]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_parse/src/parser/expr.rs
New upstream version 1.61.0+dfsg1
[rustc.git] / compiler / rustc_parse / src / parser / expr.rs
1 use super::diagnostics::SnapshotParser;
2 use super::pat::{CommaRecoveryMode, RecoverColon, RecoverComma, PARAM_EXPECTED};
3 use super::ty::{AllowPlus, RecoverQPath, RecoverReturnSign};
4 use super::{
5 AttrWrapper, BlockMode, ClosureSpans, ForceCollect, Parser, PathStyle, Restrictions,
6 SemiColonMode, SeqSep, TokenExpectType, TokenType, TrailingToken,
7 };
8 use crate::maybe_recover_from_interpolated_ty_qpath;
9
10 use ast::token::DelimToken;
11 use rustc_ast::ptr::P;
12 use rustc_ast::token::{self, Token, TokenKind};
13 use rustc_ast::tokenstream::Spacing;
14 use rustc_ast::util::classify;
15 use rustc_ast::util::literal::LitError;
16 use rustc_ast::util::parser::{prec_let_scrutinee_needs_par, AssocOp, Fixity};
17 use rustc_ast::{self as ast, AttrStyle, AttrVec, CaptureBy, ExprField, Lit, UnOp, DUMMY_NODE_ID};
18 use rustc_ast::{AnonConst, BinOp, BinOpKind, FnDecl, FnRetTy, MacCall, Param, Ty, TyKind};
19 use rustc_ast::{Arm, Async, BlockCheckMode, Expr, ExprKind, Label, Movability, RangeLimits};
20 use rustc_ast_pretty::pprust;
21 use rustc_errors::{Applicability, Diagnostic, DiagnosticBuilder, ErrorGuaranteed, PResult};
22 use rustc_session::lint::builtin::BREAK_WITH_LABEL_AND_LOOP;
23 use rustc_session::lint::BuiltinLintDiagnostics;
24 use rustc_span::source_map::{self, Span, Spanned};
25 use rustc_span::symbol::{kw, sym, Ident, Symbol};
26 use rustc_span::{BytePos, Pos};
27 use std::mem;
28
29 /// Possibly accepts an `token::Interpolated` expression (a pre-parsed expression
30 /// dropped into the token stream, which happens while parsing the result of
31 /// macro expansion). Placement of these is not as complex as I feared it would
32 /// be. The important thing is to make sure that lookahead doesn't balk at
33 /// `token::Interpolated` tokens.
34 macro_rules! maybe_whole_expr {
35 ($p:expr) => {
36 if let token::Interpolated(nt) = &$p.token.kind {
37 match &**nt {
38 token::NtExpr(e) | token::NtLiteral(e) => {
39 let e = e.clone();
40 $p.bump();
41 return Ok(e);
42 }
43 token::NtPath(path) => {
44 let path = path.clone();
45 $p.bump();
46 return Ok($p.mk_expr(
47 $p.prev_token.span,
48 ExprKind::Path(None, path),
49 AttrVec::new(),
50 ));
51 }
52 token::NtBlock(block) => {
53 let block = block.clone();
54 $p.bump();
55 return Ok($p.mk_expr(
56 $p.prev_token.span,
57 ExprKind::Block(block, None),
58 AttrVec::new(),
59 ));
60 }
61 _ => {}
62 };
63 }
64 };
65 }
66
67 #[derive(Debug)]
68 pub(super) enum LhsExpr {
69 NotYetParsed,
70 AttributesParsed(AttrWrapper),
71 AlreadyParsed(P<Expr>),
72 }
73
74 impl From<Option<AttrWrapper>> for LhsExpr {
75 /// Converts `Some(attrs)` into `LhsExpr::AttributesParsed(attrs)`
76 /// and `None` into `LhsExpr::NotYetParsed`.
77 ///
78 /// This conversion does not allocate.
79 fn from(o: Option<AttrWrapper>) -> Self {
80 if let Some(attrs) = o { LhsExpr::AttributesParsed(attrs) } else { LhsExpr::NotYetParsed }
81 }
82 }
83
84 impl From<P<Expr>> for LhsExpr {
85 /// Converts the `expr: P<Expr>` into `LhsExpr::AlreadyParsed(expr)`.
86 ///
87 /// This conversion does not allocate.
88 fn from(expr: P<Expr>) -> Self {
89 LhsExpr::AlreadyParsed(expr)
90 }
91 }
92
93 impl<'a> Parser<'a> {
94 /// Parses an expression.
95 #[inline]
96 pub fn parse_expr(&mut self) -> PResult<'a, P<Expr>> {
97 self.current_closure.take();
98
99 self.parse_expr_res(Restrictions::empty(), None)
100 }
101
102 /// Parses an expression, forcing tokens to be collected
103 pub fn parse_expr_force_collect(&mut self) -> PResult<'a, P<Expr>> {
104 self.collect_tokens_no_attrs(|this| this.parse_expr())
105 }
106
107 pub fn parse_anon_const_expr(&mut self) -> PResult<'a, AnonConst> {
108 self.parse_expr().map(|value| AnonConst { id: DUMMY_NODE_ID, value })
109 }
110
111 fn parse_expr_catch_underscore(&mut self) -> PResult<'a, P<Expr>> {
112 match self.parse_expr() {
113 Ok(expr) => Ok(expr),
114 Err(mut err) => match self.token.ident() {
115 Some((Ident { name: kw::Underscore, .. }, false))
116 if self.look_ahead(1, |t| t == &token::Comma) =>
117 {
118 // Special-case handling of `foo(_, _, _)`
119 err.emit();
120 self.bump();
121 Ok(self.mk_expr(self.prev_token.span, ExprKind::Err, AttrVec::new()))
122 }
123 _ => Err(err),
124 },
125 }
126 }
127
128 /// Parses a sequence of expressions delimited by parentheses.
129 fn parse_paren_expr_seq(&mut self) -> PResult<'a, Vec<P<Expr>>> {
130 self.parse_paren_comma_seq(|p| p.parse_expr_catch_underscore()).map(|(r, _)| r)
131 }
132
133 /// Parses an expression, subject to the given restrictions.
134 #[inline]
135 pub(super) fn parse_expr_res(
136 &mut self,
137 r: Restrictions,
138 already_parsed_attrs: Option<AttrWrapper>,
139 ) -> PResult<'a, P<Expr>> {
140 self.with_res(r, |this| this.parse_assoc_expr(already_parsed_attrs))
141 }
142
143 /// Parses an associative expression.
144 ///
145 /// This parses an expression accounting for associativity and precedence of the operators in
146 /// the expression.
147 #[inline]
148 fn parse_assoc_expr(
149 &mut self,
150 already_parsed_attrs: Option<AttrWrapper>,
151 ) -> PResult<'a, P<Expr>> {
152 self.parse_assoc_expr_with(0, already_parsed_attrs.into())
153 }
154
155 /// Parses an associative expression with operators of at least `min_prec` precedence.
156 pub(super) fn parse_assoc_expr_with(
157 &mut self,
158 min_prec: usize,
159 lhs: LhsExpr,
160 ) -> PResult<'a, P<Expr>> {
161 let mut lhs = if let LhsExpr::AlreadyParsed(expr) = lhs {
162 expr
163 } else {
164 let attrs = match lhs {
165 LhsExpr::AttributesParsed(attrs) => Some(attrs),
166 _ => None,
167 };
168 if [token::DotDot, token::DotDotDot, token::DotDotEq].contains(&self.token.kind) {
169 return self.parse_prefix_range_expr(attrs);
170 } else {
171 self.parse_prefix_expr(attrs)?
172 }
173 };
174 let last_type_ascription_set = self.last_type_ascription.is_some();
175
176 if !self.should_continue_as_assoc_expr(&lhs) {
177 self.last_type_ascription = None;
178 return Ok(lhs);
179 }
180
181 self.expected_tokens.push(TokenType::Operator);
182 while let Some(op) = self.check_assoc_op() {
183 // Adjust the span for interpolated LHS to point to the `$lhs` token
184 // and not to what it refers to.
185 let lhs_span = match self.prev_token.kind {
186 TokenKind::Interpolated(..) => self.prev_token.span,
187 _ => lhs.span,
188 };
189
190 let cur_op_span = self.token.span;
191 let restrictions = if op.node.is_assign_like() {
192 self.restrictions & Restrictions::NO_STRUCT_LITERAL
193 } else {
194 self.restrictions
195 };
196 let prec = op.node.precedence();
197 if prec < min_prec {
198 break;
199 }
200 // Check for deprecated `...` syntax
201 if self.token == token::DotDotDot && op.node == AssocOp::DotDotEq {
202 self.err_dotdotdot_syntax(self.token.span);
203 }
204
205 if self.token == token::LArrow {
206 self.err_larrow_operator(self.token.span);
207 }
208
209 self.bump();
210 if op.node.is_comparison() {
211 if let Some(expr) = self.check_no_chained_comparison(&lhs, &op)? {
212 return Ok(expr);
213 }
214 }
215
216 // Look for JS' `===` and `!==` and recover
217 if (op.node == AssocOp::Equal || op.node == AssocOp::NotEqual)
218 && self.token.kind == token::Eq
219 && self.prev_token.span.hi() == self.token.span.lo()
220 {
221 let sp = op.span.to(self.token.span);
222 let sugg = match op.node {
223 AssocOp::Equal => "==",
224 AssocOp::NotEqual => "!=",
225 _ => unreachable!(),
226 };
227 self.struct_span_err(sp, &format!("invalid comparison operator `{sugg}=`"))
228 .span_suggestion_short(
229 sp,
230 &format!("`{s}=` is not a valid comparison operator, use `{s}`", s = sugg),
231 sugg.to_string(),
232 Applicability::MachineApplicable,
233 )
234 .emit();
235 self.bump();
236 }
237
238 // Look for PHP's `<>` and recover
239 if op.node == AssocOp::Less
240 && self.token.kind == token::Gt
241 && self.prev_token.span.hi() == self.token.span.lo()
242 {
243 let sp = op.span.to(self.token.span);
244 self.struct_span_err(sp, "invalid comparison operator `<>`")
245 .span_suggestion_short(
246 sp,
247 "`<>` is not a valid comparison operator, use `!=`",
248 "!=".to_string(),
249 Applicability::MachineApplicable,
250 )
251 .emit();
252 self.bump();
253 }
254
255 // Look for C++'s `<=>` and recover
256 if op.node == AssocOp::LessEqual
257 && self.token.kind == token::Gt
258 && self.prev_token.span.hi() == self.token.span.lo()
259 {
260 let sp = op.span.to(self.token.span);
261 self.struct_span_err(sp, "invalid comparison operator `<=>`")
262 .span_label(
263 sp,
264 "`<=>` is not a valid comparison operator, use `std::cmp::Ordering`",
265 )
266 .emit();
267 self.bump();
268 }
269
270 if self.prev_token == token::BinOp(token::Plus)
271 && self.token == token::BinOp(token::Plus)
272 && self.prev_token.span.between(self.token.span).is_empty()
273 {
274 let op_span = self.prev_token.span.to(self.token.span);
275 // Eat the second `+`
276 self.bump();
277 lhs = self.recover_from_postfix_increment(lhs, op_span)?;
278 continue;
279 }
280
281 let op = op.node;
282 // Special cases:
283 if op == AssocOp::As {
284 lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Cast)?;
285 continue;
286 } else if op == AssocOp::Colon {
287 lhs = self.parse_assoc_op_ascribe(lhs, lhs_span)?;
288 continue;
289 } else if op == AssocOp::DotDot || op == AssocOp::DotDotEq {
290 // If we didn't have to handle `x..`/`x..=`, it would be pretty easy to
291 // generalise it to the Fixity::None code.
292 lhs = self.parse_range_expr(prec, lhs, op, cur_op_span)?;
293 break;
294 }
295
296 let fixity = op.fixity();
297 let prec_adjustment = match fixity {
298 Fixity::Right => 0,
299 Fixity::Left => 1,
300 // We currently have no non-associative operators that are not handled above by
301 // the special cases. The code is here only for future convenience.
302 Fixity::None => 1,
303 };
304 let rhs = self.with_res(restrictions - Restrictions::STMT_EXPR, |this| {
305 this.parse_assoc_expr_with(prec + prec_adjustment, LhsExpr::NotYetParsed)
306 })?;
307
308 let span = self.mk_expr_sp(&lhs, lhs_span, rhs.span);
309 lhs = match op {
310 AssocOp::Add
311 | AssocOp::Subtract
312 | AssocOp::Multiply
313 | AssocOp::Divide
314 | AssocOp::Modulus
315 | AssocOp::LAnd
316 | AssocOp::LOr
317 | AssocOp::BitXor
318 | AssocOp::BitAnd
319 | AssocOp::BitOr
320 | AssocOp::ShiftLeft
321 | AssocOp::ShiftRight
322 | AssocOp::Equal
323 | AssocOp::Less
324 | AssocOp::LessEqual
325 | AssocOp::NotEqual
326 | AssocOp::Greater
327 | AssocOp::GreaterEqual => {
328 let ast_op = op.to_ast_binop().unwrap();
329 let binary = self.mk_binary(source_map::respan(cur_op_span, ast_op), lhs, rhs);
330 self.mk_expr(span, binary, AttrVec::new())
331 }
332 AssocOp::Assign => {
333 self.mk_expr(span, ExprKind::Assign(lhs, rhs, cur_op_span), AttrVec::new())
334 }
335 AssocOp::AssignOp(k) => {
336 let aop = match k {
337 token::Plus => BinOpKind::Add,
338 token::Minus => BinOpKind::Sub,
339 token::Star => BinOpKind::Mul,
340 token::Slash => BinOpKind::Div,
341 token::Percent => BinOpKind::Rem,
342 token::Caret => BinOpKind::BitXor,
343 token::And => BinOpKind::BitAnd,
344 token::Or => BinOpKind::BitOr,
345 token::Shl => BinOpKind::Shl,
346 token::Shr => BinOpKind::Shr,
347 };
348 let aopexpr = self.mk_assign_op(source_map::respan(cur_op_span, aop), lhs, rhs);
349 self.mk_expr(span, aopexpr, AttrVec::new())
350 }
351 AssocOp::As | AssocOp::Colon | AssocOp::DotDot | AssocOp::DotDotEq => {
352 self.span_bug(span, "AssocOp should have been handled by special case")
353 }
354 };
355
356 if let Fixity::None = fixity {
357 break;
358 }
359 }
360 if last_type_ascription_set {
361 self.last_type_ascription = None;
362 }
363 Ok(lhs)
364 }
365
366 fn should_continue_as_assoc_expr(&mut self, lhs: &Expr) -> bool {
367 match (self.expr_is_complete(lhs), AssocOp::from_token(&self.token)) {
368 // Semi-statement forms are odd:
369 // See https://github.com/rust-lang/rust/issues/29071
370 (true, None) => false,
371 (false, _) => true, // Continue parsing the expression.
372 // An exhaustive check is done in the following block, but these are checked first
373 // because they *are* ambiguous but also reasonable looking incorrect syntax, so we
374 // want to keep their span info to improve diagnostics in these cases in a later stage.
375 (true, Some(AssocOp::Multiply)) | // `{ 42 } *foo = bar;` or `{ 42 } * 3`
376 (true, Some(AssocOp::Subtract)) | // `{ 42 } -5`
377 (true, Some(AssocOp::Add)) // `{ 42 } + 42
378 // If the next token is a keyword, then the tokens above *are* unambiguously incorrect:
379 // `if x { a } else { b } && if y { c } else { d }`
380 if !self.look_ahead(1, |t| t.is_used_keyword()) => {
381 // These cases are ambiguous and can't be identified in the parser alone.
