]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_parse/src/parser/path.rs
New upstream version 1.51.0+dfsg1
[rustc.git] / compiler / rustc_parse / src / parser / path.rs
1 use super::ty::{AllowPlus, RecoverQPath, RecoverReturnSign};
2 use super::{Parser, TokenType};
3 use crate::maybe_whole;
4 use rustc_ast::ptr::P;
5 use rustc_ast::token::{self, Token};
6 use rustc_ast::{self as ast, AngleBracketedArg, AngleBracketedArgs, ParenthesizedArgs};
7 use rustc_ast::{AnonConst, AssocTyConstraint, AssocTyConstraintKind, BlockCheckMode};
8 use rustc_ast::{GenericArg, GenericArgs};
9 use rustc_ast::{Path, PathSegment, QSelf};
10 use rustc_errors::{pluralize, Applicability, PResult};
11 use rustc_span::source_map::{BytePos, Span};
12 use rustc_span::symbol::{kw, sym, Ident};
13
14 use std::mem;
15 use tracing::debug;
16
17 /// Specifies how to parse a path.
18 #[derive(Copy, Clone, PartialEq)]
19 pub enum PathStyle {
20 /// In some contexts, notably in expressions, paths with generic arguments are ambiguous
21 /// with something else. For example, in expressions `segment < ....` can be interpreted
22 /// as a comparison and `segment ( ....` can be interpreted as a function call.
23 /// In all such contexts the non-path interpretation is preferred by default for practical
24 /// reasons, but the path interpretation can be forced by the disambiguator `::`, e.g.
25 /// `x<y>` - comparisons, `x::<y>` - unambiguously a path.
26 Expr,
27 /// In other contexts, notably in types, no ambiguity exists and paths can be written
28 /// without the disambiguator, e.g., `x<y>` - unambiguously a path.
29 /// Paths with disambiguators are still accepted, `x::<Y>` - unambiguously a path too.
30 Type,
31 /// A path with generic arguments disallowed, e.g., `foo::bar::Baz`, used in imports,
32 /// visibilities or attributes.
33 /// Technically, this variant is unnecessary and e.g., `Expr` can be used instead
34 /// (paths in "mod" contexts have to be checked later for absence of generic arguments
35 /// anyway, due to macros), but it is used to avoid weird suggestions about expected
36 /// tokens when something goes wrong.
37 Mod,
38 }
39
40 impl<'a> Parser<'a> {
41 /// Parses a qualified path.
42 /// Assumes that the leading `<` has been parsed already.
43 ///
44 /// `qualified_path = <type [as trait_ref]>::path`
45 ///
46 /// # Examples
47 /// `<T>::default`
48 /// `<T as U>::a`
49 /// `<T as U>::F::a<S>` (without disambiguator)
50 /// `<T as U>::F::a::<S>` (with disambiguator)
51 pub(super) fn parse_qpath(&mut self, style: PathStyle) -> PResult<'a, (QSelf, Path)> {
52 let lo = self.prev_token.span;
53 let ty = self.parse_ty()?;
54
55 // `path` will contain the prefix of the path up to the `>`,
56 // if any (e.g., `U` in the `<T as U>::*` examples
57 // above). `path_span` has the span of that path, or an empty
58 // span in the case of something like `<T>::Bar`.
59 let (mut path, path_span);
60 if self.eat_keyword(kw::As) {
61 let path_lo = self.token.span;
62 path = self.parse_path(PathStyle::Type)?;
63 path_span = path_lo.to(self.prev_token.span);
64 } else {
65 path_span = self.token.span.to(self.token.span);
66 path = ast::Path { segments: Vec::new(), span: path_span, tokens: None };
67 }
68
69 // See doc comment for `unmatched_angle_bracket_count`.
