
201 //! `specialize(c, 1..=100) := specialize(c, 1 | ... | 100)`
202 //!
203 //! `specialize(c, [p0, .., p1]) := specialize(c, [p0, p1] | [p0, _, p1] | [p0, _, _, p1] | ...)`
204 //!
205 //! - If `c` is a pattern-only constructor, `specialize` is defined on a case-by-case basis. See
206 //! the discussion about constructor splitting in [`super::deconstruct_pat`].
207 //!
208 //!
209 //! We then extend this function to work with pattern-stacks as input, by acting on the first
210 //! column and keeping the other columns untouched.
211 //!
212 //! Specialization for the whole matrix is done in [`Matrix::specialize_constructor`]. Note that
213 //! or-patterns in the first column are expanded before being stored in the matrix. Specialization
214 //! for a single patstack is done from a combination of [`Constructor::is_covered_by`] and
215 //! [`PatStack::pop_head_constructor`]. The internals of how it's done mostly live in the
216 //! [`Fields`] struct.
217 //!
218 //!
219 //! # Computing usefulness
220 //!
221 //! We now have all we need to compute usefulness. The inputs to usefulness are a list of
222 //! pattern-stacks `p_1 ... p_n` (one per row), and a new pattern_stack `q`. The paper and this
223 //! file calls the list of patstacks a _matrix_. They must all have the same number of columns and
224 //! the patterns in a given column must all have the same type. `usefulness` returns a (possibly
225 //! empty) list of witnesses of usefulness. These witnesses will also be pattern-stacks.
226 //!
227 //! - base case: `n_columns == 0`.
228 //! Since a pattern-stack functions like a tuple of patterns, an empty one functions like the
229 //! unit type. Thus `q` is useful iff there are no rows above it, i.e. if `n == 0`.
230 //!
231 //! - inductive case: `n_columns > 0`.
232 //! We need a way to list the constructors we want to try. We will be more clever in the next
233 //! section but for now assume we list all value constructors for the type of the first column.
234 //!
235 //! - for each such ctor `c`:
236 //!
237 //! - for each `q'` returned by `specialize(c, q)`:
238 //!
239 //! - we compute `usefulness(specialize(c, p_1) ... specialize(c, p_n), q')`
240 //!
241 //! - for each witness found, we revert specialization by pushing the constructor `c` on top.
242 //!
243 //! - We return the concatenation of all the witnesses found, if any.
244 //!
245 //! Example:
246 //! ```ignore (illustrative)
247 //! [Some(true)] // p_1
248 //! [None] // p_2
249 //! [Some(_)] // q
250 //! //==>> try `None`: `specialize(None, q)` returns nothing
251 //! //==>> try `Some`: `specialize(Some, q)` returns a single row
252 //! [true] // p_1'
253 //! [_] // q'
254 //! //==>> try `true`: `specialize(true, q')` returns a single row
255 //! [] // p_1''
256 //! [] // q''
257 //! //==>> base case; `n != 0` so `q''` is not useful.
258 //! //==>> go back up a step
259 //! [true] // p_1'
260 //! [_] // q'
261 //! //==>> try `false`: `specialize(false, q')` returns a single row
262 //! [] // q''
263 //! //==>> base case; `n == 0` so `q''` is useful. We return the single witness `[]`
264 //! witnesses:
265 //! []
266 //! //==>> undo the specialization with `false`
267 //! witnesses:
268 //! [false]
269 //! //==>> undo the specialization with `Some`
270 //! witnesses:
271 //! [Some(false)]
272 //! //==>> we have tried all the constructors. The output is the single witness `[Some(false)]`.
273 //! ```
274 //!
275 //! This computation is done in [`is_useful`]. In practice we don't care about the list of
276 //! witnesses when computing reachability; we only need to know whether any exist. We do keep the
277 //! witnesses when computing exhaustiveness to report them to the user.
278 //!
279 //!
280 //! # Making usefulness tractable: constructor splitting
281 //!
282 //! We're missing one last detail: which constructors do we list? Naively listing all value
283 //! constructors cannot work for types like `u64` or `&str`, so we need to be more clever. The
284 //! first obvious insight is that we only want to list constructors that are covered by the head
285 //! constructor of `q`. If it's a value constructor, we only try that one. If it's a pattern-only
286 //! constructor, we use the final clever idea for this algorithm: _constructor splitting_, where we
287 //! group together constructors that behave the same.
