]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_parse/src/parser/expr.rs
New upstream version 1.64.0+dfsg1
[rustc.git] / compiler / rustc_parse / src / parser / expr.rs
1 use super::diagnostics::SnapshotParser;
2 use super::pat::{CommaRecoveryMode, RecoverColon, RecoverComma, PARAM_EXPECTED};
3 use super::ty::{AllowPlus, RecoverQPath, RecoverReturnSign};
4 use super::{
5 AttrWrapper, BlockMode, ClosureSpans, ForceCollect, Parser, PathStyle, Restrictions,
6 SemiColonMode, SeqSep, TokenExpectType, TokenType, TrailingToken,
7 };
8 use crate::maybe_recover_from_interpolated_ty_qpath;
9
10 use core::mem;
11 use rustc_ast::ptr::P;
12 use rustc_ast::token::{self, Delimiter, Token, TokenKind};
13 use rustc_ast::tokenstream::Spacing;
14 use rustc_ast::util::classify;
15 use rustc_ast::util::literal::LitError;
16 use rustc_ast::util::parser::{prec_let_scrutinee_needs_par, AssocOp, Fixity};
17 use rustc_ast::visit::Visitor;
18 use rustc_ast::{self as ast, AttrStyle, AttrVec, CaptureBy, ExprField, Lit, UnOp, DUMMY_NODE_ID};
19 use rustc_ast::{AnonConst, BinOp, BinOpKind, FnDecl, FnRetTy, MacCall, Param, Ty, TyKind};
20 use rustc_ast::{Arm, Async, BlockCheckMode, Expr, ExprKind, Label, Movability, RangeLimits};
21 use rustc_ast::{ClosureBinder, StmtKind};
22 use rustc_ast_pretty::pprust;
23 use rustc_data_structures::thin_vec::ThinVec;
24 use rustc_errors::{Applicability, Diagnostic, DiagnosticBuilder, ErrorGuaranteed, PResult};
25 use rustc_session::lint::builtin::BREAK_WITH_LABEL_AND_LOOP;
26 use rustc_session::lint::BuiltinLintDiagnostics;
27 use rustc_span::source_map::{self, Span, Spanned};
28 use rustc_span::symbol::{kw, sym, Ident, Symbol};
29 use rustc_span::{BytePos, Pos};
30
31 /// Possibly accepts an `token::Interpolated` expression (a pre-parsed expression
32 /// dropped into the token stream, which happens while parsing the result of
33 /// macro expansion). Placement of these is not as complex as I feared it would
34 /// be. The important thing is to make sure that lookahead doesn't balk at
35 /// `token::Interpolated` tokens.
36 macro_rules! maybe_whole_expr {
37 ($p:expr) => {
38 if let token::Interpolated(nt) = &$p.token.kind {
39 match &**nt {
40 token::NtExpr(e) | token::NtLiteral(e) => {
41 let e = e.clone();
42 $p.bump();
43 return Ok(e);
44 }
45 token::NtPath(path) => {
46 let path = (**path).clone();
47 $p.bump();
48 return Ok($p.mk_expr(
49 $p.prev_token.span,
50 ExprKind::Path(None, path),
51 AttrVec::new(),
52 ));
53 }
54 token::NtBlock(block) => {
55 let block = block.clone();
56 $p.bump();
57 return Ok($p.mk_expr(
58 $p.prev_token.span,
59 ExprKind::Block(block, None),
60 AttrVec::new(),
61 ));
62 }
63 _ => {}
64 };
65 }
66 };
67 }
68
69 #[derive(Debug)]
70 pub(super) enum LhsExpr {
71 NotYetParsed,
72 AttributesParsed(AttrWrapper),
73 AlreadyParsed(P<Expr>),
74 }
75
76 impl From<Option<AttrWrapper>> for LhsExpr {
77 /// Converts `Some(attrs)` into `LhsExpr::AttributesParsed(attrs)`
78 /// and `None` into `LhsExpr::NotYetParsed`.
79 ///
80 /// This conversion does not allocate.
81 fn from(o: Option<AttrWrapper>) -> Self {
82 if let Some(attrs) = o { LhsExpr::AttributesParsed(attrs) } else { LhsExpr::NotYetParsed }
83 }
84 }
85
86 impl From<P<Expr>> for LhsExpr {
87 /// Converts the `expr: P<Expr>` into `LhsExpr::AlreadyParsed(expr)`.
88 ///
89 /// This conversion does not allocate.
90 fn from(expr: P<Expr>) -> Self {
91 LhsExpr::AlreadyParsed(expr)
92 }
93 }
94
95 impl<'a> Parser<'a> {
96 /// Parses an expression.
97 #[inline]
98 pub fn parse_expr(&mut self) -> PResult<'a, P<Expr>> {
99 self.current_closure.take();
100
101 self.parse_expr_res(Restrictions::empty(), None)
102 }
103
104 /// Parses an expression, forcing tokens to be collected
105 pub fn parse_expr_force_collect(&mut self) -> PResult<'a, P<Expr>> {
106 self.collect_tokens_no_attrs(|this| this.parse_expr())
107 }
108
109 pub fn parse_anon_const_expr(&mut self) -> PResult<'a, AnonConst> {
110 self.parse_expr().map(|value| AnonConst { id: DUMMY_NODE_ID, value })
111 }
112
113 fn parse_expr_catch_underscore(&mut self) -> PResult<'a, P<Expr>> {
114 match self.parse_expr() {
115 Ok(expr) => Ok(expr),
116 Err(mut err) => match self.token.ident() {
117 Some((Ident { name: kw::Underscore, .. }, false))
118 if self.look_ahead(1, |t| t == &token::Comma) =>
119 {
120 // Special-case handling of `foo(_, _, _)`
121 err.emit();
122 self.bump();
123 Ok(self.mk_expr(self.prev_token.span, ExprKind::Err, AttrVec::new()))
124 }
125 _ => Err(err),
126 },
127 }
128 }
129
130 /// Parses a sequence of expressions delimited by parentheses.
131 fn parse_paren_expr_seq(&mut self) -> PResult<'a, Vec<P<Expr>>> {
132 self.parse_paren_comma_seq(|p| p.parse_expr_catch_underscore()).map(|(r, _)| r)
133 }
134
135 /// Parses an expression, subject to the given restrictions.
136 #[inline]
137 pub(super) fn parse_expr_res(
138 &mut self,
139 r: Restrictions,
140 already_parsed_attrs: Option<AttrWrapper>,
141 ) -> PResult<'a, P<Expr>> {
142 self.with_res(r, |this| this.parse_assoc_expr(already_parsed_attrs))
143 }
144
145 /// Parses an associative expression.
146 ///
147 /// This parses an expression accounting for associativity and precedence of the operators in
148 /// the expression.
149 #[inline]
150 fn parse_assoc_expr(
151 &mut self,
152 already_parsed_attrs: Option<AttrWrapper>,
153 ) -> PResult<'a, P<Expr>> {
154 self.parse_assoc_expr_with(0, already_parsed_attrs.into())
155 }
156
157 /// Parses an associative expression with operators of at least `min_prec` precedence.
158 pub(super) fn parse_assoc_expr_with(
159 &mut self,
160 min_prec: usize,
161 lhs: LhsExpr,
162 ) -> PResult<'a, P<Expr>> {
163 let mut lhs = if let LhsExpr::AlreadyParsed(expr) = lhs {
164 expr
165 } else {
166 let attrs = match lhs {
167 LhsExpr::AttributesParsed(attrs) => Some(attrs),
168 _ => None,
169 };
170 if [token::DotDot, token::DotDotDot, token::DotDotEq].contains(&self.token.kind) {
171 return self.parse_prefix_range_expr(attrs);
172 } else {
173 self.parse_prefix_expr(attrs)?
174 }
175 };
176 let last_type_ascription_set = self.last_type_ascription.is_some();
177
178 if !self.should_continue_as_assoc_expr(&lhs) {
179 self.last_type_ascription = None;
180 return Ok(lhs);
181 }
182
183 self.expected_tokens.push(TokenType::Operator);
184 while let Some(op) = self.check_assoc_op() {
185 // Adjust the span for interpolated LHS to point to the `$lhs` token
186 // and not to what it refers to.
187 let lhs_span = match self.prev_token.kind {
188 TokenKind::Interpolated(..) => self.prev_token.span,
189 _ => lhs.span,
190 };
191
192 let cur_op_span = self.token.span;
193 let restrictions = if op.node.is_assign_like() {
194 self.restrictions & Restrictions::NO_STRUCT_LITERAL
195 } else {
196 self.restrictions
197 };
198 let prec = op.node.precedence();
199 if prec < min_prec {
200 break;
201 }
202 // Check for deprecated `...` syntax
203 if self.token == token::DotDotDot && op.node == AssocOp::DotDotEq {
204 self.err_dotdotdot_syntax(self.token.span);
205 }
206
207 if self.token == token::LArrow {
208 self.err_larrow_operator(self.token.span);
209 }
210
211 self.bump();
212 if op.node.is_comparison() {
213 if let Some(expr) = self.check_no_chained_comparison(&lhs, &op)? {
214 return Ok(expr);
215 }
216 }
217
218 // Look for JS' `===` and `!==` and recover
219 if (op.node == AssocOp::Equal || op.node == AssocOp::NotEqual)
220 && self.token.kind == token::Eq
221 && self.prev_token.span.hi() == self.token.span.lo()
222 {
223 let sp = op.span.to(self.token.span);
224 let sugg = match op.node {
225 AssocOp::Equal => "==",
226 AssocOp::NotEqual => "!=",
227 _ => unreachable!(),
228 };
229 self.struct_span_err(sp, &format!("invalid comparison operator `{sugg}=`"))
230 .span_suggestion_short(
231 sp,
232 &format!("`{s}=` is not a valid comparison operator, use `{s}`", s = sugg),
233 sugg,
234 Applicability::MachineApplicable,
235 )
236 .emit();
237 self.bump();
238 }
239
240 // Look for PHP's `<>` and recover
241 if op.node == AssocOp::Less
242 && self.token.kind == token::Gt
243 && self.prev_token.span.hi() == self.token.span.lo()
244 {
245 let sp = op.span.to(self.token.span);
246 self.struct_span_err(sp, "invalid comparison operator `<>`")
247 .span_suggestion_short(
248 sp,
249 "`<>` is not a valid comparison operator, use `!=`",
250 "!=",
251 Applicability::MachineApplicable,
252 )
253 .emit();
254 self.bump();
255 }
256
257 // Look for C++'s `<=>` and recover
258 if op.node == AssocOp::LessEqual
259 && self.token.kind == token::Gt
260 && self.prev_token.span.hi() == self.token.span.lo()
261 {
262 let sp = op.span.to(self.token.span);
263 self.struct_span_err(sp, "invalid comparison operator `<=>`")
264 .span_label(
265 sp,
266 "`<=>` is not a valid comparison operator, use `std::cmp::Ordering`",
267 )
268 .emit();
269 self.bump();
270 }
271
272 if self.prev_token == token::BinOp(token::Plus)
273 && self.token == token::BinOp(token::Plus)
274 && self.prev_token.span.between(self.token.span).is_empty()
275 {
276 let op_span = self.prev_token.span.to(self.token.span);
277 // Eat the second `+`
278 self.bump();
279 lhs = self.recover_from_postfix_increment(lhs, op_span)?;
280 continue;
281 }
282
283 let op = op.node;
284 // Special cases:
285 if op == AssocOp::As {
286 lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Cast)?;
287 continue;
288 } else if op == AssocOp::Colon {
289 lhs = self.parse_assoc_op_ascribe(lhs, lhs_span)?;
290 continue;
291 } else if op == AssocOp::DotDot || op == AssocOp::DotDotEq {
292 // If we didn't have to handle `x..`/`x..=`, it would be pretty easy to
293 // generalise it to the Fixity::None code.
294 lhs = self.parse_range_expr(prec, lhs, op, cur_op_span)?;
295 break;
296 }
297
298 let fixity = op.fixity();
299 let prec_adjustment = match fixity {
300 Fixity::Right => 0,
301 Fixity::Left => 1,
302 // We currently have no non-associative operators that are not handled above by
303 // the special cases. The code is here only for future convenience.
304 Fixity::None => 1,
305 };
306 let rhs = self.with_res(restrictions - Restrictions::STMT_EXPR, |this| {
307 this.parse_assoc_expr_with(prec + prec_adjustment, LhsExpr::NotYetParsed)
308 })?;
309
310 let span = self.mk_expr_sp(&lhs, lhs_span, rhs.span);
311 lhs = match op {
312 AssocOp::Add
313 | AssocOp::Subtract
314 | AssocOp::Multiply
315 | AssocOp::Divide
316 | AssocOp::Modulus
317 | AssocOp::LAnd
318 | AssocOp::LOr
319 | AssocOp::BitXor
320 | AssocOp::BitAnd
321 | AssocOp::BitOr
322 | AssocOp::ShiftLeft
323 | AssocOp::ShiftRight
324 | AssocOp::Equal
325 | AssocOp::Less
326 | AssocOp::LessEqual
327 | AssocOp::NotEqual
328 | AssocOp::Greater
329 | AssocOp::GreaterEqual => {
330 let ast_op = op.to_ast_binop().unwrap();
331 let binary = self.mk_binary(source_map::respan(cur_op_span, ast_op), lhs, rhs);
332 self.mk_expr(span, binary, AttrVec::new())
333 }
334 AssocOp::Assign => {
335 self.mk_expr(span, ExprKind::Assign(lhs, rhs, cur_op_span), AttrVec::new())
336 }
337 AssocOp::AssignOp(k) => {
338 let aop = match k {
339 token::Plus => BinOpKind::Add,
340 token::Minus => BinOpKind::Sub,
341 token::Star => BinOpKind::Mul,
342 token::Slash => BinOpKind::Div,
343 token::Percent => BinOpKind::Rem,
344 token::Caret => BinOpKind::BitXor,
345 token::And => BinOpKind::BitAnd,
346 token::Or => BinOpKind::BitOr,
347 token::Shl => BinOpKind::Shl,
348 token::Shr => BinOpKind::Shr,
349 };
350 let aopexpr = self.mk_assign_op(source_map::respan(cur_op_span, aop), lhs, rhs);
351 self.mk_expr(span, aopexpr, AttrVec::new())
352 }
353 AssocOp::As | AssocOp::Colon | AssocOp::DotDot | AssocOp::DotDotEq => {
354 self.span_bug(span, "AssocOp should have been handled by special case")
355 }
356 };
357
358 if let Fixity::None = fixity {
359 break;
360 }
361 }
362 if last_type_ascription_set {
363 self.last_type_ascription = None;
364 }
365 Ok(lhs)
366 }
367
368 fn should_continue_as_assoc_expr(&mut self, lhs: &Expr) -> bool {
369 match (self.expr_is_complete(lhs), AssocOp::from_token(&self.token)) {
370 // Semi-statement forms are odd:
371 // See https://github.com/rust-lang/rust/issues/29071
372 (true, None) => false,
373 (false, _) => true, // Continue parsing the expression.
374 // An exhaustive check is done in the following block, but these are checked first
375 // because they *are* ambiguous but also reasonable looking incorrect syntax, so we
376 // want to keep their span info to improve diagnostics in these cases in a later stage.
377 (true, Some(AssocOp::Multiply)) | // `{ 42 } *foo = bar;` or `{ 42 } * 3`
378 (true, Some(AssocOp::Subtract)) | // `{ 42 } -5`
379 (true, Some(AssocOp::Add)) // `{ 42 } + 42
380 // If the next token is a keyword, then the tokens above *are* unambiguously incorrect:
381 // `if x { a } else { b } && if y { c } else { d }`
382 if !self.look_ahead(1, |t| t.is_used_keyword()) => {
383 // These cases are ambiguous and can't be identified in the parser alone.
384 let sp = self.sess.source_map().start_point(self.token.span);
385 self.sess.ambiguous_block_expr_parse.borrow_mut().insert(sp, lhs.span);
386 false
387 }
388 (true, Some(AssocOp::LAnd)) |
389 (true, Some(AssocOp::LOr)) |
390 (true, Some(AssocOp::BitOr)) => {
391 // `{ 42 } &&x` (#61475) or `{ 42 } && if x { 1 } else { 0 }`. Separated from the
392 // above due to #74233.
393 // These cases are ambiguous and can't be identified in the parser alone.
394 //
395 // Bitwise AND is left out because guessing intent is hard. We can make
396 // suggestions based on the assumption that double-refs are rarely intentional,
397 // and closures are distinct enough that they don't get mixed up with their
398 // return value.