382 let sp = self.sess.source_map().start_point(self.token.span);
383 self.sess.ambiguous_block_expr_parse.borrow_mut().insert(sp, lhs.span);
384 false
385 }
386 (true, Some(AssocOp::LAnd)) |
387 (true, Some(AssocOp::LOr)) |
388 (true, Some(AssocOp::BitOr)) => {
389 // `{ 42 } &&x` (#61475) or `{ 42 } && if x { 1 } else { 0 }`. Separated from the
390 // above due to #74233.
391 // These cases are ambiguous and can't be identified in the parser alone.
392 //
393 // Bitwise AND is left out because guessing intent is hard. We can make
394 // suggestions based on the assumption that double-refs are rarely intentional,
395 // and closures are distinct enough that they don't get mixed up with their
396 // return value.
397 let sp = self.sess.source_map().start_point(self.token.span);
398 self.sess.ambiguous_block_expr_parse.borrow_mut().insert(sp, lhs.span);
399 false
400 }
401 (true, Some(ref op)) if !op.can_continue_expr_unambiguously() => false,
402 (true, Some(_)) => {
403 self.error_found_expr_would_be_stmt(lhs);
404 true
405 }
406 }
407 }
408
409 /// We've found an expression that would be parsed as a statement,
410 /// but the next token implies this should be parsed as an expression.
411 /// For example: `if let Some(x) = x { x } else { 0 } / 2`.
412 fn error_found_expr_would_be_stmt(&self, lhs: &Expr) {
413 let mut err = self.struct_span_err(
414 self.token.span,
415 &format!("expected expression, found `{}`", pprust::token_to_string(&self.token),),
416 );
417 err.span_label(self.token.span, "expected expression");
418 self.sess.expr_parentheses_needed(&mut err, lhs.span);
419 err.emit();
420 }
421
422 /// Possibly translate the current token to an associative operator.
423 /// The method does not advance the current token.
424 ///
425 /// Also performs recovery for `and` / `or` which are mistaken for `&&` and `||` respectively.
426 fn check_assoc_op(&self) -> Option<Spanned<AssocOp>> {
427 let (op, span) = match (AssocOp::from_token(&self.token), self.token.ident()) {
428 // When parsing const expressions, stop parsing when encountering `>`.
429 (
430 Some(
431 AssocOp::ShiftRight
432 | AssocOp::Greater
433 | AssocOp::GreaterEqual
434 | AssocOp::AssignOp(token::BinOpToken::Shr),
435 ),
436 _,
437 ) if self.restrictions.contains(Restrictions::CONST_EXPR) => {
438 return None;
439 }
440 (Some(op), _) => (op, self.token.span),
441 (None, Some((Ident { name: sym::and, span }, false))) => {
442 self.error_bad_logical_op("and", "&&", "conjunction");
443 (AssocOp::LAnd, span)
444 }
445 (None, Some((Ident { name: sym::or, span }, false))) => {
446 self.error_bad_logical_op("or", "||", "disjunction");
447 (AssocOp::LOr, span)
448 }
449 _ => return None,
450 };
451 Some(source_map::respan(span, op))
452 }
453
454 /// Error on `and` and `or` suggesting `&&` and `||` respectively.
455 fn error_bad_logical_op(&self, bad: &str, good: &str, english: &str) {
456 self.struct_span_err(self.token.span, &format!("`{bad}` is not a logical operator"))
457 .span_suggestion_short(
458 self.token.span,
459 &format!("use `{good}` to perform logical {english}"),
460 good.to_string(),
461 Applicability::MachineApplicable,
462 )
463 .note("unlike in e.g., python and PHP, `&&` and `||` are used for logical operators")
464 .emit();
465 }
466
467 /// Checks if this expression is a successfully parsed statement.
468 fn expr_is_complete(&self, e: &Expr) -> bool {
469 self.restrictions.contains(Restrictions::STMT_EXPR)
470 && !classify::expr_requires_semi_to_be_stmt(e)
471 }
472
473 /// Parses `x..y`, `x..=y`, and `x..`/`x..=`.
474 /// The other two variants are handled in `parse_prefix_range_expr` below.
475 fn parse_range_expr(
476 &mut self,
477 prec: usize,
478 lhs: P<Expr>,
479 op: AssocOp,
480 cur_op_span: Span,
481 ) -> PResult<'a, P<Expr>> {
482 let rhs = if self.is_at_start_of_range_notation_rhs() {
483 Some(self.parse_assoc_expr_with(prec + 1, LhsExpr::NotYetParsed)?)
484 } else {
485 None
486 };
487 let rhs_span = rhs.as_ref().map_or(cur_op_span, |x| x.span);
488 let span = self.mk_expr_sp(&lhs, lhs.span, rhs_span);
489 let limits =
490 if op == AssocOp::DotDot { RangeLimits::HalfOpen } else { RangeLimits::Closed };
491 let range = self.mk_range(Some(lhs), rhs, limits);
492 Ok(self.mk_expr(span, range, AttrVec::new()))
493 }
494
495 fn is_at_start_of_range_notation_rhs(&self) -> bool {
496 if self.token.can_begin_expr() {
497 // Parse `for i in 1.. { }` as infinite loop, not as `for i in (1..{})`.
498 if self.token == token::OpenDelim(token::Brace) {
499 return !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
500 }
501 true
502 } else {
503 false
504 }
505 }
506
507 /// Parses prefix-forms of range notation: `..expr`, `..`, `..=expr`.
508 fn parse_prefix_range_expr(&mut self, attrs: Option<AttrWrapper>) -> PResult<'a, P<Expr>> {
509 // Check for deprecated `...` syntax.
510 if self.token == token::DotDotDot {
511 self.err_dotdotdot_syntax(self.token.span);
512 }
513
514 debug_assert!(
515 [token::DotDot, token::DotDotDot, token::DotDotEq].contains(&self.token.kind),
516 "parse_prefix_range_expr: token {:?} is not DotDot/DotDotEq",
517 self.token
518 );
519
520 let limits = match self.token.kind {
521 token::DotDot => RangeLimits::HalfOpen,
522 _ => RangeLimits::Closed,
523 };
524 let op = AssocOp::from_token(&self.token);
525 // FIXME: `parse_prefix_range_expr` is called when the current
526 // token is `DotDot`, `DotDotDot`, or `DotDotEq`. If we haven't already
527 // parsed attributes, then trying to parse them here will always fail.
528 // We should figure out how we want attributes on range expressions to work.
529 let attrs = self.parse_or_use_outer_attributes(attrs)?;
530 self.collect_tokens_for_expr(attrs, |this, attrs| {
531 let lo = this.token.span;
532 this.bump();
533 let (span, opt_end) = if this.is_at_start_of_range_notation_rhs() {
534 // RHS must be parsed with more associativity than the dots.
535 this.parse_assoc_expr_with(op.unwrap().precedence() + 1, LhsExpr::NotYetParsed)
536 .map(|x| (lo.to(x.span), Some(x)))?
537 } else {
538 (lo, None)
539 };
540 let range = this.mk_range(None, opt_end, limits);
541 Ok(this.mk_expr(span, range, attrs.into()))
542 })
543 }
544
545 /// Parses a prefix-unary-operator expr.
546 fn parse_prefix_expr(&mut self, attrs: Option<AttrWrapper>) -> PResult<'a, P<Expr>> {
547 let attrs = self.parse_or_use_outer_attributes(attrs)?;
548 let lo = self.token.span;
549
550 macro_rules! make_it {
551 ($this:ident, $attrs:expr, |this, _| $body:expr) => {
552 $this.collect_tokens_for_expr($attrs, |$this, attrs| {
553 let (hi, ex) = $body?;
554 Ok($this.mk_expr(lo.to(hi), ex, attrs.into()))
555 })
556 };
557 }
558
559 let this = self;
560
561 // Note: when adding new unary operators, don't forget to adjust TokenKind::can_begin_expr()
562 match this.token.uninterpolate().kind {
563 token::Not => make_it!(this, attrs, |this, _| this.parse_unary_expr(lo, UnOp::Not)), // `!expr`
564 token::Tilde => make_it!(this, attrs, |this, _| this.recover_tilde_expr(lo)), // `~expr`
565 token::BinOp(token::Minus) => {
566 make_it!(this, attrs, |this, _| this.parse_unary_expr(lo, UnOp::Neg))
567 } // `-expr`
568 token::BinOp(token::Star) => {
569 make_it!(this, attrs, |this, _| this.parse_unary_expr(lo, UnOp::Deref))
570 } // `*expr`
571 token::BinOp(token::And) | token::AndAnd => {
572 make_it!(this, attrs, |this, _| this.parse_borrow_expr(lo))
573 }
574 token::BinOp(token::Plus) if this.look_ahead(1, |tok| tok.is_numeric_lit()) => {
575 let mut err = this.struct_span_err(lo, "leading `+` is not supported");
576 err.span_label(lo, "unexpected `+`");
577
578 // a block on the LHS might have been intended to be an expression instead
579 if let Some(sp) = this.sess.ambiguous_block_expr_parse.borrow().get(&lo) {
580 this.sess.expr_parentheses_needed(&mut err, *sp);
581 } else {
582 err.span_suggestion_verbose(
583 lo,
584 "try removing the `+`",
585 "".to_string(),
586 Applicability::MachineApplicable,
587 );
588 }
589 err.emit();
590
591 this.bump();
592 this.parse_prefix_expr(None)
593 } // `+expr`
594 // Recover from `++x`:
595 token::BinOp(token::Plus)
596 if this.look_ahead(1, |t| *t == token::BinOp(token::Plus)) =>
597 {
598 let prev_is_semi = this.prev_token == token::Semi;
599 let pre_span = this.token.span.to(this.look_ahead(1, |t| t.span));
600 // Eat both `+`s.
601 this.bump();
602 this.bump();
603
604 let operand_expr = this.parse_dot_or_call_expr(Default::default())?;
605 this.recover_from_prefix_increment(operand_expr, pre_span, prev_is_semi)
606 }
607 token::Ident(..) if this.token.is_keyword(kw::Box) => {
608 make_it!(this, attrs, |this, _| this.parse_box_expr(lo))
609 }
610 token::Ident(..) if this.is_mistaken_not_ident_negation() => {
611 make_it!(this, attrs, |this, _| this.recover_not_expr(lo))
612 }
613 _ => return this.parse_dot_or_call_expr(Some(attrs)),
614 }
615 }
616
617 fn parse_prefix_expr_common(&mut self, lo: Span) -> PResult<'a, (Span, P<Expr>)> {
618 self.bump();
619 let expr = self.parse_prefix_expr(None);
620 let (span, expr) = self.interpolated_or_expr_span(expr)?;
621 Ok((lo.to(span), expr))
622 }
623
624 fn parse_unary_expr(&mut self, lo: Span, op: UnOp) -> PResult<'a, (Span, ExprKind)> {
625 let (span, expr) = self.parse_prefix_expr_common(lo)?;
626 Ok((span, self.mk_unary(op, expr)))
627 }
628
629 // Recover on `!` suggesting for bitwise negation instead.
630 fn recover_tilde_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
631 self.struct_span_err(lo, "`~` cannot be used as a unary operator")
632 .span_suggestion_short(
633 lo,
634 "use `!` to perform bitwise not",
635 "!".to_owned(),
636 Applicability::MachineApplicable,
637 )
638 .emit();
639
640 self.parse_unary_expr(lo, UnOp::Not)
641 }
642
643 /// Parse `box expr`.
644 fn parse_box_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
645 let (span, expr) = self.parse_prefix_expr_common(lo)?;
646 self.sess.gated_spans.gate(sym::box_syntax, span);
647 Ok((span, ExprKind::Box(expr)))
648 }
649
650 fn is_mistaken_not_ident_negation(&self) -> bool {
651 let token_cannot_continue_expr = |t: &Token| match t.uninterpolate().kind {
652 // These tokens can start an expression after `!`, but
653 // can't continue an expression after an ident
654 token::Ident(name, is_raw) => token::ident_can_begin_expr(name, t.span, is_raw),
655 token::Literal(..) | token::Pound => true,
656 _ => t.is_whole_expr(),
657 };
658 self.token.is_ident_named(sym::not) && self.look_ahead(1, token_cannot_continue_expr)
659 }
660
661 /// Recover on `not expr` in favor of `!expr`.
662 fn recover_not_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
663 // Emit the error...
664 let not_token = self.look_ahead(1, |t| t.clone());
665 self.struct_span_err(
666 not_token.span,
667 &format!("unexpected {} after identifier", super::token_descr(&not_token)),
668 )
669 .span_suggestion_short(
670 // Span the `not` plus trailing whitespace to avoid
671 // trailing whitespace after the `!` in our suggestion
672 self.sess.source_map().span_until_non_whitespace(lo.to(not_token.span)),
673 "use `!` to perform logical negation",
674 "!".to_owned(),
675 Applicability::MachineApplicable,
676 )
677 .emit();
678
679 // ...and recover!
680 self.parse_unary_expr(lo, UnOp::Not)
681 }
682
683 /// Returns the span of expr, if it was not interpolated or the span of the interpolated token.
684 fn interpolated_or_expr_span(
685 &self,
686 expr: PResult<'a, P<Expr>>,
687 ) -> PResult<'a, (Span, P<Expr>)> {
688 expr.map(|e| {
689 (
690 match self.prev_token.kind {
691 TokenKind::Interpolated(..) => self.prev_token.span,
692 _ => e.span,
693 },
694 e,
695 )
696 })
697 }
698
699 fn parse_assoc_op_cast(
700 &mut self,
701 lhs: P<Expr>,
702 lhs_span: Span,
703 expr_kind: fn(P<Expr>, P<Ty>) -> ExprKind,
704 ) -> PResult<'a, P<Expr>> {
705 let mk_expr = |this: &mut Self, lhs: P<Expr>, rhs: P<Ty>| {
706 this.mk_expr(
707 this.mk_expr_sp(&lhs, lhs_span, rhs.span),
708 expr_kind(lhs, rhs),
709 AttrVec::new(),
710 )
711 };
712
713 // Save the state of the parser before parsing type normally, in case there is a
714 // LessThan comparison after this cast.
715 let parser_snapshot_before_type = self.clone();
716 let cast_expr = match self.parse_as_cast_ty() {
717 Ok(rhs) => mk_expr(self, lhs, rhs),
718 Err(type_err) => {
719 // Rewind to before attempting to parse the type with generics, to recover
720 // from situations like `x as usize < y` in which we first tried to parse
721 // `usize < y` as a type with generic arguments.
722 let parser_snapshot_after_type = mem::replace(self, parser_snapshot_before_type);
723
724 // Check for typo of `'a: loop { break 'a }` with a missing `'`.
725 match (&lhs.kind, &self.token.kind) {
726 (
727 // `foo: `
728 ExprKind::Path(None, ast::Path { segments, .. }),
729 TokenKind::Ident(kw::For | kw::Loop | kw::While, false),
730 ) if segments.len() == 1 => {
731 let snapshot = self.create_snapshot_for_diagnostic();
732 let label = Label {
733 ident: Ident::from_str_and_span(
734 &format!("'{}", segments[0].ident),
735 segments[0].ident.span,
736 ),
737 };
738 match self.parse_labeled_expr(label, AttrVec::new(), false) {
739 Ok(expr) => {
740 type_err.cancel();
741 self.struct_span_err(label.ident.span, "malformed loop label")
742 .span_suggestion(
743 label.ident.span,
744 "use the correct loop label format",
745 label.ident.to_string(),
746 Applicability::MachineApplicable,
747 )
748 .emit();
749 return Ok(expr);
750 }
751 Err(err) => {
752 err.cancel();
753 self.restore_snapshot(snapshot);
754 }
755 }
756 }
757 _ => {}
758 }
759
760 match self.parse_path(PathStyle::Expr) {
761 Ok(path) => {
762 let (op_noun, op_verb) = match self.token.kind {
763 token::Lt => ("comparison", "comparing"),
764 token::BinOp(token::Shl) => ("shift", "shifting"),
765 _ => {
766 // We can end up here even without `<` being the next token, for
767 // example because `parse_ty_no_plus` returns `Err` on keywords,
768 // but `parse_path` returns `Ok` on them due to error recovery.
