]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_passes/src/liveness.rs
New upstream version 1.68.2+dfsg1
[rustc.git] / compiler / rustc_passes / src / liveness.rs
1 //! A classic liveness analysis based on dataflow over the AST. Computes,
2 //! for each local variable in a function, whether that variable is live
3 //! at a given point. Program execution points are identified by their
4 //! IDs.
5 //!
6 //! # Basic idea
7 //!
8 //! The basic model is that each local variable is assigned an index. We
9 //! represent sets of local variables using a vector indexed by this
10 //! index. The value in the vector is either 0, indicating the variable
11 //! is dead, or the ID of an expression that uses the variable.
12 //!
13 //! We conceptually walk over the AST in reverse execution order. If we
14 //! find a use of a variable, we add it to the set of live variables. If
15 //! we find an assignment to a variable, we remove it from the set of live
16 //! variables. When we have to merge two flows, we take the union of
17 //! those two flows -- if the variable is live on both paths, we simply
18 //! pick one ID. In the event of loops, we continue doing this until a
19 //! fixed point is reached.
20 //!
21 //! ## Checking initialization
22 //!
23 //! At the function entry point, all variables must be dead. If this is
24 //! not the case, we can report an error using the ID found in the set of
25 //! live variables, which identifies a use of the variable which is not
26 //! dominated by an assignment.
27 //!
28 //! ## Checking moves
29 //!
30 //! After each explicit move, the variable must be dead.
31 //!
32 //! ## Computing last uses
33 //!
34 //! Any use of the variable where the variable is dead afterwards is a
35 //! last use.
36 //!
37 //! # Implementation details
38 //!
39 //! The actual implementation contains two (nested) walks over the AST.
40 //! The outer walk has the job of building up the ir_maps instance for the
41 //! enclosing function. On the way down the tree, it identifies those AST
42 //! nodes and variable IDs that will be needed for the liveness analysis
43 //! and assigns them contiguous IDs. The liveness ID for an AST node is
44 //! called a `live_node` (it's a newtype'd `u32`) and the ID for a variable
45 //! is called a `variable` (another newtype'd `u32`).
46 //!
47 //! On the way back up the tree, as we are about to exit from a function
48 //! declaration we allocate a `liveness` instance. Now that we know
49 //! precisely how many nodes and variables we need, we can allocate all
50 //! the various arrays that we will need to precisely the right size. We then
51 //! perform the actual propagation on the `liveness` instance.
52 //!
53 //! This propagation is encoded in the various `propagate_through_*()`
54 //! methods. It effectively does a reverse walk of the AST; whenever we
55 //! reach a loop node, we iterate until a fixed point is reached.
56 //!
57 //! ## The `RWU` struct
58 //!
59 //! At each live node `N`, we track three pieces of information for each
60 //! variable `V` (these are encapsulated in the `RWU` struct):
61 //!
62 //! - `reader`: the `LiveNode` ID of some node which will read the value
63 //! that `V` holds on entry to `N`. Formally: a node `M` such
64 //! that there exists a path `P` from `N` to `M` where `P` does not
65 //! write `V`. If the `reader` is `None`, then the current
66 //! value will never be read (the variable is dead, essentially).
67 //!
68 //! - `writer`: the `LiveNode` ID of some node which will write the
69 //! variable `V` and which is reachable from `N`. Formally: a node `M`
70 //! such that there exists a path `P` from `N` to `M` and `M` writes
71 //! `V`. If the `writer` is `None`, then there is no writer
72 //! of `V` that follows `N`.
73 //!
74 //! - `used`: a boolean value indicating whether `V` is *used*. We
75 //! distinguish a *read* from a *use* in that a *use* is some read that
76 //! is not just used to generate a new value. For example, `x += 1` is
77 //! a read but not a use. This is used to generate better warnings.
78 //!
79 //! ## Special nodes and variables
80 //!
81 //! We generate various special nodes for various, well, special purposes.
82 //! These are described in the `Liveness` struct.
83
84 use self::LiveNodeKind::*;
85 use self::VarKind::*;
86
87 use rustc_ast::InlineAsmOptions;
88 use rustc_data_structures::fx::FxIndexMap;
89 use rustc_errors::Applicability;
90 use rustc_errors::Diagnostic;
91 use rustc_hir as hir;
92 use rustc_hir::def::*;
93 use rustc_hir::def_id::{DefId, LocalDefId};
94 use rustc_hir::intravisit::{self, Visitor};
95 use rustc_hir::{Expr, HirId, HirIdMap, HirIdSet};
96 use rustc_index::vec::IndexVec;
97 use rustc_middle::ty::query::Providers;
98 use rustc_middle::ty::{self, DefIdTree, RootVariableMinCaptureList, Ty, TyCtxt};
99 use rustc_session::lint;
100 use rustc_span::symbol::{kw, sym, Symbol};
101 use rustc_span::{BytePos, Span};
102
103 use std::collections::VecDeque;
104 use std::io;
105 use std::io::prelude::*;
106 use std::rc::Rc;
107
108 mod rwu_table;
109
110 rustc_index::newtype_index! {
111 #[debug_format = "v({})"]
112 pub struct Variable {}
113 }
114
115 rustc_index::newtype_index! {
116 #[debug_format = "ln({})"]
117 pub struct LiveNode {}
118 }
119
120 #[derive(Copy, Clone, PartialEq, Debug)]
121 enum LiveNodeKind {
122 UpvarNode(Span),
123 ExprNode(Span, HirId),
124 VarDefNode(Span, HirId),
125 ClosureNode,
126 ExitNode,
127 }
128
129 fn live_node_kind_to_string(lnk: LiveNodeKind, tcx: TyCtxt<'_>) -> String {
130 let sm = tcx.sess.source_map();
131 match lnk {
132 UpvarNode(s) => format!("Upvar node [{}]", sm.span_to_diagnostic_string(s)),
133 ExprNode(s, _) => format!("Expr node [{}]", sm.span_to_diagnostic_string(s)),
134 VarDefNode(s, _) => format!("Var def node [{}]", sm.span_to_diagnostic_string(s)),
135 ClosureNode => "Closure node".to_owned(),
136 ExitNode => "Exit node".to_owned(),
137 }
138 }
139
140 fn check_liveness(tcx: TyCtxt<'_>, def_id: DefId) {
141 let local_def_id = match def_id.as_local() {
142 None => return,
143 Some(def_id) => def_id,
144 };
145
146 // Don't run unused pass for #[derive()]
147 let parent = tcx.local_parent(local_def_id);
148 if let DefKind::Impl = tcx.def_kind(parent)
149 && tcx.has_attr(parent.to_def_id(), sym::automatically_derived)
150 {
151 return;
152 }
153
154 // Don't run unused pass for #[naked]
155 if tcx.has_attr(def_id, sym::naked) {
156 return;
157 }
158
159 let mut maps = IrMaps::new(tcx);
160 let body_id = tcx.hir().body_owned_by(local_def_id);
161 let hir_id = tcx.hir().body_owner(body_id);
162 let body = tcx.hir().body(body_id);
163
164 if let Some(upvars) = tcx.upvars_mentioned(def_id) {
165 for &var_hir_id in upvars.keys() {
166 let var_name = tcx.hir().name(var_hir_id);
167 maps.add_variable(Upvar(var_hir_id, var_name));
168 }
169 }
170
171 // gather up the various local variables, significant expressions,
172 // and so forth:
173 maps.visit_body(body);
174
175 // compute liveness
176 let mut lsets = Liveness::new(&mut maps, local_def_id);
177 let entry_ln = lsets.compute(&body, hir_id);
178 lsets.log_liveness(entry_ln, body_id.hir_id);
179
180 // check for various error conditions
181 lsets.visit_body(body);
182 lsets.warn_about_unused_upvars(entry_ln);
183 lsets.warn_about_unused_args(body, entry_ln);
184 }
185
186 pub fn provide(providers: &mut Providers) {
187 *providers = Providers { check_liveness, ..*providers };
188 }
189
190 // ______________________________________________________________________
191 // Creating ir_maps
192 //
193 // This is the first pass and the one that drives the main
194 // computation. It walks up and down the IR once. On the way down,
195 // we count for each function the number of variables as well as
196 // liveness nodes. A liveness node is basically an expression or
197 // capture clause that does something of interest: either it has
198 // interesting control flow or it uses/defines a local variable.
