]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_mir_transform/src/simplify.rs
New upstream version 1.62.1+dfsg1
[rustc.git] / compiler / rustc_mir_transform / src / simplify.rs
1 //! A number of passes which remove various redundancies in the CFG.
2 //!
3 //! The `SimplifyCfg` pass gets rid of unnecessary blocks in the CFG, whereas the `SimplifyLocals`
4 //! gets rid of all the unnecessary local variable declarations.
5 //!
6 //! The `SimplifyLocals` pass is kinda expensive and therefore not very suitable to be run often.
7 //! Most of the passes should not care or be impacted in meaningful ways due to extra locals
8 //! either, so running the pass once, right before codegen, should suffice.
9 //!
10 //! On the other side of the spectrum, the `SimplifyCfg` pass is considerably cheap to run, thus
11 //! one should run it after every pass which may modify CFG in significant ways. This pass must
12 //! also be run before any analysis passes because it removes dead blocks, and some of these can be
13 //! ill-typed.
14 //!
15 //! The cause of this typing issue is typeck allowing most blocks whose end is not reachable have
16 //! an arbitrary return type, rather than having the usual () return type (as a note, typeck's
17 //! notion of reachability is in fact slightly weaker than MIR CFG reachability - see #31617). A
18 //! standard example of the situation is:
19 //!
20 //! ```rust
21 //! fn example() {
22 //! let _a: char = { return; };
23 //! }
24 //! ```
25 //!
26 //! Here the block (`{ return; }`) has the return type `char`, rather than `()`, but the MIR we
27 //! naively generate still contains the `_a = ()` write in the unreachable block "after" the
28 //! return.
29
30 use crate::MirPass;
31 use rustc_index::vec::{Idx, IndexVec};
32 use rustc_middle::mir::coverage::*;
33 use rustc_middle::mir::visit::{MutVisitor, MutatingUseContext, PlaceContext, Visitor};
34 use rustc_middle::mir::*;
35 use rustc_middle::ty::TyCtxt;
36 use smallvec::SmallVec;
37 use std::borrow::Cow;
38 use std::convert::TryInto;
39
40 pub struct SimplifyCfg {
41 label: String,
42 }
43
44 impl SimplifyCfg {
45 pub fn new(label: &str) -> Self {
46 SimplifyCfg { label: format!("SimplifyCfg-{}", label) }
47 }
48 }
49
50 pub fn simplify_cfg<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
51 CfgSimplifier::new(body).simplify();
52 remove_dead_blocks(tcx, body);
53
54 // FIXME: Should probably be moved into some kind of pass manager
55 body.basic_blocks_mut().raw.shrink_to_fit();
56 }
57
58 impl<'tcx> MirPass<'tcx> for SimplifyCfg {
59 fn name(&self) -> Cow<'_, str> {
60 Cow::Borrowed(&self.label)
61 }
62
63 fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
64 debug!("SimplifyCfg({:?}) - simplifying {:?}", self.label, body.source);
65 simplify_cfg(tcx, body);
66 }
67 }
68
69 pub struct CfgSimplifier<'a, 'tcx> {
70 basic_blocks: &'a mut IndexVec<BasicBlock, BasicBlockData<'tcx>>,
71 pred_count: IndexVec<BasicBlock, u32>,
72 }
73
74 impl<'a, 'tcx> CfgSimplifier<'a, 'tcx> {
75 pub fn new(body: &'a mut Body<'tcx>) -> Self {
76 let mut pred_count = IndexVec::from_elem(0u32, body.basic_blocks());
77
78 // we can't use mir.predecessors() here because that counts
79 // dead blocks, which we don't want to.
80 pred_count[START_BLOCK] = 1;
81
82 for (_, data) in traversal::preorder(body) {
83 if let Some(ref term) = data.terminator {
84 for &tgt in term.successors() {
85 pred_count[tgt] += 1;
86 }
87 }
88 }
89
90 let basic_blocks = body.basic_blocks_mut();
91
92 CfgSimplifier { basic_blocks, pred_count }
93 }
94
95 pub fn simplify(mut self) {
96 self.strip_nops();
97
98 // Vec of the blocks that should be merged. We store the indices here, instead of the
99 // statements itself to avoid moving the (relatively) large statements twice.