288 //!
289 //! The details are not necessary to understand this file, so we explain them in
290 //! [`super::deconstruct_pat`]. Splitting is done by the [`Constructor::split`] function.
291
292 use self::ArmType::*;
293 use self::Usefulness::*;
294
295 use super::check_match::{joined_uncovered_patterns, pattern_not_covered_label};
296 use super::deconstruct_pat::{Constructor, DeconstructedPat, Fields, SplitWildcard};
297
298 use rustc_data_structures::captures::Captures;
299
300 use rustc_arena::TypedArena;
301 use rustc_data_structures::stack::ensure_sufficient_stack;
302 use rustc_hir::def_id::DefId;
303 use rustc_hir::HirId;
304 use rustc_middle::ty::{self, Ty, TyCtxt};
305 use rustc_session::lint::builtin::NON_EXHAUSTIVE_OMITTED_PATTERNS;
306 use rustc_span::{Span, DUMMY_SP};
307
308 use smallvec::{smallvec, SmallVec};
309 use std::fmt;
310 use std::iter::once;
311
312 pub(crate) struct MatchCheckCtxt<'p, 'tcx> {
313 pub(crate) tcx: TyCtxt<'tcx>,
314 /// The module in which the match occurs. This is necessary for
315 /// checking inhabited-ness of types because whether a type is (visibly)
316 /// inhabited can depend on whether it was defined in the current module or
317 /// not. E.g., `struct Foo { _private: ! }` cannot be seen to be empty
318 /// outside its module and should not be matchable with an empty match statement.
319 pub(crate) module: DefId,
320 pub(crate) param_env: ty::ParamEnv<'tcx>,
321 pub(crate) pattern_arena: &'p TypedArena<DeconstructedPat<'p, 'tcx>>,
322 }
323
324 impl<'a, 'tcx> MatchCheckCtxt<'a, 'tcx> {
325 pub(super) fn is_uninhabited(&self, ty: Ty<'tcx>) -> bool {
326 if self.tcx.features().exhaustive_patterns {
327 self.tcx.is_ty_uninhabited_from(self.module, ty, self.param_env)
328 } else {
329 false
330 }
331 }
332
333 /// Returns whether the given type is an enum from another crate declared `#[non_exhaustive]`.
334 pub(super) fn is_foreign_non_exhaustive_enum(&self, ty: Ty<'tcx>) -> bool {
335 match ty.kind() {
336 ty::Adt(def, ..) => {
337 def.is_enum() && def.is_variant_list_non_exhaustive() && !def.did().is_local()
338 }
339 _ => false,
340 }
341 }
342 }
343
344 #[derive(Copy, Clone)]
345 pub(super) struct PatCtxt<'a, 'p, 'tcx> {
346 pub(super) cx: &'a MatchCheckCtxt<'p, 'tcx>,
347 /// Type of the current column under investigation.
348 pub(super) ty: Ty<'tcx>,
349 /// Span of the current pattern under investigation.
350 pub(super) span: Span,
351 /// Whether the current pattern is the whole pattern as found in a match arm, or if it's a
352 /// subpattern.
353 pub(super) is_top_level: bool,
354 /// Whether the current pattern is from a `non_exhaustive` enum.
355 pub(super) is_non_exhaustive: bool,
356 }
357
358 impl<'a, 'p, 'tcx> fmt::Debug for PatCtxt<'a, 'p, 'tcx> {
359 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
360 f.debug_struct("PatCtxt").field("ty", &self.ty).finish()
361 }
362 }
363
364 /// A row of a matrix. Rows of len 1 are very common, which is why `SmallVec[_; 2]`
365 /// works well.
366 #[derive(Clone)]
367 struct PatStack<'p, 'tcx> {
368 pats: SmallVec<[&'p DeconstructedPat<'p, 'tcx>; 2]>,
369 }
370
371 impl<'p, 'tcx> PatStack<'p, 'tcx> {
372 fn from_pattern(pat: &'p DeconstructedPat<'p, 'tcx>) -> Self {
373 Self::from_vec(smallvec![pat])
374 }
375
376 fn from_vec(vec: SmallVec<[&'p DeconstructedPat<'p, 'tcx>; 2]>) -> Self {
377 PatStack { pats: vec }
378 }
379
380 fn is_empty(&self) -> bool {
381 self.pats.is_empty()
382 }
383
384 fn len(&self) -> usize {
385 self.pats.len()
386 }
387
388 fn head(&self) -> &'p DeconstructedPat<'p, 'tcx> {
389 self.pats[0]
390 }
391
392 fn iter(&self) -> impl Iterator<Item = &DeconstructedPat<'p, 'tcx>> {
393 self.pats.iter().copied()
394 }
395
396 // Recursively expand the first pattern into its subpatterns. Only useful if the pattern is an
397 // or-pattern. Panics if `self` is empty.