769 // Return original error and parser state.
770 *self = parser_snapshot_after_type;
771 return Err(type_err);
772 }
773 };
774
775 // Successfully parsed the type path leaving a `<` yet to parse.
776 type_err.cancel();
777
778 // Report non-fatal diagnostics, keep `x as usize` as an expression
779 // in AST and continue parsing.
780 let msg = format!(
781 "`<` is interpreted as a start of generic arguments for `{}`, not a {}",
782 pprust::path_to_string(&path),
783 op_noun,
784 );
785 let span_after_type = parser_snapshot_after_type.token.span;
786 let expr =
787 mk_expr(self, lhs, self.mk_ty(path.span, TyKind::Path(None, path)));
788
789 self.struct_span_err(self.token.span, &msg)
790 .span_label(
791 self.look_ahead(1, |t| t.span).to(span_after_type),
792 "interpreted as generic arguments",
793 )
794 .span_label(self.token.span, format!("not interpreted as {op_noun}"))
795 .multipart_suggestion(
796 &format!("try {op_verb} the cast value"),
797 vec![
798 (expr.span.shrink_to_lo(), "(".to_string()),
799 (expr.span.shrink_to_hi(), ")".to_string()),
800 ],
801 Applicability::MachineApplicable,
802 )
803 .emit();
804
805 expr
806 }
807 Err(path_err) => {
808 // Couldn't parse as a path, return original error and parser state.
809 path_err.cancel();
810 *self = parser_snapshot_after_type;
811 return Err(type_err);
812 }
813 }
814 }
815 };
816
817 self.parse_and_disallow_postfix_after_cast(cast_expr)
818 }
819
820 /// Parses a postfix operators such as `.`, `?`, or index (`[]`) after a cast,
821 /// then emits an error and returns the newly parsed tree.
822 /// The resulting parse tree for `&x as T[0]` has a precedence of `((&x) as T)[0]`.
823 fn parse_and_disallow_postfix_after_cast(
824 &mut self,
825 cast_expr: P<Expr>,
826 ) -> PResult<'a, P<Expr>> {
827 let span = cast_expr.span;
828 let maybe_ascription_span = if let ExprKind::Type(ascripted_expr, _) = &cast_expr.kind {
829 Some(ascripted_expr.span.shrink_to_hi().with_hi(span.hi()))
830 } else {
831 None
832 };
833
834 // Save the memory location of expr before parsing any following postfix operators.
835 // This will be compared with the memory location of the output expression.
836 // If they different we can assume we parsed another expression because the existing expression is not reallocated.
837 let addr_before = &*cast_expr as *const _ as usize;
838 let with_postfix = self.parse_dot_or_call_expr_with_(cast_expr, span)?;
839 let changed = addr_before != &*with_postfix as *const _ as usize;
840
841 // Check if an illegal postfix operator has been added after the cast.
842 // If the resulting expression is not a cast, or has a different memory location, it is an illegal postfix operator.
843 if !matches!(with_postfix.kind, ExprKind::Cast(_, _) | ExprKind::Type(_, _)) || changed {
844 let msg = format!(
845 "casts cannot be followed by {}",
846 match with_postfix.kind {
847 ExprKind::Index(_, _) => "indexing",
848 ExprKind::Try(_) => "`?`",
849 ExprKind::Field(_, _) => "a field access",
850 ExprKind::MethodCall(_, _, _) => "a method call",
851 ExprKind::Call(_, _) => "a function call",
852 ExprKind::Await(_) => "`.await`",
853 ExprKind::Err => return Ok(with_postfix),
854 _ => unreachable!("parse_dot_or_call_expr_with_ shouldn't produce this"),
855 }
856 );
857 let mut err = self.struct_span_err(span, &msg);
858
859 let suggest_parens = |err: &mut DiagnosticBuilder<'_, _>| {
860 let suggestions = vec![
861 (span.shrink_to_lo(), "(".to_string()),
862 (span.shrink_to_hi(), ")".to_string()),
863 ];
864 err.multipart_suggestion(
865 "try surrounding the expression in parentheses",
866 suggestions,
867 Applicability::MachineApplicable,
868 );
869 };
870
871 // If type ascription is "likely an error", the user will already be getting a useful
872 // help message, and doesn't need a second.
873 if self.last_type_ascription.map_or(false, |last_ascription| last_ascription.1) {
874 self.maybe_annotate_with_ascription(&mut err, false);
875 } else if let Some(ascription_span) = maybe_ascription_span {
876 let is_nightly = self.sess.unstable_features.is_nightly_build();
877 if is_nightly {
878 suggest_parens(&mut err);
879 }
880 err.span_suggestion(
881 ascription_span,
882 &format!(
883 "{}remove the type ascription",
884 if is_nightly { "alternatively, " } else { "" }
885 ),
886 String::new(),
887 if is_nightly {
888 Applicability::MaybeIncorrect
889 } else {
890 Applicability::MachineApplicable
891 },
892 );
893 } else {
894 suggest_parens(&mut err);
895 }
896 err.emit();
897 };
898 Ok(with_postfix)
899 }
900
901 fn parse_assoc_op_ascribe(&mut self, lhs: P<Expr>, lhs_span: Span) -> PResult<'a, P<Expr>> {
902 let maybe_path = self.could_ascription_be_path(&lhs.kind);
903 self.last_type_ascription = Some((self.prev_token.span, maybe_path));
904 let lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Type)?;
905 self.sess.gated_spans.gate(sym::type_ascription, lhs.span);
906 Ok(lhs)
907 }
908
909 /// Parse `& mut? <expr>` or `& raw [ const | mut ] <expr>`.
910 fn parse_borrow_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
911 self.expect_and()?;
912 let has_lifetime = self.token.is_lifetime() && self.look_ahead(1, |t| t != &token::Colon);
913 let lifetime = has_lifetime.then(|| self.expect_lifetime()); // For recovery, see below.
914 let (borrow_kind, mutbl) = self.parse_borrow_modifiers(lo);
915 let expr = self.parse_prefix_expr(None);
916 let (hi, expr) = self.interpolated_or_expr_span(expr)?;
917 let span = lo.to(hi);
918 if let Some(lt) = lifetime {
919 self.error_remove_borrow_lifetime(span, lt.ident.span);
920 }
921 Ok((span, ExprKind::AddrOf(borrow_kind, mutbl, expr)))
922 }
923
924 fn error_remove_borrow_lifetime(&self, span: Span, lt_span: Span) {
925 self.struct_span_err(span, "borrow expressions cannot be annotated with lifetimes")
926 .span_label(lt_span, "annotated with lifetime here")
927 .span_suggestion(
928 lt_span,
929 "remove the lifetime annotation",
930 String::new(),
931 Applicability::MachineApplicable,
932 )
933 .emit();
934 }
935
936 /// Parse `mut?` or `raw [ const | mut ]`.
937 fn parse_borrow_modifiers(&mut self, lo: Span) -> (ast::BorrowKind, ast::Mutability) {
938 if self.check_keyword(kw::Raw) && self.look_ahead(1, Token::is_mutability) {
939 // `raw [ const | mut ]`.
940 let found_raw = self.eat_keyword(kw::Raw);
941 assert!(found_raw);
942 let mutability = self.parse_const_or_mut().unwrap();
943 self.sess.gated_spans.gate(sym::raw_ref_op, lo.to(self.prev_token.span));
944 (ast::BorrowKind::Raw, mutability)
945 } else {
946 // `mut?`
947 (ast::BorrowKind::Ref, self.parse_mutability())
948 }
949 }
950
951 /// Parses `a.b` or `a(13)` or `a[4]` or just `a`.
952 fn parse_dot_or_call_expr(&mut self, attrs: Option<AttrWrapper>) -> PResult<'a, P<Expr>> {
953 let attrs = self.parse_or_use_outer_attributes(attrs)?;
954 self.collect_tokens_for_expr(attrs, |this, attrs| {
955 let base = this.parse_bottom_expr();
956 let (span, base) = this.interpolated_or_expr_span(base)?;
957 this.parse_dot_or_call_expr_with(base, span, attrs)
958 })
959 }
960
961 pub(super) fn parse_dot_or_call_expr_with(
962 &mut self,
963 e0: P<Expr>,
964 lo: Span,
965 mut attrs: Vec<ast::Attribute>,
966 ) -> PResult<'a, P<Expr>> {
967 // Stitch the list of outer attributes onto the return value.
968 // A little bit ugly, but the best way given the current code
969 // structure
970 self.parse_dot_or_call_expr_with_(e0, lo).map(|expr| {
971 expr.map(|mut expr| {
972 attrs.extend::<Vec<_>>(expr.attrs.into());
973 expr.attrs = attrs.into();
974 expr
975 })
976 })
977 }
978
979 fn parse_dot_or_call_expr_with_(&mut self, mut e: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
980 loop {
981 if self.eat(&token::Question) {
982 // `expr?`
983 e = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Try(e), AttrVec::new());
984 continue;
985 }
986 if self.eat(&token::Dot) {
987 // expr.f
988 e = self.parse_dot_suffix_expr(lo, e)?;
989 continue;
990 }
991 if self.expr_is_complete(&e) {
992 return Ok(e);
993 }
994 e = match self.token.kind {
995 token::OpenDelim(token::Paren) => self.parse_fn_call_expr(lo, e),
996 token::OpenDelim(token::Bracket) => self.parse_index_expr(lo, e)?,
997 _ => return Ok(e),
998 }
999 }
1000 }
1001
1002 fn look_ahead_type_ascription_as_field(&mut self) -> bool {
1003 self.look_ahead(1, |t| t.is_ident())
1004 && self.look_ahead(2, |t| t == &token::Colon)
1005 && self.look_ahead(3, |t| t.can_begin_expr())
1006 }
1007
1008 fn parse_dot_suffix_expr(&mut self, lo: Span, base: P<Expr>) -> PResult<'a, P<Expr>> {
1009 match self.token.uninterpolate().kind {
1010 token::Ident(..) => self.parse_dot_suffix(base, lo),
1011 token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) => {
1012 Ok(self.parse_tuple_field_access_expr(lo, base, symbol, suffix, None))
1013 }
1014 token::Literal(token::Lit { kind: token::Float, symbol, suffix }) => {
1015 Ok(self.parse_tuple_field_access_expr_float(lo, base, symbol, suffix))
1016 }
1017 _ => {
1018 self.error_unexpected_after_dot();
1019 Ok(base)
1020 }
1021 }
1022 }
1023
1024 fn error_unexpected_after_dot(&self) {
1025 // FIXME Could factor this out into non_fatal_unexpected or something.
1026 let actual = pprust::token_to_string(&self.token);
1027 self.struct_span_err(self.token.span, &format!("unexpected token: `{actual}`")).emit();
1028 }
1029
1030 // We need an identifier or integer, but the next token is a float.
1031 // Break the float into components to extract the identifier or integer.
1032 // FIXME: With current `TokenCursor` it's hard to break tokens into more than 2
1033 // parts unless those parts are processed immediately. `TokenCursor` should either
1034 // support pushing "future tokens" (would be also helpful to `break_and_eat`), or
1035 // we should break everything including floats into more basic proc-macro style
1036 // tokens in the lexer (probably preferable).
1037 fn parse_tuple_field_access_expr_float(
1038 &mut self,
1039 lo: Span,
1040 base: P<Expr>,
1041 float: Symbol,
1042 suffix: Option<Symbol>,
1043 ) -> P<Expr> {
1044 #[derive(Debug)]
1045 enum FloatComponent {
1046 IdentLike(String),
1047 Punct(char),
1048 }
1049 use FloatComponent::*;
1050
1051 let float_str = float.as_str();
1052 let mut components = Vec::new();
1053 let mut ident_like = String::new();
1054 for c in float_str.chars() {
1055 if c == '_' || c.is_ascii_alphanumeric() {
1056 ident_like.push(c);
1057 } else if matches!(c, '.' | '+' | '-') {
1058 if !ident_like.is_empty() {
1059 components.push(IdentLike(mem::take(&mut ident_like)));
1060 }
1061 components.push(Punct(c));
1062 } else {
1063 panic!("unexpected character in a float token: {:?}", c)
1064 }
1065 }
1066 if !ident_like.is_empty() {
1067 components.push(IdentLike(ident_like));
1068 }
1069
1070 // With proc macros the span can refer to anything, the source may be too short,
1071 // or too long, or non-ASCII. It only makes sense to break our span into components
1072 // if its underlying text is identical to our float literal.
1073 let span = self.token.span;
1074 let can_take_span_apart =
1075 || self.span_to_snippet(span).as_deref() == Ok(float_str).as_deref();
1076
1077 match &*components {
1078 // 1e2
1079 [IdentLike(i)] => {
1080 self.parse_tuple_field_access_expr(lo, base, Symbol::intern(&i), suffix, None)
1081 }
1082 // 1.
1083 [IdentLike(i), Punct('.')] => {
1084 let (ident_span, dot_span) = if can_take_span_apart() {
1085 let (span, ident_len) = (span.data(), BytePos::from_usize(i.len()));
1086 let ident_span = span.with_hi(span.lo + ident_len);
1087 let dot_span = span.with_lo(span.lo + ident_len);
1088 (ident_span, dot_span)
1089 } else {
1090 (span, span)
1091 };
1092 assert!(suffix.is_none());
1093 let symbol = Symbol::intern(&i);
1094 self.token = Token::new(token::Ident(symbol, false), ident_span);
1095 let next_token = (Token::new(token::Dot, dot_span), self.token_spacing);
1096 self.parse_tuple_field_access_expr(lo, base, symbol, None, Some(next_token))
1097 }
1098 // 1.2 | 1.2e3
1099 [IdentLike(i1), Punct('.'), IdentLike(i2)] => {
1100 let (ident1_span, dot_span, ident2_span) = if can_take_span_apart() {
1101 let (span, ident1_len) = (span.data(), BytePos::from_usize(i1.len()));
1102 let ident1_span = span.with_hi(span.lo + ident1_len);
1103 let dot_span = span
1104 .with_lo(span.lo + ident1_len)
1105 .with_hi(span.lo + ident1_len + BytePos(1));
1106 let ident2_span = self.token.span.with_lo(span.lo + ident1_len + BytePos(1));
1107 (ident1_span, dot_span, ident2_span)
1108 } else {
1109 (span, span, span)
1110 };
1111 let symbol1 = Symbol::intern(&i1);
1112 self.token = Token::new(token::Ident(symbol1, false), ident1_span);
1113 // This needs to be `Spacing::Alone` to prevent regressions.
1114 // See issue #76399 and PR #76285 for more details
1115 let next_token1 = (Token::new(token::Dot, dot_span), Spacing::Alone);
1116 let base1 =
1117 self.parse_tuple_field_access_expr(lo, base, symbol1, None, Some(next_token1));
1118 let symbol2 = Symbol::intern(&i2);
1119 let next_token2 = Token::new(token::Ident(symbol2, false), ident2_span);
1120 self.bump_with((next_token2, self.token_spacing)); // `.`
1121 self.parse_tuple_field_access_expr(lo, base1, symbol2, suffix, None)
1122 }
1123 // 1e+ | 1e- (recovered)
1124 [IdentLike(_), Punct('+' | '-')] |
1125 // 1e+2 | 1e-2
1126 [IdentLike(_), Punct('+' | '-'), IdentLike(_)] |
1127 // 1.2e+ | 1.2e-
1128 [IdentLike(_), Punct('.'), IdentLike(_), Punct('+' | '-')] |
1129 // 1.2e+3 | 1.2e-3
1130 [IdentLike(_), Punct('.'), IdentLike(_), Punct('+' | '-'), IdentLike(_)] => {
1131 // See the FIXME about `TokenCursor` above.