399 let sp = self.sess.source_map().start_point(self.token.span);
400 self.sess.ambiguous_block_expr_parse.borrow_mut().insert(sp, lhs.span);
401 false
402 }
403 (true, Some(ref op)) if !op.can_continue_expr_unambiguously() => false,
404 (true, Some(_)) => {
405 self.error_found_expr_would_be_stmt(lhs);
406 true
407 }
408 }
409 }
410
411 /// We've found an expression that would be parsed as a statement,
412 /// but the next token implies this should be parsed as an expression.
413 /// For example: `if let Some(x) = x { x } else { 0 } / 2`.
414 fn error_found_expr_would_be_stmt(&self, lhs: &Expr) {
415 let mut err = self.struct_span_err(
416 self.token.span,
417 &format!("expected expression, found `{}`", pprust::token_to_string(&self.token),),
418 );
419 err.span_label(self.token.span, "expected expression");
420 self.sess.expr_parentheses_needed(&mut err, lhs.span);
421 err.emit();
422 }
423
424 /// Possibly translate the current token to an associative operator.
425 /// The method does not advance the current token.
426 ///
427 /// Also performs recovery for `and` / `or` which are mistaken for `&&` and `||` respectively.
428 fn check_assoc_op(&self) -> Option<Spanned<AssocOp>> {
429 let (op, span) = match (AssocOp::from_token(&self.token), self.token.ident()) {
430 // When parsing const expressions, stop parsing when encountering `>`.
431 (
432 Some(
433 AssocOp::ShiftRight
434 | AssocOp::Greater
435 | AssocOp::GreaterEqual
436 | AssocOp::AssignOp(token::BinOpToken::Shr),
437 ),
438 _,
439 ) if self.restrictions.contains(Restrictions::CONST_EXPR) => {
440 return None;
441 }
442 (Some(op), _) => (op, self.token.span),
443 (None, Some((Ident { name: sym::and, span }, false))) => {
444 self.error_bad_logical_op("and", "&&", "conjunction");
445 (AssocOp::LAnd, span)
446 }
447 (None, Some((Ident { name: sym::or, span }, false))) => {
448 self.error_bad_logical_op("or", "||", "disjunction");
449 (AssocOp::LOr, span)
450 }
451 _ => return None,
452 };
453 Some(source_map::respan(span, op))
454 }
455
456 /// Error on `and` and `or` suggesting `&&` and `||` respectively.
457 fn error_bad_logical_op(&self, bad: &str, good: &str, english: &str) {
458 self.struct_span_err(self.token.span, &format!("`{bad}` is not a logical operator"))
459 .span_suggestion_short(
460 self.token.span,
461 &format!("use `{good}` to perform logical {english}"),
462 good,
463 Applicability::MachineApplicable,
464 )
465 .note("unlike in e.g., python and PHP, `&&` and `||` are used for logical operators")
466 .emit();
467 }
468
469 /// Checks if this expression is a successfully parsed statement.
470 fn expr_is_complete(&self, e: &Expr) -> bool {
471 self.restrictions.contains(Restrictions::STMT_EXPR)
472 && !classify::expr_requires_semi_to_be_stmt(e)
473 }
474
475 /// Parses `x..y`, `x..=y`, and `x..`/`x..=`.
476 /// The other two variants are handled in `parse_prefix_range_expr` below.
477 fn parse_range_expr(
478 &mut self,
479 prec: usize,
480 lhs: P<Expr>,
481 op: AssocOp,
482 cur_op_span: Span,
483 ) -> PResult<'a, P<Expr>> {
484 let rhs = if self.is_at_start_of_range_notation_rhs() {
485 Some(self.parse_assoc_expr_with(prec + 1, LhsExpr::NotYetParsed)?)
486 } else {
487 None
488 };
489 let rhs_span = rhs.as_ref().map_or(cur_op_span, |x| x.span);
490 let span = self.mk_expr_sp(&lhs, lhs.span, rhs_span);
491 let limits =
492 if op == AssocOp::DotDot { RangeLimits::HalfOpen } else { RangeLimits::Closed };
493 let range = self.mk_range(Some(lhs), rhs, limits);
494 Ok(self.mk_expr(span, range, AttrVec::new()))
495 }
496
497 fn is_at_start_of_range_notation_rhs(&self) -> bool {
498 if self.token.can_begin_expr() {
499 // Parse `for i in 1.. { }` as infinite loop, not as `for i in (1..{})`.
500 if self.token == token::OpenDelim(Delimiter::Brace) {
501 return !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
502 }
503 true
504 } else {
505 false
506 }
507 }
508
509 /// Parses prefix-forms of range notation: `..expr`, `..`, `..=expr`.
510 fn parse_prefix_range_expr(&mut self, attrs: Option<AttrWrapper>) -> PResult<'a, P<Expr>> {
511 // Check for deprecated `...` syntax.
512 if self.token == token::DotDotDot {
513 self.err_dotdotdot_syntax(self.token.span);
514 }
515
516 debug_assert!(
517 [token::DotDot, token::DotDotDot, token::DotDotEq].contains(&self.token.kind),
518 "parse_prefix_range_expr: token {:?} is not DotDot/DotDotEq",
519 self.token
520 );
521
522 let limits = match self.token.kind {
523 token::DotDot => RangeLimits::HalfOpen,
524 _ => RangeLimits::Closed,
525 };
526 let op = AssocOp::from_token(&self.token);
527 // FIXME: `parse_prefix_range_expr` is called when the current
528 // token is `DotDot`, `DotDotDot`, or `DotDotEq`. If we haven't already
529 // parsed attributes, then trying to parse them here will always fail.
530 // We should figure out how we want attributes on range expressions to work.
531 let attrs = self.parse_or_use_outer_attributes(attrs)?;
532 self.collect_tokens_for_expr(attrs, |this, attrs| {
533 let lo = this.token.span;
534 this.bump();
535 let (span, opt_end) = if this.is_at_start_of_range_notation_rhs() {
536 // RHS must be parsed with more associativity than the dots.
537 this.parse_assoc_expr_with(op.unwrap().precedence() + 1, LhsExpr::NotYetParsed)
538 .map(|x| (lo.to(x.span), Some(x)))?
539 } else {
540 (lo, None)
541 };
542 let range = this.mk_range(None, opt_end, limits);
543 Ok(this.mk_expr(span, range, attrs.into()))
544 })
545 }
546
547 /// Parses a prefix-unary-operator expr.
548 fn parse_prefix_expr(&mut self, attrs: Option<AttrWrapper>) -> PResult<'a, P<Expr>> {
549 let attrs = self.parse_or_use_outer_attributes(attrs)?;
550 let lo = self.token.span;
551
552 macro_rules! make_it {
553 ($this:ident, $attrs:expr, |this, _| $body:expr) => {
554 $this.collect_tokens_for_expr($attrs, |$this, attrs| {
555 let (hi, ex) = $body?;
556 Ok($this.mk_expr(lo.to(hi), ex, attrs.into()))
557 })
558 };
559 }
560
561 let this = self;
562
563 // Note: when adding new unary operators, don't forget to adjust TokenKind::can_begin_expr()
564 match this.token.uninterpolate().kind {
565 token::Not => make_it!(this, attrs, |this, _| this.parse_unary_expr(lo, UnOp::Not)), // `!expr`
566 token::Tilde => make_it!(this, attrs, |this, _| this.recover_tilde_expr(lo)), // `~expr`
567 token::BinOp(token::Minus) => {
568 make_it!(this, attrs, |this, _| this.parse_unary_expr(lo, UnOp::Neg))
569 } // `-expr`
570 token::BinOp(token::Star) => {
571 make_it!(this, attrs, |this, _| this.parse_unary_expr(lo, UnOp::Deref))
572 } // `*expr`
573 token::BinOp(token::And) | token::AndAnd => {
574 make_it!(this, attrs, |this, _| this.parse_borrow_expr(lo))
575 }
576 token::BinOp(token::Plus) if this.look_ahead(1, |tok| tok.is_numeric_lit()) => {
577 let mut err = this.struct_span_err(lo, "leading `+` is not supported");
578 err.span_label(lo, "unexpected `+`");
579
580 // a block on the LHS might have been intended to be an expression instead
581 if let Some(sp) = this.sess.ambiguous_block_expr_parse.borrow().get(&lo) {
582 this.sess.expr_parentheses_needed(&mut err, *sp);
583 } else {
584 err.span_suggestion_verbose(
585 lo,
586 "try removing the `+`",
587 "",
588 Applicability::MachineApplicable,
589 );
590 }
591 err.emit();
592
593 this.bump();
594 this.parse_prefix_expr(None)
595 } // `+expr`
596 // Recover from `++x`:
597 token::BinOp(token::Plus)
598 if this.look_ahead(1, |t| *t == token::BinOp(token::Plus)) =>
599 {
600 let prev_is_semi = this.prev_token == token::Semi;
601 let pre_span = this.token.span.to(this.look_ahead(1, |t| t.span));
602 // Eat both `+`s.
603 this.bump();
604 this.bump();
605
606 let operand_expr = this.parse_dot_or_call_expr(Default::default())?;
607 this.recover_from_prefix_increment(operand_expr, pre_span, prev_is_semi)
608 }
609 token::Ident(..) if this.token.is_keyword(kw::Box) => {
610 make_it!(this, attrs, |this, _| this.parse_box_expr(lo))
611 }
612 token::Ident(..) if this.is_mistaken_not_ident_negation() => {
613 make_it!(this, attrs, |this, _| this.recover_not_expr(lo))
614 }
615 _ => return this.parse_dot_or_call_expr(Some(attrs)),
616 }
617 }
618
619 fn parse_prefix_expr_common(&mut self, lo: Span) -> PResult<'a, (Span, P<Expr>)> {
620 self.bump();
621 let expr = self.parse_prefix_expr(None);
622 let (span, expr) = self.interpolated_or_expr_span(expr)?;
623 Ok((lo.to(span), expr))
624 }
625
626 fn parse_unary_expr(&mut self, lo: Span, op: UnOp) -> PResult<'a, (Span, ExprKind)> {
627 let (span, expr) = self.parse_prefix_expr_common(lo)?;
628 Ok((span, self.mk_unary(op, expr)))
629 }
630
631 // Recover on `!` suggesting for bitwise negation instead.
632 fn recover_tilde_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
633 self.struct_span_err(lo, "`~` cannot be used as a unary operator")
634 .span_suggestion_short(
635 lo,
636 "use `!` to perform bitwise not",
637 "!",
638 Applicability::MachineApplicable,
639 )
640 .emit();
641
642 self.parse_unary_expr(lo, UnOp::Not)
643 }
644
645 /// Parse `box expr`.
646 fn parse_box_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
647 let (span, expr) = self.parse_prefix_expr_common(lo)?;
648 self.sess.gated_spans.gate(sym::box_syntax, span);
649 Ok((span, ExprKind::Box(expr)))
650 }
651
652 fn is_mistaken_not_ident_negation(&self) -> bool {
653 let token_cannot_continue_expr = |t: &Token| match t.uninterpolate().kind {
654 // These tokens can start an expression after `!`, but
655 // can't continue an expression after an ident
656 token::Ident(name, is_raw) => token::ident_can_begin_expr(name, t.span, is_raw),
657 token::Literal(..) | token::Pound => true,
658 _ => t.is_whole_expr(),
659 };
660 self.token.is_ident_named(sym::not) && self.look_ahead(1, token_cannot_continue_expr)
661 }
662
663 /// Recover on `not expr` in favor of `!expr`.
664 fn recover_not_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
665 // Emit the error...
666 let not_token = self.look_ahead(1, |t| t.clone());
667 self.struct_span_err(
668 not_token.span,
669 &format!("unexpected {} after identifier", super::token_descr(&not_token)),
670 )
671 .span_suggestion_short(
672 // Span the `not` plus trailing whitespace to avoid
673 // trailing whitespace after the `!` in our suggestion
674 self.sess.source_map().span_until_non_whitespace(lo.to(not_token.span)),
675 "use `!` to perform logical negation",
676 "!",
677 Applicability::MachineApplicable,
678 )
679 .emit();
680
681 // ...and recover!
682 self.parse_unary_expr(lo, UnOp::Not)
683 }
684
685 /// Returns the span of expr, if it was not interpolated or the span of the interpolated token.
686 fn interpolated_or_expr_span(
687 &self,
688 expr: PResult<'a, P<Expr>>,
689 ) -> PResult<'a, (Span, P<Expr>)> {
690 expr.map(|e| {
691 (
692 match self.prev_token.kind {
693 TokenKind::Interpolated(..) => self.prev_token.span,
694 _ => e.span,
695 },
696 e,
697 )
698 })
699 }
700
701 fn parse_assoc_op_cast(
702 &mut self,
703 lhs: P<Expr>,
704 lhs_span: Span,
705 expr_kind: fn(P<Expr>, P<Ty>) -> ExprKind,
706 ) -> PResult<'a, P<Expr>> {
707 let mk_expr = |this: &mut Self, lhs: P<Expr>, rhs: P<Ty>| {
708 this.mk_expr(
709 this.mk_expr_sp(&lhs, lhs_span, rhs.span),
710 expr_kind(lhs, rhs),
711 AttrVec::new(),
712 )
713 };
714
715 // Save the state of the parser before parsing type normally, in case there is a
716 // LessThan comparison after this cast.
717 let parser_snapshot_before_type = self.clone();
718 let cast_expr = match self.parse_as_cast_ty() {
719 Ok(rhs) => mk_expr(self, lhs, rhs),
720 Err(type_err) => {
721 // Rewind to before attempting to parse the type with generics, to recover
722 // from situations like `x as usize < y` in which we first tried to parse
723 // `usize < y` as a type with generic arguments.
724 let parser_snapshot_after_type = mem::replace(self, parser_snapshot_before_type);
725
726 // Check for typo of `'a: loop { break 'a }` with a missing `'`.
727 match (&lhs.kind, &self.token.kind) {
728 (
729 // `foo: `
730 ExprKind::Path(None, ast::Path { segments, .. }),
731 TokenKind::Ident(kw::For | kw::Loop | kw::While, false),
732 ) if segments.len() == 1 => {
733 let snapshot = self.create_snapshot_for_diagnostic();
734 let label = Label {
735 ident: Ident::from_str_and_span(
736 &format!("'{}", segments[0].ident),
737 segments[0].ident.span,
738 ),
739 };
740 match self.parse_labeled_expr(label, AttrVec::new(), false) {
741 Ok(expr) => {
742 type_err.cancel();
743 self.struct_span_err(label.ident.span, "malformed loop label")
744 .span_suggestion(
745 label.ident.span,
746 "use the correct loop label format",
747 label.ident,
748 Applicability::MachineApplicable,
749 )
750 .emit();
751 return Ok(expr);
752 }
753 Err(err) => {
754 err.cancel();
755 self.restore_snapshot(snapshot);
756 }
757 }
758 }
759 _ => {}
760 }
761
762 match self.parse_path(PathStyle::Expr) {
763 Ok(path) => {
764 let (op_noun, op_verb) = match self.token.kind {
765 token::Lt => ("comparison", "comparing"),
766 token::BinOp(token::Shl) => ("shift", "shifting"),
767 _ => {
768 // We can end up here even without `<` being the next token, for
769 // example because `parse_ty_no_plus` returns `Err` on keywords,
770 // but `parse_path` returns `Ok` on them due to error recovery.
771 // Return original error and parser state.
772 *self = parser_snapshot_after_type;
773 return Err(type_err);
774 }
775 };
776
777 // Successfully parsed the type path leaving a `<` yet to parse.
778 type_err.cancel();
779
780 // Report non-fatal diagnostics, keep `x as usize` as an expression
781 // in AST and continue parsing.
782 let msg = format!(
783 "`<` is interpreted as a start of generic arguments for `{}`, not a {}",
784 pprust::path_to_string(&path),
785 op_noun,
786 );
787 let span_after_type = parser_snapshot_after_type.token.span;
788 let expr =
789 mk_expr(self, lhs, self.mk_ty(path.span, TyKind::Path(None, path)));
790
791 self.struct_span_err(self.token.span, &msg)
792 .span_label(
793 self.look_ahead(1, |t| t.span).to(span_after_type),
794 "interpreted as generic arguments",
795 )
796 .span_label(self.token.span, format!("not interpreted as {op_noun}"))
797 .multipart_suggestion(
798 &format!("try {op_verb} the cast value"),
799 vec![
800 (expr.span.shrink_to_lo(), "(".to_string()),
801 (expr.span.shrink_to_hi(), ")".to_string()),
802 ],
803 Applicability::MachineApplicable,
804 )
805 .emit();
806
807 expr
808 }
809 Err(path_err) => {
810 // Couldn't parse as a path, return original error and parser state.
811 path_err.cancel();
812 *self = parser_snapshot_after_type;
813 return Err(type_err);
814 }
815 }
816 }
817 };
818
819 self.parse_and_disallow_postfix_after_cast(cast_expr)
820 }
821
822 /// Parses a postfix operators such as `.`, `?`, or index (`[]`) after a cast,
823 /// then emits an error and returns the newly parsed tree.
