]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_parse/src/parser/expr.rs
New upstream version 1.67.1+dfsg1
[rustc.git] / compiler / rustc_parse / src / parser / expr.rs
1 use super::diagnostics::SnapshotParser;
2 use super::pat::{CommaRecoveryMode, RecoverColon, RecoverComma, PARAM_EXPECTED};
3 use super::ty::{AllowPlus, RecoverQPath, RecoverReturnSign};
4 use super::{
5 AttrWrapper, BlockMode, ClosureSpans, ForceCollect, Parser, PathStyle, Restrictions,
6 SemiColonMode, SeqSep, TokenExpectType, TokenType, TrailingToken,
7 };
8 use crate::errors::{
9 ArrayBracketsInsteadOfSpaces, ArrayBracketsInsteadOfSpacesSugg, AsyncMoveOrderIncorrect,
10 BracesForStructLiteral, CatchAfterTry, CommaAfterBaseStruct, ComparisonInterpretedAsGeneric,
11 ComparisonOrShiftInterpretedAsGenericSugg, DoCatchSyntaxRemoved, DotDotDot, EqFieldInit,
12 ExpectedElseBlock, ExpectedEqForLetExpr, ExpectedExpressionFoundLet,
13 FieldExpressionWithGeneric, FloatLiteralRequiresIntegerPart, FoundExprWouldBeStmt,
14 IfExpressionMissingCondition, IfExpressionMissingThenBlock, IfExpressionMissingThenBlockSub,
15 InvalidBlockMacroSegment, InvalidComparisonOperator, InvalidComparisonOperatorSub,
16 InvalidInterpolatedExpression, InvalidLiteralSuffixOnTupleIndex, InvalidLogicalOperator,
17 InvalidLogicalOperatorSub, LabeledLoopInBreak, LeadingPlusNotSupported, LeftArrowOperator,
18 LifetimeInBorrowExpression, MacroInvocationWithQualifiedPath, MalformedLoopLabel,
19 MatchArmBodyWithoutBraces, MatchArmBodyWithoutBracesSugg, MissingCommaAfterMatchArm,
20 MissingDotDot, MissingInInForLoop, MissingInInForLoopSub, MissingSemicolonBeforeArray,
21 NoFieldsForFnCall, NotAsNegationOperator, NotAsNegationOperatorSub,
22 OuterAttributeNotAllowedOnIfElse, ParenthesesWithStructFields,
23 RequireColonAfterLabeledExpression, ShiftInterpretedAsGeneric, StructLiteralNotAllowedHere,
24 StructLiteralNotAllowedHereSugg, TildeAsUnaryOperator, UnexpectedIfWithIf,
25 UnexpectedTokenAfterLabel, UnexpectedTokenAfterLabelSugg, WrapExpressionInParentheses,
26 };
27 use crate::maybe_recover_from_interpolated_ty_qpath;
28 use core::mem;
29 use rustc_ast::ptr::P;
30 use rustc_ast::token::{self, Delimiter, Token, TokenKind};
31 use rustc_ast::tokenstream::Spacing;
32 use rustc_ast::util::case::Case;
33 use rustc_ast::util::classify;
34 use rustc_ast::util::parser::{prec_let_scrutinee_needs_par, AssocOp, Fixity};
35 use rustc_ast::visit::Visitor;
36 use rustc_ast::{self as ast, AttrStyle, AttrVec, CaptureBy, ExprField, UnOp, DUMMY_NODE_ID};
37 use rustc_ast::{AnonConst, BinOp, BinOpKind, FnDecl, FnRetTy, MacCall, Param, Ty, TyKind};
38 use rustc_ast::{Arm, Async, BlockCheckMode, Expr, ExprKind, Label, Movability, RangeLimits};
39 use rustc_ast::{ClosureBinder, MetaItemLit, StmtKind};
40 use rustc_ast_pretty::pprust;
41 use rustc_errors::{
42 Applicability, Diagnostic, DiagnosticBuilder, ErrorGuaranteed, IntoDiagnostic, PResult,
43 StashKey,
44 };
45 use rustc_session::errors::{report_lit_error, ExprParenthesesNeeded};
46 use rustc_session::lint::builtin::BREAK_WITH_LABEL_AND_LOOP;
47 use rustc_session::lint::BuiltinLintDiagnostics;
48 use rustc_span::source_map::{self, Span, Spanned};
49 use rustc_span::symbol::{kw, sym, Ident, Symbol};
50 use rustc_span::{BytePos, Pos};
51
52 /// Possibly accepts an `token::Interpolated` expression (a pre-parsed expression
53 /// dropped into the token stream, which happens while parsing the result of
54 /// macro expansion). Placement of these is not as complex as I feared it would
55 /// be. The important thing is to make sure that lookahead doesn't balk at
56 /// `token::Interpolated` tokens.
57 macro_rules! maybe_whole_expr {
58 ($p:expr) => {
59 if let token::Interpolated(nt) = &$p.token.kind {
60 match &**nt {
61 token::NtExpr(e) | token::NtLiteral(e) => {
62 let e = e.clone();
63 $p.bump();
64 return Ok(e);
65 }
66 token::NtPath(path) => {
67 let path = (**path).clone();
68 $p.bump();
69 return Ok($p.mk_expr($p.prev_token.span, ExprKind::Path(None, path)));
70 }
71 token::NtBlock(block) => {
72 let block = block.clone();
73 $p.bump();
74 return Ok($p.mk_expr($p.prev_token.span, ExprKind::Block(block, None)));
75 }
76 _ => {}
77 };
78 }
79 };
80 }
81
82 #[derive(Debug)]
83 pub(super) enum LhsExpr {
84 NotYetParsed,
85 AttributesParsed(AttrWrapper),
86 AlreadyParsed(P<Expr>),
87 }
88
89 impl From<Option<AttrWrapper>> for LhsExpr {
90 /// Converts `Some(attrs)` into `LhsExpr::AttributesParsed(attrs)`
91 /// and `None` into `LhsExpr::NotYetParsed`.
92 ///
93 /// This conversion does not allocate.
94 fn from(o: Option<AttrWrapper>) -> Self {
95 if let Some(attrs) = o { LhsExpr::AttributesParsed(attrs) } else { LhsExpr::NotYetParsed }
96 }
97 }
98
99 impl From<P<Expr>> for LhsExpr {
100 /// Converts the `expr: P<Expr>` into `LhsExpr::AlreadyParsed(expr)`.
101 ///
102 /// This conversion does not allocate.
103 fn from(expr: P<Expr>) -> Self {
104 LhsExpr::AlreadyParsed(expr)
105 }
106 }
107
108 impl<'a> Parser<'a> {
109 /// Parses an expression.
110 #[inline]
111 pub fn parse_expr(&mut self) -> PResult<'a, P<Expr>> {
112 self.current_closure.take();
113
114 self.parse_expr_res(Restrictions::empty(), None)
115 }
116
117 /// Parses an expression, forcing tokens to be collected
118 pub fn parse_expr_force_collect(&mut self) -> PResult<'a, P<Expr>> {
119 self.collect_tokens_no_attrs(|this| this.parse_expr())
120 }
121
122 pub fn parse_anon_const_expr(&mut self) -> PResult<'a, AnonConst> {
123 self.parse_expr().map(|value| AnonConst { id: DUMMY_NODE_ID, value })
124 }
125
126 fn parse_expr_catch_underscore(&mut self) -> PResult<'a, P<Expr>> {
127 match self.parse_expr() {
128 Ok(expr) => Ok(expr),
129 Err(mut err) => match self.token.ident() {
130 Some((Ident { name: kw::Underscore, .. }, false))
131 if self.may_recover() && self.look_ahead(1, |t| t == &token::Comma) =>
132 {
133 // Special-case handling of `foo(_, _, _)`
134 err.emit();
135 self.bump();
136 Ok(self.mk_expr(self.prev_token.span, ExprKind::Err))
137 }
138 _ => Err(err),
139 },
140 }
141 }
142
143 /// Parses a sequence of expressions delimited by parentheses.
144 fn parse_paren_expr_seq(&mut self) -> PResult<'a, Vec<P<Expr>>> {
145 self.parse_paren_comma_seq(|p| p.parse_expr_catch_underscore()).map(|(r, _)| r)
146 }
147
148 /// Parses an expression, subject to the given restrictions.
149 #[inline]
150 pub(super) fn parse_expr_res(
151 &mut self,
152 r: Restrictions,
153 already_parsed_attrs: Option<AttrWrapper>,
154 ) -> PResult<'a, P<Expr>> {
155 self.with_res(r, |this| this.parse_assoc_expr(already_parsed_attrs))
156 }
157
158 /// Parses an associative expression.
159 ///
160 /// This parses an expression accounting for associativity and precedence of the operators in
161 /// the expression.
162 #[inline]
163 fn parse_assoc_expr(
164 &mut self,
165 already_parsed_attrs: Option<AttrWrapper>,
166 ) -> PResult<'a, P<Expr>> {
167 self.parse_assoc_expr_with(0, already_parsed_attrs.into())
168 }
169
170 /// Parses an associative expression with operators of at least `min_prec` precedence.
171 pub(super) fn parse_assoc_expr_with(
172 &mut self,
173 min_prec: usize,
174 lhs: LhsExpr,
175 ) -> PResult<'a, P<Expr>> {
176 let mut lhs = if let LhsExpr::AlreadyParsed(expr) = lhs {
177 expr
178 } else {
179 let attrs = match lhs {
180 LhsExpr::AttributesParsed(attrs) => Some(attrs),
181 _ => None,
182 };
183 if [token::DotDot, token::DotDotDot, token::DotDotEq].contains(&self.token.kind) {
184 return self.parse_prefix_range_expr(attrs);
185 } else {
186 self.parse_prefix_expr(attrs)?
187 }
188 };
189 let last_type_ascription_set = self.last_type_ascription.is_some();
190
191 if !self.should_continue_as_assoc_expr(&lhs) {
192 self.last_type_ascription = None;
193 return Ok(lhs);
194 }
195
196 self.expected_tokens.push(TokenType::Operator);
197 while let Some(op) = self.check_assoc_op() {
198 // Adjust the span for interpolated LHS to point to the `$lhs` token
199 // and not to what it refers to.
200 let lhs_span = match self.prev_token.kind {
201 TokenKind::Interpolated(..) => self.prev_token.span,
202 _ => lhs.span,
203 };
204
205 let cur_op_span = self.token.span;
206 let restrictions = if op.node.is_assign_like() {
207 self.restrictions & Restrictions::NO_STRUCT_LITERAL
208 } else {
209 self.restrictions
210 };
211 let prec = op.node.precedence();
212 if prec < min_prec {
213 break;
214 }
215 // Check for deprecated `...` syntax
216 if self.token == token::DotDotDot && op.node == AssocOp::DotDotEq {
217 self.err_dotdotdot_syntax(self.token.span);
218 }
219
220 if self.token == token::LArrow {
221 self.err_larrow_operator(self.token.span);
222 }
223
224 self.bump();
225 if op.node.is_comparison() {
226 if let Some(expr) = self.check_no_chained_comparison(&lhs, &op)? {
227 return Ok(expr);
228 }
229 }
230
231 // Look for JS' `===` and `!==` and recover
232 if (op.node == AssocOp::Equal || op.node == AssocOp::NotEqual)
233 && self.token.kind == token::Eq
234 && self.prev_token.span.hi() == self.token.span.lo()
235 {
236 let sp = op.span.to(self.token.span);
237 let sugg = match op.node {
238 AssocOp::Equal => "==",
239 AssocOp::NotEqual => "!=",
240 _ => unreachable!(),
241 }
242 .into();
243 let invalid = format!("{}=", &sugg);
244 self.sess.emit_err(InvalidComparisonOperator {
245 span: sp,
246 invalid: invalid.clone(),
247 sub: InvalidComparisonOperatorSub::Correctable {
248 span: sp,
249 invalid,
250 correct: sugg,
251 },
252 });
253 self.bump();
254 }
255
256 // Look for PHP's `<>` and recover
257 if op.node == AssocOp::Less
258 && self.token.kind == token::Gt
259 && self.prev_token.span.hi() == self.token.span.lo()
260 {
261 let sp = op.span.to(self.token.span);
262 self.sess.emit_err(InvalidComparisonOperator {
263 span: sp,
264 invalid: "<>".into(),
265 sub: InvalidComparisonOperatorSub::Correctable {
266 span: sp,
267 invalid: "<>".into(),
268 correct: "!=".into(),
269 },
270 });
271 self.bump();
272 }
273
274 // Look for C++'s `<=>` and recover
275 if op.node == AssocOp::LessEqual
276 && self.token.kind == token::Gt
277 && self.prev_token.span.hi() == self.token.span.lo()
278 {
279 let sp = op.span.to(self.token.span);
280 self.sess.emit_err(InvalidComparisonOperator {
281 span: sp,
282 invalid: "<=>".into(),
283 sub: InvalidComparisonOperatorSub::Spaceship(sp),
284 });
285 self.bump();
286 }
287
288 if self.prev_token == token::BinOp(token::Plus)
289 && self.token == token::BinOp(token::Plus)
290 && self.prev_token.span.between(self.token.span).is_empty()
291 {
292 let op_span = self.prev_token.span.to(self.token.span);
293 // Eat the second `+`
294 self.bump();
295 lhs = self.recover_from_postfix_increment(lhs, op_span)?;
296 continue;
297 }
298
299 let op = op.node;
300 // Special cases:
301 if op == AssocOp::As {
302 lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Cast)?;
303 continue;
304 } else if op == AssocOp::Colon {
305 lhs = self.parse_assoc_op_ascribe(lhs, lhs_span)?;
306 continue;
307 } else if op == AssocOp::DotDot || op == AssocOp::DotDotEq {
308 // If we didn't have to handle `x..`/`x..=`, it would be pretty easy to
309 // generalise it to the Fixity::None code.
310 lhs = self.parse_range_expr(prec, lhs, op, cur_op_span)?;
311 break;
312 }
313
314 let fixity = op.fixity();
315 let prec_adjustment = match fixity {
316 Fixity::Right => 0,
317 Fixity::Left => 1,
318 // We currently have no non-associative operators that are not handled above by
319 // the special cases. The code is here only for future convenience.
320 Fixity::None => 1,
321 };
322 let rhs = self.with_res(restrictions - Restrictions::STMT_EXPR, |this| {
323 this.parse_assoc_expr_with(prec + prec_adjustment, LhsExpr::NotYetParsed)
324 })?;
325
326 let span = self.mk_expr_sp(&lhs, lhs_span, rhs.span);
327 lhs = match op {
328 AssocOp::Add
329 | AssocOp::Subtract
330 | AssocOp::Multiply
331 | AssocOp::Divide
332 | AssocOp::Modulus
333 | AssocOp::LAnd
334 | AssocOp::LOr
335 | AssocOp::BitXor
336 | AssocOp::BitAnd
337 | AssocOp::BitOr
338 | AssocOp::ShiftLeft
339 | AssocOp::ShiftRight
340 | AssocOp::Equal
341 | AssocOp::Less
342 | AssocOp::LessEqual
343 | AssocOp::NotEqual
344 | AssocOp::Greater
345 | AssocOp::GreaterEqual => {
346 let ast_op = op.to_ast_binop().unwrap();
347 let binary = self.mk_binary(source_map::respan(cur_op_span, ast_op), lhs, rhs);
348 self.mk_expr(span, binary)
349 }
350 AssocOp::Assign => self.mk_expr(span, ExprKind::Assign(lhs, rhs, cur_op_span)),
351 AssocOp::AssignOp(k) => {
352 let aop = match k {
353 token::Plus => BinOpKind::Add,
354 token::Minus => BinOpKind::Sub,
355 token::Star => BinOpKind::Mul,
356 token::Slash => BinOpKind::Div,
357 token::Percent => BinOpKind::Rem,
358 token::Caret => BinOpKind::BitXor,
359 token::And => BinOpKind::BitAnd,
360 token::Or => BinOpKind::BitOr,
361 token::Shl => BinOpKind::Shl,
362 token::Shr => BinOpKind::Shr,
363 };
364 let aopexpr = self.mk_assign_op(source_map::respan(cur_op_span, aop), lhs, rhs);
365 self.mk_expr(span, aopexpr)
366 }
367 AssocOp::As | AssocOp::Colon | AssocOp::DotDot | AssocOp::DotDotEq => {
368 self.span_bug(span, "AssocOp should have been handled by special case")
369 }
370 };
371
372 if let Fixity::None = fixity {
373 break;
374 }
375 }
376 if last_type_ascription_set {
377 self.last_type_ascription = None;
378 }
379 Ok(lhs)
380 }
381
382 fn should_continue_as_assoc_expr(&mut self, lhs: &Expr) -> bool {
383 match (self.expr_is_complete(lhs), AssocOp::from_token(&self.token)) {
384 // Semi-statement forms are odd:
385 // See https://github.com/rust-lang/rust/issues/29071
386 (true, None) => false,
387 (false, _) => true, // Continue parsing the expression.