1132 self.error_unexpected_after_dot();
1133 base
1134 }
1135 _ => panic!("unexpected components in a float token: {:?}", components),
1136 }
1137 }
1138
1139 fn parse_tuple_field_access_expr(
1140 &mut self,
1141 lo: Span,
1142 base: P<Expr>,
1143 field: Symbol,
1144 suffix: Option<Symbol>,
1145 next_token: Option<(Token, Spacing)>,
1146 ) -> P<Expr> {
1147 match next_token {
1148 Some(next_token) => self.bump_with(next_token),
1149 None => self.bump(),
1150 }
1151 let span = self.prev_token.span;
1152 let field = ExprKind::Field(base, Ident::new(field, span));
1153 self.expect_no_suffix(span, "a tuple index", suffix);
1154 self.mk_expr(lo.to(span), field, AttrVec::new())
1155 }
1156
1157 /// Parse a function call expression, `expr(...)`.
1158 fn parse_fn_call_expr(&mut self, lo: Span, fun: P<Expr>) -> P<Expr> {
1159 let snapshot = if self.token.kind == token::OpenDelim(token::Paren)
1160 && self.look_ahead_type_ascription_as_field()
1161 {
1162 Some((self.create_snapshot_for_diagnostic(), fun.kind.clone()))
1163 } else {
1164 None
1165 };
1166 let open_paren = self.token.span;
1167
1168 let mut seq = self.parse_paren_expr_seq().map(|args| {
1169 self.mk_expr(lo.to(self.prev_token.span), self.mk_call(fun, args), AttrVec::new())
1170 });
1171 if let Some(expr) =
1172 self.maybe_recover_struct_lit_bad_delims(lo, open_paren, &mut seq, snapshot)
1173 {
1174 return expr;
1175 }
1176 self.recover_seq_parse_error(token::Paren, lo, seq)
1177 }
1178
1179 /// If we encounter a parser state that looks like the user has written a `struct` literal with
1180 /// parentheses instead of braces, recover the parser state and provide suggestions.
1181 #[instrument(skip(self, seq, snapshot), level = "trace")]
1182 fn maybe_recover_struct_lit_bad_delims(
1183 &mut self,
1184 lo: Span,
1185 open_paren: Span,
1186 seq: &mut PResult<'a, P<Expr>>,
1187 snapshot: Option<(SnapshotParser<'a>, ExprKind)>,
1188 ) -> Option<P<Expr>> {
1189 match (seq.as_mut(), snapshot) {
1190 (Err(err), Some((mut snapshot, ExprKind::Path(None, path)))) => {
1191 let name = pprust::path_to_string(&path);
1192 snapshot.bump(); // `(`
1193 match snapshot.parse_struct_fields(path, false, token::Paren) {
1194 Ok((fields, ..)) if snapshot.eat(&token::CloseDelim(token::Paren)) => {
1195 // We are certain we have `Enum::Foo(a: 3, b: 4)`, suggest
1196 // `Enum::Foo { a: 3, b: 4 }` or `Enum::Foo(3, 4)`.
1197 self.restore_snapshot(snapshot);
1198 let close_paren = self.prev_token.span;
1199 let span = lo.to(self.prev_token.span);
1200 if !fields.is_empty() {
1201 let replacement_err = self.struct_span_err(
1202 span,
1203 "invalid `struct` delimiters or `fn` call arguments",
1204 );
1205 mem::replace(err, replacement_err).cancel();
1206
1207 err.multipart_suggestion(
1208 &format!("if `{name}` is a struct, use braces as delimiters"),
1209 vec![
1210 (open_paren, " { ".to_string()),
1211 (close_paren, " }".to_string()),
1212 ],
1213 Applicability::MaybeIncorrect,
1214 );
1215 err.multipart_suggestion(
1216 &format!("if `{name}` is a function, use the arguments directly"),
1217 fields
1218 .into_iter()
1219 .map(|field| (field.span.until(field.expr.span), String::new()))
1220 .collect(),
1221 Applicability::MaybeIncorrect,
1222 );
1223 err.emit();
1224 } else {
1225 err.emit();
1226 }
1227 return Some(self.mk_expr_err(span));
1228 }
1229 Ok(_) => {}
1230 Err(mut err) => {
1231 err.emit();
1232 }
1233 }
1234 }
1235 _ => {}
1236 }
1237 None
1238 }
1239
1240 /// Parse an indexing expression `expr[...]`.
1241 fn parse_index_expr(&mut self, lo: Span, base: P<Expr>) -> PResult<'a, P<Expr>> {
1242 self.bump(); // `[`
1243 let index = self.parse_expr()?;
1244 self.expect(&token::CloseDelim(token::Bracket))?;
1245 Ok(self.mk_expr(lo.to(self.prev_token.span), self.mk_index(base, index), AttrVec::new()))
1246 }
1247
1248 /// Assuming we have just parsed `.`, continue parsing into an expression.
1249 fn parse_dot_suffix(&mut self, self_arg: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
1250 if self.token.uninterpolated_span().rust_2018() && self.eat_keyword(kw::Await) {
1251 return Ok(self.mk_await_expr(self_arg, lo));
1252 }
1253
1254 let fn_span_lo = self.token.span;
1255 let mut segment = self.parse_path_segment(PathStyle::Expr, None)?;
1256 self.check_trailing_angle_brackets(&segment, &[&token::OpenDelim(token::Paren)]);
1257 self.check_turbofish_missing_angle_brackets(&mut segment);
1258
1259 if self.check(&token::OpenDelim(token::Paren)) {
1260 // Method call `expr.f()`
1261 let mut args = self.parse_paren_expr_seq()?;
1262 args.insert(0, self_arg);
1263
1264 let fn_span = fn_span_lo.to(self.prev_token.span);
1265 let span = lo.to(self.prev_token.span);
1266 Ok(self.mk_expr(span, ExprKind::MethodCall(segment, args, fn_span), AttrVec::new()))
1267 } else {
1268 // Field access `expr.f`
1269 if let Some(args) = segment.args {
1270 self.struct_span_err(
1271 args.span(),
1272 "field expressions cannot have generic arguments",
1273 )
1274 .emit();
1275 }
1276
1277 let span = lo.to(self.prev_token.span);
1278 Ok(self.mk_expr(span, ExprKind::Field(self_arg, segment.ident), AttrVec::new()))
1279 }
1280 }
1281
1282 /// At the bottom (top?) of the precedence hierarchy,
1283 /// Parses things like parenthesized exprs, macros, `return`, etc.
1284 ///
1285 /// N.B., this does not parse outer attributes, and is private because it only works
1286 /// correctly if called from `parse_dot_or_call_expr()`.
1287 fn parse_bottom_expr(&mut self) -> PResult<'a, P<Expr>> {
1288 maybe_recover_from_interpolated_ty_qpath!(self, true);
1289 maybe_whole_expr!(self);
1290
1291 // Outer attributes are already parsed and will be
1292 // added to the return value after the fact.
1293 //
1294 // Therefore, prevent sub-parser from parsing
1295 // attributes by giving them an empty "already-parsed" list.
1296 let attrs = AttrVec::new();
1297
1298 // Note: when adding new syntax here, don't forget to adjust `TokenKind::can_begin_expr()`.
1299 let lo = self.token.span;
1300 if let token::Literal(_) = self.token.kind {
1301 // This match arm is a special-case of the `_` match arm below and
1302 // could be removed without changing functionality, but it's faster
1303 // to have it here, especially for programs with large constants.
1304 self.parse_lit_expr(attrs)
1305 } else if self.check(&token::OpenDelim(token::Paren)) {
1306 self.parse_tuple_parens_expr(attrs)
1307 } else if self.check(&token::OpenDelim(token::Brace)) {
1308 self.parse_block_expr(None, lo, BlockCheckMode::Default, attrs)
1309 } else if self.check(&token::BinOp(token::Or)) || self.check(&token::OrOr) {
1310 self.parse_closure_expr(attrs).map_err(|mut err| {
1311 // If the input is something like `if a { 1 } else { 2 } | if a { 3 } else { 4 }`
1312 // then suggest parens around the lhs.
1313 if let Some(sp) = self.sess.ambiguous_block_expr_parse.borrow().get(&lo) {
1314 self.sess.expr_parentheses_needed(&mut err, *sp);
1315 }
1316 err
1317 })
1318 } else if self.check(&token::OpenDelim(token::Bracket)) {
1319 self.parse_array_or_repeat_expr(attrs, token::Bracket)
1320 } else if self.check_path() {
1321 self.parse_path_start_expr(attrs)
1322 } else if self.check_keyword(kw::Move) || self.check_keyword(kw::Static) {
1323 self.parse_closure_expr(attrs)
1324 } else if self.eat_keyword(kw::If) {
1325 self.parse_if_expr(attrs)
1326 } else if self.check_keyword(kw::For) {
1327 if self.choose_generics_over_qpath(1) {
1328 // NOTE(Centril, eddyb): DO NOT REMOVE! Beyond providing parser recovery,
1329 // this is an insurance policy in case we allow qpaths in (tuple-)struct patterns.
1330 // When `for <Foo as Bar>::Proj in $expr $block` is wanted,
1331 // you can disambiguate in favor of a pattern with `(...)`.
1332 self.recover_quantified_closure_expr(attrs)
1333 } else {
1334 assert!(self.eat_keyword(kw::For));
1335 self.parse_for_expr(None, self.prev_token.span, attrs)
1336 }
1337 } else if self.eat_keyword(kw::While) {
1338 self.parse_while_expr(None, self.prev_token.span, attrs)
1339 } else if let Some(label) = self.eat_label() {
1340 self.parse_labeled_expr(label, attrs, true)
1341 } else if self.eat_keyword(kw::Loop) {
1342 let sp = self.prev_token.span;
1343 self.parse_loop_expr(None, self.prev_token.span, attrs).map_err(|mut err| {
1344 err.span_label(sp, "while parsing this `loop` expression");
1345 err
1346 })
1347 } else if self.eat_keyword(kw::Continue) {
1348 let kind = ExprKind::Continue(self.eat_label());
1349 Ok(self.mk_expr(lo.to(self.prev_token.span), kind, attrs))
1350 } else if self.eat_keyword(kw::Match) {
1351 let match_sp = self.prev_token.span;
1352 self.parse_match_expr(attrs).map_err(|mut err| {
1353 err.span_label(match_sp, "while parsing this `match` expression");
1354 err
1355 })
1356 } else if self.eat_keyword(kw::Unsafe) {
1357 let sp = self.prev_token.span;
1358 self.parse_block_expr(None, lo, BlockCheckMode::Unsafe(ast::UserProvided), attrs)
1359 .map_err(|mut err| {
1360 err.span_label(sp, "while parsing this `unsafe` expression");
1361 err
1362 })
1363 } else if self.check_inline_const(0) {
1364 self.parse_const_block(lo.to(self.token.span), false)
1365 } else if self.is_do_catch_block() {
1366 self.recover_do_catch(attrs)
1367 } else if self.is_try_block() {
1368 self.expect_keyword(kw::Try)?;
1369 self.parse_try_block(lo, attrs)
1370 } else if self.eat_keyword(kw::Return) {
1371 self.parse_return_expr(attrs)
1372 } else if self.eat_keyword(kw::Break) {
1373 self.parse_break_expr(attrs)
1374 } else if self.eat_keyword(kw::Yield) {
1375 self.parse_yield_expr(attrs)
1376 } else if self.eat_keyword(kw::Let) {
1377 self.parse_let_expr(attrs)
1378 } else if self.eat_keyword(kw::Underscore) {
1379 Ok(self.mk_expr(self.prev_token.span, ExprKind::Underscore, attrs))
1380 } else if !self.unclosed_delims.is_empty() && self.check(&token::Semi) {
1381 // Don't complain about bare semicolons after unclosed braces
1382 // recovery in order to keep the error count down. Fixing the
1383 // delimiters will possibly also fix the bare semicolon found in
1384 // expression context. For example, silence the following error:
1385 //
1386 // error: expected expression, found `;`
1387 // --> file.rs:2:13
1388 // |
1389 // 2 | foo(bar(;
1390 // | ^ expected expression
1391 self.bump();
1392 Ok(self.mk_expr_err(self.token.span))
1393 } else if self.token.uninterpolated_span().rust_2018() {
1394 // `Span::rust_2018()` is somewhat expensive; don't get it repeatedly.
1395 if self.check_keyword(kw::Async) {
1396 if self.is_async_block() {
1397 // Check for `async {` and `async move {`.
1398 self.parse_async_block(attrs)
1399 } else {
1400 self.parse_closure_expr(attrs)
1401 }
1402 } else if self.eat_keyword(kw::Await) {
1403 self.recover_incorrect_await_syntax(lo, self.prev_token.span, attrs)
1404 } else {
1405 self.parse_lit_expr(attrs)
1406 }
1407 } else {
1408 self.parse_lit_expr(attrs)
1409 }
1410 }
1411
1412 fn parse_lit_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1413 let lo = self.token.span;
1414 match self.parse_opt_lit() {
1415 Some(literal) => {
1416 let expr = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Lit(literal), attrs);
1417 self.maybe_recover_from_bad_qpath(expr, true)
1418 }
1419 None => self.try_macro_suggestion(),
1420 }
1421 }
1422
1423 fn parse_tuple_parens_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1424 let lo = self.token.span;
1425 self.expect(&token::OpenDelim(token::Paren))?;
1426 let (es, trailing_comma) = match self.parse_seq_to_end(
1427 &token::CloseDelim(token::Paren),
1428 SeqSep::trailing_allowed(token::Comma),
1429 |p| p.parse_expr_catch_underscore(),
1430 ) {
1431 Ok(x) => x,
1432 Err(err) => return Ok(self.recover_seq_parse_error(token::Paren, lo, Err(err))),
1433 };
1434 let kind = if es.len() == 1 && !trailing_comma {
1435 // `(e)` is parenthesized `e`.
1436 ExprKind::Paren(es.into_iter().next().unwrap())
1437 } else {
1438 // `(e,)` is a tuple with only one field, `e`.
1439 ExprKind::Tup(es)
1440 };
1441 let expr = self.mk_expr(lo.to(self.prev_token.span), kind, attrs);
1442 self.maybe_recover_from_bad_qpath(expr, true)
1443 }
1444
1445 fn parse_array_or_repeat_expr(
1446 &mut self,
1447 attrs: AttrVec,
1448 close_delim: token::DelimToken,
1449 ) -> PResult<'a, P<Expr>> {
1450 let lo = self.token.span;
1451 self.bump(); // `[` or other open delim
1452
1453 let close = &token::CloseDelim(close_delim);
1454 let kind = if self.eat(close) {
1455 // Empty vector
1456 ExprKind::Array(Vec::new())
1457 } else {
1458 // Non-empty vector
1459 let first_expr = self.parse_expr()?;
1460 if self.eat(&token::Semi) {
1461 // Repeating array syntax: `[ 0; 512 ]`
1462 let count = self.parse_anon_const_expr()?;
1463 self.expect(close)?;
1464 ExprKind::Repeat(first_expr, count)
1465 } else if self.eat(&token::Comma) {
1466 // Vector with two or more elements.