824 /// The resulting parse tree for `&x as T[0]` has a precedence of `((&x) as T)[0]`.
825 fn parse_and_disallow_postfix_after_cast(
826 &mut self,
827 cast_expr: P<Expr>,
828 ) -> PResult<'a, P<Expr>> {
829 let span = cast_expr.span;
830 let (cast_kind, maybe_ascription_span) =
831 if let ExprKind::Type(ascripted_expr, _) = &cast_expr.kind {
832 ("type ascription", Some(ascripted_expr.span.shrink_to_hi().with_hi(span.hi())))
833 } else {
834 ("cast", None)
835 };
836
837 // Save the memory location of expr before parsing any following postfix operators.
838 // This will be compared with the memory location of the output expression.
839 // If they different we can assume we parsed another expression because the existing expression is not reallocated.
840 let addr_before = &*cast_expr as *const _ as usize;
841 let with_postfix = self.parse_dot_or_call_expr_with_(cast_expr, span)?;
842 let changed = addr_before != &*with_postfix as *const _ as usize;
843
844 // Check if an illegal postfix operator has been added after the cast.
845 // If the resulting expression is not a cast, or has a different memory location, it is an illegal postfix operator.
846 if !matches!(with_postfix.kind, ExprKind::Cast(_, _) | ExprKind::Type(_, _)) || changed {
847 let msg = format!(
848 "{cast_kind} cannot be followed by {}",
849 match with_postfix.kind {
850 ExprKind::Index(_, _) => "indexing",
851 ExprKind::Try(_) => "`?`",
852 ExprKind::Field(_, _) => "a field access",
853 ExprKind::MethodCall(_, _, _) => "a method call",
854 ExprKind::Call(_, _) => "a function call",
855 ExprKind::Await(_) => "`.await`",
856 ExprKind::Err => return Ok(with_postfix),
857 _ => unreachable!("parse_dot_or_call_expr_with_ shouldn't produce this"),
858 }
859 );
860 let mut err = self.struct_span_err(span, &msg);
861
862 let suggest_parens = |err: &mut DiagnosticBuilder<'_, _>| {
863 let suggestions = vec![
864 (span.shrink_to_lo(), "(".to_string()),
865 (span.shrink_to_hi(), ")".to_string()),
866 ];
867 err.multipart_suggestion(
868 "try surrounding the expression in parentheses",
869 suggestions,
870 Applicability::MachineApplicable,
871 );
872 };
873
874 // If type ascription is "likely an error", the user will already be getting a useful
875 // help message, and doesn't need a second.
876 if self.last_type_ascription.map_or(false, |last_ascription| last_ascription.1) {
877 self.maybe_annotate_with_ascription(&mut err, false);
878 } else if let Some(ascription_span) = maybe_ascription_span {
879 let is_nightly = self.sess.unstable_features.is_nightly_build();
880 if is_nightly {
881 suggest_parens(&mut err);
882 }
883 err.span_suggestion(
884 ascription_span,
885 &format!(
886 "{}remove the type ascription",
887 if is_nightly { "alternatively, " } else { "" }
888 ),
889 "",
890 if is_nightly {
891 Applicability::MaybeIncorrect
892 } else {
893 Applicability::MachineApplicable
894 },
895 );
896 } else {
897 suggest_parens(&mut err);
898 }
899 err.emit();
900 };
901 Ok(with_postfix)
902 }
903
904 fn parse_assoc_op_ascribe(&mut self, lhs: P<Expr>, lhs_span: Span) -> PResult<'a, P<Expr>> {
905 let maybe_path = self.could_ascription_be_path(&lhs.kind);
906 self.last_type_ascription = Some((self.prev_token.span, maybe_path));
907 let lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Type)?;
908 self.sess.gated_spans.gate(sym::type_ascription, lhs.span);
909 Ok(lhs)
910 }
911
912 /// Parse `& mut? <expr>` or `& raw [ const | mut ] <expr>`.
913 fn parse_borrow_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
914 self.expect_and()?;
915 let has_lifetime = self.token.is_lifetime() && self.look_ahead(1, |t| t != &token::Colon);
916 let lifetime = has_lifetime.then(|| self.expect_lifetime()); // For recovery, see below.
917 let (borrow_kind, mutbl) = self.parse_borrow_modifiers(lo);
918 let expr = self.parse_prefix_expr(None);
919 let (hi, expr) = self.interpolated_or_expr_span(expr)?;
920 let span = lo.to(hi);
921 if let Some(lt) = lifetime {
922 self.error_remove_borrow_lifetime(span, lt.ident.span);
923 }
924 Ok((span, ExprKind::AddrOf(borrow_kind, mutbl, expr)))
925 }
926
927 fn error_remove_borrow_lifetime(&self, span: Span, lt_span: Span) {
928 self.struct_span_err(span, "borrow expressions cannot be annotated with lifetimes")
929 .span_label(lt_span, "annotated with lifetime here")
930 .span_suggestion(
931 lt_span,
932 "remove the lifetime annotation",
933 "",
934 Applicability::MachineApplicable,
935 )
936 .emit();
937 }
938
939 /// Parse `mut?` or `raw [ const | mut ]`.
940 fn parse_borrow_modifiers(&mut self, lo: Span) -> (ast::BorrowKind, ast::Mutability) {
941 if self.check_keyword(kw::Raw) && self.look_ahead(1, Token::is_mutability) {
942 // `raw [ const | mut ]`.
943 let found_raw = self.eat_keyword(kw::Raw);
944 assert!(found_raw);
945 let mutability = self.parse_const_or_mut().unwrap();
946 self.sess.gated_spans.gate(sym::raw_ref_op, lo.to(self.prev_token.span));
947 (ast::BorrowKind::Raw, mutability)
948 } else {
949 // `mut?`
950 (ast::BorrowKind::Ref, self.parse_mutability())
951 }
952 }
953
954 /// Parses `a.b` or `a(13)` or `a[4]` or just `a`.
955 fn parse_dot_or_call_expr(&mut self, attrs: Option<AttrWrapper>) -> PResult<'a, P<Expr>> {
956 let attrs = self.parse_or_use_outer_attributes(attrs)?;
957 self.collect_tokens_for_expr(attrs, |this, attrs| {
958 let base = this.parse_bottom_expr();
959 let (span, base) = this.interpolated_or_expr_span(base)?;
960 this.parse_dot_or_call_expr_with(base, span, attrs)
961 })
962 }
963
964 pub(super) fn parse_dot_or_call_expr_with(
965 &mut self,
966 e0: P<Expr>,
967 lo: Span,
968 mut attrs: Vec<ast::Attribute>,
969 ) -> PResult<'a, P<Expr>> {
970 // Stitch the list of outer attributes onto the return value.
971 // A little bit ugly, but the best way given the current code
972 // structure
973 self.parse_dot_or_call_expr_with_(e0, lo).map(|expr| {
974 expr.map(|mut expr| {
975 attrs.extend::<Vec<_>>(expr.attrs.into());
976 expr.attrs = attrs.into();
977 expr
978 })
979 })
980 }
981
982 fn parse_dot_or_call_expr_with_(&mut self, mut e: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
983 loop {
984 let has_question = if self.prev_token.kind == TokenKind::Ident(kw::Return, false) {
985 // we are using noexpect here because we don't expect a `?` directly after a `return`
986 // which could be suggested otherwise
987 self.eat_noexpect(&token::Question)
988 } else {
989 self.eat(&token::Question)
990 };
991 if has_question {
992 // `expr?`
993 e = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Try(e), AttrVec::new());
994 continue;
995 }
996 let has_dot = if self.prev_token.kind == TokenKind::Ident(kw::Return, false) {
997 // we are using noexpect here because we don't expect a `.` directly after a `return`
998 // which could be suggested otherwise
999 self.eat_noexpect(&token::Dot)
1000 } else {
1001 self.eat(&token::Dot)
1002 };
1003 if has_dot {
1004 // expr.f
1005 e = self.parse_dot_suffix_expr(lo, e)?;
1006 continue;
1007 }
1008 if self.expr_is_complete(&e) {
1009 return Ok(e);
1010 }
1011 e = match self.token.kind {
1012 token::OpenDelim(Delimiter::Parenthesis) => self.parse_fn_call_expr(lo, e),
1013 token::OpenDelim(Delimiter::Bracket) => self.parse_index_expr(lo, e)?,
1014 _ => return Ok(e),
1015 }
1016 }
1017 }
1018
1019 fn look_ahead_type_ascription_as_field(&mut self) -> bool {
1020 self.look_ahead(1, |t| t.is_ident())
1021 && self.look_ahead(2, |t| t == &token::Colon)
1022 && self.look_ahead(3, |t| t.can_begin_expr())
1023 }
1024
1025 fn parse_dot_suffix_expr(&mut self, lo: Span, base: P<Expr>) -> PResult<'a, P<Expr>> {
1026 match self.token.uninterpolate().kind {
1027 token::Ident(..) => self.parse_dot_suffix(base, lo),
1028 token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) => {
1029 Ok(self.parse_tuple_field_access_expr(lo, base, symbol, suffix, None))
1030 }
1031 token::Literal(token::Lit { kind: token::Float, symbol, suffix }) => {
1032 Ok(self.parse_tuple_field_access_expr_float(lo, base, symbol, suffix))
1033 }
1034 _ => {
1035 self.error_unexpected_after_dot();
1036 Ok(base)
1037 }
1038 }
1039 }
1040
1041 fn error_unexpected_after_dot(&self) {
1042 // FIXME Could factor this out into non_fatal_unexpected or something.
1043 let actual = pprust::token_to_string(&self.token);
1044 self.struct_span_err(self.token.span, &format!("unexpected token: `{actual}`")).emit();
1045 }
1046
1047 // We need an identifier or integer, but the next token is a float.
1048 // Break the float into components to extract the identifier or integer.
1049 // FIXME: With current `TokenCursor` it's hard to break tokens into more than 2
1050 // parts unless those parts are processed immediately. `TokenCursor` should either
1051 // support pushing "future tokens" (would be also helpful to `break_and_eat`), or
1052 // we should break everything including floats into more basic proc-macro style
1053 // tokens in the lexer (probably preferable).
1054 fn parse_tuple_field_access_expr_float(
1055 &mut self,
1056 lo: Span,
1057 base: P<Expr>,
1058 float: Symbol,
1059 suffix: Option<Symbol>,
1060 ) -> P<Expr> {
1061 #[derive(Debug)]
1062 enum FloatComponent {
1063 IdentLike(String),
1064 Punct(char),
1065 }
1066 use FloatComponent::*;
1067
1068 let float_str = float.as_str();
1069 let mut components = Vec::new();
1070 let mut ident_like = String::new();
1071 for c in float_str.chars() {
1072 if c == '_' || c.is_ascii_alphanumeric() {
1073 ident_like.push(c);
1074 } else if matches!(c, '.' | '+' | '-') {
1075 if !ident_like.is_empty() {
1076 components.push(IdentLike(mem::take(&mut ident_like)));
1077 }
1078 components.push(Punct(c));
1079 } else {
1080 panic!("unexpected character in a float token: {:?}", c)
1081 }
1082 }
1083 if !ident_like.is_empty() {
1084 components.push(IdentLike(ident_like));
1085 }
1086
1087 // With proc macros the span can refer to anything, the source may be too short,
1088 // or too long, or non-ASCII. It only makes sense to break our span into components
1089 // if its underlying text is identical to our float literal.
1090 let span = self.token.span;
1091 let can_take_span_apart =
1092 || self.span_to_snippet(span).as_deref() == Ok(float_str).as_deref();
1093
1094 match &*components {
1095 // 1e2
1096 [IdentLike(i)] => {
1097 self.parse_tuple_field_access_expr(lo, base, Symbol::intern(&i), suffix, None)
1098 }
1099 // 1.
1100 [IdentLike(i), Punct('.')] => {
1101 let (ident_span, dot_span) = if can_take_span_apart() {
1102 let (span, ident_len) = (span.data(), BytePos::from_usize(i.len()));
1103 let ident_span = span.with_hi(span.lo + ident_len);
1104 let dot_span = span.with_lo(span.lo + ident_len);
1105 (ident_span, dot_span)
1106 } else {
1107 (span, span)
1108 };
1109 assert!(suffix.is_none());
1110 let symbol = Symbol::intern(&i);
1111 self.token = Token::new(token::Ident(symbol, false), ident_span);
1112 let next_token = (Token::new(token::Dot, dot_span), self.token_spacing);
1113 self.parse_tuple_field_access_expr(lo, base, symbol, None, Some(next_token))
1114 }
1115 // 1.2 | 1.2e3
1116 [IdentLike(i1), Punct('.'), IdentLike(i2)] => {
1117 let (ident1_span, dot_span, ident2_span) = if can_take_span_apart() {
1118 let (span, ident1_len) = (span.data(), BytePos::from_usize(i1.len()));
1119 let ident1_span = span.with_hi(span.lo + ident1_len);
1120 let dot_span = span
1121 .with_lo(span.lo + ident1_len)
1122 .with_hi(span.lo + ident1_len + BytePos(1));
1123 let ident2_span = self.token.span.with_lo(span.lo + ident1_len + BytePos(1));
1124 (ident1_span, dot_span, ident2_span)
1125 } else {
1126 (span, span, span)
1127 };
1128 let symbol1 = Symbol::intern(&i1);
1129 self.token = Token::new(token::Ident(symbol1, false), ident1_span);
1130 // This needs to be `Spacing::Alone` to prevent regressions.
1131 // See issue #76399 and PR #76285 for more details
1132 let next_token1 = (Token::new(token::Dot, dot_span), Spacing::Alone);
1133 let base1 =
1134 self.parse_tuple_field_access_expr(lo, base, symbol1, None, Some(next_token1));
1135 let symbol2 = Symbol::intern(&i2);
1136 let next_token2 = Token::new(token::Ident(symbol2, false), ident2_span);
1137 self.bump_with((next_token2, self.token_spacing)); // `.`
1138 self.parse_tuple_field_access_expr(lo, base1, symbol2, suffix, None)
1139 }
1140 // 1e+ | 1e- (recovered)
1141 [IdentLike(_), Punct('+' | '-')] |
1142 // 1e+2 | 1e-2
1143 [IdentLike(_), Punct('+' | '-'), IdentLike(_)] |
1144 // 1.2e+ | 1.2e-
1145 [IdentLike(_), Punct('.'), IdentLike(_), Punct('+' | '-')] |
1146 // 1.2e+3 | 1.2e-3
1147 [IdentLike(_), Punct('.'), IdentLike(_), Punct('+' | '-'), IdentLike(_)] => {
1148 // See the FIXME about `TokenCursor` above.
1149 self.error_unexpected_after_dot();
1150 base
1151 }
1152 _ => panic!("unexpected components in a float token: {:?}", components),
1153 }
1154 }
1155
1156 fn parse_tuple_field_access_expr(
1157 &mut self,
1158 lo: Span,
1159 base: P<Expr>,
1160 field: Symbol,
1161 suffix: Option<Symbol>,
1162 next_token: Option<(Token, Spacing)>,
1163 ) -> P<Expr> {
1164 match next_token {
1165 Some(next_token) => self.bump_with(next_token),
1166 None => self.bump(),
1167 }
1168 let span = self.prev_token.span;
1169 let field = ExprKind::Field(base, Ident::new(field, span));
1170 self.expect_no_suffix(span, "a tuple index", suffix);
1171 self.mk_expr(lo.to(span), field, AttrVec::new())
1172 }
1173
1174 /// Parse a function call expression, `expr(...)`.
1175 fn parse_fn_call_expr(&mut self, lo: Span, fun: P<Expr>) -> P<Expr> {
1176 let snapshot = if self.token.kind == token::OpenDelim(Delimiter::Parenthesis)
1177 && self.look_ahead_type_ascription_as_field()
1178 {
1179 Some((self.create_snapshot_for_diagnostic(), fun.kind.clone()))
1180 } else {
1181 None
1182 };
1183 let open_paren = self.token.span;
1184
1185 let mut seq = self.parse_paren_expr_seq().map(|args| {
1186 self.mk_expr(lo.to(self.prev_token.span), self.mk_call(fun, args), AttrVec::new())
1187 });
1188 if let Some(expr) =
1189 self.maybe_recover_struct_lit_bad_delims(lo, open_paren, &mut seq, snapshot)
1190 {
1191 return expr;
1192 }
1193 self.recover_seq_parse_error(Delimiter::Parenthesis, lo, seq)
1194 }
1195
1196 /// If we encounter a parser state that looks like the user has written a `struct` literal with
1197 /// parentheses instead of braces, recover the parser state and provide suggestions.