100 // We do not push the statements directly into the target block (`bb`) as that is slower
101 // due to additional reallocations
102 let mut merged_blocks = Vec::new();
103 loop {
104 let mut changed = false;
105
106 for bb in self.basic_blocks.indices() {
107 if self.pred_count[bb] == 0 {
108 continue;
109 }
110
111 debug!("simplifying {:?}", bb);
112
113 let mut terminator =
114 self.basic_blocks[bb].terminator.take().expect("invalid terminator state");
115
116 for successor in terminator.successors_mut() {
117 self.collapse_goto_chain(successor, &mut changed);
118 }
119
120 let mut inner_changed = true;
121 merged_blocks.clear();
122 while inner_changed {
123 inner_changed = false;
124 inner_changed |= self.simplify_branch(&mut terminator);
125 inner_changed |= self.merge_successor(&mut merged_blocks, &mut terminator);
126 changed |= inner_changed;
127 }
128
129 let statements_to_merge =
130 merged_blocks.iter().map(|&i| self.basic_blocks[i].statements.len()).sum();
131
132 if statements_to_merge > 0 {
133 let mut statements = std::mem::take(&mut self.basic_blocks[bb].statements);
134 statements.reserve(statements_to_merge);
135 for &from in &merged_blocks {
136 statements.append(&mut self.basic_blocks[from].statements);
137 }
138 self.basic_blocks[bb].statements = statements;
139 }
140
141 self.basic_blocks[bb].terminator = Some(terminator);
142 }
143
144 if !changed {
145 break;
146 }
147 }
148 }
149
150 /// This function will return `None` if
151 /// * the block has statements
152 /// * the block has a terminator other than `goto`
153 /// * the block has no terminator (meaning some other part of the current optimization stole it)
154 fn take_terminator_if_simple_goto(&mut self, bb: BasicBlock) -> Option<Terminator<'tcx>> {
155 match self.basic_blocks[bb] {
156 BasicBlockData {
157 ref statements,
158 terminator:
159 ref mut terminator @ Some(Terminator { kind: TerminatorKind::Goto { .. }, .. }),
160 ..
161 } if statements.is_empty() => terminator.take(),
162 // if `terminator` is None, this means we are in a loop. In that
163 // case, let all the loop collapse to its entry.
164 _ => None,
165 }
166 }
167
168 /// Collapse a goto chain starting from `start`
169 fn collapse_goto_chain(&mut self, start: &mut BasicBlock, changed: &mut bool) {
170 // Using `SmallVec` here, because in some logs on libcore oli-obk saw many single-element
171 // goto chains. We should probably benchmark different sizes.
172 let mut terminators: SmallVec<[_; 1]> = Default::default();
173 let mut current = *start;
174 while let Some(terminator) = self.take_terminator_if_simple_goto(current) {
175 let Terminator { kind: TerminatorKind::Goto { target }, .. } = terminator else {
176 unreachable!();
177 };
178 terminators.push((current, terminator));
179 current = target;
180 }
181 let last = current;
182 *start = last;
183 while let Some((current, mut terminator)) = terminators.pop() {
184 let Terminator { kind: TerminatorKind::Goto { ref mut target }, .. } = terminator else {
185 unreachable!();
186 };
187 *changed |= *target != last;
188 *target = last;
189 debug!("collapsing goto chain from {:?} to {:?}", current, target);
190
191 if self.pred_count[current] == 1 {
192 // This is the last reference to current, so the pred-count to
193 // to target is moved into the current block.
194 self.pred_count[current] = 0;
195 } else {
196 self.pred_count[*target] += 1;
197 self.pred_count[current] -= 1;
198 }
199 self.basic_blocks[current].terminator = Some(terminator);
200 }
201 }
202
203 // merge a block with 1 `goto` predecessor to its parent
204 fn merge_successor(
205 &mut self,
206 merged_blocks: &mut Vec<BasicBlock>,
207 terminator: &mut Terminator<'tcx>,
208 ) -> bool {
209 let target = match terminator.kind {
210 TerminatorKind::Goto { target } if self.pred_count[target] == 1 => target,
211 _ => return false,
212 };
213
214 debug!("merging block {:?} into {:?}", target, terminator);
215 *terminator = match self.basic_blocks[target].terminator.take() {
216 Some(terminator) => terminator,
217 None => {
218 // unreachable loop - this should not be possible, as we
219 // don't strand blocks, but handle it correctly.