398 fn expand_or_pat<'a>(&'a self) -> impl Iterator<Item = PatStack<'p, 'tcx>> + Captures<'a> {
399 self.head().iter_fields().map(move |pat| {
400 let mut new_patstack = PatStack::from_pattern(pat);
401 new_patstack.pats.extend_from_slice(&self.pats[1..]);
402 new_patstack
403 })
404 }
405
406 /// This computes `S(self.head().ctor(), self)`. See top of the file for explanations.
407 ///
408 /// Structure patterns with a partial wild pattern (Foo { a: 42, .. }) have their missing
409 /// fields filled with wild patterns.
410 ///
411 /// This is roughly the inverse of `Constructor::apply`.
412 fn pop_head_constructor(
413 &self,
414 cx: &MatchCheckCtxt<'p, 'tcx>,
415 ctor: &Constructor<'tcx>,
416 ) -> PatStack<'p, 'tcx> {
417 // We pop the head pattern and push the new fields extracted from the arguments of
418 // `self.head()`.
419 let mut new_fields: SmallVec<[_; 2]> = self.head().specialize(cx, ctor);
420 new_fields.extend_from_slice(&self.pats[1..]);
421 PatStack::from_vec(new_fields)
422 }
423 }
424
425 /// Pretty-printing for matrix row.
426 impl<'p, 'tcx> fmt::Debug for PatStack<'p, 'tcx> {
427 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
428 write!(f, "+")?;
429 for pat in self.iter() {
430 write!(f, " {:?} +", pat)?;
431 }
432 Ok(())
433 }
434 }
435
436 /// A 2D matrix.
437 #[derive(Clone)]
438 pub(super) struct Matrix<'p, 'tcx> {
439 patterns: Vec<PatStack<'p, 'tcx>>,
440 }
441
442 impl<'p, 'tcx> Matrix<'p, 'tcx> {
443 fn empty() -> Self {
444 Matrix { patterns: vec![] }
445 }
446
447 /// Number of columns of this matrix. `None` is the matrix is empty.
448 pub(super) fn column_count(&self) -> Option<usize> {
449 self.patterns.get(0).map(|r| r.len())
450 }
451
452 /// Pushes a new row to the matrix. If the row starts with an or-pattern, this recursively
453 /// expands it.
454 fn push(&mut self, row: PatStack<'p, 'tcx>) {
455 if !row.is_empty() && row.head().is_or_pat() {
456 self.patterns.extend(row.expand_or_pat());
457 } else {
458 self.patterns.push(row);
459 }
460 }
461
462 /// Iterate over the first component of each row
463 fn heads<'a>(
464 &'a self,
465 ) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Clone + Captures<'a> {
466 self.patterns.iter().map(|r| r.head())
467 }
468
469 /// This computes `S(constructor, self)`. See top of the file for explanations.