388 // An exhaustive check is done in the following block, but these are checked first
389 // because they *are* ambiguous but also reasonable looking incorrect syntax, so we
390 // want to keep their span info to improve diagnostics in these cases in a later stage.
391 (true, Some(AssocOp::Multiply)) | // `{ 42 } *foo = bar;` or `{ 42 } * 3`
392 (true, Some(AssocOp::Subtract)) | // `{ 42 } -5`
393 (true, Some(AssocOp::Add)) | // `{ 42 } + 42` (unary plus)
394 (true, Some(AssocOp::LAnd)) | // `{ 42 } &&x` (#61475) or `{ 42 } && if x { 1 } else { 0 }`
395 (true, Some(AssocOp::LOr)) | // `{ 42 } || 42` ("logical or" or closure)
396 (true, Some(AssocOp::BitOr)) // `{ 42 } | 42` or `{ 42 } |x| 42`
397 => {
398 // These cases are ambiguous and can't be identified in the parser alone.
399 //
400 // Bitwise AND is left out because guessing intent is hard. We can make
401 // suggestions based on the assumption that double-refs are rarely intentional,
402 // and closures are distinct enough that they don't get mixed up with their
403 // return value.
404 let sp = self.sess.source_map().start_point(self.token.span);
405 self.sess.ambiguous_block_expr_parse.borrow_mut().insert(sp, lhs.span);
406 false
407 }
408 (true, Some(op)) if !op.can_continue_expr_unambiguously() => false,
409 (true, Some(_)) => {
410 self.error_found_expr_would_be_stmt(lhs);
411 true
412 }
413 }
414 }
415
416 /// We've found an expression that would be parsed as a statement,
417 /// but the next token implies this should be parsed as an expression.
418 /// For example: `if let Some(x) = x { x } else { 0 } / 2`.
419 fn error_found_expr_would_be_stmt(&self, lhs: &Expr) {
420 self.sess.emit_err(FoundExprWouldBeStmt {
421 span: self.token.span,
422 token: self.token.clone(),
423 suggestion: ExprParenthesesNeeded::surrounding(lhs.span),
424 });
425 }
426
427 /// Possibly translate the current token to an associative operator.
428 /// The method does not advance the current token.
429 ///
430 /// Also performs recovery for `and` / `or` which are mistaken for `&&` and `||` respectively.
431 fn check_assoc_op(&self) -> Option<Spanned<AssocOp>> {
432 let (op, span) = match (AssocOp::from_token(&self.token), self.token.ident()) {
433 // When parsing const expressions, stop parsing when encountering `>`.
434 (
435 Some(
436 AssocOp::ShiftRight
437 | AssocOp::Greater
438 | AssocOp::GreaterEqual
439 | AssocOp::AssignOp(token::BinOpToken::Shr),
440 ),
441 _,
442 ) if self.restrictions.contains(Restrictions::CONST_EXPR) => {
443 return None;
444 }
445 (Some(op), _) => (op, self.token.span),
446 (None, Some((Ident { name: sym::and, span }, false))) if self.may_recover() => {
447 self.sess.emit_err(InvalidLogicalOperator {
448 span: self.token.span,
449 incorrect: "and".into(),
450 sub: InvalidLogicalOperatorSub::Conjunction(self.token.span),
451 });
452 (AssocOp::LAnd, span)
453 }
454 (None, Some((Ident { name: sym::or, span }, false))) if self.may_recover() => {
455 self.sess.emit_err(InvalidLogicalOperator {
456 span: self.token.span,
457 incorrect: "or".into(),
458 sub: InvalidLogicalOperatorSub::Disjunction(self.token.span),
459 });
460 (AssocOp::LOr, span)
461 }
462 _ => return None,
463 };
464 Some(source_map::respan(span, op))
465 }
466
467 /// Checks if this expression is a successfully parsed statement.
468 fn expr_is_complete(&self, e: &Expr) -> bool {
469 self.restrictions.contains(Restrictions::STMT_EXPR)
470 && !classify::expr_requires_semi_to_be_stmt(e)
471 }
472
473 /// Parses `x..y`, `x..=y`, and `x..`/`x..=`.
474 /// The other two variants are handled in `parse_prefix_range_expr` below.
475 fn parse_range_expr(
476 &mut self,
477 prec: usize,
478 lhs: P<Expr>,
479 op: AssocOp,
480 cur_op_span: Span,
481 ) -> PResult<'a, P<Expr>> {
482 let rhs = if self.is_at_start_of_range_notation_rhs() {
483 Some(self.parse_assoc_expr_with(prec + 1, LhsExpr::NotYetParsed)?)
484 } else {
485 None
486 };
487 let rhs_span = rhs.as_ref().map_or(cur_op_span, |x| x.span);
488 let span = self.mk_expr_sp(&lhs, lhs.span, rhs_span);
489 let limits =
490 if op == AssocOp::DotDot { RangeLimits::HalfOpen } else { RangeLimits::Closed };
491 let range = self.mk_range(Some(lhs), rhs, limits);
492 Ok(self.mk_expr(span, range))
493 }
494
495 fn is_at_start_of_range_notation_rhs(&self) -> bool {
496 if self.token.can_begin_expr() {
497 // Parse `for i in 1.. { }` as infinite loop, not as `for i in (1..{})`.
498 if self.token == token::OpenDelim(Delimiter::Brace) {
499 return !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
500 }
501 true
502 } else {
503 false
504 }
505 }
506
507 /// Parses prefix-forms of range notation: `..expr`, `..`, `..=expr`.
508 fn parse_prefix_range_expr(&mut self, attrs: Option<AttrWrapper>) -> PResult<'a, P<Expr>> {
509 // Check for deprecated `...` syntax.
510 if self.token == token::DotDotDot {
511 self.err_dotdotdot_syntax(self.token.span);
512 }
513
514 debug_assert!(
515 [token::DotDot, token::DotDotDot, token::DotDotEq].contains(&self.token.kind),
516 "parse_prefix_range_expr: token {:?} is not DotDot/DotDotEq",
517 self.token
518 );
519
520 let limits = match self.token.kind {
521 token::DotDot => RangeLimits::HalfOpen,
522 _ => RangeLimits::Closed,
523 };
524 let op = AssocOp::from_token(&self.token);
525 // FIXME: `parse_prefix_range_expr` is called when the current
526 // token is `DotDot`, `DotDotDot`, or `DotDotEq`. If we haven't already
527 // parsed attributes, then trying to parse them here will always fail.
528 // We should figure out how we want attributes on range expressions to work.
529 let attrs = self.parse_or_use_outer_attributes(attrs)?;
530 self.collect_tokens_for_expr(attrs, |this, attrs| {
531 let lo = this.token.span;
532 this.bump();
533 let (span, opt_end) = if this.is_at_start_of_range_notation_rhs() {
534 // RHS must be parsed with more associativity than the dots.
535 this.parse_assoc_expr_with(op.unwrap().precedence() + 1, LhsExpr::NotYetParsed)
536 .map(|x| (lo.to(x.span), Some(x)))?
537 } else {
538 (lo, None)
539 };
540 let range = this.mk_range(None, opt_end, limits);
541 Ok(this.mk_expr_with_attrs(span, range, attrs))
542 })
543 }
544
545 /// Parses a prefix-unary-operator expr.
546 fn parse_prefix_expr(&mut self, attrs: Option<AttrWrapper>) -> PResult<'a, P<Expr>> {
547 let attrs = self.parse_or_use_outer_attributes(attrs)?;
548 let lo = self.token.span;
549
550 macro_rules! make_it {
551 ($this:ident, $attrs:expr, |this, _| $body:expr) => {
552 $this.collect_tokens_for_expr($attrs, |$this, attrs| {
553 let (hi, ex) = $body?;
554 Ok($this.mk_expr_with_attrs(lo.to(hi), ex, attrs))
555 })
556 };
557 }
558
559 let this = self;
560
561 // Note: when adding new unary operators, don't forget to adjust TokenKind::can_begin_expr()
562 match this.token.uninterpolate().kind {
563 token::Not => make_it!(this, attrs, |this, _| this.parse_unary_expr(lo, UnOp::Not)), // `!expr`
564 token::Tilde => make_it!(this, attrs, |this, _| this.recover_tilde_expr(lo)), // `~expr`
565 token::BinOp(token::Minus) => {
566 make_it!(this, attrs, |this, _| this.parse_unary_expr(lo, UnOp::Neg))
567 } // `-expr`
568 token::BinOp(token::Star) => {
569 make_it!(this, attrs, |this, _| this.parse_unary_expr(lo, UnOp::Deref))
570 } // `*expr`
571 token::BinOp(token::And) | token::AndAnd => {
572 make_it!(this, attrs, |this, _| this.parse_borrow_expr(lo))
573 }
574 token::BinOp(token::Plus) if this.look_ahead(1, |tok| tok.is_numeric_lit()) => {
575 let mut err =
576 LeadingPlusNotSupported { span: lo, remove_plus: None, add_parentheses: None };
577
578 // a block on the LHS might have been intended to be an expression instead
579 if let Some(sp) = this.sess.ambiguous_block_expr_parse.borrow().get(&lo) {
580 err.add_parentheses = Some(ExprParenthesesNeeded::surrounding(*sp));
581 } else {
582 err.remove_plus = Some(lo);
583 }
584 this.sess.emit_err(err);
585
586 this.bump();
587 this.parse_prefix_expr(None)
588 } // `+expr`
589 // Recover from `++x`:
590 token::BinOp(token::Plus)
591 if this.look_ahead(1, |t| *t == token::BinOp(token::Plus)) =>
592 {
593 let prev_is_semi = this.prev_token == token::Semi;
594 let pre_span = this.token.span.to(this.look_ahead(1, |t| t.span));
595 // Eat both `+`s.
596 this.bump();
597 this.bump();
598
599 let operand_expr = this.parse_dot_or_call_expr(Default::default())?;
600 this.recover_from_prefix_increment(operand_expr, pre_span, prev_is_semi)
601 }
602 token::Ident(..) if this.token.is_keyword(kw::Box) => {
603 make_it!(this, attrs, |this, _| this.parse_box_expr(lo))
604 }
605 token::Ident(..) if this.may_recover() && this.is_mistaken_not_ident_negation() => {
606 make_it!(this, attrs, |this, _| this.recover_not_expr(lo))
607 }
608 _ => return this.parse_dot_or_call_expr(Some(attrs)),
609 }
610 }
611
612 fn parse_prefix_expr_common(&mut self, lo: Span) -> PResult<'a, (Span, P<Expr>)> {
613 self.bump();
614 let expr = self.parse_prefix_expr(None);
615 let (span, expr) = self.interpolated_or_expr_span(expr)?;
616 Ok((lo.to(span), expr))
617 }
618
619 fn parse_unary_expr(&mut self, lo: Span, op: UnOp) -> PResult<'a, (Span, ExprKind)> {
620 let (span, expr) = self.parse_prefix_expr_common(lo)?;
621 Ok((span, self.mk_unary(op, expr)))
622 }
623
624 // Recover on `!` suggesting for bitwise negation instead.
625 fn recover_tilde_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
626 self.sess.emit_err(TildeAsUnaryOperator(lo));
627
628 self.parse_unary_expr(lo, UnOp::Not)
629 }
630
631 /// Parse `box expr`.
632 fn parse_box_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
633 let (span, expr) = self.parse_prefix_expr_common(lo)?;
634 self.sess.gated_spans.gate(sym::box_syntax, span);
635 Ok((span, ExprKind::Box(expr)))
636 }
637
638 fn is_mistaken_not_ident_negation(&self) -> bool {
639 let token_cannot_continue_expr = |t: &Token| match t.uninterpolate().kind {
640 // These tokens can start an expression after `!`, but
641 // can't continue an expression after an ident
642 token::Ident(name, is_raw) => token::ident_can_begin_expr(name, t.span, is_raw),
643 token::Literal(..) | token::Pound => true,
644 _ => t.is_whole_expr(),
645 };
646 self.token.is_ident_named(sym::not) && self.look_ahead(1, token_cannot_continue_expr)
647 }
648
649 /// Recover on `not expr` in favor of `!expr`.
650 fn recover_not_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
651 // Emit the error...
652 let negated_token = self.look_ahead(1, |t| t.clone());
653
654 let sub_diag = if negated_token.is_numeric_lit() {
655 NotAsNegationOperatorSub::SuggestNotBitwise
656 } else if negated_token.is_bool_lit() {
657 NotAsNegationOperatorSub::SuggestNotLogical
658 } else {
659 NotAsNegationOperatorSub::SuggestNotDefault
660 };
661
662 self.sess.emit_err(NotAsNegationOperator {
663 negated: negated_token.span,
664 negated_desc: super::token_descr(&negated_token),
665 // Span the `not` plus trailing whitespace to avoid
666 // trailing whitespace after the `!` in our suggestion
667 sub: sub_diag(
668 self.sess.source_map().span_until_non_whitespace(lo.to(negated_token.span)),
669 ),
670 });
671
672 // ...and recover!
673 self.parse_unary_expr(lo, UnOp::Not)
674 }
675
676 /// Returns the span of expr, if it was not interpolated or the span of the interpolated token.
677 fn interpolated_or_expr_span(
678 &self,
679 expr: PResult<'a, P<Expr>>,
680 ) -> PResult<'a, (Span, P<Expr>)> {
681 expr.map(|e| {
682 (
683 match self.prev_token.kind {
684 TokenKind::Interpolated(..) => self.prev_token.span,
685 _ => e.span,
686 },
687 e,
688 )
689 })
690 }
691
692 fn parse_assoc_op_cast(
693 &mut self,
694 lhs: P<Expr>,
695 lhs_span: Span,
696 expr_kind: fn(P<Expr>, P<Ty>) -> ExprKind,
697 ) -> PResult<'a, P<Expr>> {
698 let mk_expr = |this: &mut Self, lhs: P<Expr>, rhs: P<Ty>| {
699 this.mk_expr(this.mk_expr_sp(&lhs, lhs_span, rhs.span), expr_kind(lhs, rhs))
700 };
701
702 // Save the state of the parser before parsing type normally, in case there is a
703 // LessThan comparison after this cast.
704 let parser_snapshot_before_type = self.clone();
705 let cast_expr = match self.parse_as_cast_ty() {
706 Ok(rhs) => mk_expr(self, lhs, rhs),
707 Err(type_err) => {
708 if !self.may_recover() {
709 return Err(type_err);
710 }
711
712 // Rewind to before attempting to parse the type with generics, to recover
713 // from situations like `x as usize < y` in which we first tried to parse
714 // `usize < y` as a type with generic arguments.
715 let parser_snapshot_after_type = mem::replace(self, parser_snapshot_before_type);
716
717 // Check for typo of `'a: loop { break 'a }` with a missing `'`.
718 match (&lhs.kind, &self.token.kind) {
719 (
720 // `foo: `
721 ExprKind::Path(None, ast::Path { segments, .. }),
722 TokenKind::Ident(kw::For | kw::Loop | kw::While, false),
723 ) if segments.len() == 1 => {
724 let snapshot = self.create_snapshot_for_diagnostic();
725 let label = Label {
726 ident: Ident::from_str_and_span(
727 &format!("'{}", segments[0].ident),
728 segments[0].ident.span,
729 ),
730 };
731 match self.parse_labeled_expr(label, false) {
732 Ok(expr) => {
733 type_err.cancel();
734 self.sess.emit_err(MalformedLoopLabel {
735 span: label.ident.span,
736 correct_label: label.ident,
737 });
738 return Ok(expr);
739 }
740 Err(err) => {
741 err.cancel();
742 self.restore_snapshot(snapshot);
743 }
744 }
745 }
746 _ => {}
747 }
748
749 match self.parse_path(PathStyle::Expr) {
750 Ok(path) => {
751 let span_after_type = parser_snapshot_after_type.token.span;
752 let expr = mk_expr(
753 self,
754 lhs,
755 self.mk_ty(path.span, TyKind::Path(None, path.clone())),
756 );
757
758 let args_span = self.look_ahead(1, |t| t.span).to(span_after_type);
759 let suggestion = ComparisonOrShiftInterpretedAsGenericSugg {
760 left: expr.span.shrink_to_lo(),
761 right: expr.span.shrink_to_hi(),
762 };
763
764 match self.token.kind {
765 token::Lt => self.sess.emit_err(ComparisonInterpretedAsGeneric {
766 comparison: self.token.span,
767 r#type: path,
768 args: args_span,
769 suggestion,
770 }),
771 token::BinOp(token::Shl) => {
772 self.sess.emit_err(ShiftInterpretedAsGeneric {
773 shift: self.token.span,
774 r#type: path,
775 args: args_span,
776 suggestion,
777 })
778 }
779 _ => {
780 // We can end up here even without `<` being the next token, for
781 // example because `parse_ty_no_plus` returns `Err` on keywords,
782 // but `parse_path` returns `Ok` on them due to error recovery.