220 return false;
221 }
222 };
223
224 merged_blocks.push(target);
225 self.pred_count[target] = 0;
226
227 true
228 }
229
230 // turn a branch with all successors identical to a goto
231 fn simplify_branch(&mut self, terminator: &mut Terminator<'tcx>) -> bool {
232 match terminator.kind {
233 TerminatorKind::SwitchInt { .. } => {}
234 _ => return false,
235 };
236
237 let first_succ = {
238 if let Some(&first_succ) = terminator.successors().next() {
239 if terminator.successors().all(|s| *s == first_succ) {
240 let count = terminator.successors().count();
241 self.pred_count[first_succ] -= (count - 1) as u32;
242 first_succ
243 } else {
244 return false;
245 }
246 } else {
247 return false;
248 }
249 };
250
251 debug!("simplifying branch {:?}", terminator);
252 terminator.kind = TerminatorKind::Goto { target: first_succ };
253 true
254 }
255
256 fn strip_nops(&mut self) {
257 for blk in self.basic_blocks.iter_mut() {
258 blk.statements.retain(|stmt| !matches!(stmt.kind, StatementKind::Nop))
259 }
260 }
261 }
262
263 pub fn remove_dead_blocks<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
264 let reachable = traversal::reachable_as_bitset(body);
265 let num_blocks = body.basic_blocks().len();
266 if num_blocks == reachable.count() {
267 return;
268 }
269
270 let basic_blocks = body.basic_blocks_mut();
271 let mut replacements: Vec<_> = (0..num_blocks).map(BasicBlock::new).collect();
272 let mut used_blocks = 0;
273 for alive_index in reachable.iter() {
274 let alive_index = alive_index.index();
275 replacements[alive_index] = BasicBlock::new(used_blocks);
276 if alive_index != used_blocks {
277 // Swap the next alive block data with the current available slot. Since
278 // alive_index is non-decreasing this is a valid operation.
279 basic_blocks.raw.swap(alive_index, used_blocks);
280 }
281 used_blocks += 1;
282 }
283
284 if tcx.sess.instrument_coverage() {
285 save_unreachable_coverage(basic_blocks, used_blocks);
286 }
287
288 basic_blocks.raw.truncate(used_blocks);
289
290 for block in basic_blocks {
291 for target in block.terminator_mut().successors_mut() {
292 *target = replacements[target.index()];
293 }
294 }
295 }
296
297 /// Some MIR transforms can determine at compile time that a sequences of
298 /// statements will never be executed, so they can be dropped from the MIR.
299 /// For example, an `if` or `else` block that is guaranteed to never be executed
300 /// because its condition can be evaluated at compile time, such as by const
301 /// evaluation: `if false { ... }`.
302 ///
303 /// Those statements are bypassed by redirecting paths in the CFG around the
304 /// `dead blocks`; but with `-C instrument-coverage`, the dead blocks usually
305 /// include `Coverage` statements representing the Rust source code regions to
306 /// be counted at runtime. Without these `Coverage` statements, the regions are
307 /// lost, and the Rust source code will show no coverage information.
308 ///
309 /// What we want to show in a coverage report is the dead code with coverage
310 /// counts of `0`. To do this, we need to save the code regions, by injecting
311 /// `Unreachable` coverage statements. These are non-executable statements whose
312 /// code regions are still recorded in the coverage map, representing regions
313 /// with `0` executions.
314 fn save_unreachable_coverage(
315 basic_blocks: &mut IndexVec<BasicBlock, BasicBlockData<'_>>,
316 first_dead_block: usize,
317 ) {
318 let has_live_counters = basic_blocks.raw[0..first_dead_block].iter().any(|live_block| {
319 live_block.statements.iter().any(|statement| {
320 if let StatementKind::Coverage(coverage) = &statement.kind {
321 matches!(coverage.kind, CoverageKind::Counter { .. })
322 } else {
323 false
324 }
325 })
326 });
327 if !has_live_counters {
328 // If there are no live `Counter` `Coverage` statements anymore, don't
329 // move dead coverage to the `START_BLOCK`. Just allow the dead
330 // `Coverage` statements to be dropped with the dead blocks.