1198 #[instrument(skip(self, seq, snapshot), level = "trace")]
1199 fn maybe_recover_struct_lit_bad_delims(
1200 &mut self,
1201 lo: Span,
1202 open_paren: Span,
1203 seq: &mut PResult<'a, P<Expr>>,
1204 snapshot: Option<(SnapshotParser<'a>, ExprKind)>,
1205 ) -> Option<P<Expr>> {
1206 match (seq.as_mut(), snapshot) {
1207 (Err(err), Some((mut snapshot, ExprKind::Path(None, path)))) => {
1208 let name = pprust::path_to_string(&path);
1209 snapshot.bump(); // `(`
1210 match snapshot.parse_struct_fields(path, false, Delimiter::Parenthesis) {
1211 Ok((fields, ..))
1212 if snapshot.eat(&token::CloseDelim(Delimiter::Parenthesis)) =>
1213 {
1214 // We are certain we have `Enum::Foo(a: 3, b: 4)`, suggest
1215 // `Enum::Foo { a: 3, b: 4 }` or `Enum::Foo(3, 4)`.
1216 self.restore_snapshot(snapshot);
1217 let close_paren = self.prev_token.span;
1218 let span = lo.to(self.prev_token.span);
1219 if !fields.is_empty() {
1220 let replacement_err = self.struct_span_err(
1221 span,
1222 "invalid `struct` delimiters or `fn` call arguments",
1223 );
1224 mem::replace(err, replacement_err).cancel();
1225
1226 err.multipart_suggestion(
1227 &format!("if `{name}` is a struct, use braces as delimiters"),
1228 vec![
1229 (open_paren, " { ".to_string()),
1230 (close_paren, " }".to_string()),
1231 ],
1232 Applicability::MaybeIncorrect,
1233 );
1234 err.multipart_suggestion(
1235 &format!("if `{name}` is a function, use the arguments directly"),
1236 fields
1237 .into_iter()
1238 .map(|field| (field.span.until(field.expr.span), String::new()))
1239 .collect(),
1240 Applicability::MaybeIncorrect,
1241 );
1242 err.emit();
1243 } else {
1244 err.emit();
1245 }
1246 return Some(self.mk_expr_err(span));
1247 }
1248 Ok(_) => {}
1249 Err(mut err) => {
1250 err.emit();
1251 }
1252 }
1253 }
1254 _ => {}
1255 }
1256 None
1257 }
1258
1259 /// Parse an indexing expression `expr[...]`.
1260 fn parse_index_expr(&mut self, lo: Span, base: P<Expr>) -> PResult<'a, P<Expr>> {
1261 self.bump(); // `[`
1262 let index = self.parse_expr()?;
1263 self.expect(&token::CloseDelim(Delimiter::Bracket))?;
1264 Ok(self.mk_expr(lo.to(self.prev_token.span), self.mk_index(base, index), AttrVec::new()))
1265 }
1266
1267 /// Assuming we have just parsed `.`, continue parsing into an expression.
1268 fn parse_dot_suffix(&mut self, self_arg: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
1269 if self.token.uninterpolated_span().rust_2018() && self.eat_keyword(kw::Await) {
1270 return Ok(self.mk_await_expr(self_arg, lo));
1271 }
1272
1273 let fn_span_lo = self.token.span;
1274 let mut segment = self.parse_path_segment(PathStyle::Expr, None)?;
1275 self.check_trailing_angle_brackets(&segment, &[&token::OpenDelim(Delimiter::Parenthesis)]);
1276 self.check_turbofish_missing_angle_brackets(&mut segment);
1277
1278 if self.check(&token::OpenDelim(Delimiter::Parenthesis)) {
1279 // Method call `expr.f()`
1280 let mut args = self.parse_paren_expr_seq()?;
1281 args.insert(0, self_arg);
1282
1283 let fn_span = fn_span_lo.to(self.prev_token.span);
1284 let span = lo.to(self.prev_token.span);
1285 Ok(self.mk_expr(span, ExprKind::MethodCall(segment, args, fn_span), AttrVec::new()))
1286 } else {
1287 // Field access `expr.f`
1288 if let Some(args) = segment.args {
1289 self.struct_span_err(
1290 args.span(),
1291 "field expressions cannot have generic arguments",
1292 )
1293 .emit();
1294 }
1295
1296 let span = lo.to(self.prev_token.span);
1297 Ok(self.mk_expr(span, ExprKind::Field(self_arg, segment.ident), AttrVec::new()))
1298 }
1299 }
1300
1301 /// At the bottom (top?) of the precedence hierarchy,
1302 /// Parses things like parenthesized exprs, macros, `return`, etc.
1303 ///
1304 /// N.B., this does not parse outer attributes, and is private because it only works
1305 /// correctly if called from `parse_dot_or_call_expr()`.
1306 fn parse_bottom_expr(&mut self) -> PResult<'a, P<Expr>> {
1307 maybe_recover_from_interpolated_ty_qpath!(self, true);
1308 maybe_whole_expr!(self);
1309
1310 // Outer attributes are already parsed and will be
1311 // added to the return value after the fact.
1312 //
1313 // Therefore, prevent sub-parser from parsing
1314 // attributes by giving them an empty "already-parsed" list.
1315 let attrs = AttrVec::new();
1316
1317 // Note: when adding new syntax here, don't forget to adjust `TokenKind::can_begin_expr()`.
1318 let lo = self.token.span;
1319 if let token::Literal(_) = self.token.kind {
1320 // This match arm is a special-case of the `_` match arm below and
1321 // could be removed without changing functionality, but it's faster
1322 // to have it here, especially for programs with large constants.
1323 self.parse_lit_expr(attrs)
1324 } else if self.check(&token::OpenDelim(Delimiter::Parenthesis)) {
1325 self.parse_tuple_parens_expr(attrs)
1326 } else if self.check(&token::OpenDelim(Delimiter::Brace)) {
1327 self.parse_block_expr(None, lo, BlockCheckMode::Default, attrs)
1328 } else if self.check(&token::BinOp(token::Or)) || self.check(&token::OrOr) {
1329 self.parse_closure_expr(attrs).map_err(|mut err| {
1330 // If the input is something like `if a { 1 } else { 2 } | if a { 3 } else { 4 }`
1331 // then suggest parens around the lhs.
1332 if let Some(sp) = self.sess.ambiguous_block_expr_parse.borrow().get(&lo) {
1333 self.sess.expr_parentheses_needed(&mut err, *sp);
1334 }
1335 err
1336 })
1337 } else if self.check(&token::OpenDelim(Delimiter::Bracket)) {
1338 self.parse_array_or_repeat_expr(attrs, Delimiter::Bracket)
1339 } else if self.check_path() {
1340 self.parse_path_start_expr(attrs)
1341 } else if self.check_keyword(kw::Move) || self.check_keyword(kw::Static) {
1342 self.parse_closure_expr(attrs)
1343 } else if self.eat_keyword(kw::If) {
1344 self.parse_if_expr(attrs)
1345 } else if self.check_keyword(kw::For) {
1346 if self.choose_generics_over_qpath(1) {
1347 self.parse_closure_expr(attrs)
1348 } else {
1349 assert!(self.eat_keyword(kw::For));
1350 self.parse_for_expr(None, self.prev_token.span, attrs)
1351 }
1352 } else if self.eat_keyword(kw::While) {
1353 self.parse_while_expr(None, self.prev_token.span, attrs)
1354 } else if let Some(label) = self.eat_label() {
1355 self.parse_labeled_expr(label, attrs, true)
1356 } else if self.eat_keyword(kw::Loop) {
1357 let sp = self.prev_token.span;
1358 self.parse_loop_expr(None, self.prev_token.span, attrs).map_err(|mut err| {
1359 err.span_label(sp, "while parsing this `loop` expression");
1360 err
1361 })
1362 } else if self.eat_keyword(kw::Continue) {
1363 let kind = ExprKind::Continue(self.eat_label());
1364 Ok(self.mk_expr(lo.to(self.prev_token.span), kind, attrs))
1365 } else if self.eat_keyword(kw::Match) {
1366 let match_sp = self.prev_token.span;
1367 self.parse_match_expr(attrs).map_err(|mut err| {
1368 err.span_label(match_sp, "while parsing this `match` expression");
1369 err
1370 })
1371 } else if self.eat_keyword(kw::Unsafe) {
1372 let sp = self.prev_token.span;
1373 self.parse_block_expr(None, lo, BlockCheckMode::Unsafe(ast::UserProvided), attrs)
1374 .map_err(|mut err| {
1375 err.span_label(sp, "while parsing this `unsafe` expression");
1376 err
1377 })
1378 } else if self.check_inline_const(0) {
1379 self.parse_const_block(lo.to(self.token.span), false)
1380 } else if self.is_do_catch_block() {
1381 self.recover_do_catch(attrs)
1382 } else if self.is_try_block() {
1383 self.expect_keyword(kw::Try)?;
1384 self.parse_try_block(lo, attrs)
1385 } else if self.eat_keyword(kw::Return) {
1386 self.parse_return_expr(attrs)
1387 } else if self.eat_keyword(kw::Break) {
1388 self.parse_break_expr(attrs)
1389 } else if self.eat_keyword(kw::Yield) {
1390 self.parse_yield_expr(attrs)
1391 } else if self.is_do_yeet() {
1392 self.parse_yeet_expr(attrs)
1393 } else if self.check_keyword(kw::Let) {
1394 self.parse_let_expr(attrs)
1395 } else if self.eat_keyword(kw::Underscore) {
1396 Ok(self.mk_expr(self.prev_token.span, ExprKind::Underscore, attrs))
1397 } else if !self.unclosed_delims.is_empty() && self.check(&token::Semi) {
1398 // Don't complain about bare semicolons after unclosed braces
1399 // recovery in order to keep the error count down. Fixing the
1400 // delimiters will possibly also fix the bare semicolon found in
1401 // expression context. For example, silence the following error:
1402 //
1403 // error: expected expression, found `;`
1404 // --> file.rs:2:13
1405 // |
1406 // 2 | foo(bar(;
1407 // | ^ expected expression
1408 self.bump();
1409 Ok(self.mk_expr_err(self.token.span))
1410 } else if self.token.uninterpolated_span().rust_2018() {
1411 // `Span::rust_2018()` is somewhat expensive; don't get it repeatedly.
1412 if self.check_keyword(kw::Async) {
1413 if self.is_async_block() {
1414 // Check for `async {` and `async move {`.
1415 self.parse_async_block(attrs)
1416 } else {
1417 self.parse_closure_expr(attrs)
1418 }
1419 } else if self.eat_keyword(kw::Await) {
1420 self.recover_incorrect_await_syntax(lo, self.prev_token.span, attrs)
1421 } else {
1422 self.parse_lit_expr(attrs)
1423 }
1424 } else {
1425 self.parse_lit_expr(attrs)
1426 }
1427 }
1428
1429 fn parse_lit_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1430 let lo = self.token.span;
1431 match self.parse_opt_lit() {
1432 Some(literal) => {
1433 let expr = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Lit(literal), attrs);
1434 self.maybe_recover_from_bad_qpath(expr)
1435 }
1436 None => self.try_macro_suggestion(),
1437 }
1438 }
1439
1440 fn parse_tuple_parens_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1441 let lo = self.token.span;
1442 self.expect(&token::OpenDelim(Delimiter::Parenthesis))?;
1443 let (es, trailing_comma) = match self.parse_seq_to_end(
1444 &token::CloseDelim(Delimiter::Parenthesis),
1445 SeqSep::trailing_allowed(token::Comma),
1446 |p| p.parse_expr_catch_underscore(),
1447 ) {
1448 Ok(x) => x,
1449 Err(err) => {
1450 return Ok(self.recover_seq_parse_error(Delimiter::Parenthesis, lo, Err(err)));
1451 }
1452 };
1453 let kind = if es.len() == 1 && !trailing_comma {
1454 // `(e)` is parenthesized `e`.
1455 ExprKind::Paren(es.into_iter().next().unwrap())
1456 } else {
1457 // `(e,)` is a tuple with only one field, `e`.
1458 ExprKind::Tup(es)
1459 };
1460 let expr = self.mk_expr(lo.to(self.prev_token.span), kind, attrs);
1461 self.maybe_recover_from_bad_qpath(expr)
1462 }
1463
1464 fn parse_array_or_repeat_expr(
1465 &mut self,
1466 attrs: AttrVec,
1467 close_delim: Delimiter,
1468 ) -> PResult<'a, P<Expr>> {
1469 let lo = self.token.span;
1470 self.bump(); // `[` or other open delim
1471
1472 let close = &token::CloseDelim(close_delim);
1473 let kind = if self.eat(close) {
1474 // Empty vector
1475 ExprKind::Array(Vec::new())
1476 } else {
1477 // Non-empty vector
1478 let first_expr = self.parse_expr()?;
1479 if self.eat(&token::Semi) {
1480 // Repeating array syntax: `[ 0; 512 ]`
1481 let count = self.parse_anon_const_expr()?;
1482 self.expect(close)?;
1483 ExprKind::Repeat(first_expr, count)
1484 } else if self.eat(&token::Comma) {
1485 // Vector with two or more elements.
1486 let sep = SeqSep::trailing_allowed(token::Comma);
1487 let (remaining_exprs, _) = self.parse_seq_to_end(close, sep, |p| p.parse_expr())?;
1488 let mut exprs = vec![first_expr];
1489 exprs.extend(remaining_exprs);
1490 ExprKind::Array(exprs)
1491 } else {
1492 // Vector with one element
1493 self.expect(close)?;
1494 ExprKind::Array(vec![first_expr])
1495 }
1496 };
1497 let expr = self.mk_expr(lo.to(self.prev_token.span), kind, attrs);
1498 self.maybe_recover_from_bad_qpath(expr)
1499 }
1500
1501 fn parse_path_start_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1502 let (qself, path) = if self.eat_lt() {
1503 let (qself, path) = self.parse_qpath(PathStyle::Expr)?;
1504 (Some(qself), path)
1505 } else {
1506 (None, self.parse_path(PathStyle::Expr)?)
1507 };
1508 let lo = path.span;
1509
1510 // `!`, as an operator, is prefix, so we know this isn't that.
1511 let (hi, kind) = if self.eat(&token::Not) {
1512 // MACRO INVOCATION expression
1513 if qself.is_some() {
1514 self.struct_span_err(path.span, "macros cannot use qualified paths").emit();
1515 }
1516 let mac = MacCall {
1517 path,
1518 args: self.parse_mac_args()?,
1519 prior_type_ascription: self.last_type_ascription,
1520 };
1521 (self.prev_token.span, ExprKind::MacCall(mac))
1522 } else if self.check(&token::OpenDelim(Delimiter::Brace)) {
1523 if let Some(expr) = self.maybe_parse_struct_expr(qself.as_ref(), &path, &attrs) {
1524 if qself.is_some() {
1525 self.sess.gated_spans.gate(sym::more_qualified_paths, path.span);
1526 }
1527 return expr;
1528 } else {
1529 (path.span, ExprKind::Path(qself, path))
1530 }
1531 } else {
1532 (path.span, ExprKind::Path(qself, path))
1533 };
1534
1535 let expr = self.mk_expr(lo.to(hi), kind, attrs);
1536 self.maybe_recover_from_bad_qpath(expr)
1537 }
1538
1539 /// Parse `'label: $expr`. The label is already parsed.
1540 fn parse_labeled_expr(
1541 &mut self,
1542 label: Label,
1543 attrs: AttrVec,
1544 mut consume_colon: bool,
1545 ) -> PResult<'a, P<Expr>> {
1546 let lo = label.ident.span;
1547 let label = Some(label);
1548 let ate_colon = self.eat(&token::Colon);
1549 let expr = if self.eat_keyword(kw::While) {
1550 self.parse_while_expr(label, lo, attrs)
1551 } else if self.eat_keyword(kw::For) {
1552 self.parse_for_expr(label, lo, attrs)
1553 } else if self.eat_keyword(kw::Loop) {
1554 self.parse_loop_expr(label, lo, attrs)
1555 } else if self.check_noexpect(&token::OpenDelim(Delimiter::Brace))
1556 || self.token.is_whole_block()
1557 {
1558 self.parse_block_expr(label, lo, BlockCheckMode::Default, attrs)
1559 } else if !ate_colon
1560 && (self.check_noexpect(&TokenKind::Comma) || self.check_noexpect(&TokenKind::Gt))
1561 {
1562 // We're probably inside of a `Path<'a>` that needs a turbofish
1563 let msg = "expected `while`, `for`, `loop` or `{` after a label";
1564 self.struct_span_err(self.token.span, msg).span_label(self.token.span, msg).emit();
1565 consume_colon = false;
1566 Ok(self.mk_expr_err(lo))
1567 } else {
1568 let msg = "expected `while`, `for`, `loop` or `{` after a label";
1569
1570 let mut err = self.struct_span_err(self.token.span, msg);
1571 err.span_label(self.token.span, msg);
1572
1573 // Continue as an expression in an effort to recover on `'label: non_block_expr`.