783 // Return original error and parser state.
784 *self = parser_snapshot_after_type;
785 return Err(type_err);
786 }
787 };
788
789 // Successfully parsed the type path leaving a `<` yet to parse.
790 type_err.cancel();
791
792 // Keep `x as usize` as an expression in AST and continue parsing.
793 expr
794 }
795 Err(path_err) => {
796 // Couldn't parse as a path, return original error and parser state.
797 path_err.cancel();
798 *self = parser_snapshot_after_type;
799 return Err(type_err);
800 }
801 }
802 }
803 };
804
805 self.parse_and_disallow_postfix_after_cast(cast_expr)
806 }
807
808 /// Parses a postfix operators such as `.`, `?`, or index (`[]`) after a cast,
809 /// then emits an error and returns the newly parsed tree.
810 /// The resulting parse tree for `&x as T[0]` has a precedence of `((&x) as T)[0]`.
811 fn parse_and_disallow_postfix_after_cast(
812 &mut self,
813 cast_expr: P<Expr>,
814 ) -> PResult<'a, P<Expr>> {
815 let span = cast_expr.span;
816 let (cast_kind, maybe_ascription_span) =
817 if let ExprKind::Type(ascripted_expr, _) = &cast_expr.kind {
818 ("type ascription", Some(ascripted_expr.span.shrink_to_hi().with_hi(span.hi())))
819 } else {
820 ("cast", None)
821 };
822
823 let with_postfix = self.parse_dot_or_call_expr_with_(cast_expr, span)?;
824
825 // Check if an illegal postfix operator has been added after the cast.
826 // If the resulting expression is not a cast, it is an illegal postfix operator.
827 if !matches!(with_postfix.kind, ExprKind::Cast(_, _) | ExprKind::Type(_, _)) {
828 let msg = format!(
829 "{cast_kind} cannot be followed by {}",
830 match with_postfix.kind {
831 ExprKind::Index(_, _) => "indexing",
832 ExprKind::Try(_) => "`?`",
833 ExprKind::Field(_, _) => "a field access",
834 ExprKind::MethodCall(_) => "a method call",
835 ExprKind::Call(_, _) => "a function call",
836 ExprKind::Await(_) => "`.await`",
837 ExprKind::Err => return Ok(with_postfix),
838 _ => unreachable!("parse_dot_or_call_expr_with_ shouldn't produce this"),
839 }
840 );
841 let mut err = self.struct_span_err(span, &msg);
842
843 let suggest_parens = |err: &mut Diagnostic| {
844 let suggestions = vec![
845 (span.shrink_to_lo(), "(".to_string()),
846 (span.shrink_to_hi(), ")".to_string()),
847 ];
848 err.multipart_suggestion(
849 "try surrounding the expression in parentheses",
850 suggestions,
851 Applicability::MachineApplicable,
852 );
853 };
854
855 // If type ascription is "likely an error", the user will already be getting a useful
856 // help message, and doesn't need a second.
857 if self.last_type_ascription.map_or(false, |last_ascription| last_ascription.1) {
858 self.maybe_annotate_with_ascription(&mut err, false);
859 } else if let Some(ascription_span) = maybe_ascription_span {
860 let is_nightly = self.sess.unstable_features.is_nightly_build();
861 if is_nightly {
862 suggest_parens(&mut err);
863 }
864 err.span_suggestion(
865 ascription_span,
866 &format!(
867 "{}remove the type ascription",
868 if is_nightly { "alternatively, " } else { "" }
869 ),
870 "",
871 if is_nightly {
872 Applicability::MaybeIncorrect
873 } else {
874 Applicability::MachineApplicable
875 },
876 );
877 } else {
878 suggest_parens(&mut err);
879 }
880 err.emit();
881 };
882 Ok(with_postfix)
883 }
884
885 fn parse_assoc_op_ascribe(&mut self, lhs: P<Expr>, lhs_span: Span) -> PResult<'a, P<Expr>> {
886 let maybe_path = self.could_ascription_be_path(&lhs.kind);
887 self.last_type_ascription = Some((self.prev_token.span, maybe_path));
888 let lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Type)?;
889 self.sess.gated_spans.gate(sym::type_ascription, lhs.span);
890 Ok(lhs)
891 }
892
893 /// Parse `& mut? <expr>` or `& raw [ const | mut ] <expr>`.
894 fn parse_borrow_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
895 self.expect_and()?;
896 let has_lifetime = self.token.is_lifetime() && self.look_ahead(1, |t| t != &token::Colon);
897 let lifetime = has_lifetime.then(|| self.expect_lifetime()); // For recovery, see below.
898 let (borrow_kind, mutbl) = self.parse_borrow_modifiers(lo);
899 let expr = self.parse_prefix_expr(None);
900 let (hi, expr) = self.interpolated_or_expr_span(expr)?;
901 let span = lo.to(hi);
902 if let Some(lt) = lifetime {
903 self.error_remove_borrow_lifetime(span, lt.ident.span);
904 }
905 Ok((span, ExprKind::AddrOf(borrow_kind, mutbl, expr)))
906 }
907
908 fn error_remove_borrow_lifetime(&self, span: Span, lt_span: Span) {
909 self.sess.emit_err(LifetimeInBorrowExpression { span, lifetime_span: lt_span });
910 }
911
912 /// Parse `mut?` or `raw [ const | mut ]`.
913 fn parse_borrow_modifiers(&mut self, lo: Span) -> (ast::BorrowKind, ast::Mutability) {
914 if self.check_keyword(kw::Raw) && self.look_ahead(1, Token::is_mutability) {
915 // `raw [ const | mut ]`.
916 let found_raw = self.eat_keyword(kw::Raw);
917 assert!(found_raw);
918 let mutability = self.parse_const_or_mut().unwrap();
919 self.sess.gated_spans.gate(sym::raw_ref_op, lo.to(self.prev_token.span));
920 (ast::BorrowKind::Raw, mutability)
921 } else {
922 // `mut?`
923 (ast::BorrowKind::Ref, self.parse_mutability())
924 }
925 }
926
927 /// Parses `a.b` or `a(13)` or `a[4]` or just `a`.
928 fn parse_dot_or_call_expr(&mut self, attrs: Option<AttrWrapper>) -> PResult<'a, P<Expr>> {
929 let attrs = self.parse_or_use_outer_attributes(attrs)?;
930 self.collect_tokens_for_expr(attrs, |this, attrs| {
931 let base = this.parse_bottom_expr();
932 let (span, base) = this.interpolated_or_expr_span(base)?;
933 this.parse_dot_or_call_expr_with(base, span, attrs)
934 })
935 }
936
937 pub(super) fn parse_dot_or_call_expr_with(
938 &mut self,
939 e0: P<Expr>,
940 lo: Span,
941 mut attrs: ast::AttrVec,
942 ) -> PResult<'a, P<Expr>> {
943 // Stitch the list of outer attributes onto the return value.
944 // A little bit ugly, but the best way given the current code
945 // structure
946 let res = self.parse_dot_or_call_expr_with_(e0, lo);
947 if attrs.is_empty() {
948 res
949 } else {
950 res.map(|expr| {
951 expr.map(|mut expr| {
952 attrs.extend(expr.attrs);
953 expr.attrs = attrs;
954 expr
955 })
956 })
957 }
958 }
959
960 fn parse_dot_or_call_expr_with_(&mut self, mut e: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
961 loop {
962 let has_question = if self.prev_token.kind == TokenKind::Ident(kw::Return, false) {
963 // we are using noexpect here because we don't expect a `?` directly after a `return`
964 // which could be suggested otherwise
965 self.eat_noexpect(&token::Question)
966 } else {
967 self.eat(&token::Question)
968 };
969 if has_question {
970 // `expr?`
971 e = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Try(e));
972 continue;
973 }
974 let has_dot = if self.prev_token.kind == TokenKind::Ident(kw::Return, false) {
975 // we are using noexpect here because we don't expect a `.` directly after a `return`
976 // which could be suggested otherwise
977 self.eat_noexpect(&token::Dot)
978 } else {
979 self.eat(&token::Dot)
980 };
981 if has_dot {
982 // expr.f
983 e = self.parse_dot_suffix_expr(lo, e)?;
984 continue;
985 }
986 if self.expr_is_complete(&e) {
987 return Ok(e);
988 }
989 e = match self.token.kind {
990 token::OpenDelim(Delimiter::Parenthesis) => self.parse_fn_call_expr(lo, e),
991 token::OpenDelim(Delimiter::Bracket) => self.parse_index_expr(lo, e)?,
992 _ => return Ok(e),
993 }
994 }
995 }
996
997 fn look_ahead_type_ascription_as_field(&mut self) -> bool {
998 self.look_ahead(1, |t| t.is_ident())
999 && self.look_ahead(2, |t| t == &token::Colon)
1000 && self.look_ahead(3, |t| t.can_begin_expr())
1001 }
1002
1003 fn parse_dot_suffix_expr(&mut self, lo: Span, base: P<Expr>) -> PResult<'a, P<Expr>> {
1004 match self.token.uninterpolate().kind {
1005 token::Ident(..) => self.parse_dot_suffix(base, lo),
1006 token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) => {
1007 Ok(self.parse_tuple_field_access_expr(lo, base, symbol, suffix, None))
1008 }
1009 token::Literal(token::Lit { kind: token::Float, symbol, suffix }) => {
1010 Ok(self.parse_tuple_field_access_expr_float(lo, base, symbol, suffix))
1011 }
1012 _ => {
1013 self.error_unexpected_after_dot();
1014 Ok(base)
1015 }
1016 }
1017 }
1018
1019 fn error_unexpected_after_dot(&self) {
1020 // FIXME Could factor this out into non_fatal_unexpected or something.
1021 let actual = pprust::token_to_string(&self.token);
1022 self.struct_span_err(self.token.span, &format!("unexpected token: `{actual}`")).emit();
1023 }
1024
1025 // We need an identifier or integer, but the next token is a float.
1026 // Break the float into components to extract the identifier or integer.
1027 // FIXME: With current `TokenCursor` it's hard to break tokens into more than 2
1028 // parts unless those parts are processed immediately. `TokenCursor` should either
1029 // support pushing "future tokens" (would be also helpful to `break_and_eat`), or
1030 // we should break everything including floats into more basic proc-macro style
1031 // tokens in the lexer (probably preferable).
1032 fn parse_tuple_field_access_expr_float(
1033 &mut self,
1034 lo: Span,
1035 base: P<Expr>,
1036 float: Symbol,
1037 suffix: Option<Symbol>,
1038 ) -> P<Expr> {
1039 #[derive(Debug)]
1040 enum FloatComponent {
1041 IdentLike(String),
1042 Punct(char),
1043 }
1044 use FloatComponent::*;
1045
1046 let float_str = float.as_str();
1047 let mut components = Vec::new();
1048 let mut ident_like = String::new();
1049 for c in float_str.chars() {
1050 if c == '_' || c.is_ascii_alphanumeric() {
1051 ident_like.push(c);
1052 } else if matches!(c, '.' | '+' | '-') {
1053 if !ident_like.is_empty() {
1054 components.push(IdentLike(mem::take(&mut ident_like)));
1055 }
1056 components.push(Punct(c));
1057 } else {
1058 panic!("unexpected character in a float token: {:?}", c)
1059 }
1060 }
1061 if !ident_like.is_empty() {
1062 components.push(IdentLike(ident_like));
1063 }
1064
1065 // With proc macros the span can refer to anything, the source may be too short,
1066 // or too long, or non-ASCII. It only makes sense to break our span into components
1067 // if its underlying text is identical to our float literal.
1068 let span = self.token.span;
1069 let can_take_span_apart =
1070 || self.span_to_snippet(span).as_deref() == Ok(float_str).as_deref();
1071
1072 match &*components {
1073 // 1e2
1074 [IdentLike(i)] => {
1075 self.parse_tuple_field_access_expr(lo, base, Symbol::intern(&i), suffix, None)
1076 }
1077 // 1.
1078 [IdentLike(i), Punct('.')] => {
1079 let (ident_span, dot_span) = if can_take_span_apart() {
1080 let (span, ident_len) = (span.data(), BytePos::from_usize(i.len()));
1081 let ident_span = span.with_hi(span.lo + ident_len);
1082 let dot_span = span.with_lo(span.lo + ident_len);
1083 (ident_span, dot_span)
1084 } else {
1085 (span, span)
1086 };
1087 assert!(suffix.is_none());
1088 let symbol = Symbol::intern(&i);
1089 self.token = Token::new(token::Ident(symbol, false), ident_span);
1090 let next_token = (Token::new(token::Dot, dot_span), self.token_spacing);
1091 self.parse_tuple_field_access_expr(lo, base, symbol, None, Some(next_token))
1092 }
1093 // 1.2 | 1.2e3
1094 [IdentLike(i1), Punct('.'), IdentLike(i2)] => {
1095 let (ident1_span, dot_span, ident2_span) = if can_take_span_apart() {
1096 let (span, ident1_len) = (span.data(), BytePos::from_usize(i1.len()));
1097 let ident1_span = span.with_hi(span.lo + ident1_len);
1098 let dot_span = span
1099 .with_lo(span.lo + ident1_len)
1100 .with_hi(span.lo + ident1_len + BytePos(1));
1101 let ident2_span = self.token.span.with_lo(span.lo + ident1_len + BytePos(1));
1102 (ident1_span, dot_span, ident2_span)
1103 } else {
1104 (span, span, span)
1105 };
1106 let symbol1 = Symbol::intern(&i1);
1107 self.token = Token::new(token::Ident(symbol1, false), ident1_span);
1108 // This needs to be `Spacing::Alone` to prevent regressions.
1109 // See issue #76399 and PR #76285 for more details
1110 let next_token1 = (Token::new(token::Dot, dot_span), Spacing::Alone);
1111 let base1 =
1112 self.parse_tuple_field_access_expr(lo, base, symbol1, None, Some(next_token1));
1113 let symbol2 = Symbol::intern(&i2);
1114 let next_token2 = Token::new(token::Ident(symbol2, false), ident2_span);
1115 self.bump_with((next_token2, self.token_spacing)); // `.`
1116 self.parse_tuple_field_access_expr(lo, base1, symbol2, suffix, None)
1117 }
1118 // 1e+ | 1e- (recovered)
1119 [IdentLike(_), Punct('+' | '-')] |
1120 // 1e+2 | 1e-2
1121 [IdentLike(_), Punct('+' | '-'), IdentLike(_)] |
1122 // 1.2e+ | 1.2e-
1123 [IdentLike(_), Punct('.'), IdentLike(_), Punct('+' | '-')] |
1124 // 1.2e+3 | 1.2e-3
1125 [IdentLike(_), Punct('.'), IdentLike(_), Punct('+' | '-'), IdentLike(_)] => {
1126 // See the FIXME about `TokenCursor` above.
1127 self.error_unexpected_after_dot();
1128 base
1129 }
1130 _ => panic!("unexpected components in a float token: {:?}", components),
1131 }
1132 }
1133
1134 fn parse_tuple_field_access_expr(
1135 &mut self,
1136 lo: Span,
1137 base: P<Expr>,
1138 field: Symbol,
1139 suffix: Option<Symbol>,
1140 next_token: Option<(Token, Spacing)>,
1141 ) -> P<Expr> {
1142 match next_token {
1143 Some(next_token) => self.bump_with(next_token),
1144 None => self.bump(),
1145 }
1146 let span = self.prev_token.span;
1147 let field = ExprKind::Field(base, Ident::new(field, span));
1148 if let Some(suffix) = suffix {
1149 self.expect_no_tuple_index_suffix(span, suffix);
1150 }
1151 self.mk_expr(lo.to(span), field)
1152 }
1153
1154 /// Parse a function call expression, `expr(...)`.