199 //
200 // On the way back up, at each function node we create liveness sets
201 // (we now know precisely how big to make our various vectors and so
202 // forth) and then do the data-flow propagation to compute the set
203 // of live variables at each program point.
204 //
205 // Finally, we run back over the IR one last time and, using the
206 // computed liveness, check various safety conditions. For example,
207 // there must be no live nodes at the definition site for a variable
208 // unless it has an initializer. Similarly, each non-mutable local
209 // variable must not be assigned if there is some successor
210 // assignment. And so forth.
211
212 struct CaptureInfo {
213 ln: LiveNode,
214 var_hid: HirId,
215 }
216
217 #[derive(Copy, Clone, Debug)]
218 struct LocalInfo {
219 id: HirId,
220 name: Symbol,
221 is_shorthand: bool,
222 }
223
224 #[derive(Copy, Clone, Debug)]
225 enum VarKind {
226 Param(HirId, Symbol),
227 Local(LocalInfo),
228 Upvar(HirId, Symbol),
229 }
230
231 struct CollectLitsVisitor<'tcx> {
232 lit_exprs: Vec<&'tcx hir::Expr<'tcx>>,
233 }
234
235 impl<'tcx> Visitor<'tcx> for CollectLitsVisitor<'tcx> {
236 fn visit_expr(&mut self, expr: &'tcx Expr<'tcx>) {
237 if let hir::ExprKind::Lit(_) = expr.kind {
238 self.lit_exprs.push(expr);
239 }
240 intravisit::walk_expr(self, expr);
241 }
242 }
243
244 struct IrMaps<'tcx> {
245 tcx: TyCtxt<'tcx>,
246 live_node_map: HirIdMap<LiveNode>,
247 variable_map: HirIdMap<Variable>,
248 capture_info_map: HirIdMap<Rc<Vec<CaptureInfo>>>,
249 var_kinds: IndexVec<Variable, VarKind>,
250 lnks: IndexVec<LiveNode, LiveNodeKind>,
251 }
252
253 impl<'tcx> IrMaps<'tcx> {
254 fn new(tcx: TyCtxt<'tcx>) -> IrMaps<'tcx> {
255 IrMaps {
256 tcx,
257 live_node_map: HirIdMap::default(),
258 variable_map: HirIdMap::default(),
259 capture_info_map: Default::default(),
260 var_kinds: IndexVec::new(),
261 lnks: IndexVec::new(),
262 }
263 }
264
265 fn add_live_node(&mut self, lnk: LiveNodeKind) -> LiveNode {
266 let ln = self.lnks.push(lnk);
267
268 debug!("{:?} is of kind {}", ln, live_node_kind_to_string(lnk, self.tcx));
269
270 ln
271 }
272
273 fn add_live_node_for_node(&mut self, hir_id: HirId, lnk: LiveNodeKind) {
274 let ln = self.add_live_node(lnk);
275 self.live_node_map.insert(hir_id, ln);
276
277 debug!("{:?} is node {:?}", ln, hir_id);
278 }
279
280 fn add_variable(&mut self, vk: VarKind) -> Variable {
281 let v = self.var_kinds.push(vk);
282
283 match vk {
284 Local(LocalInfo { id: node_id, .. }) | Param(node_id, _) | Upvar(node_id, _) => {
285 self.variable_map.insert(node_id, v);
286 }
287 }
288
289 debug!("{:?} is {:?}", v, vk);
290
291 v
292 }
293
294 fn variable(&self, hir_id: HirId, span: Span) -> Variable {
295 match self.variable_map.get(&hir_id) {
296 Some(&var) => var,
297 None => {
298 span_bug!(span, "no variable registered for id {:?}", hir_id);
299 }
300 }
301 }
302
303 fn variable_name(&self, var: Variable) -> Symbol {
304 match self.var_kinds[var] {
305 Local(LocalInfo { name, .. }) | Param(_, name) | Upvar(_, name) => name,
306 }
307 }
308
309 fn variable_is_shorthand(&self, var: Variable) -> bool {
310 match self.var_kinds[var] {
311 Local(LocalInfo { is_shorthand, .. }) => is_shorthand,
312 Param(..) | Upvar(..) => false,
313 }
314 }
315
316 fn set_captures(&mut self, hir_id: HirId, cs: Vec<CaptureInfo>) {
317 self.capture_info_map.insert(hir_id, Rc::new(cs));
318 }
319
320 fn collect_shorthand_field_ids(&self, pat: &hir::Pat<'tcx>) -> HirIdSet {
321 // For struct patterns, take note of which fields used shorthand
322 // (`x` rather than `x: x`).