70 self.expect(&token::Gt)?;
71 if self.unmatched_angle_bracket_count > 0 {
72 self.unmatched_angle_bracket_count -= 1;
73 debug!("parse_qpath: (decrement) count={:?}", self.unmatched_angle_bracket_count);
74 }
75
76 if !self.recover_colon_before_qpath_proj() {
77 self.expect(&token::ModSep)?;
78 }
79
80 let qself = QSelf { ty, path_span, position: path.segments.len() };
81 self.parse_path_segments(&mut path.segments, style)?;
82
83 Ok((
84 qself,
85 Path { segments: path.segments, span: lo.to(self.prev_token.span), tokens: None },
86 ))
87 }
88
89 /// Recover from an invalid single colon, when the user likely meant a qualified path.
90 /// We avoid emitting this if not followed by an identifier, as our assumption that the user
91 /// intended this to be a qualified path may not be correct.
92 ///
93 /// ```ignore (diagnostics)
94 /// <Bar as Baz<T>>:Qux
95 /// ^ help: use double colon
96 /// ```
97 fn recover_colon_before_qpath_proj(&mut self) -> bool {
98 if self.token.kind != token::Colon
99 || self.look_ahead(1, |t| !t.is_ident() || t.is_reserved_ident())
100 {
101 return false;
102 }
103
104 self.bump(); // colon
105
106 self.diagnostic()
107 .struct_span_err(
108 self.prev_token.span,
109 "found single colon before projection in qualified path",
110 )
111 .span_suggestion(
112 self.prev_token.span,
113 "use double colon",
114 "::".to_string(),
115 Applicability::MachineApplicable,
116 )
117 .emit();
118
119 true
120 }
121
122 /// Parses simple paths.
123 ///
124 /// `path = [::] segment+`
125 /// `segment = ident | ident[::]<args> | ident[::](args) [-> type]`
126 ///
127 /// # Examples
128 /// `a::b::C<D>` (without disambiguator)
129 /// `a::b::C::<D>` (with disambiguator)
130 /// `Fn(Args)` (without disambiguator)
131 /// `Fn::(Args)` (with disambiguator)
132 pub(super) fn parse_path(&mut self, style: PathStyle) -> PResult<'a, Path> {
133 maybe_whole!(self, NtPath, |path| {
134 if style == PathStyle::Mod && path.segments.iter().any(|segment| segment.args.is_some())
135 {
136 self.struct_span_err(
137 path.segments
138 .iter()
139 .filter_map(|segment| segment.args.as_ref())
140 .map(|arg| arg.span())
141 .collect::<Vec<_>>(),
142 "unexpected generic arguments in path",
143 )
144 .emit();
145 }
146 path
147 });
148
149 let lo = self.token.span;
150 let mut segments = Vec::new();
151 let mod_sep_ctxt = self.token.span.ctxt();
152 if self.eat(&token::ModSep) {
153 segments.push(PathSegment::path_root(lo.shrink_to_lo().with_ctxt(mod_sep_ctxt)));
154 }
155 self.parse_path_segments(&mut segments, style)?;
156
157 Ok(Path { segments, span: lo.to(self.prev_token.span), tokens: None })
158 }
159
160 pub(super) fn parse_path_segments(
161 &mut self,
162 segments: &mut Vec<PathSegment>,
163 style: PathStyle,
164 ) -> PResult<'a, ()> {
165 loop {
166 let segment = self.parse_path_segment(style)?;
167 if style == PathStyle::Expr {
168 // In order to check for trailing angle brackets, we must have finished
169 // recursing (`parse_path_segment` can indirectly call this function),
170 // that is, the next token must be the highlighted part of the below example:
171 //
172 // `Foo::<Bar as Baz<T>>::Qux`
173 // ^ here
174 //
175 // As opposed to the below highlight (if we had only finished the first
176 // recursion):
177 //
178 // `Foo::<Bar as Baz<T>>::Qux`
179 // ^ here
180 //
181 // `PathStyle::Expr` is only provided at the root invocation and never in
182 // `parse_path_segment` to recurse and therefore can be checked to maintain
183 // this invariant.