470 fn specialize_constructor(
471 &self,
472 pcx: PatCtxt<'_, 'p, 'tcx>,
473 ctor: &Constructor<'tcx>,
474 ) -> Matrix<'p, 'tcx> {
475 let mut matrix = Matrix::empty();
476 for row in &self.patterns {
477 if ctor.is_covered_by(pcx, row.head().ctor()) {
478 let new_row = row.pop_head_constructor(pcx.cx, ctor);
479 matrix.push(new_row);
480 }
481 }
482 matrix
483 }
484 }
485
486 /// Pretty-printer for matrices of patterns, example:
487 ///
488 /// ```text
489 /// + _ + [] +
490 /// + true + [First] +
491 /// + true + [Second(true)] +
492 /// + false + [_] +
493 /// + _ + [_, _, tail @ ..] +
494 /// ```
495 impl<'p, 'tcx> fmt::Debug for Matrix<'p, 'tcx> {
496 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
497 write!(f, "\n")?;
498
499 let Matrix { patterns: m, .. } = self;
500 let pretty_printed_matrix: Vec<Vec<String>> =
501 m.iter().map(|row| row.iter().map(|pat| format!("{:?}", pat)).collect()).collect();
502
503 let column_count = m.iter().map(|row| row.len()).next().unwrap_or(0);
504 assert!(m.iter().all(|row| row.len() == column_count));
505 let column_widths: Vec<usize> = (0..column_count)
506 .map(|col| pretty_printed_matrix.iter().map(|row| row[col].len()).max().unwrap_or(0))
507 .collect();
508
509 for row in pretty_printed_matrix {
510 write!(f, "+")?;
511 for (column, pat_str) in row.into_iter().enumerate() {
512 write!(f, " ")?;
513 write!(f, "{:1$}", pat_str, column_widths[column])?;
514 write!(f, " +")?;
515 }
516 write!(f, "\n")?;
517 }
518 Ok(())
519 }
520 }
521
522 /// This carries the results of computing usefulness, as described at the top of the file. When
523 /// checking usefulness of a match branch, we use the `NoWitnesses` variant, which also keeps track
524 /// of potential unreachable sub-patterns (in the presence of or-patterns). When checking
525 /// exhaustiveness of a whole match, we use the `WithWitnesses` variant, which carries a list of
526 /// witnesses of non-exhaustiveness when there are any.
527 /// Which variant to use is dictated by `ArmType`.
528 #[derive(Debug)]
529 enum Usefulness<'p, 'tcx> {
530 /// If we don't care about witnesses, simply remember if the pattern was useful.
531 NoWitnesses { useful: bool },
532 /// Carries a list of witnesses of non-exhaustiveness. If empty, indicates that the whole
533 /// pattern is unreachable.
534 WithWitnesses(Vec<Witness<'p, 'tcx>>),
535 }
536
537 impl<'p, 'tcx> Usefulness<'p, 'tcx> {
538 fn new_useful(preference: ArmType) -> Self {
539 match preference {
540 // A single (empty) witness of reachability.
541 FakeExtraWildcard => WithWitnesses(vec![Witness(vec![])]),
542 RealArm => NoWitnesses { useful: true },
543 }
544 }
545
546 fn new_not_useful(preference: ArmType) -> Self {
547 match preference {
548 FakeExtraWildcard => WithWitnesses(vec![]),
549 RealArm => NoWitnesses { useful: false },
550 }
551 }
552
553 fn is_useful(&self) -> bool {
554 match self {
555 Usefulness::NoWitnesses { useful } => *useful,
556 Usefulness::WithWitnesses(witnesses) => !witnesses.is_empty(),
557 }
558 }
559
560 /// Combine usefulnesses from two branches. This is an associative operation.
561 fn extend(&mut self, other: Self) {
562 match (&mut *self, other) {
563 (WithWitnesses(_), WithWitnesses(o)) if o.is_empty() => {}
564 (WithWitnesses(s), WithWitnesses(o)) if s.is_empty() => *self = WithWitnesses(o),
565 (WithWitnesses(s), WithWitnesses(o)) => s.extend(o),
566 (NoWitnesses { useful: s_useful }, NoWitnesses { useful: o_useful }) => {
567 *s_useful = *s_useful || o_useful
568 }
569 _ => unreachable!(),
570 }
571 }
572
573 /// After calculating usefulness after a specialization, call this to reconstruct a usefulness
574 /// that makes sense for the matrix pre-specialization. This new usefulness can then be merged
575 /// with the results of specializing with the other constructors.
576 fn apply_constructor(
577 self,
578 pcx: PatCtxt<'_, 'p, 'tcx>,
579 matrix: &Matrix<'p, 'tcx>, // used to compute missing ctors
580 ctor: &Constructor<'tcx>,
581 ) -> Self {
582 match self {
583 NoWitnesses { .. } => self,
584 WithWitnesses(ref witnesses) if witnesses.is_empty() => self,
585 WithWitnesses(witnesses) => {
586 let new_witnesses = if let Constructor::Missing { .. } = ctor {
587 // We got the special `Missing` constructor, so each of the missing constructors
588 // gives a new pattern that is not caught by the match. We list those patterns.
589 let new_patterns = if pcx.is_non_exhaustive {
590 // Here we don't want the user to try to list all variants, we want them to add
591 // a wildcard, so we only suggest that.