1467 let sep = SeqSep::trailing_allowed(token::Comma);
1468 let (remaining_exprs, _) = self.parse_seq_to_end(close, sep, |p| p.parse_expr())?;
1469 let mut exprs = vec![first_expr];
1470 exprs.extend(remaining_exprs);
1471 ExprKind::Array(exprs)
1472 } else {
1473 // Vector with one element
1474 self.expect(close)?;
1475 ExprKind::Array(vec![first_expr])
1476 }
1477 };
1478 let expr = self.mk_expr(lo.to(self.prev_token.span), kind, attrs);
1479 self.maybe_recover_from_bad_qpath(expr, true)
1480 }
1481
1482 fn parse_path_start_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1483 let (qself, path) = if self.eat_lt() {
1484 let (qself, path) = self.parse_qpath(PathStyle::Expr)?;
1485 (Some(qself), path)
1486 } else {
1487 (None, self.parse_path(PathStyle::Expr)?)
1488 };
1489 let lo = path.span;
1490
1491 // `!`, as an operator, is prefix, so we know this isn't that.
1492 let (hi, kind) = if self.eat(&token::Not) {
1493 // MACRO INVOCATION expression
1494 if qself.is_some() {
1495 self.struct_span_err(path.span, "macros cannot use qualified paths").emit();
1496 }
1497 let mac = MacCall {
1498 path,
1499 args: self.parse_mac_args()?,
1500 prior_type_ascription: self.last_type_ascription,
1501 };
1502 (self.prev_token.span, ExprKind::MacCall(mac))
1503 } else if self.check(&token::OpenDelim(token::Brace)) {
1504 if let Some(expr) = self.maybe_parse_struct_expr(qself.as_ref(), &path, &attrs) {
1505 if qself.is_some() {
1506 self.sess.gated_spans.gate(sym::more_qualified_paths, path.span);
1507 }
1508 return expr;
1509 } else {
1510 (path.span, ExprKind::Path(qself, path))
1511 }
1512 } else {
1513 (path.span, ExprKind::Path(qself, path))
1514 };
1515
1516 let expr = self.mk_expr(lo.to(hi), kind, attrs);
1517 self.maybe_recover_from_bad_qpath(expr, true)
1518 }
1519
1520 /// Parse `'label: $expr`. The label is already parsed.
1521 fn parse_labeled_expr(
1522 &mut self,
1523 label: Label,
1524 attrs: AttrVec,
1525 mut consume_colon: bool,
1526 ) -> PResult<'a, P<Expr>> {
1527 let lo = label.ident.span;
1528 let label = Some(label);
1529 let ate_colon = self.eat(&token::Colon);
1530 let expr = if self.eat_keyword(kw::While) {
1531 self.parse_while_expr(label, lo, attrs)
1532 } else if self.eat_keyword(kw::For) {
1533 self.parse_for_expr(label, lo, attrs)
1534 } else if self.eat_keyword(kw::Loop) {
1535 self.parse_loop_expr(label, lo, attrs)
1536 } else if self.check(&token::OpenDelim(token::Brace)) || self.token.is_whole_block() {
1537 self.parse_block_expr(label, lo, BlockCheckMode::Default, attrs)
1538 } else if !ate_colon && (self.check(&TokenKind::Comma) || self.check(&TokenKind::Gt)) {
1539 // We're probably inside of a `Path<'a>` that needs a turbofish
1540 let msg = "expected `while`, `for`, `loop` or `{` after a label";
1541 self.struct_span_err(self.token.span, msg).span_label(self.token.span, msg).emit();
1542 consume_colon = false;
1543 Ok(self.mk_expr_err(lo))
1544 } else {
1545 let msg = "expected `while`, `for`, `loop` or `{` after a label";
1546 self.struct_span_err(self.token.span, msg).span_label(self.token.span, msg).emit();
1547 // Continue as an expression in an effort to recover on `'label: non_block_expr`.
1548 self.parse_expr()
1549 }?;
1550
1551 if !ate_colon && consume_colon {
1552 self.error_labeled_expr_must_be_followed_by_colon(lo, expr.span);
1553 }
1554
1555 Ok(expr)
1556 }
1557
1558 fn error_labeled_expr_must_be_followed_by_colon(&self, lo: Span, span: Span) {
1559 self.struct_span_err(span, "labeled expression must be followed by `:`")
1560 .span_label(lo, "the label")
1561 .span_suggestion_short(
1562 lo.shrink_to_hi(),
1563 "add `:` after the label",
1564 ": ".to_string(),
1565 Applicability::MachineApplicable,
1566 )
1567 .note("labels are used before loops and blocks, allowing e.g., `break 'label` to them")
1568 .emit();
1569 }
1570
1571 /// Recover on the syntax `do catch { ... }` suggesting `try { ... }` instead.
1572 fn recover_do_catch(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1573 let lo = self.token.span;
1574
1575 self.bump(); // `do`
1576 self.bump(); // `catch`
1577
1578 let span_dc = lo.to(self.prev_token.span);
1579 self.struct_span_err(span_dc, "found removed `do catch` syntax")
1580 .span_suggestion(
1581 span_dc,
1582 "replace with the new syntax",
1583 "try".to_string(),
1584 Applicability::MachineApplicable,
1585 )
1586 .note("following RFC #2388, the new non-placeholder syntax is `try`")
1587 .emit();
1588
1589 self.parse_try_block(lo, attrs)
1590 }
1591
1592 /// Parse an expression if the token can begin one.
1593 fn parse_expr_opt(&mut self) -> PResult<'a, Option<P<Expr>>> {
1594 Ok(if self.token.can_begin_expr() { Some(self.parse_expr()?) } else { None })
1595 }
1596
1597 /// Parse `"return" expr?`.
1598 fn parse_return_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1599 let lo = self.prev_token.span;
1600 let kind = ExprKind::Ret(self.parse_expr_opt()?);
1601 let expr = self.mk_expr(lo.to(self.prev_token.span), kind, attrs);
1602 self.maybe_recover_from_bad_qpath(expr, true)
1603 }
1604
1605 /// Parse `"break" (('label (:? expr)?) | expr?)` with `"break"` token already eaten.
1606 /// If the label is followed immediately by a `:` token, the label and `:` are
1607 /// parsed as part of the expression (i.e. a labeled loop). The language team has
1608 /// decided in #87026 to require parentheses as a visual aid to avoid confusion if
1609 /// the break expression of an unlabeled break is a labeled loop (as in
1610 /// `break 'lbl: loop {}`); a labeled break with an unlabeled loop as its value
1611 /// expression only gets a warning for compatibility reasons; and a labeled break
1612 /// with a labeled loop does not even get a warning because there is no ambiguity.
1613 fn parse_break_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1614 let lo = self.prev_token.span;
1615 let mut label = self.eat_label();
1616 let kind = if label.is_some() && self.token == token::Colon {
1617 // The value expression can be a labeled loop, see issue #86948, e.g.:
1618 // `loop { break 'label: loop { break 'label 42; }; }`
1619 let lexpr = self.parse_labeled_expr(label.take().unwrap(), AttrVec::new(), true)?;
1620 self.struct_span_err(
1621 lexpr.span,
1622 "parentheses are required around this expression to avoid confusion with a labeled break expression",
1623 )
1624 .multipart_suggestion(
1625 "wrap the expression in parentheses",
1626 vec![
1627 (lexpr.span.shrink_to_lo(), "(".to_string()),
1628 (lexpr.span.shrink_to_hi(), ")".to_string()),
1629 ],
1630 Applicability::MachineApplicable,
1631 )
1632 .emit();
1633 Some(lexpr)
1634 } else if self.token != token::OpenDelim(token::Brace)
1635 || !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
1636 {
1637 let expr = self.parse_expr_opt()?;
1638 if let Some(ref expr) = expr {
1639 if label.is_some()
1640 && matches!(
1641 expr.kind,
1642 ExprKind::While(_, _, None)
1643 | ExprKind::ForLoop(_, _, _, None)
1644 | ExprKind::Loop(_, None)
1645 | ExprKind::Block(_, None)
1646 )
1647 {
1648 self.sess.buffer_lint_with_diagnostic(
1649 BREAK_WITH_LABEL_AND_LOOP,
1650 lo.to(expr.span),
1651 ast::CRATE_NODE_ID,
1652 "this labeled break expression is easy to confuse with an unlabeled break with a labeled value expression",
1653 BuiltinLintDiagnostics::BreakWithLabelAndLoop(expr.span),
1654 );
1655 }
1656 }
1657 expr
1658 } else {
1659 None
1660 };
1661 let expr = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Break(label, kind), attrs);
1662 self.maybe_recover_from_bad_qpath(expr, true)
1663 }
1664
1665 /// Parse `"yield" expr?`.
1666 fn parse_yield_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1667 let lo = self.prev_token.span;
1668 let kind = ExprKind::Yield(self.parse_expr_opt()?);
1669 let span = lo.to(self.prev_token.span);
1670 self.sess.gated_spans.gate(sym::generators, span);
1671 let expr = self.mk_expr(span, kind, attrs);
1672 self.maybe_recover_from_bad_qpath(expr, true)
1673 }
1674
1675 /// Returns a string literal if the next token is a string literal.
1676 /// In case of error returns `Some(lit)` if the next token is a literal with a wrong kind,
1677 /// and returns `None` if the next token is not literal at all.
1678 pub fn parse_str_lit(&mut self) -> Result<ast::StrLit, Option<Lit>> {
1679 match self.parse_opt_lit() {
1680 Some(lit) => match lit.kind {
1681 ast::LitKind::Str(symbol_unescaped, style) => Ok(ast::StrLit {
1682 style,
1683 symbol: lit.token.symbol,
1684 suffix: lit.token.suffix,
1685 span: lit.span,
1686 symbol_unescaped,
1687 }),
1688 _ => Err(Some(lit)),
1689 },
1690 None => Err(None),
1691 }
1692 }
1693
1694 pub(super) fn parse_lit(&mut self) -> PResult<'a, Lit> {
1695 self.parse_opt_lit().ok_or_else(|| {
1696 if let token::Interpolated(inner) = &self.token.kind {
1697 let expr = match inner.as_ref() {
1698 token::NtExpr(expr) => Some(expr),
1699 token::NtLiteral(expr) => Some(expr),
1700 _ => None,
1701 };
1702 if let Some(expr) = expr {
1703 if matches!(expr.kind, ExprKind::Err) {
1704 let mut err = self
1705 .diagnostic()
1706 .struct_span_err(self.token.span, &"invalid interpolated expression");
1707 err.downgrade_to_delayed_bug();
1708 return err;
1709 }
1710 }
1711 }
1712 let msg = format!("unexpected token: {}", super::token_descr(&self.token));
1713 self.struct_span_err(self.token.span, &msg)
1714 })
1715 }
1716
1717 /// Matches `lit = true | false | token_lit`.
1718 /// Returns `None` if the next token is not a literal.
1719 pub(super) fn parse_opt_lit(&mut self) -> Option<Lit> {
1720 let mut recovered = None;
1721 if self.token == token::Dot {
1722 // Attempt to recover `.4` as `0.4`. We don't currently have any syntax where
1723 // dot would follow an optional literal, so we do this unconditionally.
1724 recovered = self.look_ahead(1, |next_token| {
1725 if let token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) =
1726 next_token.kind
1727 {
1728 if self.token.span.hi() == next_token.span.lo() {
1729 let s = String::from("0.") + symbol.as_str();
1730 let kind = TokenKind::lit(token::Float, Symbol::intern(&s), suffix);
1731 return Some(Token::new(kind, self.token.span.to(next_token.span)));
1732 }
1733 }
1734 None
1735 });
1736 if let Some(token) = &recovered {
1737 self.bump();
1738 self.error_float_lits_must_have_int_part(&token);
1739 }
1740 }
1741
1742 let token = recovered.as_ref().unwrap_or(&self.token);
1743 match Lit::from_token(token) {
1744 Ok(lit) => {
1745 self.bump();
1746 Some(lit)
1747 }
1748 Err(LitError::NotLiteral) => None,
1749 Err(err) => {
1750 let span = token.span;
1751 let token::Literal(lit) = token.kind else {
1752 unreachable!();
1753 };
1754 self.bump();
1755 self.report_lit_error(err, lit, span);
1756 // Pack possible quotes and prefixes from the original literal into
1757 // the error literal's symbol so they can be pretty-printed faithfully.
1758 let suffixless_lit = token::Lit::new(lit.kind, lit.symbol, None);
1759 let symbol = Symbol::intern(&suffixless_lit.to_string());
1760 let lit = token::Lit::new(token::Err, symbol, lit.suffix);
1761 Some(Lit::from_lit_token(lit, span).unwrap_or_else(|_| unreachable!()))
1762 }
1763 }
1764 }
1765
1766 fn error_float_lits_must_have_int_part(&self, token: &Token) {
1767 self.struct_span_err(token.span, "float literals must have an integer part")
1768 .span_suggestion(
1769 token.span,
1770 "must have an integer part",
1771 pprust::token_to_string(token).into(),
1772 Applicability::MachineApplicable,
1773 )
1774 .emit();
1775 }
1776
1777 fn report_lit_error(&self, err: LitError, lit: token::Lit, span: Span) {
1778 // Checks if `s` looks like i32 or u1234 etc.
1779 fn looks_like_width_suffix(first_chars: &[char], s: &str) -> bool {
1780 s.len() > 1 && s.starts_with(first_chars) && s[1..].chars().all(|c| c.is_ascii_digit())
1781 }
1782
1783 // Try to lowercase the prefix if it's a valid base prefix.
1784 fn fix_base_capitalisation(s: &str) -> Option<String> {
1785 if let Some(stripped) = s.strip_prefix('B') {
1786 Some(format!("0b{stripped}"))
1787 } else if let Some(stripped) = s.strip_prefix('O') {
1788 Some(format!("0o{stripped}"))
1789 } else if let Some(stripped) = s.strip_prefix('X') {
1790 Some(format!("0x{stripped}"))
1791 } else {
1792 None
1793 }
1794 }
1795
1796 let token::Lit { kind, suffix, .. } = lit;
1797 match err {
1798 // `NotLiteral` is not an error by itself, so we don't report
1799 // it and give the parser opportunity to try something else.
1800 LitError::NotLiteral => {}
1801 // `LexerError` *is* an error, but it was already reported
1802 // by lexer, so here we don't report it the second time.
1803 LitError::LexerError => {}
1804 LitError::InvalidSuffix => {
1805 self.expect_no_suffix(
1806 span,
1807 &format!("{} {} literal", kind.article(), kind.descr()),
1808 suffix,
1809 );
1810 }
1811 LitError::InvalidIntSuffix => {
1812 let suf = suffix.expect("suffix error with no suffix");
1813 let suf = suf.as_str();
1814 if looks_like_width_suffix(&['i', 'u'], &suf) {
1815 // If it looks like a width, try to be helpful.
1816 let msg = format!("invalid width `{}` for integer literal", &suf[1..]);
1817 self.struct_span_err(span, &msg)
1818 .help("valid widths are 8, 16, 32, 64 and 128")
1819 .emit();
1820 } else if let Some(fixed) = fix_base_capitalisation(suf) {
1821 let msg = "invalid base prefix for number literal";
1822
1823 self.struct_span_err(span, &msg)
1824 .note("base prefixes (`0xff`, `0b1010`, `0o755`) are lowercase")
1825 .span_suggestion(
1826 span,
1827 "try making the prefix lowercase",
1828 fixed,
1829 Applicability::MaybeIncorrect,
1830 )
1831 .emit();
1832 } else {
1833 let msg = format!("invalid suffix `{suf}` for number literal");
1834 self.struct_span_err(span, &msg)
1835 .span_label(span, format!("invalid suffix `{suf}`"))
1836 .help("the suffix must be one of the numeric types (`u32`, `isize`, `f32`, etc.)")
