]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_mir_transform/src/simplify.rs
New upstream version 1.60.0+dfsg1
[rustc.git] / compiler / rustc_mir_transform / src / simplify.rs
1 //! A number of passes which remove various redundancies in the CFG.
2 //!
3 //! The `SimplifyCfg` pass gets rid of unnecessary blocks in the CFG, whereas the `SimplifyLocals`
4 //! gets rid of all the unnecessary local variable declarations.
5 //!
6 //! The `SimplifyLocals` pass is kinda expensive and therefore not very suitable to be run often.
7 //! Most of the passes should not care or be impacted in meaningful ways due to extra locals
8 //! either, so running the pass once, right before codegen, should suffice.
9 //!
10 //! On the other side of the spectrum, the `SimplifyCfg` pass is considerably cheap to run, thus
11 //! one should run it after every pass which may modify CFG in significant ways. This pass must
12 //! also be run before any analysis passes because it removes dead blocks, and some of these can be
13 //! ill-typed.
14 //!
15 //! The cause of this typing issue is typeck allowing most blocks whose end is not reachable have
16 //! an arbitrary return type, rather than having the usual () return type (as a note, typeck's
17 //! notion of reachability is in fact slightly weaker than MIR CFG reachability - see #31617). A
18 //! standard example of the situation is:
19 //!
20 //! ```rust
21 //! fn example() {
22 //! let _a: char = { return; };
23 //! }
24 //! ```
25 //!
26 //! Here the block (`{ return; }`) has the return type `char`, rather than `()`, but the MIR we
27 //! naively generate still contains the `_a = ()` write in the unreachable block "after" the
28 //! return.
29
30 use crate::MirPass;
31 use rustc_index::vec::{Idx, IndexVec};
32 use rustc_middle::mir::coverage::*;
33 use rustc_middle::mir::visit::{MutVisitor, MutatingUseContext, PlaceContext, Visitor};
34 use rustc_middle::mir::*;
35 use rustc_middle::ty::TyCtxt;
36 use smallvec::SmallVec;
37 use std::borrow::Cow;
38 use std::convert::TryInto;
39
40 pub struct SimplifyCfg {
41 label: String,
42 }
43
44 impl SimplifyCfg {
45 pub fn new(label: &str) -> Self {
46 SimplifyCfg { label: format!("SimplifyCfg-{}", label) }
47 }
48 }
49
50 pub fn simplify_cfg<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
51 CfgSimplifier::new(body).simplify();
52 remove_dead_blocks(tcx, body);
53
54 // FIXME: Should probably be moved into some kind of pass manager
55 body.basic_blocks_mut().raw.shrink_to_fit();
56 }
57
58 impl<'tcx> MirPass<'tcx> for SimplifyCfg {
59 fn name(&self) -> Cow<'_, str> {
60 Cow::Borrowed(&self.label)
61 }
62
63 fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
64 debug!("SimplifyCfg({:?}) - simplifying {:?}", self.label, body.source);
65 simplify_cfg(tcx, body);
66 }
67 }
68
69 pub struct CfgSimplifier<'a, 'tcx> {
70 basic_blocks: &'a mut IndexVec<BasicBlock, BasicBlockData<'tcx>>,
71 pred_count: IndexVec<BasicBlock, u32>,
72 }
73
74 impl<'a, 'tcx> CfgSimplifier<'a, 'tcx> {
75 pub fn new(body: &'a mut Body<'tcx>) -> Self {
76 let mut pred_count = IndexVec::from_elem(0u32, body.basic_blocks());
77
78 // we can't use mir.predecessors() here because that counts
79 // dead blocks, which we don't want to.
80 pred_count[START_BLOCK] = 1;
81
82 for (_, data) in traversal::preorder(body) {
83 if let Some(ref term) = data.terminator {
84 for &tgt in term.successors() {
85 pred_count[tgt] += 1;
86 }
87 }
88 }
89
90 let basic_blocks = body.basic_blocks_mut();
91
92 CfgSimplifier { basic_blocks, pred_count }
93 }
94
95 pub fn simplify(mut self) {
96 self.strip_nops();
97
98 // Vec of the blocks that should be merged. We store the indices here, instead of the
99 // statements itself to avoid moving the (relatively) large statements twice.