1155 fn parse_fn_call_expr(&mut self, lo: Span, fun: P<Expr>) -> P<Expr> {
1156 let snapshot = if self.token.kind == token::OpenDelim(Delimiter::Parenthesis)
1157 && self.look_ahead_type_ascription_as_field()
1158 {
1159 Some((self.create_snapshot_for_diagnostic(), fun.kind.clone()))
1160 } else {
1161 None
1162 };
1163 let open_paren = self.token.span;
1164
1165 let mut seq = self
1166 .parse_paren_expr_seq()
1167 .map(|args| self.mk_expr(lo.to(self.prev_token.span), self.mk_call(fun, args)));
1168 if let Some(expr) =
1169 self.maybe_recover_struct_lit_bad_delims(lo, open_paren, &mut seq, snapshot)
1170 {
1171 return expr;
1172 }
1173 self.recover_seq_parse_error(Delimiter::Parenthesis, lo, seq)
1174 }
1175
1176 /// If we encounter a parser state that looks like the user has written a `struct` literal with
1177 /// parentheses instead of braces, recover the parser state and provide suggestions.
1178 #[instrument(skip(self, seq, snapshot), level = "trace")]
1179 fn maybe_recover_struct_lit_bad_delims(
1180 &mut self,
1181 lo: Span,
1182 open_paren: Span,
1183 seq: &mut PResult<'a, P<Expr>>,
1184 snapshot: Option<(SnapshotParser<'a>, ExprKind)>,
1185 ) -> Option<P<Expr>> {
1186 if !self.may_recover() {
1187 return None;
1188 }
1189
1190 match (seq.as_mut(), snapshot) {
1191 (Err(err), Some((mut snapshot, ExprKind::Path(None, path)))) => {
1192 snapshot.bump(); // `(`
1193 match snapshot.parse_struct_fields(path.clone(), false, Delimiter::Parenthesis) {
1194 Ok((fields, ..))
1195 if snapshot.eat(&token::CloseDelim(Delimiter::Parenthesis)) =>
1196 {
1197 // We are certain we have `Enum::Foo(a: 3, b: 4)`, suggest
1198 // `Enum::Foo { a: 3, b: 4 }` or `Enum::Foo(3, 4)`.
1199 self.restore_snapshot(snapshot);
1200 let close_paren = self.prev_token.span;
1201 let span = lo.to(self.prev_token.span);
1202 if !fields.is_empty() {
1203 let mut replacement_err = ParenthesesWithStructFields {
1204 span,
1205 r#type: path,
1206 braces_for_struct: BracesForStructLiteral {
1207 first: open_paren,
1208 second: close_paren,
1209 },
1210 no_fields_for_fn: NoFieldsForFnCall {
1211 fields: fields
1212 .into_iter()
1213 .map(|field| field.span.until(field.expr.span))
1214 .collect(),
1215 },
1216 }
1217 .into_diagnostic(&self.sess.span_diagnostic);
1218 replacement_err.emit();
1219
1220 let old_err = mem::replace(err, replacement_err);
1221 old_err.cancel();
1222 } else {
1223 err.emit();
1224 }
1225 return Some(self.mk_expr_err(span));
1226 }
1227 Ok(_) => {}
1228 Err(mut err) => {
1229 err.emit();
1230 }
1231 }
1232 }
1233 _ => {}
1234 }
1235 None
1236 }
1237
1238 /// Parse an indexing expression `expr[...]`.
1239 fn parse_index_expr(&mut self, lo: Span, base: P<Expr>) -> PResult<'a, P<Expr>> {
1240 let prev_span = self.prev_token.span;
1241 let open_delim_span = self.token.span;
1242 self.bump(); // `[`
1243 let index = self.parse_expr()?;
1244 self.suggest_missing_semicolon_before_array(prev_span, open_delim_span)?;
1245 self.expect(&token::CloseDelim(Delimiter::Bracket))?;
1246 Ok(self.mk_expr(lo.to(self.prev_token.span), self.mk_index(base, index)))
1247 }
1248
1249 /// Assuming we have just parsed `.`, continue parsing into an expression.
1250 fn parse_dot_suffix(&mut self, self_arg: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
1251 if self.token.uninterpolated_span().rust_2018() && self.eat_keyword(kw::Await) {
1252 return Ok(self.mk_await_expr(self_arg, lo));
1253 }
1254
1255 let fn_span_lo = self.token.span;
1256 let mut seg = self.parse_path_segment(PathStyle::Expr, None)?;
1257 self.check_trailing_angle_brackets(&seg, &[&token::OpenDelim(Delimiter::Parenthesis)]);
1258 self.check_turbofish_missing_angle_brackets(&mut seg);
1259
1260 if self.check(&token::OpenDelim(Delimiter::Parenthesis)) {
1261 // Method call `expr.f()`
1262 let args = self.parse_paren_expr_seq()?;
1263 let fn_span = fn_span_lo.to(self.prev_token.span);
1264 let span = lo.to(self.prev_token.span);
1265 Ok(self.mk_expr(
1266 span,
1267 ExprKind::MethodCall(Box::new(ast::MethodCall {
1268 seg,
1269 receiver: self_arg,
1270 args,
1271 span: fn_span,
1272 })),
1273 ))
1274 } else {
1275 // Field access `expr.f`
1276 if let Some(args) = seg.args {
1277 self.sess.emit_err(FieldExpressionWithGeneric(args.span()));
1278 }
1279
1280 let span = lo.to(self.prev_token.span);
1281 Ok(self.mk_expr(span, ExprKind::Field(self_arg, seg.ident)))
1282 }
1283 }
1284
1285 /// At the bottom (top?) of the precedence hierarchy,
1286 /// Parses things like parenthesized exprs, macros, `return`, etc.
1287 ///
1288 /// N.B., this does not parse outer attributes, and is private because it only works
1289 /// correctly if called from `parse_dot_or_call_expr()`.
1290 fn parse_bottom_expr(&mut self) -> PResult<'a, P<Expr>> {
1291 maybe_recover_from_interpolated_ty_qpath!(self, true);
1292 maybe_whole_expr!(self);
1293
1294 // Outer attributes are already parsed and will be
1295 // added to the return value after the fact.
1296
1297 // Note: when adding new syntax here, don't forget to adjust `TokenKind::can_begin_expr()`.
1298 let lo = self.token.span;
1299 if let token::Literal(_) = self.token.kind {
1300 // This match arm is a special-case of the `_` match arm below and
1301 // could be removed without changing functionality, but it's faster
1302 // to have it here, especially for programs with large constants.
1303 self.parse_lit_expr()
1304 } else if self.check(&token::OpenDelim(Delimiter::Parenthesis)) {
1305 self.parse_tuple_parens_expr()
1306 } else if self.check(&token::OpenDelim(Delimiter::Brace)) {
1307 self.parse_block_expr(None, lo, BlockCheckMode::Default)
1308 } else if self.check(&token::BinOp(token::Or)) || self.check(&token::OrOr) {
1309 self.parse_closure_expr().map_err(|mut err| {
1310 // If the input is something like `if a { 1 } else { 2 } | if a { 3 } else { 4 }`
1311 // then suggest parens around the lhs.
1312 if let Some(sp) = self.sess.ambiguous_block_expr_parse.borrow().get(&lo) {
1313 err.subdiagnostic(ExprParenthesesNeeded::surrounding(*sp));
1314 }
1315 err
1316 })
1317 } else if self.check(&token::OpenDelim(Delimiter::Bracket)) {
1318 self.parse_array_or_repeat_expr(Delimiter::Bracket)
1319 } else if self.check_path() {
1320 self.parse_path_start_expr()
1321 } else if self.check_keyword(kw::Move) || self.check_keyword(kw::Static) {
1322 self.parse_closure_expr()
1323 } else if self.eat_keyword(kw::If) {
1324 self.parse_if_expr()
1325 } else if self.check_keyword(kw::For) {
1326 if self.choose_generics_over_qpath(1) {
1327 self.parse_closure_expr()
1328 } else {
1329 assert!(self.eat_keyword(kw::For));
1330 self.parse_for_expr(None, self.prev_token.span)
1331 }
1332 } else if self.eat_keyword(kw::While) {
1333 self.parse_while_expr(None, self.prev_token.span)
1334 } else if let Some(label) = self.eat_label() {
1335 self.parse_labeled_expr(label, true)
1336 } else if self.eat_keyword(kw::Loop) {
1337 let sp = self.prev_token.span;
1338 self.parse_loop_expr(None, self.prev_token.span).map_err(|mut err| {
1339 err.span_label(sp, "while parsing this `loop` expression");
1340 err
1341 })
1342 } else if self.eat_keyword(kw::Continue) {
1343 let kind = ExprKind::Continue(self.eat_label());
1344 Ok(self.mk_expr(lo.to(self.prev_token.span), kind))
1345 } else if self.eat_keyword(kw::Match) {
1346 let match_sp = self.prev_token.span;
1347 self.parse_match_expr().map_err(|mut err| {
1348 err.span_label(match_sp, "while parsing this `match` expression");
1349 err
1350 })
1351 } else if self.eat_keyword(kw::Unsafe) {
1352 let sp = self.prev_token.span;
1353 self.parse_block_expr(None, lo, BlockCheckMode::Unsafe(ast::UserProvided)).map_err(
1354 |mut err| {
1355 err.span_label(sp, "while parsing this `unsafe` expression");
1356 err
1357 },
1358 )
1359 } else if self.check_inline_const(0) {
1360 self.parse_const_block(lo.to(self.token.span), false)
1361 } else if self.may_recover() && self.is_do_catch_block() {
1362 self.recover_do_catch()
1363 } else if self.is_try_block() {
1364 self.expect_keyword(kw::Try)?;
1365 self.parse_try_block(lo)
1366 } else if self.eat_keyword(kw::Return) {
1367 self.parse_return_expr()
1368 } else if self.eat_keyword(kw::Break) {
1369 self.parse_break_expr()
1370 } else if self.eat_keyword(kw::Yield) {
1371 self.parse_yield_expr()
1372 } else if self.is_do_yeet() {
1373 self.parse_yeet_expr()
1374 } else if self.check_keyword(kw::Let) {
1375 self.parse_let_expr()
1376 } else if self.eat_keyword(kw::Underscore) {
1377 Ok(self.mk_expr(self.prev_token.span, ExprKind::Underscore))
1378 } else if !self.unclosed_delims.is_empty() && self.check(&token::Semi) {
1379 // Don't complain about bare semicolons after unclosed braces
1380 // recovery in order to keep the error count down. Fixing the
1381 // delimiters will possibly also fix the bare semicolon found in
1382 // expression context. For example, silence the following error:
1383 //
1384 // error: expected expression, found `;`
1385 // --> file.rs:2:13
1386 // |
1387 // 2 | foo(bar(;
1388 // | ^ expected expression
1389 self.bump();
1390 Ok(self.mk_expr_err(self.token.span))
1391 } else if self.token.uninterpolated_span().rust_2018() {
1392 // `Span::rust_2018()` is somewhat expensive; don't get it repeatedly.
1393 if self.check_keyword(kw::Async) {
1394 if self.is_async_block() {
1395 // Check for `async {` and `async move {`.
1396 self.parse_async_block()
1397 } else {
1398 self.parse_closure_expr()
1399 }
1400 } else if self.eat_keyword(kw::Await) {
1401 self.recover_incorrect_await_syntax(lo, self.prev_token.span)
1402 } else {
1403 self.parse_lit_expr()
1404 }
1405 } else {
1406 self.parse_lit_expr()
1407 }
1408 }
1409
1410 fn parse_lit_expr(&mut self) -> PResult<'a, P<Expr>> {
1411 let lo = self.token.span;
1412 match self.parse_opt_token_lit() {
1413 Some((token_lit, _)) => {
1414 let expr = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Lit(token_lit));
1415 self.maybe_recover_from_bad_qpath(expr)
1416 }
1417 None => self.try_macro_suggestion(),
1418 }
1419 }
1420
1421 fn parse_tuple_parens_expr(&mut self) -> PResult<'a, P<Expr>> {
1422 let lo = self.token.span;
1423 self.expect(&token::OpenDelim(Delimiter::Parenthesis))?;
1424 let (es, trailing_comma) = match self.parse_seq_to_end(
1425 &token::CloseDelim(Delimiter::Parenthesis),
1426 SeqSep::trailing_allowed(token::Comma),
1427 |p| p.parse_expr_catch_underscore(),
1428 ) {
1429 Ok(x) => x,
1430 Err(err) => {
1431 return Ok(self.recover_seq_parse_error(Delimiter::Parenthesis, lo, Err(err)));
1432 }
1433 };
1434 let kind = if es.len() == 1 && !trailing_comma {
1435 // `(e)` is parenthesized `e`.
1436 ExprKind::Paren(es.into_iter().next().unwrap())
1437 } else {
1438 // `(e,)` is a tuple with only one field, `e`.
1439 ExprKind::Tup(es)
1440 };
1441 let expr = self.mk_expr(lo.to(self.prev_token.span), kind);
1442 self.maybe_recover_from_bad_qpath(expr)
1443 }
1444
1445 fn parse_array_or_repeat_expr(&mut self, close_delim: Delimiter) -> PResult<'a, P<Expr>> {
1446 let lo = self.token.span;
1447 self.bump(); // `[` or other open delim
1448
1449 let close = &token::CloseDelim(close_delim);
1450 let kind = if self.eat(close) {
1451 // Empty vector
1452 ExprKind::Array(Vec::new())
1453 } else {
1454 // Non-empty vector
1455 let first_expr = self.parse_expr()?;
1456 if self.eat(&token::Semi) {
1457 // Repeating array syntax: `[ 0; 512 ]`
1458 let count = self.parse_anon_const_expr()?;
1459 self.expect(close)?;
1460 ExprKind::Repeat(first_expr, count)
1461 } else if self.eat(&token::Comma) {
1462 // Vector with two or more elements.
1463 let sep = SeqSep::trailing_allowed(token::Comma);
1464 let (remaining_exprs, _) = self.parse_seq_to_end(close, sep, |p| p.parse_expr())?;
1465 let mut exprs = vec![first_expr];
1466 exprs.extend(remaining_exprs);
1467 ExprKind::Array(exprs)
1468 } else {
1469 // Vector with one element
1470 self.expect(close)?;
1471 ExprKind::Array(vec![first_expr])
1472 }
1473 };
1474 let expr = self.mk_expr(lo.to(self.prev_token.span), kind);
1475 self.maybe_recover_from_bad_qpath(expr)
1476 }
1477
1478 fn parse_path_start_expr(&mut self) -> PResult<'a, P<Expr>> {
1479 let (qself, path) = if self.eat_lt() {
1480 let (qself, path) = self.parse_qpath(PathStyle::Expr)?;
1481 (Some(qself), path)
1482 } else {
1483 (None, self.parse_path(PathStyle::Expr)?)
1484 };
1485
1486 // `!`, as an operator, is prefix, so we know this isn't that.
1487 let (span, kind) = if self.eat(&token::Not) {
1488 // MACRO INVOCATION expression
1489 if qself.is_some() {
1490 self.sess.emit_err(MacroInvocationWithQualifiedPath(path.span));
1491 }
1492 let lo = path.span;
1493 let mac = P(MacCall {
1494 path,
1495 args: self.parse_delim_args()?,
1496 prior_type_ascription: self.last_type_ascription,
1497 });
1498 (lo.to(self.prev_token.span), ExprKind::MacCall(mac))
1499 } else if self.check(&token::OpenDelim(Delimiter::Brace)) &&
1500 let Some(expr) = self.maybe_parse_struct_expr(&qself, &path) {
1501 if qself.is_some() {
1502 self.sess.gated_spans.gate(sym::more_qualified_paths, path.span);
1503 }
1504 return expr;
1505 } else {
1506 (path.span, ExprKind::Path(qself, path))
1507 };
1508
1509 let expr = self.mk_expr(span, kind);
1510 self.maybe_recover_from_bad_qpath(expr)
1511 }
1512
1513 /// Parse `'label: $expr`. The label is already parsed.