323 let mut shorthand_field_ids = HirIdSet::default();
324 let mut pats = VecDeque::new();
325 pats.push_back(pat);
326
327 while let Some(pat) = pats.pop_front() {
328 use rustc_hir::PatKind::*;
329 match &pat.kind {
330 Binding(.., inner_pat) => {
331 pats.extend(inner_pat.iter());
332 }
333 Struct(_, fields, _) => {
334 let (short, not_short): (Vec<_>, _) =
335 fields.iter().partition(|f| f.is_shorthand);
336 shorthand_field_ids.extend(short.iter().map(|f| f.pat.hir_id));
337 pats.extend(not_short.iter().map(|f| f.pat));
338 }
339 Ref(inner_pat, _) | Box(inner_pat) => {
340 pats.push_back(inner_pat);
341 }
342 TupleStruct(_, inner_pats, _) | Tuple(inner_pats, _) | Or(inner_pats) => {
343 pats.extend(inner_pats.iter());
344 }
345 Slice(pre_pats, inner_pat, post_pats) => {
346 pats.extend(pre_pats.iter());
347 pats.extend(inner_pat.iter());
348 pats.extend(post_pats.iter());
349 }
350 _ => {}
351 }
352 }
353
354 shorthand_field_ids
355 }
356
357 fn add_from_pat(&mut self, pat: &hir::Pat<'tcx>) {
358 let shorthand_field_ids = self.collect_shorthand_field_ids(pat);
359
360 pat.each_binding(|_, hir_id, _, ident| {
361 self.add_live_node_for_node(hir_id, VarDefNode(ident.span, hir_id));
362 self.add_variable(Local(LocalInfo {
363 id: hir_id,
364 name: ident.name,
365 is_shorthand: shorthand_field_ids.contains(&hir_id),
366 }));
367 });
368 }
369 }
370
371 impl<'tcx> Visitor<'tcx> for IrMaps<'tcx> {
372 fn visit_local(&mut self, local: &'tcx hir::Local<'tcx>) {
373 self.add_from_pat(&local.pat);
374 if local.els.is_some() {
375 self.add_live_node_for_node(local.hir_id, ExprNode(local.span, local.hir_id));
376 }
377 intravisit::walk_local(self, local);
378 }
379
380 fn visit_arm(&mut self, arm: &'tcx hir::Arm<'tcx>) {
381 self.add_from_pat(&arm.pat);
382 if let Some(hir::Guard::IfLet(ref let_expr)) = arm.guard {
383 self.add_from_pat(let_expr.pat);
384 }
385 intravisit::walk_arm(self, arm);
386 }
387
388 fn visit_param(&mut self, param: &'tcx hir::Param<'tcx>) {
389 let shorthand_field_ids = self.collect_shorthand_field_ids(param.pat);
390 param.pat.each_binding(|_bm, hir_id, _x, ident| {
391 let var = match param.pat.kind {
392 rustc_hir::PatKind::Struct(..) => Local(LocalInfo {
393 id: hir_id,
394 name: ident.name,
395 is_shorthand: shorthand_field_ids.contains(&hir_id),
396 }),
397 _ => Param(hir_id, ident.name),
398 };
399 self.add_variable(var);
400 });
401 intravisit::walk_param(self, param);
402 }
403
404 fn visit_expr(&mut self, expr: &'tcx Expr<'tcx>) {
405 match expr.kind {
406 // live nodes required for uses or definitions of variables:
407 hir::ExprKind::Path(hir::QPath::Resolved(_, ref path)) => {
408 debug!("expr {}: path that leads to {:?}", expr.hir_id, path.res);
409 if let Res::Local(_var_hir_id) = path.res {
410 self.add_live_node_for_node(expr.hir_id, ExprNode(expr.span, expr.hir_id));
411 }
412 intravisit::walk_expr(self, expr);
413 }
414 hir::ExprKind::Closure(closure) => {
415 // Interesting control flow (for loops can contain labeled
416 // breaks or continues)
417 self.add_live_node_for_node(expr.hir_id, ExprNode(expr.span, expr.hir_id));
418
419 // Make a live_node for each mentioned variable, with the span
420 // being the location that the variable is used. This results
421 // in better error messages than just pointing at the closure
422 // construction site.
423 let mut call_caps = Vec::new();
424 if let Some(upvars) = self.tcx.upvars_mentioned(closure.def_id) {
425 call_caps.extend(upvars.keys().map(|var_id| {
426 let upvar = upvars[var_id];
427 let upvar_ln = self.add_live_node(UpvarNode(upvar.span));
428 CaptureInfo { ln: upvar_ln, var_hid: *var_id }
429 }));
430 }
431 self.set_captures(expr.hir_id, call_caps);
432 intravisit::walk_expr(self, expr);
433 }
434
435 hir::ExprKind::Let(let_expr) => {
436 self.add_from_pat(let_expr.pat);
437 intravisit::walk_expr(self, expr);
438 }
439
440 // live nodes required for interesting control flow:
441 hir::ExprKind::If(..)
442 | hir::ExprKind::Match(..)
443 | hir::ExprKind::Loop(..)
444 | hir::ExprKind::Yield(..) => {
445 self.add_live_node_for_node(expr.hir_id, ExprNode(expr.span, expr.hir_id));
446 intravisit::walk_expr(self, expr);
447 }
448 hir::ExprKind::Binary(op, ..) if op.node.is_lazy() => {
449 self.add_live_node_for_node(expr.hir_id, ExprNode(expr.span, expr.hir_id));
450 intravisit::walk_expr(self, expr);
451 }
452
453 // otherwise, live nodes are not required:
454 hir::ExprKind::Index(..)
455 | hir::ExprKind::Field(..)
456 | hir::ExprKind::Array(..)
457 | hir::ExprKind::Call(..)
458 | hir::ExprKind::MethodCall(..)
459 | hir::ExprKind::Tup(..)
460 | hir::ExprKind::Binary(..)
461 | hir::ExprKind::AddrOf(..)
462 | hir::ExprKind::Cast(..)
463 | hir::ExprKind::DropTemps(..)
464 | hir::ExprKind::Unary(..)
465 | hir::ExprKind::Break(..)
466 | hir::ExprKind::Continue(_)
467 | hir::ExprKind::Lit(_)
468 | hir::ExprKind::ConstBlock(..)
469 | hir::ExprKind::Ret(..)
470 | hir::ExprKind::Block(..)
471 | hir::ExprKind::Assign(..)
472 | hir::ExprKind::AssignOp(..)
473 | hir::ExprKind::Struct(..)
474 | hir::ExprKind::Repeat(..)
475 | hir::ExprKind::InlineAsm(..)
476 | hir::ExprKind::Box(..)
477 | hir::ExprKind::Type(..)
478 | hir::ExprKind::Err
479 | hir::ExprKind::Path(hir::QPath::TypeRelative(..))
480 | hir::ExprKind::Path(hir::QPath::LangItem(..)) => {
481 intravisit::walk_expr(self, expr);
482 }
483 }
484 }
485 }
486
487 // ______________________________________________________________________
488 // Computing liveness sets
489 //
490 // Actually we compute just a bit more than just liveness, but we use
491 // the same basic propagation framework in all cases.
492
493 const ACC_READ: u32 = 1;
494 const ACC_WRITE: u32 = 2;
495 const ACC_USE: u32 = 4;
496
497 struct Liveness<'a, 'tcx> {
498 ir: &'a mut IrMaps<'tcx>,
499 typeck_results: &'a ty::TypeckResults<'tcx>,
500 param_env: ty::ParamEnv<'tcx>,
501 closure_min_captures: Option<&'tcx RootVariableMinCaptureList<'tcx>>,
502 successors: IndexVec<LiveNode, Option<LiveNode>>,
503 rwu_table: rwu_table::RWUTable,
504
505 /// A live node representing a point of execution before closure entry &
506 /// after closure exit. Used to calculate liveness of captured variables
507 /// through calls to the same closure. Used for Fn & FnMut closures only.
508 closure_ln: LiveNode,
509 /// A live node representing every 'exit' from the function, whether it be
510 /// by explicit return, panic, or other means.