1574 let expr = self.parse_expr().map(|expr| {
1575 let span = expr.span;
1576
1577 let found_labeled_breaks = {
1578 struct FindLabeledBreaksVisitor(bool);
1579
1580 impl<'ast> Visitor<'ast> for FindLabeledBreaksVisitor {
1581 fn visit_expr_post(&mut self, ex: &'ast Expr) {
1582 if let ExprKind::Break(Some(_label), _) = ex.kind {
1583 self.0 = true;
1584 }
1585 }
1586 }
1587
1588 let mut vis = FindLabeledBreaksVisitor(false);
1589 vis.visit_expr(&expr);
1590 vis.0
1591 };
1592
1593 // Suggestion involves adding a (as of time of writing this, unstable) labeled block.
1594 //
1595 // If there are no breaks that may use this label, suggest removing the label and
1596 // recover to the unmodified expression.
1597 if !found_labeled_breaks {
1598 let msg = "consider removing the label";
1599 err.span_suggestion_verbose(
1600 lo.until(span),
1601 msg,
1602 "",
1603 Applicability::MachineApplicable,
1604 );
1605
1606 return expr;
1607 }
1608
1609 let sugg_msg = "consider enclosing expression in a block";
1610 let suggestions = vec![
1611 (span.shrink_to_lo(), "{ ".to_owned()),
1612 (span.shrink_to_hi(), " }".to_owned()),
1613 ];
1614
1615 err.multipart_suggestion_verbose(
1616 sugg_msg,
1617 suggestions,
1618 Applicability::MachineApplicable,
1619 );
1620
1621 // Replace `'label: non_block_expr` with `'label: {non_block_expr}` in order to supress future errors about `break 'label`.
1622 let stmt = self.mk_stmt(span, StmtKind::Expr(expr));
1623 let blk = self.mk_block(vec![stmt], BlockCheckMode::Default, span);
1624 self.mk_expr(span, ExprKind::Block(blk, label), ThinVec::new())
1625 });
1626
1627 err.emit();
1628 expr
1629 }?;
1630
1631 if !ate_colon && consume_colon {
1632 self.error_labeled_expr_must_be_followed_by_colon(lo, expr.span);
1633 }
1634
1635 Ok(expr)
1636 }
1637
1638 fn error_labeled_expr_must_be_followed_by_colon(&self, lo: Span, span: Span) {
1639 self.struct_span_err(span, "labeled expression must be followed by `:`")
1640 .span_label(lo, "the label")
1641 .span_suggestion_short(
1642 lo.shrink_to_hi(),
1643 "add `:` after the label",
1644 ": ",
1645 Applicability::MachineApplicable,
1646 )
1647 .note("labels are used before loops and blocks, allowing e.g., `break 'label` to them")
1648 .emit();
1649 }
1650
1651 /// Recover on the syntax `do catch { ... }` suggesting `try { ... }` instead.
1652 fn recover_do_catch(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1653 let lo = self.token.span;
1654
1655 self.bump(); // `do`
1656 self.bump(); // `catch`
1657
1658 let span_dc = lo.to(self.prev_token.span);
1659 self.struct_span_err(span_dc, "found removed `do catch` syntax")
1660 .span_suggestion(
1661 span_dc,
1662 "replace with the new syntax",
1663 "try",
1664 Applicability::MachineApplicable,
1665 )
1666 .note("following RFC #2388, the new non-placeholder syntax is `try`")
1667 .emit();
1668
1669 self.parse_try_block(lo, attrs)
1670 }
1671
1672 /// Parse an expression if the token can begin one.
1673 fn parse_expr_opt(&mut self) -> PResult<'a, Option<P<Expr>>> {
1674 Ok(if self.token.can_begin_expr() { Some(self.parse_expr()?) } else { None })
1675 }
1676
1677 /// Parse `"return" expr?`.
1678 fn parse_return_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1679 let lo = self.prev_token.span;
1680 let kind = ExprKind::Ret(self.parse_expr_opt()?);
1681 let expr = self.mk_expr(lo.to(self.prev_token.span), kind, attrs);
1682 self.maybe_recover_from_bad_qpath(expr)
1683 }
1684
1685 /// Parse `"do" "yeet" expr?`.
1686 fn parse_yeet_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1687 let lo = self.token.span;
1688
1689 self.bump(); // `do`
1690 self.bump(); // `yeet`
1691
1692 let kind = ExprKind::Yeet(self.parse_expr_opt()?);
1693
1694 let span = lo.to(self.prev_token.span);
1695 self.sess.gated_spans.gate(sym::yeet_expr, span);
1696 let expr = self.mk_expr(span, kind, attrs);
1697 self.maybe_recover_from_bad_qpath(expr)
1698 }
1699
1700 /// Parse `"break" (('label (:? expr)?) | expr?)` with `"break"` token already eaten.
1701 /// If the label is followed immediately by a `:` token, the label and `:` are
1702 /// parsed as part of the expression (i.e. a labeled loop). The language team has
1703 /// decided in #87026 to require parentheses as a visual aid to avoid confusion if
1704 /// the break expression of an unlabeled break is a labeled loop (as in
1705 /// `break 'lbl: loop {}`); a labeled break with an unlabeled loop as its value
1706 /// expression only gets a warning for compatibility reasons; and a labeled break
1707 /// with a labeled loop does not even get a warning because there is no ambiguity.
1708 fn parse_break_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1709 let lo = self.prev_token.span;
1710 let mut label = self.eat_label();
1711 let kind = if label.is_some() && self.token == token::Colon {
1712 // The value expression can be a labeled loop, see issue #86948, e.g.:
1713 // `loop { break 'label: loop { break 'label 42; }; }`
1714 let lexpr = self.parse_labeled_expr(label.take().unwrap(), AttrVec::new(), true)?;
1715 self.struct_span_err(
1716 lexpr.span,
1717 "parentheses are required around this expression to avoid confusion with a labeled break expression",
1718 )
1719 .multipart_suggestion(
1720 "wrap the expression in parentheses",
1721 vec![
1722 (lexpr.span.shrink_to_lo(), "(".to_string()),
1723 (lexpr.span.shrink_to_hi(), ")".to_string()),
1724 ],
1725 Applicability::MachineApplicable,
1726 )
1727 .emit();
1728 Some(lexpr)
1729 } else if self.token != token::OpenDelim(Delimiter::Brace)
1730 || !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
1731 {
1732 let expr = self.parse_expr_opt()?;
1733 if let Some(ref expr) = expr {
1734 if label.is_some()
1735 && matches!(
1736 expr.kind,
1737 ExprKind::While(_, _, None)
1738 | ExprKind::ForLoop(_, _, _, None)
1739 | ExprKind::Loop(_, None)
1740 | ExprKind::Block(_, None)
1741 )
1742 {
1743 self.sess.buffer_lint_with_diagnostic(
1744 BREAK_WITH_LABEL_AND_LOOP,
1745 lo.to(expr.span),
1746 ast::CRATE_NODE_ID,
1747 "this labeled break expression is easy to confuse with an unlabeled break with a labeled value expression",
1748 BuiltinLintDiagnostics::BreakWithLabelAndLoop(expr.span),
1749 );
1750 }
1751 }
1752 expr
1753 } else {
1754 None
1755 };
1756 let expr = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Break(label, kind), attrs);
1757 self.maybe_recover_from_bad_qpath(expr)
1758 }
1759
1760 /// Parse `"yield" expr?`.
1761 fn parse_yield_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1762 let lo = self.prev_token.span;
1763 let kind = ExprKind::Yield(self.parse_expr_opt()?);
1764 let span = lo.to(self.prev_token.span);
1765 self.sess.gated_spans.gate(sym::generators, span);
1766 let expr = self.mk_expr(span, kind, attrs);
1767 self.maybe_recover_from_bad_qpath(expr)
1768 }
1769
1770 /// Returns a string literal if the next token is a string literal.
1771 /// In case of error returns `Some(lit)` if the next token is a literal with a wrong kind,
1772 /// and returns `None` if the next token is not literal at all.
1773 pub fn parse_str_lit(&mut self) -> Result<ast::StrLit, Option<Lit>> {
1774 match self.parse_opt_lit() {
1775 Some(lit) => match lit.kind {
1776 ast::LitKind::Str(symbol_unescaped, style) => Ok(ast::StrLit {
1777 style,
1778 symbol: lit.token.symbol,
1779 suffix: lit.token.suffix,
1780 span: lit.span,
1781 symbol_unescaped,
1782 }),
1783 _ => Err(Some(lit)),
1784 },
1785 None => Err(None),
1786 }
1787 }
1788
1789 pub(super) fn parse_lit(&mut self) -> PResult<'a, Lit> {
1790 self.parse_opt_lit().ok_or_else(|| {
1791 if let token::Interpolated(inner) = &self.token.kind {
1792 let expr = match inner.as_ref() {
1793 token::NtExpr(expr) => Some(expr),
1794 token::NtLiteral(expr) => Some(expr),
1795 _ => None,
1796 };
1797 if let Some(expr) = expr {
1798 if matches!(expr.kind, ExprKind::Err) {
1799 let mut err = self
1800 .diagnostic()
1801 .struct_span_err(self.token.span, "invalid interpolated expression");
1802 err.downgrade_to_delayed_bug();
1803 return err;
1804 }
1805 }
1806 }
1807 let msg = format!("unexpected token: {}", super::token_descr(&self.token));
1808 self.struct_span_err(self.token.span, &msg)
1809 })
1810 }
1811
1812 /// Matches `lit = true | false | token_lit`.
1813 /// Returns `None` if the next token is not a literal.
1814 pub(super) fn parse_opt_lit(&mut self) -> Option<Lit> {
1815 let mut recovered = None;
1816 if self.token == token::Dot {
1817 // Attempt to recover `.4` as `0.4`. We don't currently have any syntax where
1818 // dot would follow an optional literal, so we do this unconditionally.
1819 recovered = self.look_ahead(1, |next_token| {
1820 if let token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) =
1821 next_token.kind
1822 {
1823 if self.token.span.hi() == next_token.span.lo() {
1824 let s = String::from("0.") + symbol.as_str();
1825 let kind = TokenKind::lit(token::Float, Symbol::intern(&s), suffix);
1826 return Some(Token::new(kind, self.token.span.to(next_token.span)));
1827 }
1828 }
1829 None
1830 });
1831 if let Some(token) = &recovered {
1832 self.bump();
1833 self.error_float_lits_must_have_int_part(&token);
1834 }
1835 }
1836
1837 let token = recovered.as_ref().unwrap_or(&self.token);
1838 match Lit::from_token(token) {
1839 Ok(lit) => {
1840 self.bump();
1841 Some(lit)
1842 }
1843 Err(LitError::NotLiteral) => None,
1844 Err(err) => {
1845 let span = token.span;
1846 let token::Literal(lit) = token.kind else {
1847 unreachable!();
1848 };
1849 self.bump();
1850 self.report_lit_error(err, lit, span);
1851 // Pack possible quotes and prefixes from the original literal into
1852 // the error literal's symbol so they can be pretty-printed faithfully.
1853 let suffixless_lit = token::Lit::new(lit.kind, lit.symbol, None);
1854 let symbol = Symbol::intern(&suffixless_lit.to_string());
1855 let lit = token::Lit::new(token::Err, symbol, lit.suffix);
1856 Some(Lit::from_lit_token(lit, span).unwrap_or_else(|_| unreachable!()))
1857 }
1858 }
1859 }
1860
1861 fn error_float_lits_must_have_int_part(&self, token: &Token) {
1862 self.struct_span_err(token.span, "float literals must have an integer part")
1863 .span_suggestion(
1864 token.span,
1865 "must have an integer part",
1866 pprust::token_to_string(token),
1867 Applicability::MachineApplicable,
1868 )
1869 .emit();
1870 }
1871
1872 fn report_lit_error(&self, err: LitError, lit: token::Lit, span: Span) {
1873 // Checks if `s` looks like i32 or u1234 etc.
1874 fn looks_like_width_suffix(first_chars: &[char], s: &str) -> bool {
1875 s.len() > 1 && s.starts_with(first_chars) && s[1..].chars().all(|c| c.is_ascii_digit())
1876 }
1877
1878 // Try to lowercase the prefix if it's a valid base prefix.
1879 fn fix_base_capitalisation(s: &str) -> Option<String> {
1880 if let Some(stripped) = s.strip_prefix('B') {
1881 Some(format!("0b{stripped}"))
1882 } else if let Some(stripped) = s.strip_prefix('O') {
1883 Some(format!("0o{stripped}"))
1884 } else if let Some(stripped) = s.strip_prefix('X') {
1885 Some(format!("0x{stripped}"))
1886 } else {
1887 None
1888 }
1889 }
1890
1891 let token::Lit { kind, suffix, .. } = lit;
1892 match err {
1893 // `NotLiteral` is not an error by itself, so we don't report
1894 // it and give the parser opportunity to try something else.
1895 LitError::NotLiteral => {}
1896 // `LexerError` *is* an error, but it was already reported
1897 // by lexer, so here we don't report it the second time.
1898 LitError::LexerError => {}
1899 LitError::InvalidSuffix => {
1900 self.expect_no_suffix(
1901 span,
1902 &format!("{} {} literal", kind.article(), kind.descr()),
1903 suffix,
1904 );
1905 }
1906 LitError::InvalidIntSuffix => {
1907 let suf = suffix.expect("suffix error with no suffix");
1908 let suf = suf.as_str();
1909 if looks_like_width_suffix(&['i', 'u'], &suf) {
1910 // If it looks like a width, try to be helpful.
1911 let msg = format!("invalid width `{}` for integer literal", &suf[1..]);
1912 self.struct_span_err(span, &msg)
1913 .help("valid widths are 8, 16, 32, 64 and 128")
1914 .emit();
1915 } else if let Some(fixed) = fix_base_capitalisation(suf) {
1916 let msg = "invalid base prefix for number literal";
1917
1918 self.struct_span_err(span, msg)
1919 .note("base prefixes (`0xff`, `0b1010`, `0o755`) are lowercase")
1920 .span_suggestion(
1921 span,
1922 "try making the prefix lowercase",
1923 fixed,
1924 Applicability::MaybeIncorrect,
1925 )
1926 .emit();
1927 } else {
1928 let msg = format!("invalid suffix `{suf}` for number literal");
1929 self.struct_span_err(span, &msg)
1930 .span_label(span, format!("invalid suffix `{suf}`"))
1931 .help("the suffix must be one of the numeric types (`u32`, `isize`, `f32`, etc.)")
1932 .emit();
1933 }
1934 }
1935 LitError::InvalidFloatSuffix => {
1936 let suf = suffix.expect("suffix error with no suffix");
1937 let suf = suf.as_str();
1938 if looks_like_width_suffix(&['f'], suf) {
1939 // If it looks like a width, try to be helpful.
1940 let msg = format!("invalid width `{}` for float literal", &suf[1..]);
1941 self.struct_span_err(span, &msg).help("valid widths are 32 and 64").emit();
1942 } else {
1943 let msg = format!("invalid suffix `{suf}` for float literal");
1944 self.struct_span_err(span, &msg)
1945 .span_label(span, format!("invalid suffix `{suf}`"))
1946 .help("valid suffixes are `f32` and `f64`")
1947 .emit();
1948 }
1949 }
1950 LitError::NonDecimalFloat(base) => {
1951 let descr = match base {
1952 16 => "hexadecimal",
1953 8 => "octal",
1954 2 => "binary",
1955 _ => unreachable!(),
1956 };
1957 self.struct_span_err(span, &format!("{descr} float literal is not supported"))
1958 .span_label(span, "not supported")
1959 .emit();
1960 }
1961 LitError::IntTooLarge => {
1962 self.struct_span_err(span, "integer literal is too large").emit();
1963 }
1964 }
1965 }
1966
1967 pub(super) fn expect_no_suffix(&self, sp: Span, kind: &str, suffix: Option<Symbol>) {
1968 if let Some(suf) = suffix {
1969 let mut err = if kind == "a tuple index"
1970 && [sym::i32, sym::u32, sym::isize, sym::usize].contains(&suf)
1971 {
1972 // #59553: warn instead of reject out of hand to allow the fix to percolate
1973 // through the ecosystem when people fix their macros
1974 let mut err = self
1975 .sess
1976 .span_diagnostic
1977 .struct_span_warn(sp, &format!("suffixes on {kind} are invalid"));
1978 err.note(&format!(
1979 "`{}` is *temporarily* accepted on tuple index fields as it was \
1980 incorrectly accepted on stable for a few releases",
1981 suf,
1982 ));
1983 err.help(
1984 "on proc macros, you'll want to use `syn::Index::from` or \
1985 `proc_macro::Literal::*_unsuffixed` for code that will desugar \
1986 to tuple field access",
1987 );
1988 err.note(
1989 "see issue #60210 <https://github.com/rust-lang/rust/issues/60210> \
1990 for more information",
1991 );
1992 err
1993 } else {
1994 self.struct_span_err(sp, &format!("suffixes on {kind} are invalid"))
1995 .forget_guarantee()
1996 };
1997 err.span_label(sp, format!("invalid suffix `{suf}`"));
1998 err.emit();
1999 }
2000 }
2001
2002 /// Matches `'-' lit | lit` (cf. `ast_validation::AstValidator::check_expr_within_pat`).