1514 fn parse_labeled_expr(
1515 &mut self,
1516 label_: Label,
1517 mut consume_colon: bool,
1518 ) -> PResult<'a, P<Expr>> {
1519 let lo = label_.ident.span;
1520 let label = Some(label_);
1521 let ate_colon = self.eat(&token::Colon);
1522 let expr = if self.eat_keyword(kw::While) {
1523 self.parse_while_expr(label, lo)
1524 } else if self.eat_keyword(kw::For) {
1525 self.parse_for_expr(label, lo)
1526 } else if self.eat_keyword(kw::Loop) {
1527 self.parse_loop_expr(label, lo)
1528 } else if self.check_noexpect(&token::OpenDelim(Delimiter::Brace))
1529 || self.token.is_whole_block()
1530 {
1531 self.parse_block_expr(label, lo, BlockCheckMode::Default)
1532 } else if !ate_colon
1533 && self.may_recover()
1534 && (matches!(self.token.kind, token::CloseDelim(_) | token::Comma)
1535 || self.token.is_op())
1536 {
1537 let lit = self.recover_unclosed_char(label_.ident, |self_| {
1538 self_.sess.create_err(UnexpectedTokenAfterLabel {
1539 span: self_.token.span,
1540 remove_label: None,
1541 enclose_in_block: None,
1542 })
1543 });
1544 consume_colon = false;
1545 Ok(self.mk_expr(lo, ExprKind::Lit(lit.token_lit)))
1546 } else if !ate_colon
1547 && (self.check_noexpect(&TokenKind::Comma) || self.check_noexpect(&TokenKind::Gt))
1548 {
1549 // We're probably inside of a `Path<'a>` that needs a turbofish
1550 self.sess.emit_err(UnexpectedTokenAfterLabel {
1551 span: self.token.span,
1552 remove_label: None,
1553 enclose_in_block: None,
1554 });
1555 consume_colon = false;
1556 Ok(self.mk_expr_err(lo))
1557 } else {
1558 let mut err = UnexpectedTokenAfterLabel {
1559 span: self.token.span,
1560 remove_label: None,
1561 enclose_in_block: None,
1562 };
1563
1564 // Continue as an expression in an effort to recover on `'label: non_block_expr`.
1565 let expr = self.parse_expr().map(|expr| {
1566 let span = expr.span;
1567
1568 let found_labeled_breaks = {
1569 struct FindLabeledBreaksVisitor(bool);
1570
1571 impl<'ast> Visitor<'ast> for FindLabeledBreaksVisitor {
1572 fn visit_expr_post(&mut self, ex: &'ast Expr) {
1573 if let ExprKind::Break(Some(_label), _) = ex.kind {
1574 self.0 = true;
1575 }
1576 }
1577 }
1578
1579 let mut vis = FindLabeledBreaksVisitor(false);
1580 vis.visit_expr(&expr);
1581 vis.0
1582 };
1583
1584 // Suggestion involves adding a (as of time of writing this, unstable) labeled block.
1585 //
1586 // If there are no breaks that may use this label, suggest removing the label and
1587 // recover to the unmodified expression.
1588 if !found_labeled_breaks {
1589 err.remove_label = Some(lo.until(span));
1590
1591 return expr;
1592 }
1593
1594 err.enclose_in_block = Some(UnexpectedTokenAfterLabelSugg {
1595 left: span.shrink_to_lo(),
1596 right: span.shrink_to_hi(),
1597 });
1598
1599 // Replace `'label: non_block_expr` with `'label: {non_block_expr}` in order to suppress future errors about `break 'label`.
1600 let stmt = self.mk_stmt(span, StmtKind::Expr(expr));
1601 let blk = self.mk_block(vec![stmt], BlockCheckMode::Default, span);
1602 self.mk_expr(span, ExprKind::Block(blk, label))
1603 });
1604
1605 self.sess.emit_err(err);
1606 expr
1607 }?;
1608
1609 if !ate_colon && consume_colon {
1610 self.sess.emit_err(RequireColonAfterLabeledExpression {
1611 span: expr.span,
1612 label: lo,
1613 label_end: lo.shrink_to_hi(),
1614 });
1615 }
1616
1617 Ok(expr)
1618 }
1619
1620 /// Emit an error when a char is parsed as a lifetime because of a missing quote
1621 pub(super) fn recover_unclosed_char(
1622 &self,
1623 lifetime: Ident,
1624 err: impl FnOnce(&Self) -> DiagnosticBuilder<'a, ErrorGuaranteed>,
1625 ) -> ast::MetaItemLit {
1626 if let Some(mut diag) =
1627 self.sess.span_diagnostic.steal_diagnostic(lifetime.span, StashKey::LifetimeIsChar)
1628 {
1629 diag.span_suggestion_verbose(
1630 lifetime.span.shrink_to_hi(),
1631 "add `'` to close the char literal",
1632 "'",
1633 Applicability::MaybeIncorrect,
1634 )
1635 .emit();
1636 } else {
1637 err(self)
1638 .span_suggestion_verbose(
1639 lifetime.span.shrink_to_hi(),
1640 "add `'` to close the char literal",
1641 "'",
1642 Applicability::MaybeIncorrect,
1643 )
1644 .emit();
1645 }
1646 let name = lifetime.without_first_quote().name;
1647 ast::MetaItemLit {
1648 token_lit: token::Lit::new(token::LitKind::Char, name, None),
1649 kind: ast::LitKind::Char(name.as_str().chars().next().unwrap_or('_')),
1650 span: lifetime.span,
1651 }
1652 }
1653
1654 /// Recover on the syntax `do catch { ... }` suggesting `try { ... }` instead.
1655 fn recover_do_catch(&mut self) -> PResult<'a, P<Expr>> {
1656 let lo = self.token.span;
1657
1658 self.bump(); // `do`
1659 self.bump(); // `catch`
1660
1661 let span = lo.to(self.prev_token.span);
1662 self.sess.emit_err(DoCatchSyntaxRemoved { span });
1663
1664 self.parse_try_block(lo)
1665 }
1666
1667 /// Parse an expression if the token can begin one.
1668 fn parse_expr_opt(&mut self) -> PResult<'a, Option<P<Expr>>> {
1669 Ok(if self.token.can_begin_expr() { Some(self.parse_expr()?) } else { None })
1670 }
1671
1672 /// Parse `"return" expr?`.
1673 fn parse_return_expr(&mut self) -> PResult<'a, P<Expr>> {
1674 let lo = self.prev_token.span;
1675 let kind = ExprKind::Ret(self.parse_expr_opt()?);
1676 let expr = self.mk_expr(lo.to(self.prev_token.span), kind);
1677 self.maybe_recover_from_bad_qpath(expr)
1678 }
1679
1680 /// Parse `"do" "yeet" expr?`.
1681 fn parse_yeet_expr(&mut self) -> PResult<'a, P<Expr>> {
1682 let lo = self.token.span;
1683
1684 self.bump(); // `do`
1685 self.bump(); // `yeet`
1686
1687 let kind = ExprKind::Yeet(self.parse_expr_opt()?);
1688
1689 let span = lo.to(self.prev_token.span);
1690 self.sess.gated_spans.gate(sym::yeet_expr, span);
1691 let expr = self.mk_expr(span, kind);
1692 self.maybe_recover_from_bad_qpath(expr)
1693 }
1694
1695 /// Parse `"break" (('label (:? expr)?) | expr?)` with `"break"` token already eaten.
1696 /// If the label is followed immediately by a `:` token, the label and `:` are
1697 /// parsed as part of the expression (i.e. a labeled loop). The language team has
1698 /// decided in #87026 to require parentheses as a visual aid to avoid confusion if
1699 /// the break expression of an unlabeled break is a labeled loop (as in
1700 /// `break 'lbl: loop {}`); a labeled break with an unlabeled loop as its value
1701 /// expression only gets a warning for compatibility reasons; and a labeled break
1702 /// with a labeled loop does not even get a warning because there is no ambiguity.
1703 fn parse_break_expr(&mut self) -> PResult<'a, P<Expr>> {
1704 let lo = self.prev_token.span;
1705 let mut label = self.eat_label();
1706 let kind = if label.is_some() && self.token == token::Colon {
1707 // The value expression can be a labeled loop, see issue #86948, e.g.:
1708 // `loop { break 'label: loop { break 'label 42; }; }`
1709 let lexpr = self.parse_labeled_expr(label.take().unwrap(), true)?;
1710 self.sess.emit_err(LabeledLoopInBreak {
1711 span: lexpr.span,
1712 sub: WrapExpressionInParentheses {
1713 left: lexpr.span.shrink_to_lo(),
1714 right: lexpr.span.shrink_to_hi(),
1715 },
1716 });
1717 Some(lexpr)
1718 } else if self.token != token::OpenDelim(Delimiter::Brace)
1719 || !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
1720 {
1721 let expr = self.parse_expr_opt()?;
1722 if let Some(expr) = &expr {
1723 if label.is_some()
1724 && matches!(
1725 expr.kind,
1726 ExprKind::While(_, _, None)
1727 | ExprKind::ForLoop(_, _, _, None)
1728 | ExprKind::Loop(_, None, _)
1729 | ExprKind::Block(_, None)
1730 )
1731 {
1732 self.sess.buffer_lint_with_diagnostic(
1733 BREAK_WITH_LABEL_AND_LOOP,
1734 lo.to(expr.span),
1735 ast::CRATE_NODE_ID,
1736 "this labeled break expression is easy to confuse with an unlabeled break with a labeled value expression",
1737 BuiltinLintDiagnostics::BreakWithLabelAndLoop(expr.span),
1738 );
1739 }
1740 }
1741 expr
1742 } else {
1743 None
1744 };
1745 let expr = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Break(label, kind));
1746 self.maybe_recover_from_bad_qpath(expr)
1747 }
1748
1749 /// Parse `"yield" expr?`.
1750 fn parse_yield_expr(&mut self) -> PResult<'a, P<Expr>> {
1751 let lo = self.prev_token.span;
1752 let kind = ExprKind::Yield(self.parse_expr_opt()?);
1753 let span = lo.to(self.prev_token.span);
1754 self.sess.gated_spans.gate(sym::generators, span);
1755 let expr = self.mk_expr(span, kind);
1756 self.maybe_recover_from_bad_qpath(expr)
1757 }
1758
1759 /// Returns a string literal if the next token is a string literal.
1760 /// In case of error returns `Some(lit)` if the next token is a literal with a wrong kind,
1761 /// and returns `None` if the next token is not literal at all.
1762 pub fn parse_str_lit(&mut self) -> Result<ast::StrLit, Option<MetaItemLit>> {
1763 match self.parse_opt_meta_item_lit() {
1764 Some(lit) => match lit.kind {
1765 ast::LitKind::Str(symbol_unescaped, style) => Ok(ast::StrLit {
1766 style,
1767 symbol: lit.token_lit.symbol,
1768 suffix: lit.token_lit.suffix,
1769 span: lit.span,
1770 symbol_unescaped,
1771 }),
1772 _ => Err(Some(lit)),
1773 },
1774 None => Err(None),
1775 }
1776 }
1777
1778 fn handle_missing_lit(&mut self) -> PResult<'a, MetaItemLit> {
1779 if let token::Interpolated(inner) = &self.token.kind {
1780 let expr = match inner.as_ref() {
1781 token::NtExpr(expr) => Some(expr),
1782 token::NtLiteral(expr) => Some(expr),
1783 _ => None,
1784 };
1785 if let Some(expr) = expr {
1786 if matches!(expr.kind, ExprKind::Err) {
1787 let mut err = InvalidInterpolatedExpression { span: self.token.span }
1788 .into_diagnostic(&self.sess.span_diagnostic);
1789 err.downgrade_to_delayed_bug();
1790 return Err(err);
1791 }
1792 }
1793 }
1794 let token = self.token.clone();
1795 let err = |self_: &Self| {
1796 let msg = format!("unexpected token: {}", super::token_descr(&token));
1797 self_.struct_span_err(token.span, &msg)
1798 };
1799 // On an error path, eagerly consider a lifetime to be an unclosed character lit
1800 if self.token.is_lifetime() {
1801 let lt = self.expect_lifetime();
1802 Ok(self.recover_unclosed_char(lt.ident, err))
1803 } else {
1804 Err(err(self))
1805 }
1806 }
1807
1808 pub(super) fn parse_token_lit(&mut self) -> PResult<'a, (token::Lit, Span)> {
1809 self.parse_opt_token_lit()
1810 .ok_or(())
1811 .or_else(|()| self.handle_missing_lit().map(|lit| (lit.token_lit, lit.span)))
1812 }
1813
1814 pub(super) fn parse_meta_item_lit(&mut self) -> PResult<'a, MetaItemLit> {
1815 self.parse_opt_meta_item_lit().ok_or(()).or_else(|()| self.handle_missing_lit())
1816 }
1817
1818 fn recover_after_dot(&mut self) -> Option<Token> {
1819 let mut recovered = None;
1820 if self.token == token::Dot {
1821 // Attempt to recover `.4` as `0.4`. We don't currently have any syntax where
1822 // dot would follow an optional literal, so we do this unconditionally.
1823 recovered = self.look_ahead(1, |next_token| {
1824 if let token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) =
1825 next_token.kind
1826 {
1827 if self.token.span.hi() == next_token.span.lo() {
1828 let s = String::from("0.") + symbol.as_str();
1829 let kind = TokenKind::lit(token::Float, Symbol::intern(&s), suffix);
1830 return Some(Token::new(kind, self.token.span.to(next_token.span)));
1831 }
1832 }
1833 None
1834 });
1835 if let Some(token) = &recovered {
1836 self.bump();
1837 self.sess.emit_err(FloatLiteralRequiresIntegerPart {
1838 span: token.span,
1839 correct: pprust::token_to_string(token).into_owned(),
1840 });
1841 }
1842 }
1843
1844 recovered
1845 }
1846
1847 /// Matches `lit = true | false | token_lit`.
1848 /// Returns `None` if the next token is not a literal.
1849 pub(super) fn parse_opt_token_lit(&mut self) -> Option<(token::Lit, Span)> {
1850 let recovered = self.recover_after_dot();
1851 let token = recovered.as_ref().unwrap_or(&self.token);
1852 let span = token.span;
1853 token::Lit::from_token(token).map(|token_lit| {
1854 self.bump();
1855 (token_lit, span)
1856 })
1857 }
1858
1859 /// Matches `lit = true | false | token_lit`.
1860 /// Returns `None` if the next token is not a literal.
1861 pub(super) fn parse_opt_meta_item_lit(&mut self) -> Option<MetaItemLit> {
1862 let recovered = self.recover_after_dot();
1863 let token = recovered.as_ref().unwrap_or(&self.token);
1864 match token::Lit::from_token(token) {
1865 Some(token_lit) => {
1866 match MetaItemLit::from_token_lit(token_lit, token.span) {
1867 Ok(lit) => {
1868 self.bump();
1869 Some(lit)
1870 }
1871 Err(err) => {
1872 let span = token.span;
1873 let token::Literal(lit) = token.kind else {
1874 unreachable!();
1875 };
1876 self.bump();
1877 report_lit_error(&self.sess, err, lit, span);
1878 // Pack possible quotes and prefixes from the original literal into
1879 // the error literal's symbol so they can be pretty-printed faithfully.
1880 let suffixless_lit = token::Lit::new(lit.kind, lit.symbol, None);
1881 let symbol = Symbol::intern(&suffixless_lit.to_string());
1882 let lit = token::Lit::new(token::Err, symbol, lit.suffix);
1883 Some(
1884 MetaItemLit::from_token_lit(lit, span)
1885 .unwrap_or_else(|_| unreachable!()),
1886 )
1887 }
1888 }
1889 }
1890 None => None,
1891 }
1892 }
1893
1894 pub(super) fn expect_no_tuple_index_suffix(&self, span: Span, suffix: Symbol) {
1895 if [sym::i32, sym::u32, sym::isize, sym::usize].contains(&suffix) {
1896 // #59553: warn instead of reject out of hand to allow the fix to percolate
1897 // through the ecosystem when people fix their macros
1898 self.sess.emit_warning(InvalidLiteralSuffixOnTupleIndex {
1899 span,
1900 suffix,
1901 exception: Some(()),
1902 });
1903 } else {
1904 self.sess.emit_err(InvalidLiteralSuffixOnTupleIndex { span, suffix, exception: None });
1905 }
1906 }
1907
1908 /// Matches `'-' lit | lit` (cf. `ast_validation::AstValidator::check_expr_within_pat`).
1909 /// Keep this in sync with `Token::can_begin_literal_maybe_minus`.