511 exit_ln: LiveNode,
512
513 // mappings from loop node ID to LiveNode
514 // ("break" label should map to loop node ID,
515 // it probably doesn't now)
516 break_ln: HirIdMap<LiveNode>,
517 cont_ln: HirIdMap<LiveNode>,
518 }
519
520 impl<'a, 'tcx> Liveness<'a, 'tcx> {
521 fn new(ir: &'a mut IrMaps<'tcx>, body_owner: LocalDefId) -> Liveness<'a, 'tcx> {
522 let typeck_results = ir.tcx.typeck(body_owner);
523 let param_env = ir.tcx.param_env(body_owner);
524 let closure_min_captures = typeck_results.closure_min_captures.get(&body_owner);
525 let closure_ln = ir.add_live_node(ClosureNode);
526 let exit_ln = ir.add_live_node(ExitNode);
527
528 let num_live_nodes = ir.lnks.len();
529 let num_vars = ir.var_kinds.len();
530
531 Liveness {
532 ir,
533 typeck_results,
534 param_env,
535 closure_min_captures,
536 successors: IndexVec::from_elem_n(None, num_live_nodes),
537 rwu_table: rwu_table::RWUTable::new(num_live_nodes, num_vars),
538 closure_ln,
539 exit_ln,
540 break_ln: Default::default(),
541 cont_ln: Default::default(),
542 }
543 }
544
545 fn live_node(&self, hir_id: HirId, span: Span) -> LiveNode {
546 match self.ir.live_node_map.get(&hir_id) {
547 Some(&ln) => ln,
548 None => {
549 // This must be a mismatch between the ir_map construction
550 // above and the propagation code below; the two sets of
551 // code have to agree about which AST nodes are worth
552 // creating liveness nodes for.
553 span_bug!(span, "no live node registered for node {:?}", hir_id);
554 }
555 }
556 }
557
558 fn variable(&self, hir_id: HirId, span: Span) -> Variable {
559 self.ir.variable(hir_id, span)
560 }
561
562 fn define_bindings_in_pat(&mut self, pat: &hir::Pat<'_>, mut succ: LiveNode) -> LiveNode {
563 // In an or-pattern, only consider the first pattern; any later patterns
564 // must have the same bindings, and we also consider the first pattern
565 // to be the "authoritative" set of ids.
566 pat.each_binding_or_first(&mut |_, hir_id, pat_sp, ident| {
567 let ln = self.live_node(hir_id, pat_sp);
568 let var = self.variable(hir_id, ident.span);
569 self.init_from_succ(ln, succ);
570 self.define(ln, var);
571 succ = ln;
572 });
573 succ
574 }
575
576 fn live_on_entry(&self, ln: LiveNode, var: Variable) -> bool {
577 self.rwu_table.get_reader(ln, var)
578 }
579
580 // Is this variable live on entry to any of its successor nodes?
581 fn live_on_exit(&self, ln: LiveNode, var: Variable) -> bool {
582 let successor = self.successors[ln].unwrap();
583 self.live_on_entry(successor, var)
584 }
585
586 fn used_on_entry(&self, ln: LiveNode, var: Variable) -> bool {
587 self.rwu_table.get_used(ln, var)
588 }
589
590 fn assigned_on_entry(&self, ln: LiveNode, var: Variable) -> bool {
591 self.rwu_table.get_writer(ln, var)
592 }
593
594 fn assigned_on_exit(&self, ln: LiveNode, var: Variable) -> bool {
595 let successor = self.successors[ln].unwrap();
596 self.assigned_on_entry(successor, var)
597 }
598
599 fn write_vars<F>(&self, wr: &mut dyn Write, mut test: F) -> io::Result<()>
600 where
601 F: FnMut(Variable) -> bool,
602 {
603 for var_idx in 0..self.ir.var_kinds.len() {
604 let var = Variable::from(var_idx);
605 if test(var) {
606 write!(wr, " {:?}", var)?;
607 }
608 }
609 Ok(())
610 }
611
612 #[allow(unused_must_use)]
613 fn ln_str(&self, ln: LiveNode) -> String {
614 let mut wr = Vec::new();
615 {
616 let wr = &mut wr as &mut dyn Write;
617 write!(wr, "[{:?} of kind {:?} reads", ln, self.ir.lnks[ln]);
618 self.write_vars(wr, |var| self.rwu_table.get_reader(ln, var));
619 write!(wr, " writes");
620 self.write_vars(wr, |var| self.rwu_table.get_writer(ln, var));
621 write!(wr, " uses");
622 self.write_vars(wr, |var| self.rwu_table.get_used(ln, var));
623
624 write!(wr, " precedes {:?}]", self.successors[ln]);
625 }
626 String::from_utf8(wr).unwrap()
627 }
628
629 fn log_liveness(&self, entry_ln: LiveNode, hir_id: hir::HirId) {
630 // hack to skip the loop unless debug! is enabled:
631 debug!(
632 "^^ liveness computation results for body {} (entry={:?})",
633 {
634 for ln_idx in 0..self.ir.lnks.len() {
635 debug!("{:?}", self.ln_str(LiveNode::from(ln_idx)));
636 }
637 hir_id
638 },
639 entry_ln
640 );
641 }
642
643 fn init_empty(&mut self, ln: LiveNode, succ_ln: LiveNode) {
644 self.successors[ln] = Some(succ_ln);
645
646 // It is not necessary to initialize the RWUs here because they are all
647 // empty when created, and the sets only grow during iterations.
648 }
649
650 fn init_from_succ(&mut self, ln: LiveNode, succ_ln: LiveNode) {
651 // more efficient version of init_empty() / merge_from_succ()
652 self.successors[ln] = Some(succ_ln);
653 self.rwu_table.copy(ln, succ_ln);
654 debug!("init_from_succ(ln={}, succ={})", self.ln_str(ln), self.ln_str(succ_ln));
655 }
656
657 fn merge_from_succ(&mut self, ln: LiveNode, succ_ln: LiveNode) -> bool {
658 if ln == succ_ln {
659 return false;
660 }
661
662 let changed = self.rwu_table.union(ln, succ_ln);
663 debug!("merge_from_succ(ln={:?}, succ={}, changed={})", ln, self.ln_str(succ_ln), changed);
664 changed
665 }
666
667 // Indicates that a local variable was *defined*; we know that no
668 // uses of the variable can precede the definition (resolve checks
669 // this) so we just clear out all the data.
670 fn define(&mut self, writer: LiveNode, var: Variable) {
671 let used = self.rwu_table.get_used(writer, var);
672 self.rwu_table.set(writer, var, rwu_table::RWU { reader: false, writer: false, used });
673 debug!("{:?} defines {:?}: {}", writer, var, self.ln_str(writer));
674 }
675
676 // Either read, write, or both depending on the acc bitset
677 fn acc(&mut self, ln: LiveNode, var: Variable, acc: u32) {
678 debug!("{:?} accesses[{:x}] {:?}: {}", ln, acc, var, self.ln_str(ln));
679
680 let mut rwu = self.rwu_table.get(ln, var);
681
682 if (acc & ACC_WRITE) != 0 {
683 rwu.reader = false;
684 rwu.writer = true;
685 }
686
687 // Important: if we both read/write, must do read second
688 // or else the write will override.