100 // We do not push the statements directly into the target block (`bb`) as that is slower
101 // due to additional reallocations
102 let mut merged_blocks = Vec::new();
103 loop {
104 let mut changed = false;
105
106 for bb in self.basic_blocks.indices() {
107 if self.pred_count[bb] == 0 {
108 continue;
109 }
110
111 debug!("simplifying {:?}", bb);
112
113 let mut terminator =
114 self.basic_blocks[bb].terminator.take().expect("invalid terminator state");
115
116 for successor in terminator.successors_mut() {
117 self.collapse_goto_chain(successor, &mut changed);
118 }
119
120 let mut inner_changed = true;
121 merged_blocks.clear();
122 while inner_changed {
123 inner_changed = false;
124 inner_changed |= self.simplify_branch(&mut terminator);
125 inner_changed |= self.merge_successor(&mut merged_blocks, &mut terminator);
126 changed |= inner_changed;
127 }
128
129 let statements_to_merge =
130 merged_blocks.iter().map(|&i| self.basic_blocks[i].statements.len()).sum();
131
132 if statements_to_merge > 0 {
133 let mut statements = std::mem::take(&mut self.basic_blocks[bb].statements);
134 statements.reserve(statements_to_merge);
135 for &from in &merged_blocks {
136 statements.append(&mut self.basic_blocks[from].statements);
137 }
138 self.basic_blocks[bb].statements = statements;
139 }
140
141 self.basic_blocks[bb].terminator = Some(terminator);
142 }
143
144 if !changed {
145 break;
146 }
147 }
148 }
149
150 /// This function will return `None` if
151 /// * the block has statements
152 /// * the block has a terminator other than `goto`
153 /// * the block has no terminator (meaning some other part of the current optimization stole it)
154 fn take_terminator_if_simple_goto(&mut self, bb: BasicBlock) -> Option<Terminator<'tcx>> {
155 match self.basic_blocks[bb] {
156 BasicBlockData {
157 ref statements,
158 terminator:
159 ref mut terminator @ Some(Terminator { kind: TerminatorKind::Goto { .. }, .. }),
160 ..
161 } if statements.is_empty() => terminator.take(),
162 // if `terminator` is None, this means we are in a loop. In that
163 // case, let all the loop collapse to its entry.
164 _ => None,
165 }
166 }
167
168 /// Collapse a goto chain starting from `start`
169 fn collapse_goto_chain(&mut self, start: &mut BasicBlock, changed: &mut bool) {
170 // Using `SmallVec` here, because in some logs on libcore oli-obk saw many single-element
171 // goto chains. We should probably benchmark different sizes.
172 let mut terminators: SmallVec<[_; 1]> = Default::default();
173 let mut current = *start;
174 while let Some(terminator) = self.take_terminator_if_simple_goto(current) {
175 let target = match terminator {
176 Terminator { kind: TerminatorKind::Goto { target }, .. } => target,
177 _ => unreachable!(),
178 };
179 terminators.push((current, terminator));
180 current = target;
181 }
182 let last = current;
183 *start = last;
184 while let Some((current, mut terminator)) = terminators.pop() {
185 let target = match terminator {
186 Terminator { kind: TerminatorKind::Goto { ref mut target }, .. } => target,
187 _ => unreachable!(),
188 };
189 *changed |= *target != last;
190 *target = last;
191 debug!("collapsing goto chain from {:?} to {:?}", current, target);
192
193 if self.pred_count[current] == 1 {
194 // This is the last reference to current, so the pred-count to
195 // to target is moved into the current block.
196 self.pred_count[current] = 0;
197 } else {
198 self.pred_count[*target] += 1;
199 self.pred_count[current] -= 1;
200 }
201 self.basic_blocks[current].terminator = Some(terminator);
202 }
203 }
204
205 // merge a block with 1 `goto` predecessor to its parent
206 fn merge_successor(
207 &mut self,
208 merged_blocks: &mut Vec<BasicBlock>,
209 terminator: &mut Terminator<'tcx>,
210 ) -> bool {
211 let target = match terminator.kind {
212 TerminatorKind::Goto { target } if self.pred_count[target] == 1 => target,
213 _ => return false,
214 };
215
216 debug!("merging block {:?} into {:?}", target, terminator);
217 *terminator = match self.basic_blocks[target].terminator.take() {
218 Some(terminator) => terminator,
219 None => {
220 // unreachable loop - this should not be possible, as we
221 // don't strand blocks, but handle it correctly.