2003 /// Keep this in sync with `Token::can_begin_literal_maybe_minus`.
2004 pub fn parse_literal_maybe_minus(&mut self) -> PResult<'a, P<Expr>> {
2005 maybe_whole_expr!(self);
2006
2007 let lo = self.token.span;
2008 let minus_present = self.eat(&token::BinOp(token::Minus));
2009 let lit = self.parse_lit()?;
2010 let expr = self.mk_expr(lit.span, ExprKind::Lit(lit), AttrVec::new());
2011
2012 if minus_present {
2013 Ok(self.mk_expr(
2014 lo.to(self.prev_token.span),
2015 self.mk_unary(UnOp::Neg, expr),
2016 AttrVec::new(),
2017 ))
2018 } else {
2019 Ok(expr)
2020 }
2021 }
2022
2023 fn is_array_like_block(&mut self) -> bool {
2024 self.look_ahead(1, |t| matches!(t.kind, TokenKind::Ident(..) | TokenKind::Literal(_)))
2025 && self.look_ahead(2, |t| t == &token::Comma)
2026 && self.look_ahead(3, |t| t.can_begin_expr())
2027 }
2028
2029 /// Emits a suggestion if it looks like the user meant an array but
2030 /// accidentally used braces, causing the code to be interpreted as a block
2031 /// expression.
2032 fn maybe_suggest_brackets_instead_of_braces(
2033 &mut self,
2034 lo: Span,
2035 attrs: AttrVec,
2036 ) -> Option<P<Expr>> {
2037 let mut snapshot = self.create_snapshot_for_diagnostic();
2038 match snapshot.parse_array_or_repeat_expr(attrs, Delimiter::Brace) {
2039 Ok(arr) => {
2040 let hi = snapshot.prev_token.span;
2041 self.struct_span_err(arr.span, "this is a block expression, not an array")
2042 .multipart_suggestion(
2043 "to make an array, use square brackets instead of curly braces",
2044 vec![(lo, "[".to_owned()), (hi, "]".to_owned())],
2045 Applicability::MaybeIncorrect,
2046 )
2047 .emit();
2048
2049 self.restore_snapshot(snapshot);
2050 Some(self.mk_expr_err(arr.span))
2051 }
2052 Err(e) => {
2053 e.cancel();
2054 None
2055 }
2056 }
2057 }
2058
2059 /// Parses a block or unsafe block.
2060 pub(super) fn parse_block_expr(
2061 &mut self,
2062 opt_label: Option<Label>,
2063 lo: Span,
2064 blk_mode: BlockCheckMode,
2065 mut attrs: AttrVec,
2066 ) -> PResult<'a, P<Expr>> {
2067 if self.is_array_like_block() {
2068 if let Some(arr) = self.maybe_suggest_brackets_instead_of_braces(lo, attrs.clone()) {
2069 return Ok(arr);
2070 }
2071 }
2072
2073 if let Some(label) = opt_label {
2074 self.sess.gated_spans.gate(sym::label_break_value, label.ident.span);
2075 }
2076
2077 if self.token.is_whole_block() {
2078 self.struct_span_err(self.token.span, "cannot use a `block` macro fragment here")
2079 .span_label(lo.to(self.token.span), "the `block` fragment is within this context")
2080 .emit();
2081 }
2082
2083 let (inner_attrs, blk) = self.parse_block_common(lo, blk_mode)?;
2084 attrs.extend(inner_attrs);
2085 Ok(self.mk_expr(blk.span, ExprKind::Block(blk, opt_label), attrs))
2086 }
2087
2088 /// Parse a block which takes no attributes and has no label
2089 fn parse_simple_block(&mut self) -> PResult<'a, P<Expr>> {
2090 let blk = self.parse_block()?;
2091 Ok(self.mk_expr(blk.span, ExprKind::Block(blk, None), AttrVec::new()))
2092 }
2093
2094 /// Parses a closure expression (e.g., `move |args| expr`).
2095 fn parse_closure_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
2096 let lo = self.token.span;
2097
2098 let binder = if self.check_keyword(kw::For) {
2099 let lo = self.token.span;
2100 let lifetime_defs = self.parse_late_bound_lifetime_defs()?;
2101 let span = lo.to(self.prev_token.span);
2102
2103 self.sess.gated_spans.gate(sym::closure_lifetime_binder, span);
2104
2105 ClosureBinder::For { span, generic_params: P::from_vec(lifetime_defs) }
2106 } else {
2107 ClosureBinder::NotPresent
2108 };
2109
2110 let movability =
2111 if self.eat_keyword(kw::Static) { Movability::Static } else { Movability::Movable };
2112
2113 let asyncness = if self.token.uninterpolated_span().rust_2018() {
2114 self.parse_asyncness()
2115 } else {
2116 Async::No
2117 };
2118
2119 let capture_clause = self.parse_capture_clause()?;
2120 let decl = self.parse_fn_block_decl()?;
2121 let decl_hi = self.prev_token.span;
2122 let mut body = match decl.output {
2123 FnRetTy::Default(_) => {
2124 let restrictions = self.restrictions - Restrictions::STMT_EXPR;
2125 self.parse_expr_res(restrictions, None)?
2126 }
2127 _ => {
2128 // If an explicit return type is given, require a block to appear (RFC 968).
2129 let body_lo = self.token.span;
2130 self.parse_block_expr(None, body_lo, BlockCheckMode::Default, AttrVec::new())?
2131 }
2132 };
2133
2134 if let Async::Yes { span, .. } = asyncness {
2135 // Feature-gate `async ||` closures.
2136 self.sess.gated_spans.gate(sym::async_closure, span);
2137 }
2138
2139 if self.token.kind == TokenKind::Semi
2140 && matches!(self.token_cursor.frame.delim_sp, Some((Delimiter::Parenthesis, _)))
2141 {
2142 // It is likely that the closure body is a block but where the
2143 // braces have been removed. We will recover and eat the next
2144 // statements later in the parsing process.
2145 body = self.mk_expr_err(body.span);
2146 }
2147
2148 let body_span = body.span;
2149
2150 let closure = self.mk_expr(
2151 lo.to(body.span),
2152 ExprKind::Closure(
2153 binder,
2154 capture_clause,
2155 asyncness,
2156 movability,
2157 decl,
2158 body,
2159 lo.to(decl_hi),
2160 ),
2161 attrs,
2162 );
2163
2164 // Disable recovery for closure body
2165 let spans =
2166 ClosureSpans { whole_closure: closure.span, closing_pipe: decl_hi, body: body_span };
2167 self.current_closure = Some(spans);
2168
2169 Ok(closure)
2170 }
2171
2172 /// Parses an optional `move` prefix to a closure-like construct.
2173 fn parse_capture_clause(&mut self) -> PResult<'a, CaptureBy> {
2174 if self.eat_keyword(kw::Move) {
2175 // Check for `move async` and recover
2176 if self.check_keyword(kw::Async) {
2177 let move_async_span = self.token.span.with_lo(self.prev_token.span.data().lo);
2178 Err(self.incorrect_move_async_order_found(move_async_span))
2179 } else {
2180 Ok(CaptureBy::Value)
2181 }
2182 } else {
2183 Ok(CaptureBy::Ref)
2184 }
2185 }
2186
2187 /// Parses the `|arg, arg|` header of a closure.
2188 fn parse_fn_block_decl(&mut self) -> PResult<'a, P<FnDecl>> {
2189 let inputs = if self.eat(&token::OrOr) {
2190 Vec::new()
2191 } else {
2192 self.expect(&token::BinOp(token::Or))?;
2193 let args = self
2194 .parse_seq_to_before_tokens(
2195 &[&token::BinOp(token::Or), &token::OrOr],
2196 SeqSep::trailing_allowed(token::Comma),
2197 TokenExpectType::NoExpect,
2198 |p| p.parse_fn_block_param(),
2199 )?
2200 .0;
2201 self.expect_or()?;
2202 args
2203 };
2204 let output =
2205 self.parse_ret_ty(AllowPlus::Yes, RecoverQPath::Yes, RecoverReturnSign::Yes)?;
2206
2207 Ok(P(FnDecl { inputs, output }))
2208 }
2209
2210 /// Parses a parameter in a closure header (e.g., `|arg, arg|`).
2211 fn parse_fn_block_param(&mut self) -> PResult<'a, Param> {
2212 let lo = self.token.span;
2213 let attrs = self.parse_outer_attributes()?;
2214 self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
2215 let pat = this.parse_pat_no_top_alt(PARAM_EXPECTED)?;
2216 let ty = if this.eat(&token::Colon) {
2217 this.parse_ty()?
2218 } else {
2219 this.mk_ty(this.prev_token.span, TyKind::Infer)
2220 };
2221
2222 Ok((
2223 Param {
2224 attrs: attrs.into(),
2225 ty,
2226 pat,
2227 span: lo.to(this.token.span),
2228 id: DUMMY_NODE_ID,
2229 is_placeholder: false,
2230 },
2231 TrailingToken::MaybeComma,
2232 ))
2233 })
2234 }
2235
2236 /// Parses an `if` expression (`if` token already eaten).
2237 fn parse_if_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
2238 let lo = self.prev_token.span;
2239 let cond = self.parse_cond_expr()?;
2240
2241 self.parse_if_after_cond(attrs, lo, cond)
2242 }
2243
2244 fn parse_if_after_cond(
2245 &mut self,
2246 attrs: AttrVec,
2247 lo: Span,
2248 mut cond: P<Expr>,
2249 ) -> PResult<'a, P<Expr>> {
2250 let cond_span = cond.span;
2251 // Tries to interpret `cond` as either a missing expression if it's a block,
2252 // or as an unfinished expression if it's a binop and the RHS is a block.
2253 // We could probably add more recoveries here too...
2254 let mut recover_block_from_condition = |this: &mut Self| {
2255 let block = match &mut cond.kind {
2256 ExprKind::Binary(Spanned { span: binop_span, .. }, _, right)
2257 if let ExprKind::Block(_, None) = right.kind => {
2258 this.error_missing_if_then_block(lo, cond_span.shrink_to_lo().to(*binop_span), true).emit();
2259 std::mem::replace(right, this.mk_expr_err(binop_span.shrink_to_hi()))
2260 },
2261 ExprKind::Block(_, None) => {
2262 this.error_missing_if_cond(lo, cond_span).emit();
2263 std::mem::replace(&mut cond, this.mk_expr_err(cond_span.shrink_to_hi()))
2264 }
2265 _ => {
2266 return None;
2267 }
2268 };
2269 if let ExprKind::Block(block, _) = &block.kind {
2270 Some(block.clone())
2271 } else {
2272 unreachable!()
2273 }
2274 };
2275 // Parse then block
2276 let thn = if self.token.is_keyword(kw::Else) {
2277 if let Some(block) = recover_block_from_condition(self) {
2278 block
2279 } else {
2280 self.error_missing_if_then_block(lo, cond_span, false).emit();
2281 self.mk_block_err(cond_span.shrink_to_hi())
2282 }
2283 } else {
2284 let attrs = self.parse_outer_attributes()?.take_for_recovery(); // For recovery.
2285 let block = if self.check(&token::OpenDelim(Delimiter::Brace)) {
2286 self.parse_block()?
2287 } else {
2288 if let Some(block) = recover_block_from_condition(self) {
2289 block
2290 } else {
2291 // Parse block, which will always fail, but we can add a nice note to the error
2292 self.parse_block().map_err(|mut err| {
2293 err.span_note(
2294 cond_span,
2295 "the `if` expression is missing a block after this condition",
2296 );
2297 err
2298 })?
2299 }
2300 };
2301 self.error_on_if_block_attrs(lo, false, block.span, &attrs);
2302 block
2303 };
2304 let els = if self.eat_keyword(kw::Else) { Some(self.parse_else_expr()?) } else { None };
2305 Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::If(cond, thn, els), attrs))
2306 }
2307
2308 fn error_missing_if_then_block(
2309 &self,
2310 if_span: Span,
2311 cond_span: Span,
2312 is_unfinished: bool,
2313 ) -> DiagnosticBuilder<'a, ErrorGuaranteed> {
2314 let mut err = self.struct_span_err(
2315 if_span,
2316 "this `if` expression is missing a block after the condition",
2317 );
2318 if is_unfinished {
2319 err.span_help(cond_span, "this binary operation is possibly unfinished");
2320 } else {
2321 err.span_help(cond_span.shrink_to_hi(), "add a block here");
2322 }
2323 err
2324 }
2325
2326 fn error_missing_if_cond(
2327 &self,
2328 lo: Span,
2329 span: Span,
2330 ) -> DiagnosticBuilder<'a, ErrorGuaranteed> {
2331 let next_span = self.sess.source_map().next_point(lo);
2332 let mut err = self.struct_span_err(next_span, "missing condition for `if` expression");
2333 err.span_label(next_span, "expected condition here");
2334 err.span_label(
2335 self.sess.source_map().start_point(span),
2336 "if this block is the condition of the `if` expression, then it must be followed by another block"
2337 );
2338 err
2339 }
2340
2341 /// Parses the condition of a `if` or `while` expression.
2342 fn parse_cond_expr(&mut self) -> PResult<'a, P<Expr>> {
2343 let cond = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL | Restrictions::ALLOW_LET, None)?;
2344
2345 if let ExprKind::Let(..) = cond.kind {
2346 // Remove the last feature gating of a `let` expression since it's stable.
2347 self.sess.gated_spans.ungate_last(sym::let_chains, cond.span);
2348 }
2349
2350 Ok(cond)
2351 }
2352
2353 /// Parses a `let $pat = $expr` pseudo-expression.
2354 fn parse_let_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
2355 // This is a *approximate* heuristic that detects if `let` chains are
2356 // being parsed in the right position. It's approximate because it
2357 // doesn't deny all invalid `let` expressions, just completely wrong usages.
2358 let not_in_chain = !matches!(
2359 self.prev_token.kind,
2360 TokenKind::AndAnd | TokenKind::Ident(kw::If, _) | TokenKind::Ident(kw::While, _)
2361 );
2362 if !self.restrictions.contains(Restrictions::ALLOW_LET) || not_in_chain {
2363 self.struct_span_err(self.token.span, "expected expression, found `let` statement")
2364 .emit();
2365 }
2366
2367 self.bump(); // Eat `let` token
2368 let lo = self.prev_token.span;
2369 let pat = self.parse_pat_allow_top_alt(
2370 None,
2371 RecoverComma::Yes,
2372 RecoverColon::Yes,
2373 CommaRecoveryMode::LikelyTuple,
2374 )?;
2375 self.expect(&token::Eq)?;
2376 let expr = self.with_res(self.restrictions | Restrictions::NO_STRUCT_LITERAL, |this| {
2377 this.parse_assoc_expr_with(1 + prec_let_scrutinee_needs_par(), None.into())
2378 })?;
2379 let span = lo.to(expr.span);
2380 self.sess.gated_spans.gate(sym::let_chains, span);
2381 Ok(self.mk_expr(span, ExprKind::Let(pat, expr, span), attrs))
2382 }
2383
2384 /// Parses an `else { ... }` expression (`else` token already eaten).
2385 fn parse_else_expr(&mut self) -> PResult<'a, P<Expr>> {
2386 let else_span = self.prev_token.span; // `else`
2387 let attrs = self.parse_outer_attributes()?.take_for_recovery(); // For recovery.
2388 let expr = if self.eat_keyword(kw::If) {
2389 self.parse_if_expr(AttrVec::new())?
2390 } else if self.check(&TokenKind::OpenDelim(Delimiter::Brace)) {
2391 self.parse_simple_block()?
2392 } else {
2393 let snapshot = self.create_snapshot_for_diagnostic();
2394 let first_tok = super::token_descr(&self.token);
2395 let first_tok_span = self.token.span;
2396 match self.parse_expr() {
2397 Ok(cond)
2398 // If it's not a free-standing expression, and is followed by a block,
2399 // then it's very likely the condition to an `else if`.