689 if (acc & ACC_READ) != 0 {
690 rwu.reader = true;
691 }
692
693 if (acc & ACC_USE) != 0 {
694 rwu.used = true;
695 }
696
697 self.rwu_table.set(ln, var, rwu);
698 }
699
700 fn compute(&mut self, body: &hir::Body<'_>, hir_id: HirId) -> LiveNode {
701 debug!("compute: for body {:?}", body.id().hir_id);
702
703 // # Liveness of captured variables
704 //
705 // When computing the liveness for captured variables we take into
706 // account how variable is captured (ByRef vs ByValue) and what is the
707 // closure kind (Generator / FnOnce vs Fn / FnMut).
708 //
709 // Variables captured by reference are assumed to be used on the exit
710 // from the closure.
711 //
712 // In FnOnce closures, variables captured by value are known to be dead
713 // on exit since it is impossible to call the closure again.
714 //
715 // In Fn / FnMut closures, variables captured by value are live on exit
716 // if they are live on the entry to the closure, since only the closure
717 // itself can access them on subsequent calls.
718
719 if let Some(closure_min_captures) = self.closure_min_captures {
720 // Mark upvars captured by reference as used after closure exits.
721 for (&var_hir_id, min_capture_list) in closure_min_captures {
722 for captured_place in min_capture_list {
723 match captured_place.info.capture_kind {
724 ty::UpvarCapture::ByRef(_) => {
725 let var = self.variable(
726 var_hir_id,
727 captured_place.get_capture_kind_span(self.ir.tcx),
728 );
729 self.acc(self.exit_ln, var, ACC_READ | ACC_USE);
730 }
731 ty::UpvarCapture::ByValue => {}
732 }
733 }
734 }
735 }
736
737 let succ = self.propagate_through_expr(&body.value, self.exit_ln);
738
739 if self.closure_min_captures.is_none() {
740 // Either not a closure, or closure without any captured variables.
741 // No need to determine liveness of captured variables, since there
742 // are none.
743 return succ;
744 }
745
746 let ty = self.typeck_results.node_type(hir_id);
747 match ty.kind() {
748 ty::Closure(_def_id, substs) => match substs.as_closure().kind() {
749 ty::ClosureKind::Fn => {}
750 ty::ClosureKind::FnMut => {}
751 ty::ClosureKind::FnOnce => return succ,
752 },
753 ty::Generator(..) => return succ,
754 _ => {
755 span_bug!(
756 body.value.span,
757 "{} has upvars so it should have a closure type: {:?}",
758 hir_id,
759 ty
760 );
761 }
762 };
763
764 // Propagate through calls to the closure.
765 loop {
766 self.init_from_succ(self.closure_ln, succ);
767 for param in body.params {
768 param.pat.each_binding(|_bm, hir_id, _x, ident| {
769 let var = self.variable(hir_id, ident.span);
770 self.define(self.closure_ln, var);
771 })
772 }
773
774 if !self.merge_from_succ(self.exit_ln, self.closure_ln) {
775 break;
776 }
777 assert_eq!(succ, self.propagate_through_expr(&body.value, self.exit_ln));
778 }
779
780 succ
781 }
782
783 fn propagate_through_block(&mut self, blk: &hir::Block<'_>, succ: LiveNode) -> LiveNode {
784 if blk.targeted_by_break {
785 self.break_ln.insert(blk.hir_id, succ);
786 }
787 let succ = self.propagate_through_opt_expr(blk.expr, succ);
788 blk.stmts.iter().rev().fold(succ, |succ, stmt| self.propagate_through_stmt(stmt, succ))
789 }
790
791 fn propagate_through_stmt(&mut self, stmt: &hir::Stmt<'_>, succ: LiveNode) -> LiveNode {
792 match stmt.kind {
793 hir::StmtKind::Local(ref local) => {
794 // Note: we mark the variable as defined regardless of whether
795 // there is an initializer. Initially I had thought to only mark
796 // the live variable as defined if it was initialized, and then we
797 // could check for uninit variables just by scanning what is live
798 // at the start of the function. But that doesn't work so well for
799 // immutable variables defined in a loop:
800 // loop { let x; x = 5; }
801 // because the "assignment" loops back around and generates an error.
802 //
803 // So now we just check that variables defined w/o an
804 // initializer are not live at the point of their
805 // initialization, which is mildly more complex than checking
806 // once at the func header but otherwise equivalent.
807
808 if let Some(els) = local.els {
809 // Eventually, `let pat: ty = init else { els };` is mostly equivalent to
810 // `let (bindings, ...) = match init { pat => (bindings, ...), _ => els };`
811 // except that extended lifetime applies at the `init` location.
812 //
813 // (e)
814 // |
815 // v
816 // (expr)
817 // / \
818 // | |
819 // v v
820 // bindings els
821 // |
822 // v
823 // ( succ )
824 //
825 if let Some(init) = local.init {
826 let else_ln = self.propagate_through_block(els, succ);
827 let ln = self.live_node(local.hir_id, local.span);
828 self.init_from_succ(ln, succ);
829 self.merge_from_succ(ln, else_ln);
830 let succ = self.propagate_through_expr(init, ln);
831 self.define_bindings_in_pat(&local.pat, succ)
832 } else {
833 span_bug!(
834 stmt.span,
835 "variable is uninitialized but an unexpected else branch is found"
836 )
837 }
838 } else {
839 let succ = self.propagate_through_opt_expr(local.init, succ);
840 self.define_bindings_in_pat(&local.pat, succ)
841 }
842 }
843 hir::StmtKind::Item(..) => succ,
844 hir::StmtKind::Expr(ref expr) | hir::StmtKind::Semi(ref expr) => {
845 self.propagate_through_expr(&expr, succ)
846 }
847 }
848 }
849
850 fn propagate_through_exprs(&mut self, exprs: &[Expr<'_>], succ: LiveNode) -> LiveNode {
851 exprs.iter().rev().fold(succ, |succ, expr| self.propagate_through_expr(&expr, succ))
852 }
853
854 fn propagate_through_opt_expr(
855 &mut self,
856 opt_expr: Option<&Expr<'_>>,
857 succ: LiveNode,
858 ) -> LiveNode {
859 opt_expr.map_or(succ, |expr| self.propagate_through_expr(expr, succ))
860 }
861
862 fn propagate_through_expr(&mut self, expr: &Expr<'_>, succ: LiveNode) -> LiveNode {
863 debug!("propagate_through_expr: {:?}", expr);
864
865 match expr.kind {
866 // Interesting cases with control flow or which gen/kill
867 hir::ExprKind::Path(hir::QPath::Resolved(_, ref path)) => {
868 self.access_path(expr.hir_id, path, succ, ACC_READ | ACC_USE)
869 }
870
871 hir::ExprKind::Field(ref e, _) => self.propagate_through_expr(&e, succ),
872
873 hir::ExprKind::Closure { .. } => {
874 debug!("{:?} is an ExprKind::Closure", expr);
875
876 // the construction of a closure itself is not important,
877 // but we have to consider the closed over variables.