1837 .emit();
1838 }
1839 }
1840 LitError::InvalidFloatSuffix => {
1841 let suf = suffix.expect("suffix error with no suffix");
1842 let suf = suf.as_str();
1843 if looks_like_width_suffix(&['f'], suf) {
1844 // If it looks like a width, try to be helpful.
1845 let msg = format!("invalid width `{}` for float literal", &suf[1..]);
1846 self.struct_span_err(span, &msg).help("valid widths are 32 and 64").emit();
1847 } else {
1848 let msg = format!("invalid suffix `{suf}` for float literal");
1849 self.struct_span_err(span, &msg)
1850 .span_label(span, format!("invalid suffix `{suf}`"))
1851 .help("valid suffixes are `f32` and `f64`")
1852 .emit();
1853 }
1854 }
1855 LitError::NonDecimalFloat(base) => {
1856 let descr = match base {
1857 16 => "hexadecimal",
1858 8 => "octal",
1859 2 => "binary",
1860 _ => unreachable!(),
1861 };
1862 self.struct_span_err(span, &format!("{descr} float literal is not supported"))
1863 .span_label(span, "not supported")
1864 .emit();
1865 }
1866 LitError::IntTooLarge => {
1867 self.struct_span_err(span, "integer literal is too large").emit();
1868 }
1869 }
1870 }
1871
1872 pub(super) fn expect_no_suffix(&self, sp: Span, kind: &str, suffix: Option<Symbol>) {
1873 if let Some(suf) = suffix {
1874 let mut err = if kind == "a tuple index"
1875 && [sym::i32, sym::u32, sym::isize, sym::usize].contains(&suf)
1876 {
1877 // #59553: warn instead of reject out of hand to allow the fix to percolate
1878 // through the ecosystem when people fix their macros
1879 let mut err = self
1880 .sess
1881 .span_diagnostic
1882 .struct_span_warn(sp, &format!("suffixes on {kind} are invalid"));
1883 err.note(&format!(
1884 "`{}` is *temporarily* accepted on tuple index fields as it was \
1885 incorrectly accepted on stable for a few releases",
1886 suf,
1887 ));
1888 err.help(
1889 "on proc macros, you'll want to use `syn::Index::from` or \
1890 `proc_macro::Literal::*_unsuffixed` for code that will desugar \
1891 to tuple field access",
1892 );
1893 err.note(
1894 "see issue #60210 <https://github.com/rust-lang/rust/issues/60210> \
1895 for more information",
1896 );
1897 err
1898 } else {
1899 self.struct_span_err(sp, &format!("suffixes on {kind} are invalid"))
1900 .forget_guarantee()
1901 };
1902 err.span_label(sp, format!("invalid suffix `{suf}`"));
1903 err.emit();
1904 }
1905 }
1906
1907 /// Matches `'-' lit | lit` (cf. `ast_validation::AstValidator::check_expr_within_pat`).
1908 /// Keep this in sync with `Token::can_begin_literal_maybe_minus`.
1909 pub fn parse_literal_maybe_minus(&mut self) -> PResult<'a, P<Expr>> {
1910 maybe_whole_expr!(self);
1911
1912 let lo = self.token.span;
1913 let minus_present = self.eat(&token::BinOp(token::Minus));
1914 let lit = self.parse_lit()?;
1915 let expr = self.mk_expr(lit.span, ExprKind::Lit(lit), AttrVec::new());
1916
1917 if minus_present {
1918 Ok(self.mk_expr(
1919 lo.to(self.prev_token.span),
1920 self.mk_unary(UnOp::Neg, expr),
1921 AttrVec::new(),
1922 ))
1923 } else {
1924 Ok(expr)
1925 }
1926 }
1927
1928 fn is_array_like_block(&mut self) -> bool {
1929 self.look_ahead(1, |t| matches!(t.kind, TokenKind::Ident(..) | TokenKind::Literal(_)))
1930 && self.look_ahead(2, |t| t == &token::Comma)
1931 && self.look_ahead(3, |t| t.can_begin_expr())
1932 }
1933
1934 /// Emits a suggestion if it looks like the user meant an array but
1935 /// accidentally used braces, causing the code to be interpreted as a block
1936 /// expression.
1937 fn maybe_suggest_brackets_instead_of_braces(
1938 &mut self,
1939 lo: Span,
1940 attrs: AttrVec,
1941 ) -> Option<P<Expr>> {
1942 let mut snapshot = self.create_snapshot_for_diagnostic();
1943 match snapshot.parse_array_or_repeat_expr(attrs, token::Brace) {
1944 Ok(arr) => {
1945 let hi = snapshot.prev_token.span;
1946 self.struct_span_err(arr.span, "this is a block expression, not an array")
1947 .multipart_suggestion(
1948 "to make an array, use square brackets instead of curly braces",
1949 vec![(lo, "[".to_owned()), (hi, "]".to_owned())],
1950 Applicability::MaybeIncorrect,
1951 )
1952 .emit();
1953
1954 self.restore_snapshot(snapshot);
1955 Some(self.mk_expr_err(arr.span))
1956 }
1957 Err(e) => {
1958 e.cancel();
1959 None
1960 }
1961 }
1962 }
1963
1964 /// Parses a block or unsafe block.
1965 pub(super) fn parse_block_expr(
1966 &mut self,
1967 opt_label: Option<Label>,
1968 lo: Span,
1969 blk_mode: BlockCheckMode,
1970 mut attrs: AttrVec,
1971 ) -> PResult<'a, P<Expr>> {
1972 if self.is_array_like_block() {
1973 if let Some(arr) = self.maybe_suggest_brackets_instead_of_braces(lo, attrs.clone()) {
1974 return Ok(arr);
1975 }
1976 }
1977
1978 if let Some(label) = opt_label {
1979 self.sess.gated_spans.gate(sym::label_break_value, label.ident.span);
1980 }
1981
1982 if self.token.is_whole_block() {
1983 self.struct_span_err(self.token.span, "cannot use a `block` macro fragment here")
1984 .span_label(lo.to(self.token.span), "the `block` fragment is within this context")
1985 .emit();
1986 }
1987
1988 let (inner_attrs, blk) = self.parse_block_common(lo, blk_mode)?;
1989 attrs.extend(inner_attrs);
1990 Ok(self.mk_expr(blk.span, ExprKind::Block(blk, opt_label), attrs))
1991 }
1992
1993 /// Recover on an explicitly quantified closure expression, e.g., `for<'a> |x: &'a u8| *x + 1`.
1994 fn recover_quantified_closure_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1995 let lo = self.token.span;
1996 let _ = self.parse_late_bound_lifetime_defs()?;
1997 let span_for = lo.to(self.prev_token.span);
1998 let closure = self.parse_closure_expr(attrs)?;
1999
2000 self.struct_span_err(span_for, "cannot introduce explicit parameters for a closure")
2001 .span_label(closure.span, "the parameters are attached to this closure")
2002 .span_suggestion(
2003 span_for,
2004 "remove the parameters",
2005 String::new(),
2006 Applicability::MachineApplicable,
2007 )
2008 .emit();
2009
2010 Ok(self.mk_expr_err(lo.to(closure.span)))
2011 }
2012
2013 /// Parses a closure expression (e.g., `move |args| expr`).
2014 fn parse_closure_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
2015 let lo = self.token.span;
2016
2017 let movability =
2018 if self.eat_keyword(kw::Static) { Movability::Static } else { Movability::Movable };
2019
2020 let asyncness = if self.token.uninterpolated_span().rust_2018() {
2021 self.parse_asyncness()
2022 } else {
2023 Async::No
2024 };
2025
2026 let capture_clause = self.parse_capture_clause()?;
2027 let decl = self.parse_fn_block_decl()?;
2028 let decl_hi = self.prev_token.span;
2029 let mut body = match decl.output {
2030 FnRetTy::Default(_) => {
2031 let restrictions = self.restrictions - Restrictions::STMT_EXPR;
2032 self.parse_expr_res(restrictions, None)?
2033 }
2034 _ => {
2035 // If an explicit return type is given, require a block to appear (RFC 968).
2036 let body_lo = self.token.span;
2037 self.parse_block_expr(None, body_lo, BlockCheckMode::Default, AttrVec::new())?
2038 }
2039 };
2040
2041 if let Async::Yes { span, .. } = asyncness {
2042 // Feature-gate `async ||` closures.
2043 self.sess.gated_spans.gate(sym::async_closure, span);
2044 }
2045
2046 if self.token.kind == TokenKind::Semi && self.token_cursor.frame.delim == DelimToken::Paren
2047 {
2048 // It is likely that the closure body is a block but where the
2049 // braces have been removed. We will recover and eat the next
2050 // statements later in the parsing process.
2051 body = self.mk_expr_err(body.span);
2052 }
2053
2054 let body_span = body.span;
2055
2056 let closure = self.mk_expr(
2057 lo.to(body.span),
2058 ExprKind::Closure(capture_clause, asyncness, movability, decl, body, lo.to(decl_hi)),
2059 attrs,
2060 );
2061
2062 // Disable recovery for closure body
2063 let spans =
2064 ClosureSpans { whole_closure: closure.span, closing_pipe: decl_hi, body: body_span };
2065 self.current_closure = Some(spans);
2066
2067 Ok(closure)
2068 }
2069
2070 /// Parses an optional `move` prefix to a closure-like construct.
2071 fn parse_capture_clause(&mut self) -> PResult<'a, CaptureBy> {
2072 if self.eat_keyword(kw::Move) {
2073 // Check for `move async` and recover
2074 if self.check_keyword(kw::Async) {
2075 let move_async_span = self.token.span.with_lo(self.prev_token.span.data().lo);
2076 Err(self.incorrect_move_async_order_found(move_async_span))
2077 } else {
2078 Ok(CaptureBy::Value)
2079 }
2080 } else {
2081 Ok(CaptureBy::Ref)
2082 }
2083 }
2084
2085 /// Parses the `|arg, arg|` header of a closure.
2086 fn parse_fn_block_decl(&mut self) -> PResult<'a, P<FnDecl>> {
2087 let inputs = if self.eat(&token::OrOr) {
2088 Vec::new()
2089 } else {
2090 self.expect(&token::BinOp(token::Or))?;
2091 let args = self
2092 .parse_seq_to_before_tokens(
2093 &[&token::BinOp(token::Or), &token::OrOr],
2094 SeqSep::trailing_allowed(token::Comma),
2095 TokenExpectType::NoExpect,
2096 |p| p.parse_fn_block_param(),
2097 )?
2098 .0;
2099 self.expect_or()?;
2100 args
2101 };
2102 let output =
2103 self.parse_ret_ty(AllowPlus::Yes, RecoverQPath::Yes, RecoverReturnSign::Yes)?;
2104
2105 Ok(P(FnDecl { inputs, output }))
2106 }
2107
2108 /// Parses a parameter in a closure header (e.g., `|arg, arg|`).
2109 fn parse_fn_block_param(&mut self) -> PResult<'a, Param> {
2110 let lo = self.token.span;
2111 let attrs = self.parse_outer_attributes()?;
2112 self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
2113 let pat = this.parse_pat_no_top_alt(PARAM_EXPECTED)?;
2114 let ty = if this.eat(&token::Colon) {
2115 this.parse_ty()?
2116 } else {
2117 this.mk_ty(this.prev_token.span, TyKind::Infer)
2118 };
2119
2120 Ok((
2121 Param {
2122 attrs: attrs.into(),
2123 ty,
2124 pat,
2125 span: lo.to(this.token.span),
2126 id: DUMMY_NODE_ID,
2127 is_placeholder: false,
2128 },
2129 TrailingToken::MaybeComma,
2130 ))
2131 })
2132 }
2133
2134 /// Parses an `if` expression (`if` token already eaten).
2135 fn parse_if_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
2136 let lo = self.prev_token.span;
2137 let cond = self.parse_cond_expr()?;
2138
2139 let missing_then_block_binop_span = || {
2140 match cond.kind {
2141 ExprKind::Binary(Spanned { span: binop_span, .. }, _, ref right)
2142 if let ExprKind::Block(..) = right.kind => Some(binop_span),
2143 _ => None
2144 }
2145 };
2146
2147 // Verify that the parsed `if` condition makes sense as a condition. If it is a block, then
2148 // verify that the last statement is either an implicit return (no `;`) or an explicit
2149 // return. This won't catch blocks with an explicit `return`, but that would be caught by
2150 // the dead code lint.
2151 let thn = if self.token.is_keyword(kw::Else) || !cond.returns() {
2152 if let Some(binop_span) = missing_then_block_binop_span() {
2153 self.error_missing_if_then_block(lo, None, Some(binop_span)).emit();
2154 self.mk_block_err(cond.span)
2155 } else {
2156 self.error_missing_if_cond(lo, cond.span)
2157 }
2158 } else {
2159 let attrs = self.parse_outer_attributes()?.take_for_recovery(); // For recovery.
2160 let not_block = self.token != token::OpenDelim(token::Brace);
2161 let block = self.parse_block().map_err(|err| {
2162 if not_block {
2163 self.error_missing_if_then_block(lo, Some(err), missing_then_block_binop_span())
2164 } else {
2165 err
2166 }
2167 })?;
2168 self.error_on_if_block_attrs(lo, false, block.span, &attrs);
2169 block
2170 };
2171 let els = if self.eat_keyword(kw::Else) { Some(self.parse_else_expr()?) } else { None };
2172 Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::If(cond, thn, els), attrs))
2173 }
2174
2175 fn error_missing_if_then_block(
2176 &self,
2177 if_span: Span,
2178 err: Option<DiagnosticBuilder<'a, ErrorGuaranteed>>,
2179 binop_span: Option<Span>,
2180 ) -> DiagnosticBuilder<'a, ErrorGuaranteed> {
2181 let msg = "this `if` expression has a condition, but no block";
2182
2183 let mut err = if let Some(mut err) = err {
2184 err.span_label(if_span, msg);
2185 err
2186 } else {
2187 self.struct_span_err(if_span, msg)
2188 };
2189
2190 if let Some(binop_span) = binop_span {
2191 err.span_help(binop_span, "maybe you forgot the right operand of the condition?");
2192 }
2193
2194 err
2195 }
2196
2197 fn error_missing_if_cond(&self, lo: Span, span: Span) -> P<ast::Block> {
2198 let sp = self.sess.source_map().next_point(lo);
2199 self.struct_span_err(sp, "missing condition for `if` expression")
2200 .span_label(sp, "expected if condition here")
2201 .emit();
2202 self.mk_block_err(span)
2203 }
2204
2205 /// Parses the condition of a `if` or `while` expression.
2206 fn parse_cond_expr(&mut self) -> PResult<'a, P<Expr>> {
2207 let cond = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
2208
2209 if let ExprKind::Let(..) = cond.kind {
2210 // Remove the last feature gating of a `let` expression since it's stable.
2211 self.sess.gated_spans.ungate_last(sym::let_chains, cond.span);
2212 }
2213
2214 Ok(cond)
2215 }
2216
2217 /// Parses a `let $pat = $expr` pseudo-expression.
2218 /// The `let` token has already been eaten.
2219 fn parse_let_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
2220 let lo = self.prev_token.span;
2221 let pat = self.parse_pat_allow_top_alt(
2222 None,
2223 RecoverComma::Yes,
2224 RecoverColon::Yes,
2225 CommaRecoveryMode::LikelyTuple,
2226 )?;
2227 self.expect(&token::Eq)?;
2228 let expr = self.with_res(self.restrictions | Restrictions::NO_STRUCT_LITERAL, |this| {
2229 this.parse_assoc_expr_with(1 + prec_let_scrutinee_needs_par(), None.into())
2230 })?;
2231 let span = lo.to(expr.span);
2232 self.sess.gated_spans.gate(sym::let_chains, span);
2233 Ok(self.mk_expr(span, ExprKind::Let(pat, expr, span), attrs))
2234 }
2235
2236 /// Parses an `else { ... }` expression (`else` token already eaten).