1910 pub fn parse_literal_maybe_minus(&mut self) -> PResult<'a, P<Expr>> {
1911 maybe_whole_expr!(self);
1912
1913 let lo = self.token.span;
1914 let minus_present = self.eat(&token::BinOp(token::Minus));
1915 let (token_lit, span) = self.parse_token_lit()?;
1916 let expr = self.mk_expr(span, ExprKind::Lit(token_lit));
1917
1918 if minus_present {
1919 Ok(self.mk_expr(lo.to(self.prev_token.span), self.mk_unary(UnOp::Neg, expr)))
1920 } else {
1921 Ok(expr)
1922 }
1923 }
1924
1925 fn is_array_like_block(&mut self) -> bool {
1926 self.look_ahead(1, |t| matches!(t.kind, TokenKind::Ident(..) | TokenKind::Literal(_)))
1927 && self.look_ahead(2, |t| t == &token::Comma)
1928 && self.look_ahead(3, |t| t.can_begin_expr())
1929 }
1930
1931 /// Emits a suggestion if it looks like the user meant an array but
1932 /// accidentally used braces, causing the code to be interpreted as a block
1933 /// expression.
1934 fn maybe_suggest_brackets_instead_of_braces(&mut self, lo: Span) -> Option<P<Expr>> {
1935 let mut snapshot = self.create_snapshot_for_diagnostic();
1936 match snapshot.parse_array_or_repeat_expr(Delimiter::Brace) {
1937 Ok(arr) => {
1938 self.sess.emit_err(ArrayBracketsInsteadOfSpaces {
1939 span: arr.span,
1940 sub: ArrayBracketsInsteadOfSpacesSugg {
1941 left: lo,
1942 right: snapshot.prev_token.span,
1943 },
1944 });
1945
1946 self.restore_snapshot(snapshot);
1947 Some(self.mk_expr_err(arr.span))
1948 }
1949 Err(e) => {
1950 e.cancel();
1951 None
1952 }
1953 }
1954 }
1955
1956 fn suggest_missing_semicolon_before_array(
1957 &self,
1958 prev_span: Span,
1959 open_delim_span: Span,
1960 ) -> PResult<'a, ()> {
1961 if !self.may_recover() {
1962 return Ok(());
1963 }
1964
1965 if self.token.kind == token::Comma {
1966 if !self.sess.source_map().is_multiline(prev_span.until(self.token.span)) {
1967 return Ok(());
1968 }
1969 let mut snapshot = self.create_snapshot_for_diagnostic();
1970 snapshot.bump();
1971 match snapshot.parse_seq_to_before_end(
1972 &token::CloseDelim(Delimiter::Bracket),
1973 SeqSep::trailing_allowed(token::Comma),
1974 |p| p.parse_expr(),
1975 ) {
1976 Ok(_)
1977 // When the close delim is `)`, `token.kind` is expected to be `token::CloseDelim(Delimiter::Parenthesis)`,
1978 // but the actual `token.kind` is `token::CloseDelim(Delimiter::Bracket)`.
1979 // This is because the `token.kind` of the close delim is treated as the same as
1980 // that of the open delim in `TokenTreesReader::parse_token_tree`, even if the delimiters of them are different.
1981 // Therefore, `token.kind` should not be compared here.
1982 if snapshot
1983 .span_to_snippet(snapshot.token.span)
1984 .map_or(false, |snippet| snippet == "]") =>
1985 {
1986 return Err(MissingSemicolonBeforeArray {
1987 open_delim: open_delim_span,
1988 semicolon: prev_span.shrink_to_hi(),
1989 }.into_diagnostic(&self.sess.span_diagnostic));
1990 }
1991 Ok(_) => (),
1992 Err(err) => err.cancel(),
1993 }
1994 }
1995 Ok(())
1996 }
1997
1998 /// Parses a block or unsafe block.
1999 pub(super) fn parse_block_expr(
2000 &mut self,
2001 opt_label: Option<Label>,
2002 lo: Span,
2003 blk_mode: BlockCheckMode,
2004 ) -> PResult<'a, P<Expr>> {
2005 if self.may_recover() && self.is_array_like_block() {
2006 if let Some(arr) = self.maybe_suggest_brackets_instead_of_braces(lo) {
2007 return Ok(arr);
2008 }
2009 }
2010
2011 if self.token.is_whole_block() {
2012 self.sess.emit_err(InvalidBlockMacroSegment {
2013 span: self.token.span,
2014 context: lo.to(self.token.span),
2015 });
2016 }
2017
2018 let (attrs, blk) = self.parse_block_common(lo, blk_mode)?;
2019 Ok(self.mk_expr_with_attrs(blk.span, ExprKind::Block(blk, opt_label), attrs))
2020 }
2021
2022 /// Parse a block which takes no attributes and has no label
2023 fn parse_simple_block(&mut self) -> PResult<'a, P<Expr>> {
2024 let blk = self.parse_block()?;
2025 Ok(self.mk_expr(blk.span, ExprKind::Block(blk, None)))
2026 }
2027
2028 /// Parses a closure expression (e.g., `move |args| expr`).
2029 fn parse_closure_expr(&mut self) -> PResult<'a, P<Expr>> {
2030 let lo = self.token.span;
2031
2032 let binder = if self.check_keyword(kw::For) {
2033 let lo = self.token.span;
2034 let lifetime_defs = self.parse_late_bound_lifetime_defs()?;
2035 let span = lo.to(self.prev_token.span);
2036
2037 self.sess.gated_spans.gate(sym::closure_lifetime_binder, span);
2038
2039 ClosureBinder::For { span, generic_params: P::from_vec(lifetime_defs) }
2040 } else {
2041 ClosureBinder::NotPresent
2042 };
2043
2044 let movability =
2045 if self.eat_keyword(kw::Static) { Movability::Static } else { Movability::Movable };
2046
2047 let asyncness = if self.token.uninterpolated_span().rust_2018() {
2048 self.parse_asyncness(Case::Sensitive)
2049 } else {
2050 Async::No
2051 };
2052
2053 let capture_clause = self.parse_capture_clause()?;
2054 let (fn_decl, fn_arg_span) = self.parse_fn_block_decl()?;
2055 let decl_hi = self.prev_token.span;
2056 let mut body = match fn_decl.output {
2057 FnRetTy::Default(_) => {
2058 let restrictions = self.restrictions - Restrictions::STMT_EXPR;
2059 self.parse_expr_res(restrictions, None)?
2060 }
2061 _ => {
2062 // If an explicit return type is given, require a block to appear (RFC 968).
2063 let body_lo = self.token.span;
2064 self.parse_block_expr(None, body_lo, BlockCheckMode::Default)?
2065 }
2066 };
2067
2068 if let Async::Yes { span, .. } = asyncness {
2069 // Feature-gate `async ||` closures.
2070 self.sess.gated_spans.gate(sym::async_closure, span);
2071 }
2072
2073 if self.token.kind == TokenKind::Semi
2074 && matches!(self.token_cursor.frame.delim_sp, Some((Delimiter::Parenthesis, _)))
2075 && self.may_recover()
2076 {
2077 // It is likely that the closure body is a block but where the
2078 // braces have been removed. We will recover and eat the next
2079 // statements later in the parsing process.
2080 body = self.mk_expr_err(body.span);
2081 }
2082
2083 let body_span = body.span;
2084
2085 let closure = self.mk_expr(
2086 lo.to(body.span),
2087 ExprKind::Closure(Box::new(ast::Closure {
2088 binder,
2089 capture_clause,
2090 asyncness,
2091 movability,
2092 fn_decl,
2093 body,
2094 fn_decl_span: lo.to(decl_hi),
2095 fn_arg_span,
2096 })),
2097 );
2098
2099 // Disable recovery for closure body
2100 let spans =
2101 ClosureSpans { whole_closure: closure.span, closing_pipe: decl_hi, body: body_span };
2102 self.current_closure = Some(spans);
2103
2104 Ok(closure)
2105 }
2106
2107 /// Parses an optional `move` prefix to a closure-like construct.
2108 fn parse_capture_clause(&mut self) -> PResult<'a, CaptureBy> {
2109 if self.eat_keyword(kw::Move) {
2110 // Check for `move async` and recover
2111 if self.check_keyword(kw::Async) {
2112 let move_async_span = self.token.span.with_lo(self.prev_token.span.data().lo);
2113 Err(AsyncMoveOrderIncorrect { span: move_async_span }
2114 .into_diagnostic(&self.sess.span_diagnostic))
2115 } else {
2116 Ok(CaptureBy::Value)
2117 }
2118 } else {
2119 Ok(CaptureBy::Ref)
2120 }
2121 }
2122
2123 /// Parses the `|arg, arg|` header of a closure.
2124 fn parse_fn_block_decl(&mut self) -> PResult<'a, (P<FnDecl>, Span)> {
2125 let arg_start = self.token.span.lo();
2126
2127 let inputs = if self.eat(&token::OrOr) {
2128 Vec::new()
2129 } else {
2130 self.expect(&token::BinOp(token::Or))?;
2131 let args = self
2132 .parse_seq_to_before_tokens(
2133 &[&token::BinOp(token::Or), &token::OrOr],
2134 SeqSep::trailing_allowed(token::Comma),
2135 TokenExpectType::NoExpect,
2136 |p| p.parse_fn_block_param(),
2137 )?
2138 .0;
2139 self.expect_or()?;
2140 args
2141 };
2142 let arg_span = self.prev_token.span.with_lo(arg_start);
2143 let output =
2144 self.parse_ret_ty(AllowPlus::Yes, RecoverQPath::Yes, RecoverReturnSign::Yes)?;
2145
2146 Ok((P(FnDecl { inputs, output }), arg_span))
2147 }
2148
2149 /// Parses a parameter in a closure header (e.g., `|arg, arg|`).
2150 fn parse_fn_block_param(&mut self) -> PResult<'a, Param> {
2151 let lo = self.token.span;
2152 let attrs = self.parse_outer_attributes()?;
2153 self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
2154 let pat = this.parse_pat_no_top_alt(PARAM_EXPECTED)?;
2155 let ty = if this.eat(&token::Colon) {
2156 this.parse_ty()?
2157 } else {
2158 this.mk_ty(this.prev_token.span, TyKind::Infer)
2159 };
2160
2161 Ok((
2162 Param {
2163 attrs,
2164 ty,
2165 pat,
2166 span: lo.to(this.prev_token.span),
2167 id: DUMMY_NODE_ID,
2168 is_placeholder: false,
2169 },
2170 TrailingToken::MaybeComma,
2171 ))
2172 })
2173 }
2174
2175 /// Parses an `if` expression (`if` token already eaten).
2176 fn parse_if_expr(&mut self) -> PResult<'a, P<Expr>> {
2177 let lo = self.prev_token.span;
2178 let cond = self.parse_cond_expr()?;
2179 self.parse_if_after_cond(lo, cond)
2180 }
2181
2182 fn parse_if_after_cond(&mut self, lo: Span, mut cond: P<Expr>) -> PResult<'a, P<Expr>> {
2183 let cond_span = cond.span;
2184 // Tries to interpret `cond` as either a missing expression if it's a block,
2185 // or as an unfinished expression if it's a binop and the RHS is a block.
2186 // We could probably add more recoveries here too...
2187 let mut recover_block_from_condition = |this: &mut Self| {
2188 let block = match &mut cond.kind {
2189 ExprKind::Binary(Spanned { span: binop_span, .. }, _, right)
2190 if let ExprKind::Block(_, None) = right.kind => {
2191 self.sess.emit_err(IfExpressionMissingThenBlock {
2192 if_span: lo,
2193 sub: IfExpressionMissingThenBlockSub::UnfinishedCondition(
2194 cond_span.shrink_to_lo().to(*binop_span)
2195 ),
2196 });
2197 std::mem::replace(right, this.mk_expr_err(binop_span.shrink_to_hi()))
2198 },
2199 ExprKind::Block(_, None) => {
2200 self.sess.emit_err(IfExpressionMissingCondition {
2201 if_span: lo.shrink_to_hi(),
2202 block_span: self.sess.source_map().start_point(cond_span),
2203 });
2204 std::mem::replace(&mut cond, this.mk_expr_err(cond_span.shrink_to_hi()))
2205 }
2206 _ => {
2207 return None;
2208 }
2209 };
2210 if let ExprKind::Block(block, _) = &block.kind {
2211 Some(block.clone())
2212 } else {
2213 unreachable!()
2214 }
2215 };
2216 // Parse then block
2217 let thn = if self.token.is_keyword(kw::Else) {
2218 if let Some(block) = recover_block_from_condition(self) {
2219 block
2220 } else {
2221 self.sess.emit_err(IfExpressionMissingThenBlock {
2222 if_span: lo,
2223 sub: IfExpressionMissingThenBlockSub::AddThenBlock(cond_span.shrink_to_hi()),
2224 });
2225 self.mk_block_err(cond_span.shrink_to_hi())
2226 }
2227 } else {
2228 let attrs = self.parse_outer_attributes()?; // For recovery.
2229 let block = if self.check(&token::OpenDelim(Delimiter::Brace)) {
2230 self.parse_block()?
2231 } else {
2232 if let Some(block) = recover_block_from_condition(self) {
2233 block
2234 } else {
2235 self.error_on_extra_if(&cond)?;
2236 // Parse block, which will always fail, but we can add a nice note to the error
2237 self.parse_block().map_err(|mut err| {
2238 err.span_note(
2239 cond_span,
2240 "the `if` expression is missing a block after this condition",
2241 );
2242 err
2243 })?
2244 }
2245 };
2246 self.error_on_if_block_attrs(lo, false, block.span, attrs);
2247 block
2248 };
2249 let els = if self.eat_keyword(kw::Else) { Some(self.parse_else_expr()?) } else { None };
2250 Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::If(cond, thn, els)))
2251 }
2252
2253 /// Parses the condition of a `if` or `while` expression.
2254 fn parse_cond_expr(&mut self) -> PResult<'a, P<Expr>> {
2255 let cond =
2256 self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL | Restrictions::ALLOW_LET, None)?;
2257
2258 if let ExprKind::Let(..) = cond.kind {
2259 // Remove the last feature gating of a `let` expression since it's stable.
2260 self.sess.gated_spans.ungate_last(sym::let_chains, cond.span);
2261 }
2262
2263 Ok(cond)
2264 }
2265
2266 /// Parses a `let $pat = $expr` pseudo-expression.
2267 fn parse_let_expr(&mut self) -> PResult<'a, P<Expr>> {
2268 // This is a *approximate* heuristic that detects if `let` chains are
2269 // being parsed in the right position. It's approximate because it
2270 // doesn't deny all invalid `let` expressions, just completely wrong usages.
2271 let not_in_chain = !matches!(
2272 self.prev_token.kind,
2273 TokenKind::AndAnd | TokenKind::Ident(kw::If, _) | TokenKind::Ident(kw::While, _)
2274 );
2275 if !self.restrictions.contains(Restrictions::ALLOW_LET) || not_in_chain {
2276 self.sess.emit_err(ExpectedExpressionFoundLet { span: self.token.span });
2277 }
2278
2279 self.bump(); // Eat `let` token
2280 let lo = self.prev_token.span;
2281 let pat = self.parse_pat_allow_top_alt(
2282 None,
2283 RecoverComma::Yes,
2284 RecoverColon::Yes,
2285 CommaRecoveryMode::LikelyTuple,
2286 )?;
2287 if self.token == token::EqEq {
2288 self.sess.emit_err(ExpectedEqForLetExpr {
2289 span: self.token.span,
2290 sugg_span: self.token.span,
2291 });
2292 self.bump();
2293 } else {
2294 self.expect(&token::Eq)?;
2295 }
2296 let expr = self.with_res(self.restrictions | Restrictions::NO_STRUCT_LITERAL, |this| {
2297 this.parse_assoc_expr_with(1 + prec_let_scrutinee_needs_par(), None.into())
2298 })?;
2299 let span = lo.to(expr.span);
2300 self.sess.gated_spans.gate(sym::let_chains, span);
2301 Ok(self.mk_expr(span, ExprKind::Let(pat, expr, span)))
2302 }
2303
2304 /// Parses an `else { ... }` expression (`else` token already eaten).
2305 fn parse_else_expr(&mut self) -> PResult<'a, P<Expr>> {
2306 let else_span = self.prev_token.span; // `else`
2307 let attrs = self.parse_outer_attributes()?; // For recovery.
2308 let expr = if self.eat_keyword(kw::If) {
2309 self.parse_if_expr()?
2310 } else if self.check(&TokenKind::OpenDelim(Delimiter::Brace)) {
2311 self.parse_simple_block()?