878 let caps = self
879 .ir
880 .capture_info_map
881 .get(&expr.hir_id)
882 .cloned()
883 .unwrap_or_else(|| span_bug!(expr.span, "no registered caps"));
884
885 caps.iter().rev().fold(succ, |succ, cap| {
886 self.init_from_succ(cap.ln, succ);
887 let var = self.variable(cap.var_hid, expr.span);
888 self.acc(cap.ln, var, ACC_READ | ACC_USE);
889 cap.ln
890 })
891 }
892
893 hir::ExprKind::Let(let_expr) => {
894 let succ = self.propagate_through_expr(let_expr.init, succ);
895 self.define_bindings_in_pat(let_expr.pat, succ)
896 }
897
898 // Note that labels have been resolved, so we don't need to look
899 // at the label ident
900 hir::ExprKind::Loop(ref blk, ..) => self.propagate_through_loop(expr, &blk, succ),
901
902 hir::ExprKind::Yield(ref e, ..) => {
903 let yield_ln = self.live_node(expr.hir_id, expr.span);
904 self.init_from_succ(yield_ln, succ);
905 self.merge_from_succ(yield_ln, self.exit_ln);
906 self.propagate_through_expr(e, yield_ln)
907 }
908
909 hir::ExprKind::If(ref cond, ref then, ref else_opt) => {
910 //
911 // (cond)
912 // |
913 // v
914 // (expr)
915 // / \
916 // | |
917 // v v
918 // (then)(els)
919 // | |
920 // v v
921 // ( succ )
922 //
923 let else_ln = self.propagate_through_opt_expr(else_opt.as_deref(), succ);
924 let then_ln = self.propagate_through_expr(&then, succ);
925 let ln = self.live_node(expr.hir_id, expr.span);
926 self.init_from_succ(ln, else_ln);
927 self.merge_from_succ(ln, then_ln);
928 self.propagate_through_expr(&cond, ln)
929 }
930
931 hir::ExprKind::Match(ref e, arms, _) => {
932 //
933 // (e)
934 // |
935 // v
936 // (expr)
937 // / | \
938 // | | |
939 // v v v
940 // (..arms..)
941 // | | |
942 // v v v
943 // ( succ )
944 //
945 //
946 let ln = self.live_node(expr.hir_id, expr.span);
947 self.init_empty(ln, succ);
948 for arm in arms {
949 let body_succ = self.propagate_through_expr(&arm.body, succ);
950
951 let guard_succ = arm.guard.as_ref().map_or(body_succ, |g| match g {
952 hir::Guard::If(e) => self.propagate_through_expr(e, body_succ),
953 hir::Guard::IfLet(let_expr) => {
954 let let_bind = self.define_bindings_in_pat(let_expr.pat, body_succ);
955 self.propagate_through_expr(let_expr.init, let_bind)
956 }
957 });
958 let arm_succ = self.define_bindings_in_pat(&arm.pat, guard_succ);
959 self.merge_from_succ(ln, arm_succ);
960 }
961 self.propagate_through_expr(&e, ln)
962 }
963
964 hir::ExprKind::Ret(ref o_e) => {
965 // Ignore succ and subst exit_ln.
966 self.propagate_through_opt_expr(o_e.as_deref(), self.exit_ln)
967 }
968
969 hir::ExprKind::Break(label, ref opt_expr) => {
970 // Find which label this break jumps to
971 let target = match label.target_id {
972 Ok(hir_id) => self.break_ln.get(&hir_id),
973 Err(err) => span_bug!(expr.span, "loop scope error: {}", err),
974 }
975 .cloned();
976
977 // Now that we know the label we're going to,
978 // look it up in the break loop nodes table
979
980 match target {
981 Some(b) => self.propagate_through_opt_expr(opt_expr.as_deref(), b),
982 None => span_bug!(expr.span, "`break` to unknown label"),
983 }
984 }
985
986 hir::ExprKind::Continue(label) => {
987 // Find which label this expr continues to
988 let sc = label
989 .target_id
990 .unwrap_or_else(|err| span_bug!(expr.span, "loop scope error: {}", err));
991
992 // Now that we know the label we're going to,
993 // look it up in the continue loop nodes table
994 self.cont_ln
995 .get(&sc)
996 .cloned()
997 .unwrap_or_else(|| span_bug!(expr.span, "continue to unknown label"))
998 }
999
1000 hir::ExprKind::Assign(ref l, ref r, _) => {
1001 // see comment on places in
1002 // propagate_through_place_components()
1003 let succ = self.write_place(&l, succ, ACC_WRITE);
1004 let succ = self.propagate_through_place_components(&l, succ);
1005 self.propagate_through_expr(&r, succ)
1006 }
1007
1008 hir::ExprKind::AssignOp(_, ref l, ref r) => {
1009 // an overloaded assign op is like a method call
1010 if self.typeck_results.is_method_call(expr) {
1011 let succ = self.propagate_through_expr(&l, succ);
1012 self.propagate_through_expr(&r, succ)
1013 } else {
1014 // see comment on places in
1015 // propagate_through_place_components()
1016 let succ = self.write_place(&l, succ, ACC_WRITE | ACC_READ);
1017 let succ = self.propagate_through_expr(&r, succ);
1018 self.propagate_through_place_components(&l, succ)
1019 }
1020 }
1021
1022 // Uninteresting cases: just propagate in rev exec order
1023 hir::ExprKind::Array(ref exprs) => self.propagate_through_exprs(exprs, succ),
1024
1025 hir::ExprKind::Struct(_, ref fields, ref with_expr) => {
1026 let succ = self.propagate_through_opt_expr(with_expr.as_deref(), succ);
1027 fields
1028 .iter()
1029 .rev()
1030 .fold(succ, |succ, field| self.propagate_through_expr(&field.expr, succ))
1031 }
1032
1033 hir::ExprKind::Call(ref f, ref args) => {
1034 let succ = self.check_is_ty_uninhabited(expr, succ);
1035 let succ = self.propagate_through_exprs(args, succ);
1036 self.propagate_through_expr(&f, succ)
1037 }
1038
1039 hir::ExprKind::MethodCall(.., receiver, ref args, _) => {
1040 let succ = self.check_is_ty_uninhabited(expr, succ);
1041 let succ = self.propagate_through_exprs(args, succ);
1042 self.propagate_through_expr(receiver, succ)
1043 }
1044
1045 hir::ExprKind::Tup(ref exprs) => self.propagate_through_exprs(exprs, succ),
1046
1047 hir::ExprKind::Binary(op, ref l, ref r) if op.node.is_lazy() => {
1048 let r_succ = self.propagate_through_expr(&r, succ);
1049
1050 let ln = self.live_node(expr.hir_id, expr.span);