2237 fn parse_else_expr(&mut self) -> PResult<'a, P<Expr>> {
2238 let ctx_span = self.prev_token.span; // `else`
2239 let attrs = self.parse_outer_attributes()?.take_for_recovery(); // For recovery.
2240 let expr = if self.eat_keyword(kw::If) {
2241 self.parse_if_expr(AttrVec::new())?
2242 } else {
2243 let blk = self.parse_block()?;
2244 self.mk_expr(blk.span, ExprKind::Block(blk, None), AttrVec::new())
2245 };
2246 self.error_on_if_block_attrs(ctx_span, true, expr.span, &attrs);
2247 Ok(expr)
2248 }
2249
2250 fn error_on_if_block_attrs(
2251 &self,
2252 ctx_span: Span,
2253 is_ctx_else: bool,
2254 branch_span: Span,
2255 attrs: &[ast::Attribute],
2256 ) {
2257 let (span, last) = match attrs {
2258 [] => return,
2259 [x0 @ xn] | [x0, .., xn] => (x0.span.to(xn.span), xn.span),
2260 };
2261 let ctx = if is_ctx_else { "else" } else { "if" };
2262 self.struct_span_err(last, "outer attributes are not allowed on `if` and `else` branches")
2263 .span_label(branch_span, "the attributes are attached to this branch")
2264 .span_label(ctx_span, format!("the branch belongs to this `{ctx}`"))
2265 .span_suggestion(
2266 span,
2267 "remove the attributes",
2268 String::new(),
2269 Applicability::MachineApplicable,
2270 )
2271 .emit();
2272 }
2273
2274 /// Parses `for <src_pat> in <src_expr> <src_loop_block>` (`for` token already eaten).
2275 fn parse_for_expr(
2276 &mut self,
2277 opt_label: Option<Label>,
2278 lo: Span,
2279 mut attrs: AttrVec,
2280 ) -> PResult<'a, P<Expr>> {
2281 // Record whether we are about to parse `for (`.
2282 // This is used below for recovery in case of `for ( $stuff ) $block`
2283 // in which case we will suggest `for $stuff $block`.
2284 let begin_paren = match self.token.kind {
2285 token::OpenDelim(token::Paren) => Some(self.token.span),
2286 _ => None,
2287 };
2288
2289 let pat = self.parse_pat_allow_top_alt(
2290 None,
2291 RecoverComma::Yes,
2292 RecoverColon::Yes,
2293 CommaRecoveryMode::LikelyTuple,
2294 )?;
2295 if !self.eat_keyword(kw::In) {
2296 self.error_missing_in_for_loop();
2297 }
2298 self.check_for_for_in_in_typo(self.prev_token.span);
2299 let expr = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
2300
2301 let pat = self.recover_parens_around_for_head(pat, begin_paren);
2302
2303 let (iattrs, loop_block) = self.parse_inner_attrs_and_block()?;
2304 attrs.extend(iattrs);
2305
2306 let kind = ExprKind::ForLoop(pat, expr, loop_block, opt_label);
2307 Ok(self.mk_expr(lo.to(self.prev_token.span), kind, attrs))
2308 }
2309
2310 fn error_missing_in_for_loop(&mut self) {
2311 let (span, msg, sugg) = if self.token.is_ident_named(sym::of) {
2312 // Possibly using JS syntax (#75311).
2313 let span = self.token.span;
2314 self.bump();
2315 (span, "try using `in` here instead", "in")
2316 } else {
2317 (self.prev_token.span.between(self.token.span), "try adding `in` here", " in ")
2318 };
2319 self.struct_span_err(span, "missing `in` in `for` loop")
2320 .span_suggestion_short(
2321 span,
2322 msg,
2323 sugg.into(),
2324 // Has been misleading, at least in the past (closed Issue #48492).
2325 Applicability::MaybeIncorrect,
2326 )
2327 .emit();
2328 }
2329
2330 /// Parses a `while` or `while let` expression (`while` token already eaten).
2331 fn parse_while_expr(
2332 &mut self,
2333 opt_label: Option<Label>,
2334 lo: Span,
2335 mut attrs: AttrVec,
2336 ) -> PResult<'a, P<Expr>> {
2337 let cond = self.parse_cond_expr().map_err(|mut err| {
2338 err.span_label(lo, "while parsing the condition of this `while` expression");
2339 err
2340 })?;
2341 let (iattrs, body) = self.parse_inner_attrs_and_block().map_err(|mut err| {
2342 err.span_label(lo, "while parsing the body of this `while` expression");
2343 err.span_label(cond.span, "this `while` condition successfully parsed");
2344 err
2345 })?;
2346 attrs.extend(iattrs);
2347 Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::While(cond, body, opt_label), attrs))
2348 }
2349
2350 /// Parses `loop { ... }` (`loop` token already eaten).
2351 fn parse_loop_expr(
2352 &mut self,
2353 opt_label: Option<Label>,
2354 lo: Span,
2355 mut attrs: AttrVec,
2356 ) -> PResult<'a, P<Expr>> {
2357 let (iattrs, body) = self.parse_inner_attrs_and_block()?;
2358 attrs.extend(iattrs);
2359 Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::Loop(body, opt_label), attrs))
2360 }
2361
2362 crate fn eat_label(&mut self) -> Option<Label> {
2363 self.token.lifetime().map(|ident| {
2364 self.bump();
2365 Label { ident }
2366 })
2367 }
2368
2369 /// Parses a `match ... { ... }` expression (`match` token already eaten).
2370 fn parse_match_expr(&mut self, mut attrs: AttrVec) -> PResult<'a, P<Expr>> {
2371 let match_span = self.prev_token.span;
2372 let lo = self.prev_token.span;
2373 let scrutinee = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
2374 if let Err(mut e) = self.expect(&token::OpenDelim(token::Brace)) {
2375 if self.token == token::Semi {
2376 e.span_suggestion_short(
2377 match_span,
2378 "try removing this `match`",
2379 String::new(),
2380 Applicability::MaybeIncorrect, // speculative
2381 );
2382 }
2383 if self.maybe_recover_unexpected_block_label() {
2384 e.cancel();
2385 self.bump();
2386 } else {
2387 return Err(e);
2388 }
2389 }
2390 attrs.extend(self.parse_inner_attributes()?);
2391
2392 let mut arms: Vec<Arm> = Vec::new();
2393 while self.token != token::CloseDelim(token::Brace) {
2394 match self.parse_arm() {
2395 Ok(arm) => arms.push(arm),
2396 Err(mut e) => {
2397 // Recover by skipping to the end of the block.
2398 e.emit();
2399 self.recover_stmt();
2400 let span = lo.to(self.token.span);
2401 if self.token == token::CloseDelim(token::Brace) {
2402 self.bump();
2403 }
2404 return Ok(self.mk_expr(span, ExprKind::Match(scrutinee, arms), attrs));
2405 }
2406 }
2407 }
2408 let hi = self.token.span;
2409 self.bump();
2410 Ok(self.mk_expr(lo.to(hi), ExprKind::Match(scrutinee, arms), attrs))
2411 }
2412
2413 /// Attempt to recover from match arm body with statements and no surrounding braces.
2414 fn parse_arm_body_missing_braces(
2415 &mut self,
2416 first_expr: &P<Expr>,
2417 arrow_span: Span,
2418 ) -> Option<P<Expr>> {
2419 if self.token.kind != token::Semi {
2420 return None;
2421 }
2422 let start_snapshot = self.create_snapshot_for_diagnostic();
2423 let semi_sp = self.token.span;
2424 self.bump(); // `;`
2425 let mut stmts =
2426 vec![self.mk_stmt(first_expr.span, ast::StmtKind::Expr(first_expr.clone()))];
2427 let err = |this: &mut Parser<'_>, stmts: Vec<ast::Stmt>| {
2428 let span = stmts[0].span.to(stmts[stmts.len() - 1].span);
2429 let mut err = this.struct_span_err(span, "`match` arm body without braces");
2430 let (these, s, are) =
2431 if stmts.len() > 1 { ("these", "s", "are") } else { ("this", "", "is") };
2432 err.span_label(
2433 span,
2434 &format!(
2435 "{these} statement{s} {are} not surrounded by a body",
2436 these = these,
2437 s = s,
2438 are = are
2439 ),
2440 );
2441 err.span_label(arrow_span, "while parsing the `match` arm starting here");
2442 if stmts.len() > 1 {
2443 err.multipart_suggestion(
2444 &format!("surround the statement{s} with a body"),
2445 vec![
2446 (span.shrink_to_lo(), "{ ".to_string()),
2447 (span.shrink_to_hi(), " }".to_string()),
2448 ],
2449 Applicability::MachineApplicable,
2450 );
2451 } else {
2452 err.span_suggestion(
2453 semi_sp,
2454 "use a comma to end a `match` arm expression",
2455 ",".to_string(),
2456 Applicability::MachineApplicable,
2457 );
2458 }
2459 err.emit();
2460 this.mk_expr_err(span)
2461 };
2462 // We might have either a `,` -> `;` typo, or a block without braces. We need
2463 // a more subtle parsing strategy.
2464 loop {
2465 if self.token.kind == token::CloseDelim(token::Brace) {
2466 // We have reached the closing brace of the `match` expression.
2467 return Some(err(self, stmts));
2468 }
2469 if self.token.kind == token::Comma {
2470 self.restore_snapshot(start_snapshot);
2471 return None;
2472 }
2473 let pre_pat_snapshot = self.create_snapshot_for_diagnostic();
2474 match self.parse_pat_no_top_alt(None) {
2475 Ok(_pat) => {
2476 if self.token.kind == token::FatArrow {
2477 // Reached arm end.
2478 self.restore_snapshot(pre_pat_snapshot);
2479 return Some(err(self, stmts));
2480 }
2481 }
2482 Err(err) => {
2483 err.cancel();
2484 }
2485 }
2486
2487 self.restore_snapshot(pre_pat_snapshot);
2488 match self.parse_stmt_without_recovery(true, ForceCollect::No) {
2489 // Consume statements for as long as possible.
2490 Ok(Some(stmt)) => {
2491 stmts.push(stmt);
2492 }
2493 Ok(None) => {
2494 self.restore_snapshot(start_snapshot);
2495 break;
2496 }
2497 // We couldn't parse either yet another statement missing it's
2498 // enclosing block nor the next arm's pattern or closing brace.
2499 Err(stmt_err) => {
2500 stmt_err.cancel();
2501 self.restore_snapshot(start_snapshot);
2502 break;
2503 }
2504 }
2505 }
2506 None
2507 }
2508
2509 pub(super) fn parse_arm(&mut self) -> PResult<'a, Arm> {
2510 fn check_let_expr(expr: &Expr) -> (bool, bool) {
2511 match expr.kind {
2512 ExprKind::Binary(_, ref lhs, ref rhs) => {
2513 let lhs_rslt = check_let_expr(lhs);
2514 let rhs_rslt = check_let_expr(rhs);
2515 (lhs_rslt.0 || rhs_rslt.0, false)
2516 }
2517 ExprKind::Let(..) => (true, true),
2518 _ => (false, true),
2519 }
2520 }
2521 let attrs = self.parse_outer_attributes()?;
2522 self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
2523 let lo = this.token.span;
2524 let pat = this.parse_pat_allow_top_alt(
2525 None,
2526 RecoverComma::Yes,
2527 RecoverColon::Yes,
2528 CommaRecoveryMode::EitherTupleOrPipe,
2529 )?;
2530 let guard = if this.eat_keyword(kw::If) {
2531 let if_span = this.prev_token.span;
2532 let cond = this.parse_expr()?;
2533 let (has_let_expr, does_not_have_bin_op) = check_let_expr(&cond);
2534 if has_let_expr {
2535 if does_not_have_bin_op {
2536 // Remove the last feature gating of a `let` expression since it's stable.
2537 this.sess.gated_spans.ungate_last(sym::let_chains, cond.span);
2538 }
2539 let span = if_span.to(cond.span);
2540 this.sess.gated_spans.gate(sym::if_let_guard, span);
2541 }
2542 Some(cond)
2543 } else {
2544 None
2545 };
2546 let arrow_span = this.token.span;
2547 if let Err(mut err) = this.expect(&token::FatArrow) {
2548 // We might have a `=>` -> `=` or `->` typo (issue #89396).
2549 if TokenKind::FatArrow
2550 .similar_tokens()
2551 .map_or(false, |similar_tokens| similar_tokens.contains(&this.token.kind))
2552 {
2553 err.span_suggestion(
2554 this.token.span,
2555 "try using a fat arrow here",
2556 "=>".to_string(),
2557 Applicability::MaybeIncorrect,
2558 );
2559 err.emit();
2560 this.bump();
2561 } else {
2562 return Err(err);
2563 }
2564 }
2565 let arm_start_span = this.token.span;
2566
2567 let expr = this.parse_expr_res(Restrictions::STMT_EXPR, None).map_err(|mut err| {
2568 err.span_label(arrow_span, "while parsing the `match` arm starting here");
2569 err
2570 })?;
2571
2572 let require_comma = classify::expr_requires_semi_to_be_stmt(&expr)
2573 && this.token != token::CloseDelim(token::Brace);
2574
2575 let hi = this.prev_token.span;
2576
2577 if require_comma {
2578 let sm = this.sess.source_map();
2579 if let Some(body) = this.parse_arm_body_missing_braces(&expr, arrow_span) {
2580 let span = body.span;
2581 return Ok((
2582 ast::Arm {
2583 attrs: attrs.into(),
2584 pat,
2585 guard,
2586 body,
2587 span,
2588 id: DUMMY_NODE_ID,
2589 is_placeholder: false,
2590 },
2591 TrailingToken::None,
2592 ));
2593 }
2594 this.expect_one_of(&[token::Comma], &[token::CloseDelim(token::Brace)]).map_err(
2595 |mut err| {
2596 match (sm.span_to_lines(expr.span), sm.span_to_lines(arm_start_span)) {
2597 (Ok(ref expr_lines), Ok(ref arm_start_lines))
2598 if arm_start_lines.lines[0].end_col
2599 == expr_lines.lines[0].end_col
2600 && expr_lines.lines.len() == 2
2601 && this.token == token::FatArrow =>
2602 {
2603 // We check whether there's any trailing code in the parse span,
2604 // if there isn't, we very likely have the following:
2605 //
2606 // X | &Y => "y"
2607 // | -- - missing comma
2608 // | |
2609 // | arrow_span
2610 // X | &X => "x"
2611 // | - ^^ self.token.span
2612 // | |
2613 // | parsed until here as `"y" & X`
2614 err.span_suggestion_short(
2615 arm_start_span.shrink_to_hi(),
2616 "missing a comma here to end this `match` arm",
2617 ",".to_owned(),
2618 Applicability::MachineApplicable,
2619 );
2620 }
2621 _ => {
2622 err.span_label(
2623 arrow_span,
2624 "while parsing the `match` arm starting here",
2625 );
2626 }
2627 }
2628 err
2629 },
2630 )?;
2631 } else {
2632 this.eat(&token::Comma);
2633 }
2634
2635 Ok((
2636 ast::Arm {
2637 attrs: attrs.into(),
2638 pat,
2639 guard,
2640 body: expr,
2641 span: lo.to(hi),
2642 id: DUMMY_NODE_ID,
2643 is_placeholder: false,
2644 },
2645 TrailingToken::None,
2646 ))
2647 })
2648 }
2649
2650 /// Parses a `try {...}` expression (`try` token already eaten).