2400 if self.check(&TokenKind::OpenDelim(Delimiter::Brace))
2401 && classify::expr_requires_semi_to_be_stmt(&cond) =>
2402 {
2403 self.struct_span_err(first_tok_span, format!("expected `{{`, found {first_tok}"))
2404 .span_label(else_span, "expected an `if` or a block after this `else`")
2405 .span_suggestion(
2406 cond.span.shrink_to_lo(),
2407 "add an `if` if this is the condition of a chained `else if` statement",
2408 "if ",
2409 Applicability::MaybeIncorrect,
2410 )
2411 .emit();
2412 self.parse_if_after_cond(AttrVec::new(), cond.span.shrink_to_lo(), cond)?
2413 }
2414 Err(e) => {
2415 e.cancel();
2416 self.restore_snapshot(snapshot);
2417 self.parse_simple_block()?
2418 },
2419 Ok(_) => {
2420 self.restore_snapshot(snapshot);
2421 self.parse_simple_block()?
2422 },
2423 }
2424 };
2425 self.error_on_if_block_attrs(else_span, true, expr.span, &attrs);
2426 Ok(expr)
2427 }
2428
2429 fn error_on_if_block_attrs(
2430 &self,
2431 ctx_span: Span,
2432 is_ctx_else: bool,
2433 branch_span: Span,
2434 attrs: &[ast::Attribute],
2435 ) {
2436 let (span, last) = match attrs {
2437 [] => return,
2438 [x0 @ xn] | [x0, .., xn] => (x0.span.to(xn.span), xn.span),
2439 };
2440 let ctx = if is_ctx_else { "else" } else { "if" };
2441 self.struct_span_err(last, "outer attributes are not allowed on `if` and `else` branches")
2442 .span_label(branch_span, "the attributes are attached to this branch")
2443 .span_label(ctx_span, format!("the branch belongs to this `{ctx}`"))
2444 .span_suggestion(span, "remove the attributes", "", Applicability::MachineApplicable)
2445 .emit();
2446 }
2447
2448 /// Parses `for <src_pat> in <src_expr> <src_loop_block>` (`for` token already eaten).
2449 fn parse_for_expr(
2450 &mut self,
2451 opt_label: Option<Label>,
2452 lo: Span,
2453 mut attrs: AttrVec,
2454 ) -> PResult<'a, P<Expr>> {
2455 // Record whether we are about to parse `for (`.
2456 // This is used below for recovery in case of `for ( $stuff ) $block`
2457 // in which case we will suggest `for $stuff $block`.
2458 let begin_paren = match self.token.kind {
2459 token::OpenDelim(Delimiter::Parenthesis) => Some(self.token.span),
2460 _ => None,
2461 };
2462
2463 let pat = self.parse_pat_allow_top_alt(
2464 None,
2465 RecoverComma::Yes,
2466 RecoverColon::Yes,
2467 CommaRecoveryMode::LikelyTuple,
2468 )?;
2469 if !self.eat_keyword(kw::In) {
2470 self.error_missing_in_for_loop();
2471 }
2472 self.check_for_for_in_in_typo(self.prev_token.span);
2473 let expr = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
2474
2475 let pat = self.recover_parens_around_for_head(pat, begin_paren);
2476
2477 let (iattrs, loop_block) = self.parse_inner_attrs_and_block()?;
2478 attrs.extend(iattrs);
2479
2480 let kind = ExprKind::ForLoop(pat, expr, loop_block, opt_label);
2481 Ok(self.mk_expr(lo.to(self.prev_token.span), kind, attrs))
2482 }
2483
2484 fn error_missing_in_for_loop(&mut self) {
2485 let (span, msg, sugg) = if self.token.is_ident_named(sym::of) {
2486 // Possibly using JS syntax (#75311).
2487 let span = self.token.span;
2488 self.bump();
2489 (span, "try using `in` here instead", "in")
2490 } else {
2491 (self.prev_token.span.between(self.token.span), "try adding `in` here", " in ")
2492 };
2493 self.struct_span_err(span, "missing `in` in `for` loop")
2494 .span_suggestion_short(
2495 span,
2496 msg,
2497 sugg,
2498 // Has been misleading, at least in the past (closed Issue #48492).
2499 Applicability::MaybeIncorrect,
2500 )
2501 .emit();
2502 }
2503
2504 /// Parses a `while` or `while let` expression (`while` token already eaten).
2505 fn parse_while_expr(
2506 &mut self,
2507 opt_label: Option<Label>,
2508 lo: Span,
2509 mut attrs: AttrVec,
2510 ) -> PResult<'a, P<Expr>> {
2511 let cond = self.parse_cond_expr().map_err(|mut err| {
2512 err.span_label(lo, "while parsing the condition of this `while` expression");
2513 err
2514 })?;
2515 let (iattrs, body) = self.parse_inner_attrs_and_block().map_err(|mut err| {
2516 err.span_label(lo, "while parsing the body of this `while` expression");
2517 err.span_label(cond.span, "this `while` condition successfully parsed");
2518 err
2519 })?;
2520 attrs.extend(iattrs);
2521 Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::While(cond, body, opt_label), attrs))
2522 }
2523
2524 /// Parses `loop { ... }` (`loop` token already eaten).
2525 fn parse_loop_expr(
2526 &mut self,
2527 opt_label: Option<Label>,
2528 lo: Span,
2529 mut attrs: AttrVec,
2530 ) -> PResult<'a, P<Expr>> {
2531 let (iattrs, body) = self.parse_inner_attrs_and_block()?;
2532 attrs.extend(iattrs);
2533 Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::Loop(body, opt_label), attrs))
2534 }
2535
2536 pub(crate) fn eat_label(&mut self) -> Option<Label> {
2537 self.token.lifetime().map(|ident| {
2538 self.bump();
2539 Label { ident }
2540 })
2541 }
2542
2543 /// Parses a `match ... { ... }` expression (`match` token already eaten).
2544 fn parse_match_expr(&mut self, mut attrs: AttrVec) -> PResult<'a, P<Expr>> {
2545 let match_span = self.prev_token.span;
2546 let lo = self.prev_token.span;
2547 let scrutinee = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
2548 if let Err(mut e) = self.expect(&token::OpenDelim(Delimiter::Brace)) {
2549 if self.token == token::Semi {
2550 e.span_suggestion_short(
2551 match_span,
2552 "try removing this `match`",
2553 "",
2554 Applicability::MaybeIncorrect, // speculative
2555 );
2556 }
2557 if self.maybe_recover_unexpected_block_label() {
2558 e.cancel();
2559 self.bump();
2560 } else {
2561 return Err(e);
2562 }
2563 }
2564 attrs.extend(self.parse_inner_attributes()?);
2565
2566 let mut arms: Vec<Arm> = Vec::new();
2567 while self.token != token::CloseDelim(Delimiter::Brace) {
2568 match self.parse_arm() {
2569 Ok(arm) => arms.push(arm),
2570 Err(mut e) => {
2571 // Recover by skipping to the end of the block.
2572 e.emit();
2573 self.recover_stmt();
2574 let span = lo.to(self.token.span);
2575 if self.token == token::CloseDelim(Delimiter::Brace) {
2576 self.bump();
2577 }
2578 return Ok(self.mk_expr(span, ExprKind::Match(scrutinee, arms), attrs));
2579 }
2580 }
2581 }
2582 let hi = self.token.span;
2583 self.bump();
2584 Ok(self.mk_expr(lo.to(hi), ExprKind::Match(scrutinee, arms), attrs))
2585 }
2586
2587 /// Attempt to recover from match arm body with statements and no surrounding braces.
2588 fn parse_arm_body_missing_braces(
2589 &mut self,
2590 first_expr: &P<Expr>,
2591 arrow_span: Span,
2592 ) -> Option<P<Expr>> {
2593 if self.token.kind != token::Semi {
2594 return None;
2595 }
2596 let start_snapshot = self.create_snapshot_for_diagnostic();
2597 let semi_sp = self.token.span;
2598 self.bump(); // `;`
2599 let mut stmts =
2600 vec![self.mk_stmt(first_expr.span, ast::StmtKind::Expr(first_expr.clone()))];
2601 let err = |this: &mut Parser<'_>, stmts: Vec<ast::Stmt>| {
2602 let span = stmts[0].span.to(stmts[stmts.len() - 1].span);
2603 let mut err = this.struct_span_err(span, "`match` arm body without braces");
2604 let (these, s, are) =
2605 if stmts.len() > 1 { ("these", "s", "are") } else { ("this", "", "is") };
2606 err.span_label(
2607 span,
2608 &format!(
2609 "{these} statement{s} {are} not surrounded by a body",
2610 these = these,
2611 s = s,
2612 are = are
2613 ),
2614 );
2615 err.span_label(arrow_span, "while parsing the `match` arm starting here");
2616 if stmts.len() > 1 {
2617 err.multipart_suggestion(
2618 &format!("surround the statement{s} with a body"),
2619 vec![
2620 (span.shrink_to_lo(), "{ ".to_string()),
2621 (span.shrink_to_hi(), " }".to_string()),
2622 ],
2623 Applicability::MachineApplicable,
2624 );
2625 } else {
2626 err.span_suggestion(
2627 semi_sp,
2628 "use a comma to end a `match` arm expression",
2629 ",",
2630 Applicability::MachineApplicable,
2631 );
2632 }
2633 err.emit();
2634 this.mk_expr_err(span)
2635 };
2636 // We might have either a `,` -> `;` typo, or a block without braces. We need
2637 // a more subtle parsing strategy.
2638 loop {
2639 if self.token.kind == token::CloseDelim(Delimiter::Brace) {
2640 // We have reached the closing brace of the `match` expression.
2641 return Some(err(self, stmts));
2642 }
2643 if self.token.kind == token::Comma {
2644 self.restore_snapshot(start_snapshot);
2645 return None;
2646 }
2647 let pre_pat_snapshot = self.create_snapshot_for_diagnostic();
2648 match self.parse_pat_no_top_alt(None) {
2649 Ok(_pat) => {
2650 if self.token.kind == token::FatArrow {
2651 // Reached arm end.
2652 self.restore_snapshot(pre_pat_snapshot);
2653 return Some(err(self, stmts));
2654 }
2655 }
2656 Err(err) => {
2657 err.cancel();
2658 }
2659 }
2660
2661 self.restore_snapshot(pre_pat_snapshot);
2662 match self.parse_stmt_without_recovery(true, ForceCollect::No) {
2663 // Consume statements for as long as possible.
2664 Ok(Some(stmt)) => {
2665 stmts.push(stmt);
2666 }
2667 Ok(None) => {
2668 self.restore_snapshot(start_snapshot);
2669 break;
2670 }
2671 // We couldn't parse either yet another statement missing it's
2672 // enclosing block nor the next arm's pattern or closing brace.
2673 Err(stmt_err) => {
2674 stmt_err.cancel();
2675 self.restore_snapshot(start_snapshot);
2676 break;
2677 }
2678 }
2679 }
2680 None
2681 }
2682
2683 pub(super) fn parse_arm(&mut self) -> PResult<'a, Arm> {
2684 // Used to check the `let_chains` and `if_let_guard` features mostly by scaning
2685 // `&&` tokens.
2686 fn check_let_expr(expr: &Expr) -> (bool, bool) {
2687 match expr.kind {
2688 ExprKind::Binary(BinOp { node: BinOpKind::And, .. }, ref lhs, ref rhs) => {
2689 let lhs_rslt = check_let_expr(lhs);
2690 let rhs_rslt = check_let_expr(rhs);
2691 (lhs_rslt.0 || rhs_rslt.0, false)
2692 }
2693 ExprKind::Let(..) => (true, true),
2694 _ => (false, true),
2695 }
2696 }
2697 let attrs = self.parse_outer_attributes()?;
2698 self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
2699 let lo = this.token.span;
2700 let pat = this.parse_pat_allow_top_alt(
2701 None,
2702 RecoverComma::Yes,
2703 RecoverColon::Yes,
2704 CommaRecoveryMode::EitherTupleOrPipe,
2705 )?;
2706 let guard = if this.eat_keyword(kw::If) {
2707 let if_span = this.prev_token.span;
2708 let cond = this.parse_expr_res(Restrictions::ALLOW_LET, None)?;
2709 let (has_let_expr, does_not_have_bin_op) = check_let_expr(&cond);
2710 if has_let_expr {
2711 if does_not_have_bin_op {
2712 // Remove the last feature gating of a `let` expression since it's stable.
2713 this.sess.gated_spans.ungate_last(sym::let_chains, cond.span);
2714 }
2715 let span = if_span.to(cond.span);
2716 this.sess.gated_spans.gate(sym::if_let_guard, span);
2717 }
2718 Some(cond)
2719 } else {
2720 None
2721 };
2722 let arrow_span = this.token.span;
2723 if let Err(mut err) = this.expect(&token::FatArrow) {
2724 // We might have a `=>` -> `=` or `->` typo (issue #89396).
2725 if TokenKind::FatArrow
2726 .similar_tokens()
2727 .map_or(false, |similar_tokens| similar_tokens.contains(&this.token.kind))
2728 {
2729 err.span_suggestion(
2730 this.token.span,
2731 "try using a fat arrow here",
2732 "=>",
2733 Applicability::MaybeIncorrect,
2734 );
2735 err.emit();
2736 this.bump();
2737 } else {
2738 return Err(err);
2739 }
2740 }
2741 let arm_start_span = this.token.span;
2742
2743 let expr = this.parse_expr_res(Restrictions::STMT_EXPR, None).map_err(|mut err| {
2744 err.span_label(arrow_span, "while parsing the `match` arm starting here");
2745 err
2746 })?;
2747
2748 let require_comma = classify::expr_requires_semi_to_be_stmt(&expr)
2749 && this.token != token::CloseDelim(Delimiter::Brace);
2750
2751 let hi = this.prev_token.span;
2752
2753 if require_comma {
2754 let sm = this.sess.source_map();
2755 if let Some(body) = this.parse_arm_body_missing_braces(&expr, arrow_span) {
2756 let span = body.span;
2757 return Ok((
2758 ast::Arm {
2759 attrs: attrs.into(),
2760 pat,
2761 guard,
2762 body,
2763 span,
2764 id: DUMMY_NODE_ID,
2765 is_placeholder: false,
2766 },
2767 TrailingToken::None,
2768 ));
2769 }
2770 this.expect_one_of(&[token::Comma], &[token::CloseDelim(Delimiter::Brace)])
2771 .or_else(|mut err| {
2772 if this.token == token::FatArrow {
2773 if let Ok(expr_lines) = sm.span_to_lines(expr.span)
2774 && let Ok(arm_start_lines) = sm.span_to_lines(arm_start_span)
2775 && arm_start_lines.lines[0].end_col == expr_lines.lines[0].end_col
2776 && expr_lines.lines.len() == 2
2777 {
2778 // We check whether there's any trailing code in the parse span,
2779 // if there isn't, we very likely have the following:
2780 //
2781 // X | &Y => "y"
2782 // | -- - missing comma
2783 // | |
2784 // | arrow_span
2785 // X | &X => "x"
2786 // | - ^^ self.token.span
2787 // | |
2788 // | parsed until here as `"y" & X`
2789 err.span_suggestion_short(
2790 arm_start_span.shrink_to_hi(),
2791 "missing a comma here to end this `match` arm",
2792 ",",
2793 Applicability::MachineApplicable,
2794 );
2795 return Err(err);
2796 }
2797 } else {
2798 // FIXME(compiler-errors): We could also recover `; PAT =>` here
2799
2800 // Try to parse a following `PAT =>`, if successful
2801 // then we should recover.
2802 let mut snapshot = this.create_snapshot_for_diagnostic();
2803 let pattern_follows = snapshot
2804 .parse_pat_allow_top_alt(
2805 None,
2806 RecoverComma::Yes,
2807 RecoverColon::Yes,
2808 CommaRecoveryMode::EitherTupleOrPipe,
2809 )
2810 .map_err(|err| err.cancel())
2811 .is_ok();
2812 if pattern_follows && snapshot.check(&TokenKind::FatArrow) {
2813 err.cancel();
2814 this.struct_span_err(
2815 hi.shrink_to_hi(),
2816 "expected `,` following `match` arm",
2817 )
2818 .span_suggestion(
2819 hi.shrink_to_hi(),
2820 "missing a comma here to end this `match` arm",
2821 ",",
2822 Applicability::MachineApplicable,
2823 )
2824 .emit();
2825 return Ok(true);
2826 }
2827 }
2828 err.span_label(arrow_span, "while parsing the `match` arm starting here");
2829 Err(err)
2830 })?;
2831 } else {
2832 this.eat(&token::Comma);
2833 }
2834
2835 Ok((
2836 ast::Arm {
2837 attrs: attrs.into(),
2838 pat,
2839 guard,
2840 body: expr,
2841 span: lo.to(hi),
2842 id: DUMMY_NODE_ID,
2843 is_placeholder: false,
2844 },
2845 TrailingToken::None,
2846 ))
2847 })
2848 }
2849
2850 /// Parses a `try {...}` expression (`try` token already eaten).