1051 self.init_from_succ(ln, succ);
1052 self.merge_from_succ(ln, r_succ);
1053
1054 self.propagate_through_expr(&l, ln)
1055 }
1056
1057 hir::ExprKind::Index(ref l, ref r) | hir::ExprKind::Binary(_, ref l, ref r) => {
1058 let r_succ = self.propagate_through_expr(&r, succ);
1059 self.propagate_through_expr(&l, r_succ)
1060 }
1061
1062 hir::ExprKind::Box(ref e)
1063 | hir::ExprKind::AddrOf(_, _, ref e)
1064 | hir::ExprKind::Cast(ref e, _)
1065 | hir::ExprKind::Type(ref e, _)
1066 | hir::ExprKind::DropTemps(ref e)
1067 | hir::ExprKind::Unary(_, ref e)
1068 | hir::ExprKind::Repeat(ref e, _) => self.propagate_through_expr(&e, succ),
1069
1070 hir::ExprKind::InlineAsm(ref asm) => {
1071 // Handle non-returning asm
1072 let mut succ = if asm.options.contains(InlineAsmOptions::NORETURN) {
1073 self.exit_ln
1074 } else {
1075 succ
1076 };
1077
1078 // Do a first pass for writing outputs only
1079 for (op, _op_sp) in asm.operands.iter().rev() {
1080 match op {
1081 hir::InlineAsmOperand::In { .. }
1082 | hir::InlineAsmOperand::Const { .. }
1083 | hir::InlineAsmOperand::SymFn { .. }
1084 | hir::InlineAsmOperand::SymStatic { .. } => {}
1085 hir::InlineAsmOperand::Out { expr, .. } => {
1086 if let Some(expr) = expr {
1087 succ = self.write_place(expr, succ, ACC_WRITE);
1088 }
1089 }
1090 hir::InlineAsmOperand::InOut { expr, .. } => {
1091 succ = self.write_place(expr, succ, ACC_READ | ACC_WRITE | ACC_USE);
1092 }
1093 hir::InlineAsmOperand::SplitInOut { out_expr, .. } => {
1094 if let Some(expr) = out_expr {
1095 succ = self.write_place(expr, succ, ACC_WRITE);
1096 }
1097 }
1098 }
1099 }
1100
1101 // Then do a second pass for inputs
1102 let mut succ = succ;
1103 for (op, _op_sp) in asm.operands.iter().rev() {
1104 match op {
1105 hir::InlineAsmOperand::In { expr, .. } => {
1106 succ = self.propagate_through_expr(expr, succ)
1107 }
1108 hir::InlineAsmOperand::Out { expr, .. } => {
1109 if let Some(expr) = expr {
1110 succ = self.propagate_through_place_components(expr, succ);
1111 }
1112 }
1113 hir::InlineAsmOperand::InOut { expr, .. } => {
1114 succ = self.propagate_through_place_components(expr, succ);
1115 }
1116 hir::InlineAsmOperand::SplitInOut { in_expr, out_expr, .. } => {
1117 if let Some(expr) = out_expr {
1118 succ = self.propagate_through_place_components(expr, succ);
1119 }
1120 succ = self.propagate_through_expr(in_expr, succ);
1121 }
1122 hir::InlineAsmOperand::Const { .. }
1123 | hir::InlineAsmOperand::SymFn { .. }
1124 | hir::InlineAsmOperand::SymStatic { .. } => {}
1125 }
1126 }
1127 succ
1128 }
1129
1130 hir::ExprKind::Lit(..)
1131 | hir::ExprKind::ConstBlock(..)
1132 | hir::ExprKind::Err
1133 | hir::ExprKind::Path(hir::QPath::TypeRelative(..))
1134 | hir::ExprKind::Path(hir::QPath::LangItem(..)) => succ,
1135
1136 // Note that labels have been resolved, so we don't need to look
1137 // at the label ident
1138 hir::ExprKind::Block(ref blk, _) => self.propagate_through_block(&blk, succ),
1139 }
1140 }
1141
1142 fn propagate_through_place_components(&mut self, expr: &Expr<'_>, succ: LiveNode) -> LiveNode {
1143 // # Places
1144 //
1145 // In general, the full flow graph structure for an
1146 // assignment/move/etc can be handled in one of two ways,
1147 // depending on whether what is being assigned is a "tracked
1148 // value" or not. A tracked value is basically a local
1149 // variable or argument.
1150 //
1151 // The two kinds of graphs are:
1152 //
1153 // Tracked place Untracked place
1154 // ----------------------++-----------------------
1155 // ||
1156 // | || |
1157 // v || v
1158 // (rvalue) || (rvalue)
1159 // | || |
1160 // v || v
1161 // (write of place) || (place components)
1162 // | || |
1163 // v || v
1164 // (succ) || (succ)
1165 // ||
1166 // ----------------------++-----------------------
1167 //
1168 // I will cover the two cases in turn:
1169 //
1170 // # Tracked places
1171 //
1172 // A tracked place is a local variable/argument `x`. In
1173 // these cases, the link_node where the write occurs is linked
1174 // to node id of `x`. The `write_place()` routine generates
1175 // the contents of this node. There are no subcomponents to
1176 // consider.
1177 //
1178 // # Non-tracked places
1179 //
1180 // These are places like `x[5]` or `x.f`. In that case, we
1181 // basically ignore the value which is written to but generate
1182 // reads for the components---`x` in these two examples. The
1183 // components reads are generated by
1184 // `propagate_through_place_components()` (this fn).
1185 //
1186 // # Illegal places
1187 //
1188 // It is still possible to observe assignments to non-places;
1189 // these errors are detected in the later pass borrowck. We
1190 // just ignore such cases and treat them as reads.
1191
1192 match expr.kind {
1193 hir::ExprKind::Path(_) => succ,
1194 hir::ExprKind::Field(ref e, _) => self.propagate_through_expr(&e, succ),
1195 _ => self.propagate_through_expr(expr, succ),
1196 }
1197 }
1198
1199 // see comment on propagate_through_place()
1200 fn write_place(&mut self, expr: &Expr<'_>, succ: LiveNode, acc: u32) -> LiveNode {
1201 match expr.kind {
1202 hir::ExprKind::Path(hir::QPath::Resolved(_, ref path)) => {
1203 self.access_path(expr.hir_id, path, succ, acc)
1204 }
1205
1206 // We do not track other places, so just propagate through
1207 // to their subcomponents. Also, it may happen that
1208 // non-places occur here, because those are detected in the
1209 // later pass borrowck.