592 vec![DeconstructedPat::wildcard(pcx.ty)]
593 } else {
594 let mut split_wildcard = SplitWildcard::new(pcx);
595 split_wildcard.split(pcx, matrix.heads().map(DeconstructedPat::ctor));
596
597 // This lets us know if we skipped any variants because they are marked
598 // `doc(hidden)` or they are unstable feature gate (only stdlib types).
599 let mut hide_variant_show_wild = false;
600 // Construct for each missing constructor a "wild" version of this
601 // constructor, that matches everything that can be built with
602 // it. For example, if `ctor` is a `Constructor::Variant` for
603 // `Option::Some`, we get the pattern `Some(_)`.
604 let mut new: Vec<DeconstructedPat<'_, '_>> = split_wildcard
605 .iter_missing(pcx)
606 .filter_map(|missing_ctor| {
607 // Check if this variant is marked `doc(hidden)`
608 if missing_ctor.is_doc_hidden_variant(pcx)
609 || missing_ctor.is_unstable_variant(pcx)
610 {
611 hide_variant_show_wild = true;
612 return None;
613 }
614 Some(DeconstructedPat::wild_from_ctor(pcx, missing_ctor.clone()))
615 })
616 .collect();
617
618 if hide_variant_show_wild {
619 new.push(DeconstructedPat::wildcard(pcx.ty));
620 }
621
622 new
623 };
624
625 witnesses
626 .into_iter()
627 .flat_map(|witness| {
628 new_patterns.iter().map(move |pat| {
629 Witness(
630 witness
631 .0
632 .iter()
633 .chain(once(pat))
634 .map(DeconstructedPat::clone_and_forget_reachability)
635 .collect(),
636 )
637 })
638 })
639 .collect()
640 } else {
641 witnesses
642 .into_iter()
643 .map(|witness| witness.apply_constructor(pcx, &ctor))
644 .collect()
645 };
646 WithWitnesses(new_witnesses)
647 }
648 }
649 }
650 }
651
652 #[derive(Copy, Clone, Debug)]
653 enum ArmType {
654 FakeExtraWildcard,
655 RealArm,
656 }
657
658 /// A witness of non-exhaustiveness for error reporting, represented
659 /// as a list of patterns (in reverse order of construction) with
660 /// wildcards inside to represent elements that can take any inhabitant
661 /// of the type as a value.
662 ///
663 /// A witness against a list of patterns should have the same types
664 /// and length as the pattern matched against. Because Rust `match`
665 /// is always against a single pattern, at the end the witness will
666 /// have length 1, but in the middle of the algorithm, it can contain
667 /// multiple patterns.
668 ///
669 /// For example, if we are constructing a witness for the match against
670 ///
671 /// ```compile_fail,E0004
672 /// # #![feature(type_ascription)]
673 /// struct Pair(Option<(u32, u32)>, bool);
674 /// # fn foo(p: Pair) {
675 /// match (p: Pair) {
676 /// Pair(None, _) => {}
677 /// Pair(_, false) => {}
678 /// }
679 /// # }
680 /// ```
681 ///
682 /// We'll perform the following steps:
683 /// 1. Start with an empty witness
684 /// `Witness(vec![])`
685 /// 2. Push a witness `true` against the `false`
686 /// `Witness(vec![true])`
687 /// 3. Push a witness `Some(_)` against the `None`
688 /// `Witness(vec![true, Some(_)])`
689 /// 4. Apply the `Pair` constructor to the witnesses
690 /// `Witness(vec![Pair(Some(_), true)])`
691 ///
692 /// The final `Pair(Some(_), true)` is then the resulting witness.
693 #[derive(Debug)]
694 pub(crate) struct Witness<'p, 'tcx>(Vec<DeconstructedPat<'p, 'tcx>>);
695
696 impl<'p, 'tcx> Witness<'p, 'tcx> {
697 /// Asserts that the witness contains a single pattern, and returns it.
698 fn single_pattern(self) -> DeconstructedPat<'p, 'tcx> {
699 assert_eq!(self.0.len(), 1);
700 self.0.into_iter().next().unwrap()
701 }
702
703 /// Constructs a partial witness for a pattern given a list of
704 /// patterns expanded by the specialization step.