184 self.check_trailing_angle_brackets(&segment, &[&token::ModSep]);
185 }
186 segments.push(segment);
187
188 if self.is_import_coupler() || !self.eat(&token::ModSep) {
189 return Ok(());
190 }
191 }
192 }
193
194 pub(super) fn parse_path_segment(&mut self, style: PathStyle) -> PResult<'a, PathSegment> {
195 let ident = self.parse_path_segment_ident()?;
196 let is_args_start = |token: &Token| {
197 matches!(
198 token.kind,
199 token::Lt
200 | token::BinOp(token::Shl)
201 | token::OpenDelim(token::Paren)
202 | token::LArrow
203 )
204 };
205 let check_args_start = |this: &mut Self| {
206 this.expected_tokens.extend_from_slice(&[
207 TokenType::Token(token::Lt),
208 TokenType::Token(token::OpenDelim(token::Paren)),
209 ]);
210 is_args_start(&this.token)
211 };
212
213 Ok(
214 if style == PathStyle::Type && check_args_start(self)
215 || style != PathStyle::Mod
216 && self.check(&token::ModSep)
217 && self.look_ahead(1, |t| is_args_start(t))
218 {
219 // We use `style == PathStyle::Expr` to check if this is in a recursion or not. If
220 // it isn't, then we reset the unmatched angle bracket count as we're about to start
221 // parsing a new path.
222 if style == PathStyle::Expr {
223 self.unmatched_angle_bracket_count = 0;
224 self.max_angle_bracket_count = 0;
225 }
226
227 // Generic arguments are found - `<`, `(`, `::<` or `::(`.
228 self.eat(&token::ModSep);
229 let lo = self.token.span;
230 let args = if self.eat_lt() {
231 // `<'a, T, A = U>`
232 let args =
233 self.parse_angle_args_with_leading_angle_bracket_recovery(style, lo)?;
234 self.expect_gt()?;
235 let span = lo.to(self.prev_token.span);
236 AngleBracketedArgs { args, span }.into()
237 } else {
238 // `(T, U) -> R`
239 let (inputs, _) = self.parse_paren_comma_seq(|p| p.parse_ty())?;
240 let inputs_span = lo.to(self.prev_token.span);
241 let span = ident.span.to(self.prev_token.span);
242 let output =
243 self.parse_ret_ty(AllowPlus::No, RecoverQPath::No, RecoverReturnSign::No)?;
244 ParenthesizedArgs { span, inputs, inputs_span, output }.into()
245 };
246
247 PathSegment { ident, args, id: ast::DUMMY_NODE_ID }
248 } else {
249 // Generic arguments are not found.
250 PathSegment::from_ident(ident)
251 },
252 )
253 }
254
255 pub(super) fn parse_path_segment_ident(&mut self) -> PResult<'a, Ident> {
256 match self.token.ident() {
257 Some((ident, false)) if ident.is_path_segment_keyword() => {
258 self.bump();
259 Ok(ident)
260 }
261 _ => self.parse_ident(),
262 }
263 }
264
265 /// Parses generic args (within a path segment) with recovery for extra leading angle brackets.
266 /// For the purposes of understanding the parsing logic of generic arguments, this function
267 /// can be thought of being the same as just calling `self.parse_angle_args()` if the source
268 /// had the correct amount of leading angle brackets.
269 ///
270 /// ```ignore (diagnostics)
271 /// bar::<<<<T as Foo>::Output>();
272 /// ^^ help: remove extra angle brackets
273 /// ```
274 fn parse_angle_args_with_leading_angle_bracket_recovery(
275 &mut self,
276 style: PathStyle,
277 lo: Span,
278 ) -> PResult<'a, Vec<AngleBracketedArg>> {
279 // We need to detect whether there are extra leading left angle brackets and produce an
280 // appropriate error and suggestion. This cannot be implemented by looking ahead at
281 // upcoming tokens for a matching `>` character - if there are unmatched `<` tokens
282 // then there won't be matching `>` tokens to find.