222 return false;
223 }
224 };
225
226 merged_blocks.push(target);
227 self.pred_count[target] = 0;
228
229 true
230 }
231
232 // turn a branch with all successors identical to a goto
233 fn simplify_branch(&mut self, terminator: &mut Terminator<'tcx>) -> bool {
234 match terminator.kind {
235 TerminatorKind::SwitchInt { .. } => {}
236 _ => return false,
237 };
238
239 let first_succ = {
240 if let Some(&first_succ) = terminator.successors().next() {
241 if terminator.successors().all(|s| *s == first_succ) {
242 let count = terminator.successors().count();
243 self.pred_count[first_succ] -= (count - 1) as u32;
244 first_succ
245 } else {
246 return false;
247 }
248 } else {
249 return false;
250 }
251 };
252
253 debug!("simplifying branch {:?}", terminator);
254 terminator.kind = TerminatorKind::Goto { target: first_succ };
255 true
256 }
257
258 fn strip_nops(&mut self) {
259 for blk in self.basic_blocks.iter_mut() {
260 blk.statements.retain(|stmt| !matches!(stmt.kind, StatementKind::Nop))
261 }
262 }
263 }
264
265 pub fn remove_dead_blocks<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
266 let reachable = traversal::reachable_as_bitset(body);
267 let num_blocks = body.basic_blocks().len();
268 if num_blocks == reachable.count() {
269 return;
270 }
271
272 let basic_blocks = body.basic_blocks_mut();
273 let mut replacements: Vec<_> = (0..num_blocks).map(BasicBlock::new).collect();
274 let mut used_blocks = 0;
275 for alive_index in reachable.iter() {
276 let alive_index = alive_index.index();
277 replacements[alive_index] = BasicBlock::new(used_blocks);
278 if alive_index != used_blocks {
279 // Swap the next alive block data with the current available slot. Since
280 // alive_index is non-decreasing this is a valid operation.
281 basic_blocks.raw.swap(alive_index, used_blocks);
282 }
283 used_blocks += 1;
284 }
285
286 if tcx.sess.instrument_coverage() {
287 save_unreachable_coverage(basic_blocks, used_blocks);
288 }
289
290 basic_blocks.raw.truncate(used_blocks);
291
292 for block in basic_blocks {
293 for target in block.terminator_mut().successors_mut() {
294 *target = replacements[target.index()];
295 }
296 }
297 }
298
299 /// Some MIR transforms can determine at compile time that a sequences of
300 /// statements will never be executed, so they can be dropped from the MIR.
301 /// For example, an `if` or `else` block that is guaranteed to never be executed
302 /// because its condition can be evaluated at compile time, such as by const
303 /// evaluation: `if false { ... }`.
304 ///
305 /// Those statements are bypassed by redirecting paths in the CFG around the
306 /// `dead blocks`; but with `-C instrument-coverage`, the dead blocks usually
307 /// include `Coverage` statements representing the Rust source code regions to
308 /// be counted at runtime. Without these `Coverage` statements, the regions are
309 /// lost, and the Rust source code will show no coverage information.
310 ///
311 /// What we want to show in a coverage report is the dead code with coverage
312 /// counts of `0`. To do this, we need to save the code regions, by injecting
313 /// `Unreachable` coverage statements. These are non-executable statements whose
314 /// code regions are still recorded in the coverage map, representing regions
315 /// with `0` executions.
316 fn save_unreachable_coverage(
317 basic_blocks: &mut IndexVec<BasicBlock, BasicBlockData<'_>>,
318 first_dead_block: usize,
319 ) {
320 let has_live_counters = basic_blocks.raw[0..first_dead_block].iter().any(|live_block| {
321 live_block.statements.iter().any(|statement| {
322 if let StatementKind::Coverage(coverage) = &statement.kind {
323 matches!(coverage.kind, CoverageKind::Counter { .. })
324 } else {
325 false
326 }
327 })
328 });
329 if !has_live_counters {
330 // If there are no live `Counter` `Coverage` statements anymore, don't
331 // move dead coverage to the `START_BLOCK`. Just allow the dead
332 // `Coverage` statements to be dropped with the dead blocks.