331 //
332 // The `generator::StateTransform` MIR pass can create atypical
333 // conditions, where all live `Counter`s are dropped from the MIR.
334 //
335 // At least one Counter per function is required by LLVM (and necessary,
336 // to add the `function_hash` to the counter's call to the LLVM
337 // intrinsic `instrprof.increment()`).
338 return;
339 }
340
341 // Retain coverage info for dead blocks, so coverage reports will still
342 // report `0` executions for the uncovered code regions.
343 let mut dropped_coverage = Vec::new();
344 for dead_block in basic_blocks.raw[first_dead_block..].iter() {
345 for statement in dead_block.statements.iter() {
346 if let StatementKind::Coverage(coverage) = &statement.kind {
347 if let Some(code_region) = &coverage.code_region {
348 dropped_coverage.push((statement.source_info, code_region.clone()));
349 }
350 }
351 }
352 }
353
354 let start_block = &mut basic_blocks[START_BLOCK];
355 for (source_info, code_region) in dropped_coverage {
356 start_block.statements.push(Statement {
357 source_info,
358 kind: StatementKind::Coverage(Box::new(Coverage {
359 kind: CoverageKind::Unreachable,
360 code_region: Some(code_region),
361 })),
362 })
363 }
364 }
365
366 pub struct SimplifyLocals;
367
368 impl<'tcx> MirPass<'tcx> for SimplifyLocals {
369 fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
370 sess.mir_opt_level() > 0
371 }
372
373 fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
374 trace!("running SimplifyLocals on {:?}", body.source);
375 simplify_locals(body, tcx);
376 }
377 }
378
379 pub fn simplify_locals<'tcx>(body: &mut Body<'tcx>, tcx: TyCtxt<'tcx>) {
380 // First, we're going to get a count of *actual* uses for every `Local`.
381 let mut used_locals = UsedLocals::new(body);
382
383 // Next, we're going to remove any `Local` with zero actual uses. When we remove those
384 // `Locals`, we're also going to subtract any uses of other `Locals` from the `used_locals`
385 // count. For example, if we removed `_2 = discriminant(_1)`, then we'll subtract one from
386 // `use_counts[_1]`. That in turn might make `_1` unused, so we loop until we hit a
387 // fixedpoint where there are no more unused locals.
388 remove_unused_definitions(&mut used_locals, body);
389
390 // Finally, we'll actually do the work of shrinking `body.local_decls` and remapping the `Local`s.
391 let map = make_local_map(&mut body.local_decls, &used_locals);
392
393 // Only bother running the `LocalUpdater` if we actually found locals to remove.
394 if map.iter().any(Option::is_none) {
395 // Update references to all vars and tmps now
396 let mut updater = LocalUpdater { map, tcx };
397 updater.visit_body(body);
398
399 body.local_decls.shrink_to_fit();
400 }
401 }
402
403 /// Construct the mapping while swapping out unused stuff out from the `vec`.
404 fn make_local_map<V>(
405 local_decls: &mut IndexVec<Local, V>,
406 used_locals: &UsedLocals,
407 ) -> IndexVec<Local, Option<Local>> {
408 let mut map: IndexVec<Local, Option<Local>> = IndexVec::from_elem(None, &*local_decls);
409 let mut used = Local::new(0);
410
411 for alive_index in local_decls.indices() {
412 // `is_used` treats the `RETURN_PLACE` and arguments as used.
413 if !used_locals.is_used(alive_index) {
414 continue;
415 }
416
417 map[alive_index] = Some(used);
418 if alive_index != used {
419 local_decls.swap(alive_index, used);
420 }
421 used.increment_by(1);
422 }
423 local_decls.truncate(used.index());
424 map
425 }
426
427 /// Keeps track of used & unused locals.
428 struct UsedLocals {
429 increment: bool,
430 arg_count: u32,
431 use_count: IndexVec<Local, u32>,
432 }
433
434 impl UsedLocals {
435 /// Determines which locals are used & unused in the given body.
436 fn new(body: &Body<'_>) -> Self {
437 let mut this = Self {
438 increment: true,
439 arg_count: body.arg_count.try_into().unwrap(),
440 use_count: IndexVec::from_elem(0, &body.local_decls),
441 };
442 this.visit_body(body);
443 this
444 }
445
446 /// Checks if local is used.
447 ///
448 /// Return place and arguments are always considered used.