705 ///
706 /// When a pattern P is discovered to be useful, this function is used bottom-up
707 /// to reconstruct a complete witness, e.g., a pattern P' that covers a subset
708 /// of values, V, where each value in that set is not covered by any previously
709 /// used patterns and is covered by the pattern P'. Examples:
710 ///
711 /// left_ty: tuple of 3 elements
712 /// pats: [10, 20, _] => (10, 20, _)
713 ///
714 /// left_ty: struct X { a: (bool, &'static str), b: usize}
715 /// pats: [(false, "foo"), 42] => X { a: (false, "foo"), b: 42 }
716 fn apply_constructor(mut self, pcx: PatCtxt<'_, 'p, 'tcx>, ctor: &Constructor<'tcx>) -> Self {
717 let pat = {
718 let len = self.0.len();
719 let arity = ctor.arity(pcx);
720 let pats = self.0.drain((len - arity)..).rev();
721 let fields = Fields::from_iter(pcx.cx, pats);
722 DeconstructedPat::new(ctor.clone(), fields, pcx.ty, DUMMY_SP)
723 };
724
725 self.0.push(pat);
726
727 self
728 }
729 }
730
731 /// Report that a match of a `non_exhaustive` enum marked with `non_exhaustive_omitted_patterns`
732 /// is not exhaustive enough.
733 ///
734 /// NB: The partner lint for structs lives in `compiler/rustc_typeck/src/check/pat.rs`.
735 fn lint_non_exhaustive_omitted_patterns<'p, 'tcx>(
736 cx: &MatchCheckCtxt<'p, 'tcx>,
737 scrut_ty: Ty<'tcx>,
738 sp: Span,
739 hir_id: HirId,
740 witnesses: Vec<DeconstructedPat<'p, 'tcx>>,
741 ) {
742 let joined_patterns = joined_uncovered_patterns(cx, &witnesses);
743 cx.tcx.struct_span_lint_hir(NON_EXHAUSTIVE_OMITTED_PATTERNS, hir_id, sp, |build| {
744 let mut lint = build.build("some variants are not matched explicitly");
745 lint.span_label(sp, pattern_not_covered_label(&witnesses, &joined_patterns));
746 lint.help(
747 "ensure that all variants are matched explicitly by adding the suggested match arms",
748 );
749 lint.note(&format!(
750 "the matched value is of type `{}` and the `non_exhaustive_omitted_patterns` attribute was found",
751 scrut_ty,
752 ));
753 lint.emit();
754 });
755 }
756
757 /// Algorithm from <http://moscova.inria.fr/~maranget/papers/warn/index.html>.
758 /// The algorithm from the paper has been modified to correctly handle empty
759 /// types. The changes are:
760 /// (0) We don't exit early if the pattern matrix has zero rows. We just
761 /// continue to recurse over columns.
762 /// (1) all_constructors will only return constructors that are statically
763 /// possible. E.g., it will only return `Ok` for `Result<T, !>`.
764 ///
765 /// This finds whether a (row) vector `v` of patterns is 'useful' in relation
766 /// to a set of such vectors `m` - this is defined as there being a set of
767 /// inputs that will match `v` but not any of the sets in `m`.
768 ///
769 /// All the patterns at each column of the `matrix ++ v` matrix must have the same type.
770 ///
771 /// This is used both for reachability checking (if a pattern isn't useful in
772 /// relation to preceding patterns, it is not reachable) and exhaustiveness
773 /// checking (if a wildcard pattern is useful in relation to a matrix, the
774 /// matrix isn't exhaustive).
775 ///
776 /// `is_under_guard` is used to inform if the pattern has a guard. If it
777 /// has one it must not be inserted into the matrix. This shouldn't be
778 /// relied on for soundness.
779 #[instrument(level = "debug", skip(cx, matrix, hir_id))]
780 fn is_useful<'p, 'tcx>(
781 cx: &MatchCheckCtxt<'p, 'tcx>,
782 matrix: &Matrix<'p, 'tcx>,
783 v: &PatStack<'p, 'tcx>,
784 witness_preference: ArmType,
785 hir_id: HirId,
786 is_under_guard: bool,
787 is_top_level: bool,
788 ) -> Usefulness<'p, 'tcx> {
789 debug!("matrix,v={:?}{:?}", matrix, v);
790 let Matrix { patterns: rows, .. } = matrix;
791
792 // The base case. We are pattern-matching on () and the return value is
793 // based on whether our matrix has a row or not.