333 //
334 // The `generator::StateTransform` MIR pass can create atypical
335 // conditions, where all live `Counter`s are dropped from the MIR.
336 //
337 // At least one Counter per function is required by LLVM (and necessary,
338 // to add the `function_hash` to the counter's call to the LLVM
339 // intrinsic `instrprof.increment()`).
340 return;
341 }
342
343 // Retain coverage info for dead blocks, so coverage reports will still
344 // report `0` executions for the uncovered code regions.
345 let mut dropped_coverage = Vec::new();
346 for dead_block in basic_blocks.raw[first_dead_block..].iter() {
347 for statement in dead_block.statements.iter() {
348 if let StatementKind::Coverage(coverage) = &statement.kind {
349 if let Some(code_region) = &coverage.code_region {
350 dropped_coverage.push((statement.source_info, code_region.clone()));
351 }
352 }
353 }
354 }
355
356 let start_block = &mut basic_blocks[START_BLOCK];
357 for (source_info, code_region) in dropped_coverage {
358 start_block.statements.push(Statement {
359 source_info,
360 kind: StatementKind::Coverage(Box::new(Coverage {
361 kind: CoverageKind::Unreachable,
362 code_region: Some(code_region),
363 })),
364 })
365 }
366 }
367
368 pub struct SimplifyLocals;
369
370 impl<'tcx> MirPass<'tcx> for SimplifyLocals {
371 fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
372 sess.mir_opt_level() > 0
373 }
374
375 fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
376 trace!("running SimplifyLocals on {:?}", body.source);
377 simplify_locals(body, tcx);
378 }
379 }
380
381 pub fn simplify_locals<'tcx>(body: &mut Body<'tcx>, tcx: TyCtxt<'tcx>) {
382 // First, we're going to get a count of *actual* uses for every `Local`.
383 let mut used_locals = UsedLocals::new(body);
384
385 // Next, we're going to remove any `Local` with zero actual uses. When we remove those
386 // `Locals`, we're also going to subtract any uses of other `Locals` from the `used_locals`
387 // count. For example, if we removed `_2 = discriminant(_1)`, then we'll subtract one from
388 // `use_counts[_1]`. That in turn might make `_1` unused, so we loop until we hit a
389 // fixedpoint where there are no more unused locals.
390 remove_unused_definitions(&mut used_locals, body);
391
392 // Finally, we'll actually do the work of shrinking `body.local_decls` and remapping the `Local`s.
393 let map = make_local_map(&mut body.local_decls, &used_locals);
394
395 // Only bother running the `LocalUpdater` if we actually found locals to remove.
396 if map.iter().any(Option::is_none) {
397 // Update references to all vars and tmps now
398 let mut updater = LocalUpdater { map, tcx };
399 updater.visit_body(body);
400
401 body.local_decls.shrink_to_fit();
402 }
403 }
404
405 /// Construct the mapping while swapping out unused stuff out from the `vec`.
406 fn make_local_map<V>(
407 local_decls: &mut IndexVec<Local, V>,
408 used_locals: &UsedLocals,
409 ) -> IndexVec<Local, Option<Local>> {
410 let mut map: IndexVec<Local, Option<Local>> = IndexVec::from_elem(None, &*local_decls);
411 let mut used = Local::new(0);
412
413 for alive_index in local_decls.indices() {
414 // `is_used` treats the `RETURN_PLACE` and arguments as used.
415 if !used_locals.is_used(alive_index) {
416 continue;
417 }
418
419 map[alive_index] = Some(used);
420 if alive_index != used {
421 local_decls.swap(alive_index, used);
422 }
423 used.increment_by(1);
424 }
425 local_decls.truncate(used.index());
426 map
427 }
428
429 /// Keeps track of used & unused locals.
430 struct UsedLocals {
431 increment: bool,
432 arg_count: u32,
433 use_count: IndexVec<Local, u32>,
434 }
435
436 impl UsedLocals {
437 /// Determines which locals are used & unused in the given body.
438 fn new(body: &Body<'_>) -> Self {
439 let mut this = Self {
440 increment: true,
441 arg_count: body.arg_count.try_into().unwrap(),
442 use_count: IndexVec::from_elem(0, &body.local_decls),
443 };
444 this.visit_body(body);
445 this
446 }
447
448 /// Checks if local is used.