2312 } else {
2313 let snapshot = self.create_snapshot_for_diagnostic();
2314 let first_tok = super::token_descr(&self.token);
2315 let first_tok_span = self.token.span;
2316 match self.parse_expr() {
2317 Ok(cond)
2318 // If it's not a free-standing expression, and is followed by a block,
2319 // then it's very likely the condition to an `else if`.
2320 if self.check(&TokenKind::OpenDelim(Delimiter::Brace))
2321 && classify::expr_requires_semi_to_be_stmt(&cond) =>
2322 {
2323 self.sess.emit_err(ExpectedElseBlock {
2324 first_tok_span,
2325 first_tok,
2326 else_span,
2327 condition_start: cond.span.shrink_to_lo(),
2328 });
2329 self.parse_if_after_cond(cond.span.shrink_to_lo(), cond)?
2330 }
2331 Err(e) => {
2332 e.cancel();
2333 self.restore_snapshot(snapshot);
2334 self.parse_simple_block()?
2335 },
2336 Ok(_) => {
2337 self.restore_snapshot(snapshot);
2338 self.parse_simple_block()?
2339 },
2340 }
2341 };
2342 self.error_on_if_block_attrs(else_span, true, expr.span, attrs);
2343 Ok(expr)
2344 }
2345
2346 fn error_on_if_block_attrs(
2347 &self,
2348 ctx_span: Span,
2349 is_ctx_else: bool,
2350 branch_span: Span,
2351 attrs: AttrWrapper,
2352 ) {
2353 if attrs.is_empty() {
2354 return;
2355 }
2356
2357 let attrs: &[ast::Attribute] = &attrs.take_for_recovery(self.sess);
2358 let (attributes, last) = match attrs {
2359 [] => return,
2360 [x0 @ xn] | [x0, .., xn] => (x0.span.to(xn.span), xn.span),
2361 };
2362 let ctx = if is_ctx_else { "else" } else { "if" };
2363 self.sess.emit_err(OuterAttributeNotAllowedOnIfElse {
2364 last,
2365 branch_span,
2366 ctx_span,
2367 ctx: ctx.to_string(),
2368 attributes,
2369 });
2370 }
2371
2372 fn error_on_extra_if(&mut self, cond: &P<Expr>) -> PResult<'a, ()> {
2373 if let ExprKind::Binary(Spanned { span: binop_span, node: binop}, _, right) = &cond.kind &&
2374 let BinOpKind::And = binop &&
2375 let ExprKind::If(cond, ..) = &right.kind {
2376 Err(self.sess.create_err(UnexpectedIfWithIf(binop_span.shrink_to_hi().to(cond.span.shrink_to_lo()))))
2377 } else {
2378 Ok(())
2379 }
2380 }
2381
2382 /// Parses `for <src_pat> in <src_expr> <src_loop_block>` (`for` token already eaten).
2383 fn parse_for_expr(&mut self, opt_label: Option<Label>, lo: Span) -> PResult<'a, P<Expr>> {
2384 // Record whether we are about to parse `for (`.
2385 // This is used below for recovery in case of `for ( $stuff ) $block`
2386 // in which case we will suggest `for $stuff $block`.
2387 let begin_paren = match self.token.kind {
2388 token::OpenDelim(Delimiter::Parenthesis) => Some(self.token.span),
2389 _ => None,
2390 };
2391
2392 let pat = self.parse_pat_allow_top_alt(
2393 None,
2394 RecoverComma::Yes,
2395 RecoverColon::Yes,
2396 CommaRecoveryMode::LikelyTuple,
2397 )?;
2398 if !self.eat_keyword(kw::In) {
2399 self.error_missing_in_for_loop();
2400 }
2401 self.check_for_for_in_in_typo(self.prev_token.span);
2402 let expr = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
2403
2404 let pat = self.recover_parens_around_for_head(pat, begin_paren);
2405
2406 let (attrs, loop_block) = self.parse_inner_attrs_and_block()?;
2407
2408 let kind = ExprKind::ForLoop(pat, expr, loop_block, opt_label);
2409 Ok(self.mk_expr_with_attrs(lo.to(self.prev_token.span), kind, attrs))
2410 }
2411
2412 fn error_missing_in_for_loop(&mut self) {
2413 let (span, sub): (_, fn(_) -> _) = if self.token.is_ident_named(sym::of) {
2414 // Possibly using JS syntax (#75311).
2415 let span = self.token.span;
2416 self.bump();
2417 (span, MissingInInForLoopSub::InNotOf)
2418 } else {
2419 (self.prev_token.span.between(self.token.span), MissingInInForLoopSub::AddIn)
2420 };
2421
2422 self.sess.emit_err(MissingInInForLoop { span, sub: sub(span) });
2423 }
2424
2425 /// Parses a `while` or `while let` expression (`while` token already eaten).
2426 fn parse_while_expr(&mut self, opt_label: Option<Label>, lo: Span) -> PResult<'a, P<Expr>> {
2427 let cond = self.parse_cond_expr().map_err(|mut err| {
2428 err.span_label(lo, "while parsing the condition of this `while` expression");
2429 err
2430 })?;
2431 let (attrs, body) = self.parse_inner_attrs_and_block().map_err(|mut err| {
2432 err.span_label(lo, "while parsing the body of this `while` expression");
2433 err.span_label(cond.span, "this `while` condition successfully parsed");
2434 err
2435 })?;
2436 Ok(self.mk_expr_with_attrs(
2437 lo.to(self.prev_token.span),
2438 ExprKind::While(cond, body, opt_label),
2439 attrs,
2440 ))
2441 }
2442
2443 /// Parses `loop { ... }` (`loop` token already eaten).
2444 fn parse_loop_expr(&mut self, opt_label: Option<Label>, lo: Span) -> PResult<'a, P<Expr>> {
2445 let loop_span = self.prev_token.span;
2446 let (attrs, body) = self.parse_inner_attrs_and_block()?;
2447 Ok(self.mk_expr_with_attrs(
2448 lo.to(self.prev_token.span),
2449 ExprKind::Loop(body, opt_label, loop_span),
2450 attrs,
2451 ))
2452 }
2453
2454 pub(crate) fn eat_label(&mut self) -> Option<Label> {
2455 self.token.lifetime().map(|ident| {
2456 self.bump();
2457 Label { ident }
2458 })
2459 }
2460
2461 /// Parses a `match ... { ... }` expression (`match` token already eaten).
2462 fn parse_match_expr(&mut self) -> PResult<'a, P<Expr>> {
2463 let match_span = self.prev_token.span;
2464 let lo = self.prev_token.span;
2465 let scrutinee = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
2466 if let Err(mut e) = self.expect(&token::OpenDelim(Delimiter::Brace)) {
2467 if self.token == token::Semi {
2468 e.span_suggestion_short(
2469 match_span,
2470 "try removing this `match`",
2471 "",
2472 Applicability::MaybeIncorrect, // speculative
2473 );
2474 }
2475 if self.maybe_recover_unexpected_block_label() {
2476 e.cancel();
2477 self.bump();
2478 } else {
2479 return Err(e);
2480 }
2481 }
2482 let attrs = self.parse_inner_attributes()?;
2483
2484 let mut arms: Vec<Arm> = Vec::new();
2485 while self.token != token::CloseDelim(Delimiter::Brace) {
2486 match self.parse_arm() {
2487 Ok(arm) => arms.push(arm),
2488 Err(mut e) => {
2489 // Recover by skipping to the end of the block.
2490 e.emit();
2491 self.recover_stmt();
2492 let span = lo.to(self.token.span);
2493 if self.token == token::CloseDelim(Delimiter::Brace) {
2494 self.bump();
2495 }
2496 return Ok(self.mk_expr_with_attrs(
2497 span,
2498 ExprKind::Match(scrutinee, arms),
2499 attrs,
2500 ));
2501 }
2502 }
2503 }
2504 let hi = self.token.span;
2505 self.bump();
2506 Ok(self.mk_expr_with_attrs(lo.to(hi), ExprKind::Match(scrutinee, arms), attrs))
2507 }
2508
2509 /// Attempt to recover from match arm body with statements and no surrounding braces.
2510 fn parse_arm_body_missing_braces(
2511 &mut self,
2512 first_expr: &P<Expr>,
2513 arrow_span: Span,
2514 ) -> Option<P<Expr>> {
2515 if self.token.kind != token::Semi {
2516 return None;
2517 }
2518 let start_snapshot = self.create_snapshot_for_diagnostic();
2519 let semi_sp = self.token.span;
2520 self.bump(); // `;`
2521 let mut stmts =
2522 vec![self.mk_stmt(first_expr.span, ast::StmtKind::Expr(first_expr.clone()))];
2523 let err = |this: &Parser<'_>, stmts: Vec<ast::Stmt>| {
2524 let span = stmts[0].span.to(stmts[stmts.len() - 1].span);
2525
2526 this.sess.emit_err(MatchArmBodyWithoutBraces {
2527 statements: span,
2528 arrow: arrow_span,
2529 num_statements: stmts.len(),
2530 sub: if stmts.len() > 1 {
2531 MatchArmBodyWithoutBracesSugg::AddBraces {
2532 left: span.shrink_to_lo(),
2533 right: span.shrink_to_hi(),
2534 }
2535 } else {
2536 MatchArmBodyWithoutBracesSugg::UseComma { semicolon: semi_sp }
2537 },
2538 });
2539 this.mk_expr_err(span)
2540 };
2541 // We might have either a `,` -> `;` typo, or a block without braces. We need
2542 // a more subtle parsing strategy.
2543 loop {
2544 if self.token.kind == token::CloseDelim(Delimiter::Brace) {
2545 // We have reached the closing brace of the `match` expression.
2546 return Some(err(self, stmts));
2547 }
2548 if self.token.kind == token::Comma {
2549 self.restore_snapshot(start_snapshot);
2550 return None;
2551 }
2552 let pre_pat_snapshot = self.create_snapshot_for_diagnostic();
2553 match self.parse_pat_no_top_alt(None) {
2554 Ok(_pat) => {
2555 if self.token.kind == token::FatArrow {
2556 // Reached arm end.
2557 self.restore_snapshot(pre_pat_snapshot);
2558 return Some(err(self, stmts));
2559 }
2560 }
2561 Err(err) => {
2562 err.cancel();
2563 }
2564 }
2565
2566 self.restore_snapshot(pre_pat_snapshot);
2567 match self.parse_stmt_without_recovery(true, ForceCollect::No) {
2568 // Consume statements for as long as possible.
2569 Ok(Some(stmt)) => {
2570 stmts.push(stmt);
2571 }
2572 Ok(None) => {
2573 self.restore_snapshot(start_snapshot);
2574 break;
2575 }
2576 // We couldn't parse either yet another statement missing it's
2577 // enclosing block nor the next arm's pattern or closing brace.
2578 Err(stmt_err) => {
2579 stmt_err.cancel();
2580 self.restore_snapshot(start_snapshot);
2581 break;
2582 }
2583 }
2584 }
2585 None
2586 }
2587
2588 pub(super) fn parse_arm(&mut self) -> PResult<'a, Arm> {
2589 // Used to check the `let_chains` and `if_let_guard` features mostly by scanning
2590 // `&&` tokens.
2591 fn check_let_expr(expr: &Expr) -> (bool, bool) {
2592 match &expr.kind {
2593 ExprKind::Binary(BinOp { node: BinOpKind::And, .. }, lhs, rhs) => {
2594 let lhs_rslt = check_let_expr(lhs);
2595 let rhs_rslt = check_let_expr(rhs);
2596 (lhs_rslt.0 || rhs_rslt.0, false)
2597 }
2598 ExprKind::Let(..) => (true, true),
2599 _ => (false, true),
2600 }
2601 }
2602 let attrs = self.parse_outer_attributes()?;
2603 self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
2604 let lo = this.token.span;
2605 let pat = this.parse_pat_allow_top_alt(
2606 None,
2607 RecoverComma::Yes,
2608 RecoverColon::Yes,
2609 CommaRecoveryMode::EitherTupleOrPipe,
2610 )?;
2611 let guard = if this.eat_keyword(kw::If) {
2612 let if_span = this.prev_token.span;
2613 let cond = this.parse_expr_res(Restrictions::ALLOW_LET, None)?;
2614 let (has_let_expr, does_not_have_bin_op) = check_let_expr(&cond);
2615 if has_let_expr {
2616 if does_not_have_bin_op {
2617 // Remove the last feature gating of a `let` expression since it's stable.
2618 this.sess.gated_spans.ungate_last(sym::let_chains, cond.span);
2619 }
2620 let span = if_span.to(cond.span);
2621 this.sess.gated_spans.gate(sym::if_let_guard, span);
2622 }
2623 Some(cond)
2624 } else {
2625 None
2626 };
2627 let arrow_span = this.token.span;
2628 if let Err(mut err) = this.expect(&token::FatArrow) {
2629 // We might have a `=>` -> `=` or `->` typo (issue #89396).
2630 if TokenKind::FatArrow
2631 .similar_tokens()
2632 .map_or(false, |similar_tokens| similar_tokens.contains(&this.token.kind))
2633 {
2634 err.span_suggestion(
2635 this.token.span,
2636 "try using a fat arrow here",
2637 "=>",
2638 Applicability::MaybeIncorrect,
2639 );
2640 err.emit();
2641 this.bump();
2642 } else {
2643 return Err(err);
2644 }
2645 }
2646 let arm_start_span = this.token.span;
2647
2648 let expr = this.parse_expr_res(Restrictions::STMT_EXPR, None).map_err(|mut err| {
2649 err.span_label(arrow_span, "while parsing the `match` arm starting here");
2650 err
2651 })?;
2652
2653 let require_comma = classify::expr_requires_semi_to_be_stmt(&expr)
2654 && this.token != token::CloseDelim(Delimiter::Brace);
2655
2656 let hi = this.prev_token.span;
2657
2658 if require_comma {
2659 let sm = this.sess.source_map();
2660 if let Some(body) = this.parse_arm_body_missing_braces(&expr, arrow_span) {
2661 let span = body.span;
2662 return Ok((
2663 ast::Arm {
2664 attrs,
2665 pat,
2666 guard,
2667 body,
2668 span,
2669 id: DUMMY_NODE_ID,
2670 is_placeholder: false,
2671 },
2672 TrailingToken::None,
2673 ));
2674 }
2675 this.expect_one_of(&[token::Comma], &[token::CloseDelim(Delimiter::Brace)])
2676 .or_else(|mut err| {
2677 if this.token == token::FatArrow {
2678 if let Ok(expr_lines) = sm.span_to_lines(expr.span)
2679 && let Ok(arm_start_lines) = sm.span_to_lines(arm_start_span)
2680 && arm_start_lines.lines[0].end_col == expr_lines.lines[0].end_col
2681 && expr_lines.lines.len() == 2
2682 {
2683 // We check whether there's any trailing code in the parse span,
2684 // if there isn't, we very likely have the following:
2685 //
2686 // X | &Y => "y"
2687 // | -- - missing comma
2688 // | |
2689 // | arrow_span
2690 // X | &X => "x"
2691 // | - ^^ self.token.span
2692 // | |
2693 // | parsed until here as `"y" & X`
2694 err.span_suggestion_short(
2695 arm_start_span.shrink_to_hi(),
2696 "missing a comma here to end this `match` arm",
2697 ",",
2698 Applicability::MachineApplicable,
2699 );
2700 return Err(err);
2701 }
2702 } else {
2703 // FIXME(compiler-errors): We could also recover `; PAT =>` here
2704
2705 // Try to parse a following `PAT =>`, if successful
2706 // then we should recover.
2707 let mut snapshot = this.create_snapshot_for_diagnostic();
2708 let pattern_follows = snapshot
2709 .parse_pat_allow_top_alt(
2710 None,
2711 RecoverComma::Yes,
2712 RecoverColon::Yes,
2713 CommaRecoveryMode::EitherTupleOrPipe,
2714 )
2715 .map_err(|err| err.cancel())
2716 .is_ok();
2717 if pattern_follows && snapshot.check(&TokenKind::FatArrow) {
2718 err.cancel();
2719 this.sess.emit_err(MissingCommaAfterMatchArm {
2720 span: hi.shrink_to_hi(),
2721 });
2722 return Ok(true);
2723 }
2724 }
2725 err.span_label(arrow_span, "while parsing the `match` arm starting here");
2726 Err(err)
2727 })?;
2728 } else {
2729 this.eat(&token::Comma);
2730 }
2731
2732 Ok((
2733 ast::Arm {
2734 attrs,
2735 pat,
2736 guard,
2737 body: expr,
2738 span: lo.to(hi),
2739 id: DUMMY_NODE_ID,
2740 is_placeholder: false,
2741 },
2742 TrailingToken::None,
2743 ))
2744 })
2745 }
2746
2747 /// Parses a `try {...}` expression (`try` token already eaten).