283 //
284 // To explain how this detection works, consider the following example:
285 //
286 // ```ignore (diagnostics)
287 // bar::<<<<T as Foo>::Output>();
288 // ^^ help: remove extra angle brackets
289 // ```
290 //
291 // Parsing of the left angle brackets starts in this function. We start by parsing the
292 // `<` token (incrementing the counter of unmatched angle brackets on `Parser` via
293 // `eat_lt`):
294 //
295 // *Upcoming tokens:* `<<<<T as Foo>::Output>;`
296 // *Unmatched count:* 1
297 // *`parse_path_segment` calls deep:* 0
298 //
299 // This has the effect of recursing as this function is called if a `<` character
300 // is found within the expected generic arguments:
301 //
302 // *Upcoming tokens:* `<<<T as Foo>::Output>;`
303 // *Unmatched count:* 2
304 // *`parse_path_segment` calls deep:* 1
305 //
306 // Eventually we will have recursed until having consumed all of the `<` tokens and
307 // this will be reflected in the count:
308 //
309 // *Upcoming tokens:* `T as Foo>::Output>;`
310 // *Unmatched count:* 4
311 // `parse_path_segment` calls deep:* 3
312 //
313 // The parser will continue until reaching the first `>` - this will decrement the
314 // unmatched angle bracket count and return to the parent invocation of this function
315 // having succeeded in parsing:
316 //
317 // *Upcoming tokens:* `::Output>;`
318 // *Unmatched count:* 3
319 // *`parse_path_segment` calls deep:* 2
320 //
321 // This will continue until the next `>` character which will also return successfully
322 // to the parent invocation of this function and decrement the count:
323 //
324 // *Upcoming tokens:* `;`
325 // *Unmatched count:* 2
326 // *`parse_path_segment` calls deep:* 1
327 //
328 // At this point, this function will expect to find another matching `>` character but
329 // won't be able to and will return an error. This will continue all the way up the
330 // call stack until the first invocation:
331 //
332 // *Upcoming tokens:* `;`
333 // *Unmatched count:* 2
334 // *`parse_path_segment` calls deep:* 0
335 //
336 // In doing this, we have managed to work out how many unmatched leading left angle
337 // brackets there are, but we cannot recover as the unmatched angle brackets have
338 // already been consumed. To remedy this, we keep a snapshot of the parser state
339 // before we do the above. We can then inspect whether we ended up with a parsing error
340 // and unmatched left angle brackets and if so, restore the parser state before we
341 // consumed any `<` characters to emit an error and consume the erroneous tokens to
342 // recover by attempting to parse again.
343 //
344 // In practice, the recursion of this function is indirect and there will be other
345 // locations that consume some `<` characters - as long as we update the count when
346 // this happens, it isn't an issue.
347
348 let is_first_invocation = style == PathStyle::Expr;
349 // Take a snapshot before attempting to parse - we can restore this later.
350 let snapshot = if is_first_invocation { Some(self.clone()) } else { None };
351
352 debug!("parse_generic_args_with_leading_angle_bracket_recovery: (snapshotting)");
353 match self.parse_angle_args() {
354 Ok(args) => Ok(args),
355 Err(ref mut e) if is_first_invocation && self.unmatched_angle_bracket_count > 0 => {
356 // Cancel error from being unable to find `>`. We know the error
357 // must have been this due to a non-zero unmatched angle bracket
358 // count.
359 e.cancel();
360
361 // Swap `self` with our backup of the parser state before attempting to parse
362 // generic arguments.
363 let snapshot = mem::replace(self, snapshot.unwrap());
364
365 debug!(
366 "parse_generic_args_with_leading_angle_bracket_recovery: (snapshot failure) \
367 snapshot.count={:?}",
368 snapshot.unmatched_angle_bracket_count,
369 );
370
371 // Eat the unmatched angle brackets.
372 for _ in 0..snapshot.unmatched_angle_bracket_count {
373 self.eat_lt();
374 }
375
376 // Make a span over ${unmatched angle bracket count} characters.
377 let span = lo.with_hi(lo.lo() + BytePos(snapshot.unmatched_angle_bracket_count));
378 self.struct_span_err(
379 span,
380 &format!(
381 "unmatched angle bracket{}",
382 pluralize!(snapshot.unmatched_angle_bracket_count)
383 ),
384 )
385 .span_suggestion(
386 span,
387 &format!(
388 "remove extra angle bracket{}",
389 pluralize!(snapshot.unmatched_angle_bracket_count)
390 ),
391 String::new(),
392 Applicability::MachineApplicable,
393 )
394 .emit();
395
396 // Try again without unmatched angle bracket characters.