449 ///
450 /// Return place and arguments are always considered used.
451 fn is_used(&self, local: Local) -> bool {
452 trace!("is_used({:?}): use_count: {:?}", local, self.use_count[local]);
453 local.as_u32() <= self.arg_count || self.use_count[local] != 0
454 }
455
456 /// Updates the use counts to reflect the removal of given statement.
457 fn statement_removed(&mut self, statement: &Statement<'_>) {
458 self.increment = false;
459
460 // The location of the statement is irrelevant.
461 let location = Location { block: START_BLOCK, statement_index: 0 };
462 self.visit_statement(statement, location);
463 }
464
465 /// Visits a left-hand side of an assignment.
466 fn visit_lhs(&mut self, place: &Place<'_>, location: Location) {
467 if place.is_indirect() {
468 // A use, not a definition.
469 self.visit_place(place, PlaceContext::MutatingUse(MutatingUseContext::Store), location);
470 } else {
471 // A definition. The base local itself is not visited, so this occurrence is not counted
472 // toward its use count. There might be other locals still, used in an indexing
473 // projection.
474 self.super_projection(
475 place.as_ref(),
476 PlaceContext::MutatingUse(MutatingUseContext::Projection),
477 location,
478 );
479 }
480 }
481 }
482
483 impl<'tcx> Visitor<'tcx> for UsedLocals {
484 fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) {
485 match statement.kind {
486 StatementKind::CopyNonOverlapping(..)
487 | StatementKind::Retag(..)
488 | StatementKind::Coverage(..)
489 | StatementKind::FakeRead(..)
490 | StatementKind::AscribeUserType(..) => {
491 self.super_statement(statement, location);
492 }
493
494 StatementKind::Nop => {}
495
496 StatementKind::StorageLive(_local) | StatementKind::StorageDead(_local) => {}
497
498 StatementKind::Assign(box (ref place, ref rvalue)) => {
499 self.visit_lhs(place, location);
500 self.visit_rvalue(rvalue, location);
501 }
502
503 StatementKind::SetDiscriminant { ref place, variant_index: _ } => {
504 self.visit_lhs(place, location);
505 }
506 }
507 }
508
509 fn visit_local(&mut self, local: &Local, _ctx: PlaceContext, _location: Location) {
510 if self.increment {
511 self.use_count[*local] += 1;
512 } else {
513 assert_ne!(self.use_count[*local], 0);
514 self.use_count[*local] -= 1;
515 }
516 }
517 }
518
519 /// Removes unused definitions. Updates the used locals to reflect the changes made.
520 fn remove_unused_definitions(used_locals: &mut UsedLocals, body: &mut Body<'_>) {
521 // The use counts are updated as we remove the statements. A local might become unused
522 // during the retain operation, leading to a temporary inconsistency (storage statements or
523 // definitions referencing the local might remain). For correctness it is crucial that this
524 // computation reaches a fixed point.
525
526 let mut modified = true;
527 while modified {
528 modified = false;
529
530 for data in body.basic_blocks_mut() {
531 // Remove unnecessary StorageLive and StorageDead annotations.
532 data.statements.retain(|statement| {
533 let keep = match &statement.kind {
534 StatementKind::StorageLive(local) | StatementKind::StorageDead(local) => {
535 used_locals.is_used(*local)
536 }
537 StatementKind::Assign(box (place, _)) => used_locals.is_used(place.local),
538
539 StatementKind::SetDiscriminant { ref place, .. } => {
540 used_locals.is_used(place.local)
541 }
542 _ => true,
543 };
544
545 if !keep {
546 trace!("removing statement {:?}", statement);
547 modified = true;
548 used_locals.statement_removed(statement);
549 }
550
551 keep
552 });
553 }
554 }
555 }
556
557 struct LocalUpdater<'tcx> {
558 map: IndexVec<Local, Option<Local>>,
559 tcx: TyCtxt<'tcx>,
560 }
561
562 impl<'tcx> MutVisitor<'tcx> for LocalUpdater<'tcx> {
563 fn tcx(&self) -> TyCtxt<'tcx> {
564 self.tcx
565 }
566
567 fn visit_local(&mut self, l: &mut Local, _: PlaceContext, _: Location) {
568 *l = self.map[*l].unwrap();
569 }
570 }