794 // NOTE: This could potentially be optimized by checking rows.is_empty()
795 // first and then, if v is non-empty, the return value is based on whether
796 // the type of the tuple we're checking is inhabited or not.
797 if v.is_empty() {
798 let ret = if rows.is_empty() {
799 Usefulness::new_useful(witness_preference)
800 } else {
801 Usefulness::new_not_useful(witness_preference)
802 };
803 debug!(?ret);
804 return ret;
805 }
806
807 debug_assert!(rows.iter().all(|r| r.len() == v.len()));
808
809 let ty = v.head().ty();
810 let is_non_exhaustive = cx.is_foreign_non_exhaustive_enum(ty);
811 debug!("v.head: {:?}, v.span: {:?}", v.head(), v.head().span());
812 let pcx = PatCtxt { cx, ty, span: v.head().span(), is_top_level, is_non_exhaustive };
813
814 // If the first pattern is an or-pattern, expand it.
815 let mut ret = Usefulness::new_not_useful(witness_preference);
816 if v.head().is_or_pat() {
817 debug!("expanding or-pattern");
818 // We try each or-pattern branch in turn.
819 let mut matrix = matrix.clone();
820 for v in v.expand_or_pat() {
821 debug!(?v);
822 let usefulness = ensure_sufficient_stack(|| {
823 is_useful(cx, &matrix, &v, witness_preference, hir_id, is_under_guard, false)
824 });
825 debug!(?usefulness);
826 ret.extend(usefulness);
827 // If pattern has a guard don't add it to the matrix.
828 if !is_under_guard {
829 // We push the already-seen patterns into the matrix in order to detect redundant
830 // branches like `Some(_) | Some(0)`.
831 matrix.push(v);
832 }
833 }
834 } else {
835 let v_ctor = v.head().ctor();
836 debug!(?v_ctor);
837 if let Constructor::IntRange(ctor_range) = &v_ctor {
838 // Lint on likely incorrect range patterns (#63987)
839 ctor_range.lint_overlapping_range_endpoints(
840 pcx,
841 matrix.heads(),
842 matrix.column_count().unwrap_or(0),
843 hir_id,
844 )
845 }
846 // We split the head constructor of `v`.
847 let split_ctors = v_ctor.split(pcx, matrix.heads().map(DeconstructedPat::ctor));
848 let is_non_exhaustive_and_wild = is_non_exhaustive && v_ctor.is_wildcard();
849 // For each constructor, we compute whether there's a value that starts with it that would
850 // witness the usefulness of `v`.
851 let start_matrix = &matrix;
852 for ctor in split_ctors {
853 debug!("specialize({:?})", ctor);
854 // We cache the result of `Fields::wildcards` because it is used a lot.
855 let spec_matrix = start_matrix.specialize_constructor(pcx, &ctor);
856 let v = v.pop_head_constructor(cx, &ctor);
857 let usefulness = ensure_sufficient_stack(|| {
858 is_useful(cx, &spec_matrix, &v, witness_preference, hir_id, is_under_guard, false)
859 });
860 let usefulness = usefulness.apply_constructor(pcx, start_matrix, &ctor);
861
862 // When all the conditions are met we have a match with a `non_exhaustive` enum
863 // that has the potential to trigger the `non_exhaustive_omitted_patterns` lint.
864 // To understand the workings checkout `Constructor::split` and `SplitWildcard::new/into_ctors`
865 if is_non_exhaustive_and_wild
866 // We check that the match has a wildcard pattern and that that wildcard is useful,
867 // meaning there are variants that are covered by the wildcard. Without the check
868 // for `witness_preference` the lint would trigger on `if let NonExhaustiveEnum::A = foo {}`
869 && usefulness.is_useful() && matches!(witness_preference, RealArm)
870 && matches!(
871 &ctor,
872 Constructor::Missing { nonexhaustive_enum_missing_real_variants: true }
873 )
874 {
875 let patterns = {
876 let mut split_wildcard = SplitWildcard::new(pcx);
877 split_wildcard.split(pcx, matrix.heads().map(DeconstructedPat::ctor));
878 // Construct for each missing constructor a "wild" version of this
879 // constructor, that matches everything that can be built with
880 // it. For example, if `ctor` is a `Constructor::Variant` for
881 // `Option::Some`, we get the pattern `Some(_)`.