397 self.parse_angle_args()
398 }
399 Err(e) => Err(e),
400 }
401 }
402
403 /// Parses (possibly empty) list of generic arguments / associated item constraints,
404 /// possibly including trailing comma.
405 pub(super) fn parse_angle_args(&mut self) -> PResult<'a, Vec<AngleBracketedArg>> {
406 let mut args = Vec::new();
407 while let Some(arg) = self.parse_angle_arg()? {
408 args.push(arg);
409 if !self.eat(&token::Comma) {
410 if !self.token.kind.should_end_const_arg() {
411 if self.handle_ambiguous_unbraced_const_arg(&mut args)? {
412 // We've managed to (partially) recover, so continue trying to parse
413 // arguments.
414 continue;
415 }
416 }
417 break;
418 }
419 }
420 Ok(args)
421 }
422
423 /// Parses a single argument in the angle arguments `<...>` of a path segment.
424 fn parse_angle_arg(&mut self) -> PResult<'a, Option<AngleBracketedArg>> {
425 let lo = self.token.span;
426 let arg = self.parse_generic_arg()?;
427 match arg {
428 Some(arg) => {
429 if self.check(&token::Colon) | self.check(&token::Eq) {
430 let (ident, gen_args) = match self.get_ident_from_generic_arg(arg) {
431 Ok(ident_gen_args) => ident_gen_args,
432 Err(arg) => return Ok(Some(AngleBracketedArg::Arg(arg))),
433 };
434 let kind = if self.eat(&token::Colon) {
435 // Parse associated type constraint bound.
436
437 let bounds = self.parse_generic_bounds(Some(self.prev_token.span))?;
438 AssocTyConstraintKind::Bound { bounds }
439 } else if self.eat(&token::Eq) {
440 // Parse associated type equality constraint
441
442 let ty = self.parse_assoc_equality_term(ident, self.prev_token.span)?;
443 AssocTyConstraintKind::Equality { ty }
444 } else {
445 unreachable!();
446 };
447
448 let span = lo.to(self.prev_token.span);
449
450 // Gate associated type bounds, e.g., `Iterator<Item: Ord>`.
451 if let AssocTyConstraintKind::Bound { .. } = kind {
452 self.sess.gated_spans.gate(sym::associated_type_bounds, span);
453 }
454 let constraint =
455 AssocTyConstraint { id: ast::DUMMY_NODE_ID, ident, gen_args, kind, span };
456 Ok(Some(AngleBracketedArg::Constraint(constraint)))
457 } else {
458 Ok(Some(AngleBracketedArg::Arg(arg)))
459 }
460 }
461 _ => Ok(None),
462 }
463 }
464
465 /// Parse the term to the right of an associated item equality constraint.
466 /// That is, parse `<term>` in `Item = <term>`.
467 /// Right now, this only admits types in `<term>`.
468 fn parse_assoc_equality_term(&mut self, ident: Ident, eq: Span) -> PResult<'a, P<ast::Ty>> {
469 let arg = self.parse_generic_arg()?;
470 let span = ident.span.to(self.prev_token.span);
471 match arg {
472 Some(GenericArg::Type(ty)) => return Ok(ty),
473 Some(GenericArg::Const(expr)) => {
474 self.struct_span_err(span, "cannot constrain an associated constant to a value")
475 .span_label(ident.span, "this associated constant...")