2651 fn parse_try_block(&mut self, span_lo: Span, mut attrs: AttrVec) -> PResult<'a, P<Expr>> {
2652 let (iattrs, body) = self.parse_inner_attrs_and_block()?;
2653 attrs.extend(iattrs);
2654 if self.eat_keyword(kw::Catch) {
2655 let mut error = self.struct_span_err(
2656 self.prev_token.span,
2657 "keyword `catch` cannot follow a `try` block",
2658 );
2659 error.help("try using `match` on the result of the `try` block instead");
2660 error.emit();
2661 Err(error)
2662 } else {
2663 let span = span_lo.to(body.span);
2664 self.sess.gated_spans.gate(sym::try_blocks, span);
2665 Ok(self.mk_expr(span, ExprKind::TryBlock(body), attrs))
2666 }
2667 }
2668
2669 fn is_do_catch_block(&self) -> bool {
2670 self.token.is_keyword(kw::Do)
2671 && self.is_keyword_ahead(1, &[kw::Catch])
2672 && self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace))
2673 && !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
2674 }
2675
2676 fn is_try_block(&self) -> bool {
2677 self.token.is_keyword(kw::Try)
2678 && self.look_ahead(1, |t| *t == token::OpenDelim(token::Brace))
2679 && self.token.uninterpolated_span().rust_2018()
2680 }
2681
2682 /// Parses an `async move? {...}` expression.
2683 fn parse_async_block(&mut self, mut attrs: AttrVec) -> PResult<'a, P<Expr>> {
2684 let lo = self.token.span;
2685 self.expect_keyword(kw::Async)?;
2686 let capture_clause = self.parse_capture_clause()?;
2687 let (iattrs, body) = self.parse_inner_attrs_and_block()?;
2688 attrs.extend(iattrs);
2689 let kind = ExprKind::Async(capture_clause, DUMMY_NODE_ID, body);
2690 Ok(self.mk_expr(lo.to(self.prev_token.span), kind, attrs))
2691 }
2692
2693 fn is_async_block(&self) -> bool {
2694 self.token.is_keyword(kw::Async)
2695 && ((
2696 // `async move {`
2697 self.is_keyword_ahead(1, &[kw::Move])
2698 && self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace))
2699 ) || (
2700 // `async {`
2701 self.look_ahead(1, |t| *t == token::OpenDelim(token::Brace))
2702 ))
2703 }
2704
2705 fn is_certainly_not_a_block(&self) -> bool {
2706 self.look_ahead(1, |t| t.is_ident())
2707 && (
2708 // `{ ident, ` cannot start a block.
2709 self.look_ahead(2, |t| t == &token::Comma)
2710 || self.look_ahead(2, |t| t == &token::Colon)
2711 && (
2712 // `{ ident: token, ` cannot start a block.
2713 self.look_ahead(4, |t| t == &token::Comma) ||
2714 // `{ ident: ` cannot start a block unless it's a type ascription `ident: Type`.
2715 self.look_ahead(3, |t| !t.can_begin_type())
2716 )
2717 )
2718 }
2719
2720 fn maybe_parse_struct_expr(
2721 &mut self,
2722 qself: Option<&ast::QSelf>,
2723 path: &ast::Path,
2724 attrs: &AttrVec,
2725 ) -> Option<PResult<'a, P<Expr>>> {
2726 let struct_allowed = !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
2727 if struct_allowed || self.is_certainly_not_a_block() {
2728 if let Err(err) = self.expect(&token::OpenDelim(token::Brace)) {
2729 return Some(Err(err));
2730 }
2731 let expr = self.parse_struct_expr(qself.cloned(), path.clone(), attrs.clone(), true);
2732 if let (Ok(expr), false) = (&expr, struct_allowed) {
2733 // This is a struct literal, but we don't can't accept them here.
2734 self.error_struct_lit_not_allowed_here(path.span, expr.span);
2735 }
2736 return Some(expr);
2737 }
2738 None
2739 }
2740
2741 fn error_struct_lit_not_allowed_here(&self, lo: Span, sp: Span) {
2742 self.struct_span_err(sp, "struct literals are not allowed here")
2743 .multipart_suggestion(
2744 "surround the struct literal with parentheses",
2745 vec![(lo.shrink_to_lo(), "(".to_string()), (sp.shrink_to_hi(), ")".to_string())],
2746 Applicability::MachineApplicable,
2747 )
2748 .emit();
2749 }
2750
2751 pub(super) fn parse_struct_fields(
2752 &mut self,
2753 pth: ast::Path,
2754 recover: bool,
2755 close_delim: token::DelimToken,
2756 ) -> PResult<'a, (Vec<ExprField>, ast::StructRest, bool)> {
2757 let mut fields = Vec::new();
2758 let mut base = ast::StructRest::None;
2759 let mut recover_async = false;
2760
2761 let mut async_block_err = |e: &mut Diagnostic, span: Span| {
2762 recover_async = true;
2763 e.span_label(span, "`async` blocks are only allowed in Rust 2018 or later");
2764 e.help_use_latest_edition();
2765 };
2766
2767 while self.token != token::CloseDelim(close_delim) {
2768 if self.eat(&token::DotDot) {
2769 let exp_span = self.prev_token.span;
2770 // We permit `.. }` on the left-hand side of a destructuring assignment.
2771 if self.check(&token::CloseDelim(close_delim)) {
2772 base = ast::StructRest::Rest(self.prev_token.span.shrink_to_hi());
2773 break;
2774 }
2775 match self.parse_expr() {
2776 Ok(e) => base = ast::StructRest::Base(e),
2777 Err(mut e) if recover => {
2778 e.emit();
2779 self.recover_stmt();
2780 }
2781 Err(e) => return Err(e),
2782 }
2783 self.recover_struct_comma_after_dotdot(exp_span);
2784 break;
2785 }
2786
2787 let recovery_field = self.find_struct_error_after_field_looking_code();
2788 let parsed_field = match self.parse_expr_field() {
2789 Ok(f) => Some(f),
2790 Err(mut e) => {
2791 if pth == kw::Async {
2792 async_block_err(&mut e, pth.span);
2793 } else {
2794 e.span_label(pth.span, "while parsing this struct");
2795 }
2796 e.emit();
2797
2798 // If the next token is a comma, then try to parse
2799 // what comes next as additional fields, rather than
2800 // bailing out until next `}`.
2801 if self.token != token::Comma {
2802 self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
2803 if self.token != token::Comma {
2804 break;
2805 }
2806 }
2807 None
2808 }
2809 };
2810
2811 match self.expect_one_of(&[token::Comma], &[token::CloseDelim(close_delim)]) {
2812 Ok(_) => {
2813 if let Some(f) = parsed_field.or(recovery_field) {
2814 // Only include the field if there's no parse error for the field name.
2815 fields.push(f);
2816 }
2817 }
2818 Err(mut e) => {
2819 if pth == kw::Async {
2820 async_block_err(&mut e, pth.span);
2821 } else {
2822 e.span_label(pth.span, "while parsing this struct");
2823 if let Some(f) = recovery_field {
2824 fields.push(f);
2825 e.span_suggestion(
2826 self.prev_token.span.shrink_to_hi(),
2827 "try adding a comma",
2828 ",".into(),
2829 Applicability::MachineApplicable,
2830 );
2831 }
2832 }
2833 if !recover {
2834 return Err(e);
2835 }
2836 e.emit();
2837 self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
2838 self.eat(&token::Comma);
2839 }
2840 }
2841 }
2842 Ok((fields, base, recover_async))
2843 }
2844
2845 /// Precondition: already parsed the '{'.
2846 pub(super) fn parse_struct_expr(
2847 &mut self,
2848 qself: Option<ast::QSelf>,
2849 pth: ast::Path,
2850 attrs: AttrVec,
2851 recover: bool,
2852 ) -> PResult<'a, P<Expr>> {
2853 let lo = pth.span;
2854 let (fields, base, recover_async) =
2855 self.parse_struct_fields(pth.clone(), recover, token::Brace)?;
2856 let span = lo.to(self.token.span);
2857 self.expect(&token::CloseDelim(token::Brace))?;
2858 let expr = if recover_async {
2859 ExprKind::Err
2860 } else {
2861 ExprKind::Struct(P(ast::StructExpr { qself, path: pth, fields, rest: base }))
2862 };
2863 Ok(self.mk_expr(span, expr, attrs))
2864 }
2865
2866 /// Use in case of error after field-looking code: `S { foo: () with a }`.
2867 fn find_struct_error_after_field_looking_code(&self) -> Option<ExprField> {
2868 match self.token.ident() {
2869 Some((ident, is_raw))
2870 if (is_raw || !ident.is_reserved())
2871 && self.look_ahead(1, |t| *t == token::Colon) =>
2872 {
2873 Some(ast::ExprField {
2874 ident,
2875 span: self.token.span,
2876 expr: self.mk_expr_err(self.token.span),
2877 is_shorthand: false,
2878 attrs: AttrVec::new(),
2879 id: DUMMY_NODE_ID,
2880 is_placeholder: false,
2881 })
2882 }
2883 _ => None,
2884 }
2885 }
2886
2887 fn recover_struct_comma_after_dotdot(&mut self, span: Span) {
2888 if self.token != token::Comma {
2889 return;
2890 }
2891 self.struct_span_err(
2892 span.to(self.prev_token.span),
2893 "cannot use a comma after the base struct",
2894 )
2895 .span_suggestion_short(
2896 self.token.span,
2897 "remove this comma",
2898 String::new(),
2899 Applicability::MachineApplicable,
2900 )
2901 .note("the base struct must always be the last field")
2902 .emit();
2903 self.recover_stmt();
2904 }
2905
2906 /// Parses `ident (COLON expr)?`.
2907 fn parse_expr_field(&mut self) -> PResult<'a, ExprField> {
2908 let attrs = self.parse_outer_attributes()?;
2909 self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
2910 let lo = this.token.span;
2911
2912 // Check if a colon exists one ahead. This means we're parsing a fieldname.
2913 let is_shorthand = !this.look_ahead(1, |t| t == &token::Colon || t == &token::Eq);
2914 let (ident, expr) = if is_shorthand {
2915 // Mimic `x: x` for the `x` field shorthand.
2916 let ident = this.parse_ident_common(false)?;
2917 let path = ast::Path::from_ident(ident);
2918 (ident, this.mk_expr(ident.span, ExprKind::Path(None, path), AttrVec::new()))
2919 } else {
2920 let ident = this.parse_field_name()?;
2921 this.error_on_eq_field_init(ident);
2922 this.bump(); // `:`
2923 (ident, this.parse_expr()?)
2924 };
2925
2926 Ok((
2927 ast::ExprField {
2928 ident,
2929 span: lo.to(expr.span),
2930 expr,
2931 is_shorthand,
2932 attrs: attrs.into(),
2933 id: DUMMY_NODE_ID,
2934 is_placeholder: false,
2935 },
2936 TrailingToken::MaybeComma,
2937 ))
2938 })
2939 }
2940
2941 /// Check for `=`. This means the source incorrectly attempts to
2942 /// initialize a field with an eq rather than a colon.
2943 fn error_on_eq_field_init(&self, field_name: Ident) {
2944 if self.token != token::Eq {
2945 return;
2946 }
2947
2948 self.struct_span_err(self.token.span, "expected `:`, found `=`")
2949 .span_suggestion(
2950 field_name.span.shrink_to_hi().to(self.token.span),
2951 "replace equals symbol with a colon",
2952 ":".to_string(),
2953 Applicability::MachineApplicable,
2954 )
2955 .emit();
2956 }
2957
2958 fn err_dotdotdot_syntax(&self, span: Span) {
2959 self.struct_span_err(span, "unexpected token: `...`")
2960 .span_suggestion(
2961 span,
2962 "use `..` for an exclusive range",
2963 "..".to_owned(),
2964 Applicability::MaybeIncorrect,
2965 )
2966 .span_suggestion(
2967 span,
2968 "or `..=` for an inclusive range",
2969 "..=".to_owned(),
2970 Applicability::MaybeIncorrect,
2971 )
2972 .emit();
2973 }
2974
2975 fn err_larrow_operator(&self, span: Span) {
2976 self.struct_span_err(span, "unexpected token: `<-`")
2977 .span_suggestion(
2978 span,
2979 "if you meant to write a comparison against a negative value, add a \
2980 space in between `<` and `-`",
2981 "< -".to_string(),
2982 Applicability::MaybeIncorrect,
2983 )
2984 .emit();
2985 }
2986
2987 fn mk_assign_op(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind {
2988 ExprKind::AssignOp(binop, lhs, rhs)
2989 }
2990
2991 fn mk_range(
2992 &mut self,
2993 start: Option<P<Expr>>,
2994 end: Option<P<Expr>>,
2995 limits: RangeLimits,
2996 ) -> ExprKind {
2997 if end.is_none() && limits == RangeLimits::Closed {
2998 self.inclusive_range_with_incorrect_end(self.prev_token.span);
2999 ExprKind::Err
3000 } else {
3001 ExprKind::Range(start, end, limits)
3002 }
3003 }
3004
3005 fn mk_unary(&self, unop: UnOp, expr: P<Expr>) -> ExprKind {
3006 ExprKind::Unary(unop, expr)
3007 }
3008
3009 fn mk_binary(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind {
3010 ExprKind::Binary(binop, lhs, rhs)
3011 }
3012
3013 fn mk_index(&self, expr: P<Expr>, idx: P<Expr>) -> ExprKind {
3014 ExprKind::Index(expr, idx)
3015 }
3016
3017 fn mk_call(&self, f: P<Expr>, args: Vec<P<Expr>>) -> ExprKind {
3018 ExprKind::Call(f, args)
3019 }
3020
3021 fn mk_await_expr(&mut self, self_arg: P<Expr>, lo: Span) -> P<Expr> {
3022 let span = lo.to(self.prev_token.span);
3023 let await_expr = self.mk_expr(span, ExprKind::Await(self_arg), AttrVec::new());
3024 self.recover_from_await_method_call();
3025 await_expr
3026 }
3027
3028 crate fn mk_expr(&self, span: Span, kind: ExprKind, attrs: AttrVec) -> P<Expr> {
3029 P(Expr { kind, span, attrs, id: DUMMY_NODE_ID, tokens: None })
3030 }
3031
3032 pub(super) fn mk_expr_err(&self, span: Span) -> P<Expr> {
3033 self.mk_expr(span, ExprKind::Err, AttrVec::new())
3034 }
3035
3036 /// Create expression span ensuring the span of the parent node
3037 /// is larger than the span of lhs and rhs, including the attributes.
3038 fn mk_expr_sp(&self, lhs: &P<Expr>, lhs_span: Span, rhs_span: Span) -> Span {
3039 lhs.attrs
3040 .iter()
3041 .find(|a| a.style == AttrStyle::Outer)
3042 .map_or(lhs_span, |a| a.span)
3043 .to(rhs_span)
3044 }
3045
3046 fn collect_tokens_for_expr(
3047 &mut self,
3048 attrs: AttrWrapper,
3049 f: impl FnOnce(&mut Self, Vec<ast::Attribute>) -> PResult<'a, P<Expr>>,
3050 ) -> PResult<'a, P<Expr>> {
3051 self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
3052 let res = f(this, attrs)?;
3053 let trailing = if this.restrictions.contains(Restrictions::STMT_EXPR)
3054 && this.token.kind == token::Semi
3055 {
3056 TrailingToken::Semi
3057 } else {
3058 // FIXME - pass this through from the place where we know
3059 // we need a comma, rather than assuming that `#[attr] expr,`
3060 // always captures a trailing comma
3061 TrailingToken::MaybeComma
3062 };
3063 Ok((res, trailing))
3064 })
3065 }
3066 }