449 fn is_used(&self, local: Local) -> bool {
450 trace!("is_used({:?}): use_count: {:?}", local, self.use_count[local]);
451 local.as_u32() <= self.arg_count || self.use_count[local] != 0
452 }
453
454 /// Updates the use counts to reflect the removal of given statement.
455 fn statement_removed(&mut self, statement: &Statement<'_>) {
456 self.increment = false;
457
458 // The location of the statement is irrelevant.
459 let location = Location { block: START_BLOCK, statement_index: 0 };
460 self.visit_statement(statement, location);
461 }
462
463 /// Visits a left-hand side of an assignment.
464 fn visit_lhs(&mut self, place: &Place<'_>, location: Location) {
465 if place.is_indirect() {
466 // A use, not a definition.
467 self.visit_place(place, PlaceContext::MutatingUse(MutatingUseContext::Store), location);
468 } else {
469 // A definition. The base local itself is not visited, so this occurrence is not counted
470 // toward its use count. There might be other locals still, used in an indexing
471 // projection.
472 self.super_projection(
473 place.as_ref(),
474 PlaceContext::MutatingUse(MutatingUseContext::Projection),
475 location,
476 );
477 }
478 }
479 }
480
481 impl<'tcx> Visitor<'tcx> for UsedLocals {
482 fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) {
483 match statement.kind {
484 StatementKind::CopyNonOverlapping(..)
485 | StatementKind::Retag(..)
486 | StatementKind::Coverage(..)
487 | StatementKind::FakeRead(..)
488 | StatementKind::AscribeUserType(..) => {
489 self.super_statement(statement, location);
490 }
491
492 StatementKind::Nop => {}
493
494 StatementKind::StorageLive(_local) | StatementKind::StorageDead(_local) => {}
495
496 StatementKind::Assign(box (ref place, ref rvalue)) => {
497 self.visit_lhs(place, location);
498 self.visit_rvalue(rvalue, location);
499 }
500
501 StatementKind::SetDiscriminant { ref place, variant_index: _ }
502 | StatementKind::Deinit(ref place) => {
503 self.visit_lhs(place, location);
504 }
505 }
506 }
507
508 fn visit_local(&mut self, local: &Local, _ctx: PlaceContext, _location: Location) {
509 if self.increment {
510 self.use_count[*local] += 1;
511 } else {
512 assert_ne!(self.use_count[*local], 0);
513 self.use_count[*local] -= 1;
514 }
515 }
516 }
517
518 /// Removes unused definitions. Updates the used locals to reflect the changes made.
519 fn remove_unused_definitions(used_locals: &mut UsedLocals, body: &mut Body<'_>) {
520 // The use counts are updated as we remove the statements. A local might become unused
521 // during the retain operation, leading to a temporary inconsistency (storage statements or
522 // definitions referencing the local might remain). For correctness it is crucial that this
523 // computation reaches a fixed point.
524
525 let mut modified = true;
526 while modified {
527 modified = false;
528
529 for data in body.basic_blocks_mut() {
530 // Remove unnecessary StorageLive and StorageDead annotations.
531 data.statements.retain(|statement| {
532 let keep = match &statement.kind {
533 StatementKind::StorageLive(local) | StatementKind::StorageDead(local) => {
534 used_locals.is_used(*local)
535 }
536 StatementKind::Assign(box (place, _)) => used_locals.is_used(place.local),
537
538 StatementKind::SetDiscriminant { ref place, .. }
539 | StatementKind::Deinit(ref place) => used_locals.is_used(place.local),
540 _ => true,
541 };
542
543 if !keep {
544 trace!("removing statement {:?}", statement);
545 modified = true;
546 used_locals.statement_removed(statement);
547 }
548
549 keep
550 });
551 }
552 }
553 }
554
555 struct LocalUpdater<'tcx> {
556 map: IndexVec<Local, Option<Local>>,
557 tcx: TyCtxt<'tcx>,
558 }
559
560 impl<'tcx> MutVisitor<'tcx> for LocalUpdater<'tcx> {
561 fn tcx(&self) -> TyCtxt<'tcx> {
562 self.tcx
563 }
564
565 fn visit_local(&mut self, l: &mut Local, _: PlaceContext, _: Location) {
566 *l = self.map[*l].unwrap();
567 }
568 }