476 .span_label(expr.value.span, "...cannot be constrained to this value")
477 .emit();
478 }
479 Some(GenericArg::Lifetime(lt)) => {
480 self.struct_span_err(span, "associated lifetimes are not supported")
481 .span_label(lt.ident.span, "the lifetime is given here")
482 .help("if you meant to specify a trait object, write `dyn Trait + 'lifetime`")
483 .emit();
484 }
485 None => {
486 let after_eq = eq.shrink_to_hi();
487 let before_next = self.token.span.shrink_to_lo();
488 self.struct_span_err(after_eq.to(before_next), "missing type to the right of `=`")
489 .span_suggestion(
490 self.sess.source_map().next_point(eq).to(before_next),
491 "to constrain the associated type, add a type after `=`",
492 " TheType".to_string(),
493 Applicability::HasPlaceholders,
494 )
495 .span_suggestion(
496 eq.to(before_next),
497 &format!("remove the `=` if `{}` is a type", ident),
498 String::new(),
499 Applicability::MaybeIncorrect,
500 )
501 .emit();
502 }
503 }
504 Ok(self.mk_ty(span, ast::TyKind::Err))
505 }
506
507 /// We do not permit arbitrary expressions as const arguments. They must be one of:
508 /// - An expression surrounded in `{}`.
509 /// - A literal.
510 /// - A numeric literal prefixed by `-`.
511 /// - A single-segment path.
512 pub(super) fn expr_is_valid_const_arg(&self, expr: &P<rustc_ast::Expr>) -> bool {
513 match &expr.kind {
514 ast::ExprKind::Block(_, _) | ast::ExprKind::Lit(_) => true,
515 ast::ExprKind::Unary(ast::UnOp::Neg, expr) => {
516 matches!(expr.kind, ast::ExprKind::Lit(_))
517 }
518 // We can only resolve single-segment paths at the moment, because multi-segment paths
519 // require type-checking: see `visit_generic_arg` in `src/librustc_resolve/late.rs`.
520 ast::ExprKind::Path(None, path)
521 if path.segments.len() == 1 && path.segments[0].args.is_none() =>
522 {
523 true
524 }
525 _ => false,
526 }
527 }
528
529 /// Parse a const argument, e.g. `<3>`. It is assumed the angle brackets will be parsed by
530 /// the caller.
531 pub(super) fn parse_const_arg(&mut self) -> PResult<'a, AnonConst> {
532 // Parse const argument.
533 let value = if let token::OpenDelim(token::Brace) = self.token.kind {
534 self.parse_block_expr(
535 None,
536 self.token.span,
537 BlockCheckMode::Default,
538 ast::AttrVec::new(),
539 )?
540 } else {
541 self.handle_unambiguous_unbraced_const_arg()?
542 };
543 Ok(AnonConst { id: ast::DUMMY_NODE_ID, value })
544 }
545
546 /// Parse a generic argument in a path segment.
547 /// This does not include constraints, e.g., `Item = u8`, which is handled in `parse_angle_arg`.
548 fn parse_generic_arg(&mut self) -> PResult<'a, Option<GenericArg>> {
549 let start = self.token.span;
550 let arg = if self.check_lifetime() && self.look_ahead(1, |t| !t.is_like_plus()) {
551 // Parse lifetime argument.
552 GenericArg::Lifetime(self.expect_lifetime())
553 } else if self.check_const_arg() {
554 // Parse const argument.
555 GenericArg::Const(self.parse_const_arg()?)
556 } else if self.check_type() {
557 // Parse type argument.
558 match self.parse_ty() {
559 Ok(ty) => GenericArg::Type(ty),
560 Err(err) => {
561 // Try to recover from possible `const` arg without braces.
562 return self.recover_const_arg(start, err).map(Some);
563 }
564 }
565 } else {
566 return Ok(None);
567 };
568 Ok(Some(arg))
569 }
570
571 fn get_ident_from_generic_arg(
572 &self,
573 gen_arg: GenericArg,
574 ) -> Result<(Ident, Option<GenericArgs>), GenericArg> {
575 if let GenericArg::Type(ty) = &gen_arg {
576 if let ast::TyKind::Path(qself, path) = &ty.kind {
577 if qself.is_none() && path.segments.len() == 1 {
578 let seg = &path.segments[0];
579 return Ok((seg.ident, seg.args.as_deref().cloned()));
580 }
581 }
582 }
583 Err(gen_arg)
584 }
585 }