882 split_wildcard
883 .iter_missing(pcx)
884 // Filter out the `NonExhaustive` because we want to list only real
885 // variants. Also remove any unstable feature gated variants.
886 // Because of how we computed `nonexhaustive_enum_missing_real_variants`,
887 // this will not return an empty `Vec`.
888 .filter(|c| !(c.is_non_exhaustive() || c.is_unstable_variant(pcx)))
889 .cloned()
890 .map(|missing_ctor| DeconstructedPat::wild_from_ctor(pcx, missing_ctor))
891 .collect::<Vec<_>>()
892 };
893
894 lint_non_exhaustive_omitted_patterns(pcx.cx, pcx.ty, pcx.span, hir_id, patterns);
895 }
896
897 ret.extend(usefulness);
898 }
899 }
900
901 if ret.is_useful() {
902 v.head().set_reachable();
903 }
904
905 debug!(?ret);
906 ret
907 }
908
909 /// The arm of a match expression.
910 #[derive(Clone, Copy, Debug)]
911 pub(crate) struct MatchArm<'p, 'tcx> {
912 /// The pattern must have been lowered through `check_match::MatchVisitor::lower_pattern`.
913 pub(crate) pat: &'p DeconstructedPat<'p, 'tcx>,
914 pub(crate) hir_id: HirId,
915 pub(crate) has_guard: bool,
916 }
917
918 /// Indicates whether or not a given arm is reachable.
919 #[derive(Clone, Debug)]
920 pub(crate) enum Reachability {
921 /// The arm is reachable. This additionally carries a set of or-pattern branches that have been
922 /// found to be unreachable despite the overall arm being reachable. Used only in the presence
923 /// of or-patterns, otherwise it stays empty.
924 Reachable(Vec<Span>),
925 /// The arm is unreachable.
926 Unreachable,
927 }
928
929 /// The output of checking a match for exhaustiveness and arm reachability.
930 pub(crate) struct UsefulnessReport<'p, 'tcx> {
931 /// For each arm of the input, whether that arm is reachable after the arms above it.
932 pub(crate) arm_usefulness: Vec<(MatchArm<'p, 'tcx>, Reachability)>,
933 /// If the match is exhaustive, this is empty. If not, this contains witnesses for the lack of
934 /// exhaustiveness.
935 pub(crate) non_exhaustiveness_witnesses: Vec<DeconstructedPat<'p, 'tcx>>,
936 }
937
938 /// The entrypoint for the usefulness algorithm. Computes whether a match is exhaustive and which
939 /// of its arms are reachable.
940 ///
941 /// Note: the input patterns must have been lowered through
942 /// `check_match::MatchVisitor::lower_pattern`.
943 #[instrument(skip(cx, arms), level = "debug")]
944 pub(crate) fn compute_match_usefulness<'p, 'tcx>(
945 cx: &MatchCheckCtxt<'p, 'tcx>,
946 arms: &[MatchArm<'p, 'tcx>],
947 scrut_hir_id: HirId,
948 scrut_ty: Ty<'tcx>,
949 ) -> UsefulnessReport<'p, 'tcx> {
950 let mut matrix = Matrix::empty();
951 let arm_usefulness: Vec<_> = arms
952 .iter()
953 .copied()
954 .map(|arm| {
955 debug!(?arm);
956 let v = PatStack::from_pattern(arm.pat);
957 is_useful(cx, &matrix, &v, RealArm, arm.hir_id, arm.has_guard, true);
958 if !arm.has_guard {
959 matrix.push(v);
960 }
961 let reachability = if arm.pat.is_reachable() {
962 Reachability::Reachable(arm.pat.unreachable_spans())
963 } else {
964 Reachability::Unreachable
965 };
966 (arm, reachability)
967 })
968 .collect();
969
970 let wild_pattern = cx.pattern_arena.alloc(DeconstructedPat::wildcard(scrut_ty));
971 let v = PatStack::from_pattern(wild_pattern);
972 let usefulness = is_useful(cx, &matrix, &v, FakeExtraWildcard, scrut_hir_id, false, true);
973 let non_exhaustiveness_witnesses = match usefulness {
974 WithWitnesses(pats) => pats.into_iter().map(|w| w.single_pattern()).collect(),
975 NoWitnesses { .. } => bug!(),
976 };
977 UsefulnessReport { arm_usefulness, non_exhaustiveness_witnesses }
978 }