2748 fn parse_try_block(&mut self, span_lo: Span) -> PResult<'a, P<Expr>> {
2749 let (attrs, body) = self.parse_inner_attrs_and_block()?;
2750 if self.eat_keyword(kw::Catch) {
2751 Err(CatchAfterTry { span: self.prev_token.span }
2752 .into_diagnostic(&self.sess.span_diagnostic))
2753 } else {
2754 let span = span_lo.to(body.span);
2755 self.sess.gated_spans.gate(sym::try_blocks, span);
2756 Ok(self.mk_expr_with_attrs(span, ExprKind::TryBlock(body), attrs))
2757 }
2758 }
2759
2760 fn is_do_catch_block(&self) -> bool {
2761 self.token.is_keyword(kw::Do)
2762 && self.is_keyword_ahead(1, &[kw::Catch])
2763 && self.look_ahead(2, |t| *t == token::OpenDelim(Delimiter::Brace))
2764 && !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
2765 }
2766
2767 fn is_do_yeet(&self) -> bool {
2768 self.token.is_keyword(kw::Do) && self.is_keyword_ahead(1, &[kw::Yeet])
2769 }
2770
2771 fn is_try_block(&self) -> bool {
2772 self.token.is_keyword(kw::Try)
2773 && self.look_ahead(1, |t| *t == token::OpenDelim(Delimiter::Brace))
2774 && self.token.uninterpolated_span().rust_2018()
2775 }
2776
2777 /// Parses an `async move? {...}` expression.
2778 fn parse_async_block(&mut self) -> PResult<'a, P<Expr>> {
2779 let lo = self.token.span;
2780 self.expect_keyword(kw::Async)?;
2781 let capture_clause = self.parse_capture_clause()?;
2782 let (attrs, body) = self.parse_inner_attrs_and_block()?;
2783 let kind = ExprKind::Async(capture_clause, DUMMY_NODE_ID, body);
2784 Ok(self.mk_expr_with_attrs(lo.to(self.prev_token.span), kind, attrs))
2785 }
2786
2787 fn is_async_block(&self) -> bool {
2788 self.token.is_keyword(kw::Async)
2789 && ((
2790 // `async move {`
2791 self.is_keyword_ahead(1, &[kw::Move])
2792 && self.look_ahead(2, |t| *t == token::OpenDelim(Delimiter::Brace))
2793 ) || (
2794 // `async {`
2795 self.look_ahead(1, |t| *t == token::OpenDelim(Delimiter::Brace))
2796 ))
2797 }
2798
2799 fn is_certainly_not_a_block(&self) -> bool {
2800 self.look_ahead(1, |t| t.is_ident())
2801 && (
2802 // `{ ident, ` cannot start a block.
2803 self.look_ahead(2, |t| t == &token::Comma)
2804 || self.look_ahead(2, |t| t == &token::Colon)
2805 && (
2806 // `{ ident: token, ` cannot start a block.
2807 self.look_ahead(4, |t| t == &token::Comma) ||
2808 // `{ ident: ` cannot start a block unless it's a type ascription `ident: Type`.
2809 self.look_ahead(3, |t| !t.can_begin_type())
2810 )
2811 )
2812 }
2813
2814 fn maybe_parse_struct_expr(
2815 &mut self,
2816 qself: &Option<P<ast::QSelf>>,
2817 path: &ast::Path,
2818 ) -> Option<PResult<'a, P<Expr>>> {
2819 let struct_allowed = !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
2820 if struct_allowed || self.is_certainly_not_a_block() {
2821 if let Err(err) = self.expect(&token::OpenDelim(Delimiter::Brace)) {
2822 return Some(Err(err));
2823 }
2824 let expr = self.parse_struct_expr(qself.clone(), path.clone(), true);
2825 if let (Ok(expr), false) = (&expr, struct_allowed) {
2826 // This is a struct literal, but we don't can't accept them here.
2827 self.sess.emit_err(StructLiteralNotAllowedHere {
2828 span: expr.span,
2829 sub: StructLiteralNotAllowedHereSugg {
2830 left: path.span.shrink_to_lo(),
2831 right: expr.span.shrink_to_hi(),
2832 },
2833 });
2834 }
2835 return Some(expr);
2836 }
2837 None
2838 }
2839
2840 pub(super) fn parse_struct_fields(
2841 &mut self,
2842 pth: ast::Path,
2843 recover: bool,
2844 close_delim: Delimiter,
2845 ) -> PResult<'a, (Vec<ExprField>, ast::StructRest, bool)> {
2846 let mut fields = Vec::new();
2847 let mut base = ast::StructRest::None;
2848 let mut recover_async = false;
2849
2850 let mut async_block_err = |e: &mut Diagnostic, span: Span| {
2851 recover_async = true;
2852 e.span_label(span, "`async` blocks are only allowed in Rust 2018 or later");
2853 e.help_use_latest_edition();
2854 };
2855
2856 while self.token != token::CloseDelim(close_delim) {
2857 if self.eat(&token::DotDot) || self.recover_struct_field_dots(close_delim) {
2858 let exp_span = self.prev_token.span;
2859 // We permit `.. }` on the left-hand side of a destructuring assignment.
2860 if self.check(&token::CloseDelim(close_delim)) {
2861 base = ast::StructRest::Rest(self.prev_token.span.shrink_to_hi());
2862 break;
2863 }
2864 match self.parse_expr() {
2865 Ok(e) => base = ast::StructRest::Base(e),
2866 Err(mut e) if recover => {
2867 e.emit();
2868 self.recover_stmt();
2869 }
2870 Err(e) => return Err(e),
2871 }
2872 self.recover_struct_comma_after_dotdot(exp_span);
2873 break;
2874 }
2875
2876 let recovery_field = self.find_struct_error_after_field_looking_code();
2877 let parsed_field = match self.parse_expr_field() {
2878 Ok(f) => Some(f),
2879 Err(mut e) => {
2880 if pth == kw::Async {
2881 async_block_err(&mut e, pth.span);
2882 } else {
2883 e.span_label(pth.span, "while parsing this struct");
2884 }
2885 e.emit();
2886
2887 // If the next token is a comma, then try to parse
2888 // what comes next as additional fields, rather than
2889 // bailing out until next `}`.
2890 if self.token != token::Comma {
2891 self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
2892 if self.token != token::Comma {
2893 break;
2894 }
2895 }
2896 None
2897 }
2898 };
2899
2900 let is_shorthand = parsed_field.as_ref().map_or(false, |f| f.is_shorthand);
2901 // A shorthand field can be turned into a full field with `:`.
2902 // We should point this out.
2903 self.check_or_expected(!is_shorthand, TokenType::Token(token::Colon));
2904
2905 match self.expect_one_of(&[token::Comma], &[token::CloseDelim(close_delim)]) {
2906 Ok(_) => {
2907 if let Some(f) = parsed_field.or(recovery_field) {
2908 // Only include the field if there's no parse error for the field name.
2909 fields.push(f);
2910 }
2911 }
2912 Err(mut e) => {
2913 if pth == kw::Async {
2914 async_block_err(&mut e, pth.span);
2915 } else {
2916 e.span_label(pth.span, "while parsing this struct");
2917 if let Some(f) = recovery_field {
2918 fields.push(f);
2919 e.span_suggestion(
2920 self.prev_token.span.shrink_to_hi(),
2921 "try adding a comma",
2922 ",",
2923 Applicability::MachineApplicable,
2924 );
2925 } else if is_shorthand
2926 && (AssocOp::from_token(&self.token).is_some()
2927 || matches!(&self.token.kind, token::OpenDelim(_))
2928 || self.token.kind == token::Dot)
2929 {
2930 // Looks like they tried to write a shorthand, complex expression.
2931 let ident = parsed_field.expect("is_shorthand implies Some").ident;
2932 e.span_suggestion(
2933 ident.span.shrink_to_lo(),
2934 "try naming a field",
2935 &format!("{ident}: "),
2936 Applicability::HasPlaceholders,
2937 );
2938 }
2939 }
2940 if !recover {
2941 return Err(e);
2942 }
2943 e.emit();
2944 self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
2945 self.eat(&token::Comma);
2946 }
2947 }
2948 }
2949 Ok((fields, base, recover_async))
2950 }
2951
2952 /// Precondition: already parsed the '{'.
2953 pub(super) fn parse_struct_expr(
2954 &mut self,
2955 qself: Option<P<ast::QSelf>>,
2956 pth: ast::Path,
2957 recover: bool,
2958 ) -> PResult<'a, P<Expr>> {
2959 let lo = pth.span;
2960 let (fields, base, recover_async) =
2961 self.parse_struct_fields(pth.clone(), recover, Delimiter::Brace)?;
2962 let span = lo.to(self.token.span);
2963 self.expect(&token::CloseDelim(Delimiter::Brace))?;
2964 let expr = if recover_async {
2965 ExprKind::Err
2966 } else {
2967 ExprKind::Struct(P(ast::StructExpr { qself, path: pth, fields, rest: base }))
2968 };
2969 Ok(self.mk_expr(span, expr))
2970 }
2971
2972 /// Use in case of error after field-looking code: `S { foo: () with a }`.
2973 fn find_struct_error_after_field_looking_code(&self) -> Option<ExprField> {
2974 match self.token.ident() {
2975 Some((ident, is_raw))
2976 if (is_raw || !ident.is_reserved())
2977 && self.look_ahead(1, |t| *t == token::Colon) =>
2978 {
2979 Some(ast::ExprField {
2980 ident,
2981 span: self.token.span,
2982 expr: self.mk_expr_err(self.token.span),
2983 is_shorthand: false,
2984 attrs: AttrVec::new(),
2985 id: DUMMY_NODE_ID,
2986 is_placeholder: false,
2987 })
2988 }
2989 _ => None,
2990 }
2991 }
2992
2993 fn recover_struct_comma_after_dotdot(&mut self, span: Span) {
2994 if self.token != token::Comma {
2995 return;
2996 }
2997 self.sess.emit_err(CommaAfterBaseStruct {
2998 span: span.to(self.prev_token.span),
2999 comma: self.token.span,
3000 });
3001 self.recover_stmt();
3002 }
3003
3004 fn recover_struct_field_dots(&mut self, close_delim: Delimiter) -> bool {
3005 if !self.look_ahead(1, |t| *t == token::CloseDelim(close_delim))
3006 && self.eat(&token::DotDotDot)
3007 {
3008 // recover from typo of `...`, suggest `..`
3009 let span = self.prev_token.span;
3010 self.sess.emit_err(MissingDotDot { token_span: span, sugg_span: span });
3011 return true;
3012 }
3013 false
3014 }
3015
3016 /// Parses `ident (COLON expr)?`.
3017 fn parse_expr_field(&mut self) -> PResult<'a, ExprField> {
3018 let attrs = self.parse_outer_attributes()?;
3019 self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
3020 let lo = this.token.span;
3021
3022 // Check if a colon exists one ahead. This means we're parsing a fieldname.
3023 let is_shorthand = !this.look_ahead(1, |t| t == &token::Colon || t == &token::Eq);
3024 let (ident, expr) = if is_shorthand {
3025 // Mimic `x: x` for the `x` field shorthand.
3026 let ident = this.parse_ident_common(false)?;
3027 let path = ast::Path::from_ident(ident);
3028 (ident, this.mk_expr(ident.span, ExprKind::Path(None, path)))
3029 } else {
3030 let ident = this.parse_field_name()?;
3031 this.error_on_eq_field_init(ident);
3032 this.bump(); // `:`
3033 (ident, this.parse_expr()?)
3034 };
3035
3036 Ok((
3037 ast::ExprField {
3038 ident,
3039 span: lo.to(expr.span),
3040 expr,
3041 is_shorthand,
3042 attrs,
3043 id: DUMMY_NODE_ID,
3044 is_placeholder: false,
3045 },
3046 TrailingToken::MaybeComma,
3047 ))
3048 })
3049 }
3050
3051 /// Check for `=`. This means the source incorrectly attempts to
3052 /// initialize a field with an eq rather than a colon.
3053 fn error_on_eq_field_init(&self, field_name: Ident) {
3054 if self.token != token::Eq {
3055 return;
3056 }
3057
3058 self.sess.emit_err(EqFieldInit {
3059 span: self.token.span,
3060 eq: field_name.span.shrink_to_hi().to(self.token.span),
3061 });
3062 }
3063
3064 fn err_dotdotdot_syntax(&self, span: Span) {
3065 self.sess.emit_err(DotDotDot { span });
3066 }
3067
3068 fn err_larrow_operator(&self, span: Span) {
3069 self.sess.emit_err(LeftArrowOperator { span });
3070 }
3071
3072 fn mk_assign_op(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind {
3073 ExprKind::AssignOp(binop, lhs, rhs)
3074 }
3075
3076 fn mk_range(
3077 &mut self,
3078 start: Option<P<Expr>>,
3079 end: Option<P<Expr>>,
3080 limits: RangeLimits,
3081 ) -> ExprKind {
3082 if end.is_none() && limits == RangeLimits::Closed {
3083 self.inclusive_range_with_incorrect_end(self.prev_token.span);
3084 ExprKind::Err
3085 } else {
3086 ExprKind::Range(start, end, limits)
3087 }
3088 }
3089
3090 fn mk_unary(&self, unop: UnOp, expr: P<Expr>) -> ExprKind {
3091 ExprKind::Unary(unop, expr)
3092 }
3093
3094 fn mk_binary(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind {
3095 ExprKind::Binary(binop, lhs, rhs)
3096 }
3097
3098 fn mk_index(&self, expr: P<Expr>, idx: P<Expr>) -> ExprKind {
3099 ExprKind::Index(expr, idx)
3100 }
3101
3102 fn mk_call(&self, f: P<Expr>, args: Vec<P<Expr>>) -> ExprKind {
3103 ExprKind::Call(f, args)
3104 }
3105
3106 fn mk_await_expr(&mut self, self_arg: P<Expr>, lo: Span) -> P<Expr> {
3107 let span = lo.to(self.prev_token.span);
3108 let await_expr = self.mk_expr(span, ExprKind::Await(self_arg));
3109 self.recover_from_await_method_call();
3110 await_expr
3111 }
3112
3113 pub(crate) fn mk_expr_with_attrs(&self, span: Span, kind: ExprKind, attrs: AttrVec) -> P<Expr> {
3114 P(Expr { kind, span, attrs, id: DUMMY_NODE_ID, tokens: None })
3115 }
3116
3117 pub(crate) fn mk_expr(&self, span: Span, kind: ExprKind) -> P<Expr> {
3118 P(Expr { kind, span, attrs: AttrVec::new(), id: DUMMY_NODE_ID, tokens: None })
3119 }
3120
3121 pub(super) fn mk_expr_err(&self, span: Span) -> P<Expr> {
3122 self.mk_expr(span, ExprKind::Err)
3123 }
3124
3125 /// Create expression span ensuring the span of the parent node
3126 /// is larger than the span of lhs and rhs, including the attributes.
3127 fn mk_expr_sp(&self, lhs: &P<Expr>, lhs_span: Span, rhs_span: Span) -> Span {
3128 lhs.attrs
3129 .iter()
3130 .find(|a| a.style == AttrStyle::Outer)
3131 .map_or(lhs_span, |a| a.span)
3132 .to(rhs_span)
3133 }
3134
3135 fn collect_tokens_for_expr(
3136 &mut self,
3137 attrs: AttrWrapper,
3138 f: impl FnOnce(&mut Self, ast::AttrVec) -> PResult<'a, P<Expr>>,
3139 ) -> PResult<'a, P<Expr>> {
3140 self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
3141 let res = f(this, attrs)?;
3142 let trailing = if this.restrictions.contains(Restrictions::STMT_EXPR)
3143 && this.token.kind == token::Semi
3144 {
3145 TrailingToken::Semi
3146 } else if this.token.kind == token::Gt {
3147 TrailingToken::Gt
3148 } else {
3149 // FIXME - pass this through from the place where we know
3150 // we need a comma, rather than assuming that `#[attr] expr,`
3151 // always captures a trailing comma
3152 TrailingToken::MaybeComma
3153 };
3154 Ok((res, trailing))
3155 })
3156 }
3157 }