2851 fn parse_try_block(&mut self, span_lo: Span, mut attrs: AttrVec) -> PResult<'a, P<Expr>> {
2852 let (iattrs, body) = self.parse_inner_attrs_and_block()?;
2853 attrs.extend(iattrs);
2854 if self.eat_keyword(kw::Catch) {
2855 let mut error = self.struct_span_err(
2856 self.prev_token.span,
2857 "keyword `catch` cannot follow a `try` block",
2858 );
2859 error.help("try using `match` on the result of the `try` block instead");
2860 error.emit();
2861 Err(error)
2862 } else {
2863 let span = span_lo.to(body.span);
2864 self.sess.gated_spans.gate(sym::try_blocks, span);
2865 Ok(self.mk_expr(span, ExprKind::TryBlock(body), attrs))
2866 }
2867 }
2868
2869 fn is_do_catch_block(&self) -> bool {
2870 self.token.is_keyword(kw::Do)
2871 && self.is_keyword_ahead(1, &[kw::Catch])
2872 && self.look_ahead(2, |t| *t == token::OpenDelim(Delimiter::Brace))
2873 && !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
2874 }
2875
2876 fn is_do_yeet(&self) -> bool {
2877 self.token.is_keyword(kw::Do) && self.is_keyword_ahead(1, &[kw::Yeet])
2878 }
2879
2880 fn is_try_block(&self) -> bool {
2881 self.token.is_keyword(kw::Try)
2882 && self.look_ahead(1, |t| *t == token::OpenDelim(Delimiter::Brace))
2883 && self.token.uninterpolated_span().rust_2018()
2884 }
2885
2886 /// Parses an `async move? {...}` expression.
2887 fn parse_async_block(&mut self, mut attrs: AttrVec) -> PResult<'a, P<Expr>> {
2888 let lo = self.token.span;
2889 self.expect_keyword(kw::Async)?;
2890 let capture_clause = self.parse_capture_clause()?;
2891 let (iattrs, body) = self.parse_inner_attrs_and_block()?;
2892 attrs.extend(iattrs);
2893 let kind = ExprKind::Async(capture_clause, DUMMY_NODE_ID, body);
2894 Ok(self.mk_expr(lo.to(self.prev_token.span), kind, attrs))
2895 }
2896
2897 fn is_async_block(&self) -> bool {
2898 self.token.is_keyword(kw::Async)
2899 && ((
2900 // `async move {`
2901 self.is_keyword_ahead(1, &[kw::Move])
2902 && self.look_ahead(2, |t| *t == token::OpenDelim(Delimiter::Brace))
2903 ) || (
2904 // `async {`
2905 self.look_ahead(1, |t| *t == token::OpenDelim(Delimiter::Brace))
2906 ))
2907 }
2908
2909 fn is_certainly_not_a_block(&self) -> bool {
2910 self.look_ahead(1, |t| t.is_ident())
2911 && (
2912 // `{ ident, ` cannot start a block.
2913 self.look_ahead(2, |t| t == &token::Comma)
2914 || self.look_ahead(2, |t| t == &token::Colon)
2915 && (
2916 // `{ ident: token, ` cannot start a block.
2917 self.look_ahead(4, |t| t == &token::Comma) ||
2918 // `{ ident: ` cannot start a block unless it's a type ascription `ident: Type`.
2919 self.look_ahead(3, |t| !t.can_begin_type())
2920 )
2921 )
2922 }
2923
2924 fn maybe_parse_struct_expr(
2925 &mut self,
2926 qself: Option<&ast::QSelf>,
2927 path: &ast::Path,
2928 attrs: &AttrVec,
2929 ) -> Option<PResult<'a, P<Expr>>> {
2930 let struct_allowed = !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
2931 if struct_allowed || self.is_certainly_not_a_block() {
2932 if let Err(err) = self.expect(&token::OpenDelim(Delimiter::Brace)) {
2933 return Some(Err(err));
2934 }
2935 let expr = self.parse_struct_expr(qself.cloned(), path.clone(), attrs.clone(), true);
2936 if let (Ok(expr), false) = (&expr, struct_allowed) {
2937 // This is a struct literal, but we don't can't accept them here.
2938 self.error_struct_lit_not_allowed_here(path.span, expr.span);
2939 }
2940 return Some(expr);
2941 }
2942 None
2943 }
2944
2945 fn error_struct_lit_not_allowed_here(&self, lo: Span, sp: Span) {
2946 self.struct_span_err(sp, "struct literals are not allowed here")
2947 .multipart_suggestion(
2948 "surround the struct literal with parentheses",
2949 vec![(lo.shrink_to_lo(), "(".to_string()), (sp.shrink_to_hi(), ")".to_string())],
2950 Applicability::MachineApplicable,
2951 )
2952 .emit();
2953 }
2954
2955 pub(super) fn parse_struct_fields(
2956 &mut self,
2957 pth: ast::Path,
2958 recover: bool,
2959 close_delim: Delimiter,
2960 ) -> PResult<'a, (Vec<ExprField>, ast::StructRest, bool)> {
2961 let mut fields = Vec::new();
2962 let mut base = ast::StructRest::None;
2963 let mut recover_async = false;
2964
2965 let mut async_block_err = |e: &mut Diagnostic, span: Span| {
2966 recover_async = true;
2967 e.span_label(span, "`async` blocks are only allowed in Rust 2018 or later");
2968 e.help_use_latest_edition();
2969 };
2970
2971 while self.token != token::CloseDelim(close_delim) {
2972 if self.eat(&token::DotDot) {
2973 let exp_span = self.prev_token.span;
2974 // We permit `.. }` on the left-hand side of a destructuring assignment.
2975 if self.check(&token::CloseDelim(close_delim)) {
2976 base = ast::StructRest::Rest(self.prev_token.span.shrink_to_hi());
2977 break;
2978 }
2979 match self.parse_expr() {
2980 Ok(e) => base = ast::StructRest::Base(e),
2981 Err(mut e) if recover => {
2982 e.emit();
2983 self.recover_stmt();
2984 }
2985 Err(e) => return Err(e),
2986 }
2987 self.recover_struct_comma_after_dotdot(exp_span);
2988 break;
2989 }
2990
2991 let recovery_field = self.find_struct_error_after_field_looking_code();
2992 let parsed_field = match self.parse_expr_field() {
2993 Ok(f) => Some(f),
2994 Err(mut e) => {
2995 if pth == kw::Async {
2996 async_block_err(&mut e, pth.span);
2997 } else {
2998 e.span_label(pth.span, "while parsing this struct");
2999 }
3000 e.emit();
3001
3002 // If the next token is a comma, then try to parse
3003 // what comes next as additional fields, rather than
3004 // bailing out until next `}`.
3005 if self.token != token::Comma {
3006 self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
3007 if self.token != token::Comma {
3008 break;
3009 }
3010 }
3011 None
3012 }
3013 };
3014
3015 let is_shorthand = parsed_field.as_ref().map_or(false, |f| f.is_shorthand);
3016 // A shorthand field can be turned into a full field with `:`.
3017 // We should point this out.
3018 self.check_or_expected(!is_shorthand, TokenType::Token(token::Colon));
3019
3020 match self.expect_one_of(&[token::Comma], &[token::CloseDelim(close_delim)]) {
3021 Ok(_) => {
3022 if let Some(f) = parsed_field.or(recovery_field) {
3023 // Only include the field if there's no parse error for the field name.
3024 fields.push(f);
3025 }
3026 }
3027 Err(mut e) => {
3028 if pth == kw::Async {
3029 async_block_err(&mut e, pth.span);
3030 } else {
3031 e.span_label(pth.span, "while parsing this struct");
3032 if let Some(f) = recovery_field {
3033 fields.push(f);
3034 e.span_suggestion(
3035 self.prev_token.span.shrink_to_hi(),
3036 "try adding a comma",
3037 ",",
3038 Applicability::MachineApplicable,
3039 );
3040 } else if is_shorthand
3041 && (AssocOp::from_token(&self.token).is_some()
3042 || matches!(&self.token.kind, token::OpenDelim(_))
3043 || self.token.kind == token::Dot)
3044 {
3045 // Looks like they tried to write a shorthand, complex expression.
3046 let ident = parsed_field.expect("is_shorthand implies Some").ident;
3047 e.span_suggestion(
3048 ident.span.shrink_to_lo(),
3049 "try naming a field",
3050 &format!("{ident}: "),
3051 Applicability::HasPlaceholders,
3052 );
3053 }
3054 }
3055 if !recover {
3056 return Err(e);
3057 }
3058 e.emit();
3059 self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
3060 self.eat(&token::Comma);
3061 }
3062 }
3063 }
3064 Ok((fields, base, recover_async))
3065 }
3066
3067 /// Precondition: already parsed the '{'.
3068 pub(super) fn parse_struct_expr(
3069 &mut self,
3070 qself: Option<ast::QSelf>,
3071 pth: ast::Path,
3072 attrs: AttrVec,
3073 recover: bool,
3074 ) -> PResult<'a, P<Expr>> {
3075 let lo = pth.span;
3076 let (fields, base, recover_async) =
3077 self.parse_struct_fields(pth.clone(), recover, Delimiter::Brace)?;
3078 let span = lo.to(self.token.span);
3079 self.expect(&token::CloseDelim(Delimiter::Brace))?;
3080 let expr = if recover_async {
3081 ExprKind::Err
3082 } else {
3083 ExprKind::Struct(P(ast::StructExpr { qself, path: pth, fields, rest: base }))
3084 };
3085 Ok(self.mk_expr(span, expr, attrs))
3086 }
3087
3088 /// Use in case of error after field-looking code: `S { foo: () with a }`.
3089 fn find_struct_error_after_field_looking_code(&self) -> Option<ExprField> {
3090 match self.token.ident() {
3091 Some((ident, is_raw))
3092 if (is_raw || !ident.is_reserved())
3093 && self.look_ahead(1, |t| *t == token::Colon) =>
3094 {
3095 Some(ast::ExprField {
3096 ident,
3097 span: self.token.span,
3098 expr: self.mk_expr_err(self.token.span),
3099 is_shorthand: false,
3100 attrs: AttrVec::new(),
3101 id: DUMMY_NODE_ID,
3102 is_placeholder: false,
3103 })
3104 }
3105 _ => None,
3106 }
3107 }
3108
3109 fn recover_struct_comma_after_dotdot(&mut self, span: Span) {
3110 if self.token != token::Comma {
3111 return;
3112 }
3113 self.struct_span_err(
3114 span.to(self.prev_token.span),
3115 "cannot use a comma after the base struct",
3116 )
3117 .span_suggestion_short(
3118 self.token.span,
3119 "remove this comma",
3120 "",
3121 Applicability::MachineApplicable,
3122 )
3123 .note("the base struct must always be the last field")
3124 .emit();
3125 self.recover_stmt();
3126 }
3127
3128 /// Parses `ident (COLON expr)?`.
3129 fn parse_expr_field(&mut self) -> PResult<'a, ExprField> {
3130 let attrs = self.parse_outer_attributes()?;
3131 self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
3132 let lo = this.token.span;
3133
3134 // Check if a colon exists one ahead. This means we're parsing a fieldname.
3135 let is_shorthand = !this.look_ahead(1, |t| t == &token::Colon || t == &token::Eq);
3136 let (ident, expr) = if is_shorthand {
3137 // Mimic `x: x` for the `x` field shorthand.
3138 let ident = this.parse_ident_common(false)?;
3139 let path = ast::Path::from_ident(ident);
3140 (ident, this.mk_expr(ident.span, ExprKind::Path(None, path), AttrVec::new()))
3141 } else {
3142 let ident = this.parse_field_name()?;
3143 this.error_on_eq_field_init(ident);
3144 this.bump(); // `:`
3145 (ident, this.parse_expr()?)
3146 };
3147
3148 Ok((
3149 ast::ExprField {
3150 ident,
3151 span: lo.to(expr.span),
3152 expr,
3153 is_shorthand,
3154 attrs: attrs.into(),
3155 id: DUMMY_NODE_ID,
3156 is_placeholder: false,
3157 },
3158 TrailingToken::MaybeComma,
3159 ))
3160 })
3161 }
3162
3163 /// Check for `=`. This means the source incorrectly attempts to
3164 /// initialize a field with an eq rather than a colon.
3165 fn error_on_eq_field_init(&self, field_name: Ident) {
3166 if self.token != token::Eq {
3167 return;
3168 }
3169
3170 self.struct_span_err(self.token.span, "expected `:`, found `=`")
3171 .span_suggestion(
3172 field_name.span.shrink_to_hi().to(self.token.span),
3173 "replace equals symbol with a colon",
3174 ":",
3175 Applicability::MachineApplicable,
3176 )
3177 .emit();
3178 }
3179
3180 fn err_dotdotdot_syntax(&self, span: Span) {
3181 self.struct_span_err(span, "unexpected token: `...`")
3182 .span_suggestion(
3183 span,
3184 "use `..` for an exclusive range",
3185 "..",
3186 Applicability::MaybeIncorrect,
3187 )
3188 .span_suggestion(
3189 span,
3190 "or `..=` for an inclusive range",
3191 "..=",
3192 Applicability::MaybeIncorrect,
3193 )
3194 .emit();
3195 }
3196
3197 fn err_larrow_operator(&self, span: Span) {
3198 self.struct_span_err(span, "unexpected token: `<-`")
3199 .span_suggestion(
3200 span,
3201 "if you meant to write a comparison against a negative value, add a \
3202 space in between `<` and `-`",
3203 "< -",
3204 Applicability::MaybeIncorrect,
3205 )
3206 .emit();
3207 }
3208
3209 fn mk_assign_op(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind {
3210 ExprKind::AssignOp(binop, lhs, rhs)
3211 }
3212
3213 fn mk_range(
3214 &mut self,
3215 start: Option<P<Expr>>,
3216 end: Option<P<Expr>>,
3217 limits: RangeLimits,
3218 ) -> ExprKind {
3219 if end.is_none() && limits == RangeLimits::Closed {
3220 self.inclusive_range_with_incorrect_end(self.prev_token.span);
3221 ExprKind::Err
3222 } else {
3223 ExprKind::Range(start, end, limits)
3224 }
3225 }
3226
3227 fn mk_unary(&self, unop: UnOp, expr: P<Expr>) -> ExprKind {
3228 ExprKind::Unary(unop, expr)
3229 }
3230
3231 fn mk_binary(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind {
3232 ExprKind::Binary(binop, lhs, rhs)
3233 }
3234
3235 fn mk_index(&self, expr: P<Expr>, idx: P<Expr>) -> ExprKind {
3236 ExprKind::Index(expr, idx)
3237 }
3238
3239 fn mk_call(&self, f: P<Expr>, args: Vec<P<Expr>>) -> ExprKind {
3240 ExprKind::Call(f, args)
3241 }
3242
3243 fn mk_await_expr(&mut self, self_arg: P<Expr>, lo: Span) -> P<Expr> {
3244 let span = lo.to(self.prev_token.span);
3245 let await_expr = self.mk_expr(span, ExprKind::Await(self_arg), AttrVec::new());
3246 self.recover_from_await_method_call();
3247 await_expr
3248 }
3249
3250 pub(crate) fn mk_expr(&self, span: Span, kind: ExprKind, attrs: AttrVec) -> P<Expr> {
3251 P(Expr { kind, span, attrs, id: DUMMY_NODE_ID, tokens: None })
3252 }
3253
3254 pub(super) fn mk_expr_err(&self, span: Span) -> P<Expr> {
3255 self.mk_expr(span, ExprKind::Err, AttrVec::new())
3256 }
3257
3258 /// Create expression span ensuring the span of the parent node
3259 /// is larger than the span of lhs and rhs, including the attributes.
3260 fn mk_expr_sp(&self, lhs: &P<Expr>, lhs_span: Span, rhs_span: Span) -> Span {
3261 lhs.attrs
3262 .iter()
3263 .find(|a| a.style == AttrStyle::Outer)
3264 .map_or(lhs_span, |a| a.span)
3265 .to(rhs_span)
3266 }
3267
3268 fn collect_tokens_for_expr(
3269 &mut self,
3270 attrs: AttrWrapper,
3271 f: impl FnOnce(&mut Self, Vec<ast::Attribute>) -> PResult<'a, P<Expr>>,
3272 ) -> PResult<'a, P<Expr>> {
3273 self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
3274 let res = f(this, attrs)?;
3275 let trailing = if this.restrictions.contains(Restrictions::STMT_EXPR)
3276 && this.token.kind == token::Semi
3277 {
3278 TrailingToken::Semi
3279 } else {
3280 // FIXME - pass this through from the place where we know
3281 // we need a comma, rather than assuming that `#[attr] expr,`
3282 // always captures a trailing comma
3283 TrailingToken::MaybeComma
3284 };
3285 Ok((res, trailing))
3286 })
3287 }
3288 }