1210 _ => succ,
1211 }
1212 }
1213
1214 fn access_var(
1215 &mut self,
1216 hir_id: HirId,
1217 var_hid: HirId,
1218 succ: LiveNode,
1219 acc: u32,
1220 span: Span,
1221 ) -> LiveNode {
1222 let ln = self.live_node(hir_id, span);
1223 if acc != 0 {
1224 self.init_from_succ(ln, succ);
1225 let var = self.variable(var_hid, span);
1226 self.acc(ln, var, acc);
1227 }
1228 ln
1229 }
1230
1231 fn access_path(
1232 &mut self,
1233 hir_id: HirId,
1234 path: &hir::Path<'_>,
1235 succ: LiveNode,
1236 acc: u32,
1237 ) -> LiveNode {
1238 match path.res {
1239 Res::Local(hid) => self.access_var(hir_id, hid, succ, acc, path.span),
1240 _ => succ,
1241 }
1242 }
1243
1244 fn propagate_through_loop(
1245 &mut self,
1246 expr: &Expr<'_>,
1247 body: &hir::Block<'_>,
1248 succ: LiveNode,
1249 ) -> LiveNode {
1250 /*
1251 We model control flow like this:
1252
1253 (expr) <-+
1254 | |
1255 v |
1256 (body) --+
1257
1258 Note that a `continue` expression targeting the `loop` will have a successor of `expr`.
1259 Meanwhile, a `break` expression will have a successor of `succ`.
1260 */
1261
1262 // first iteration:
1263 let ln = self.live_node(expr.hir_id, expr.span);
1264 self.init_empty(ln, succ);
1265 debug!("propagate_through_loop: using id for loop body {} {:?}", expr.hir_id, body);
1266
1267 self.break_ln.insert(expr.hir_id, succ);
1268
1269 self.cont_ln.insert(expr.hir_id, ln);
1270
1271 let body_ln = self.propagate_through_block(body, ln);
1272
1273 // repeat until fixed point is reached:
1274 while self.merge_from_succ(ln, body_ln) {
1275 assert_eq!(body_ln, self.propagate_through_block(body, ln));
1276 }
1277
1278 ln
1279 }
1280
1281 fn check_is_ty_uninhabited(&mut self, expr: &Expr<'_>, succ: LiveNode) -> LiveNode {
1282 let ty = self.typeck_results.expr_ty(expr);
1283 let m = self.ir.tcx.parent_module(expr.hir_id).to_def_id();
1284 if ty.is_inhabited_from(self.ir.tcx, m, self.param_env) {
1285 return succ;
1286 }
1287 match self.ir.lnks[succ] {
1288 LiveNodeKind::ExprNode(succ_span, succ_id) => {
1289 self.warn_about_unreachable(expr.span, ty, succ_span, succ_id, "expression");
1290 }
1291 LiveNodeKind::VarDefNode(succ_span, succ_id) => {
1292 self.warn_about_unreachable(expr.span, ty, succ_span, succ_id, "definition");
1293 }
1294 _ => {}
1295 };
1296 self.exit_ln
1297 }
1298
1299 fn warn_about_unreachable(
1300 &mut self,
1301 orig_span: Span,
1302 orig_ty: Ty<'tcx>,
1303 expr_span: Span,
1304 expr_id: HirId,
1305 descr: &str,
1306 ) {
1307 if !orig_ty.is_never() {
1308 // Unreachable code warnings are already emitted during type checking.
1309 // However, during type checking, full type information is being
1310 // calculated but not yet available, so the check for diverging
1311 // expressions due to uninhabited result types is pretty crude and
1312 // only checks whether ty.is_never(). Here, we have full type
1313 // information available and can issue warnings for less obviously
1314 // uninhabited types (e.g. empty enums). The check above is used so
1315 // that we do not emit the same warning twice if the uninhabited type
1316 // is indeed `!`.
1317
1318 let msg = format!("unreachable {}", descr);
1319 self.ir.tcx.struct_span_lint_hir(
1320 lint::builtin::UNREACHABLE_CODE,
1321 expr_id,
1322 expr_span,
1323 &msg,
1324 |diag| {
1325 diag.span_label(expr_span, &msg)
1326 .span_label(orig_span, "any code following this expression is unreachable")
1327 .span_note(
1328 orig_span,
1329 &format!(
1330 "this expression has type `{}`, which is uninhabited",
1331 orig_ty
1332 ),
1333 )
1334 },
1335 );
1336 }
1337 }
1338 }
1339
1340 // _______________________________________________________________________
1341 // Checking for error conditions
1342
1343 impl<'a, 'tcx> Visitor<'tcx> for Liveness<'a, 'tcx> {
1344 fn visit_local(&mut self, local: &'tcx hir::Local<'tcx>) {
1345 self.check_unused_vars_in_pat(&local.pat, None, None, |spans, hir_id, ln, var| {
1346 if local.init.is_some() {
1347 self.warn_about_dead_assign(spans, hir_id, ln, var);
1348 }
1349 });
1350
1351 intravisit::walk_local(self, local);
1352 }
1353
1354 fn visit_expr(&mut self, ex: &'tcx Expr<'tcx>) {
1355 check_expr(self, ex);
1356 intravisit::walk_expr(self, ex);
1357 }
1358
1359 fn visit_arm(&mut self, arm: &'tcx hir::Arm<'tcx>) {
1360 self.check_unused_vars_in_pat(&arm.pat, None, None, |_, _, _, _| {});
1361 intravisit::walk_arm(self, arm);
1362 }
1363 }
1364
1365 fn check_expr<'tcx>(this: &mut Liveness<'_, 'tcx>, expr: &'tcx Expr<'tcx>) {
1366 match expr.kind {
1367 hir::ExprKind::Assign(ref l, ..) => {
1368 this.check_place(&l);
1369 }
1370
1371 hir::ExprKind::AssignOp(_, ref l, _) => {
1372 if !this.typeck_results.is_method_call(expr) {
1373 this.check_place(&l);
1374 }
1375 }
1376
1377 hir::ExprKind::InlineAsm(ref asm) => {
1378 for (op, _op_sp) in asm.operands {
1379 match op {
1380 hir::InlineAsmOperand::Out { expr, .. } => {
1381 if let Some(expr) = expr {
1382 this.check_place(expr);
1383 }
1384 }
1385 hir::InlineAsmOperand::InOut { expr, .. } => {
1386 this.check_place(expr);
1387 }
1388 hir::InlineAsmOperand::SplitInOut { out_expr, .. } => {
1389 if let Some(out_expr) = out_expr {
1390 this.check_place(out_expr);
1391 }
1392 }
1393 _ => {}
1394 }
1395 }
1396 }
1397
1398 hir::ExprKind::Let(let_expr) => {
1399 this.check_unused_vars_in_pat(let_expr.pat, None, None, |_, _, _, _| {});
1400 }
1401
1402 // no correctness conditions related to liveness
1403 hir::ExprKind::Call(..)
1404 | hir::ExprKind::MethodCall(..)
1405 | hir::ExprKind::Match(..)
1406 | hir::ExprKind::Loop(..)
1407 | hir::ExprKind::Index(..)
1408 | hir::ExprKind::Field(..)
1409 | hir::ExprKind::Array(..)
1410 | hir::ExprKind::Tup(..)
1411 | hir::ExprKind::Binary(..)
1412 | hir::ExprKind::Cast(..)
1413 | hir::ExprKind::If(..)
1414 | hir::ExprKind::DropTemps(..)
1415 | hir::ExprKind::Unary(..)
1416 | hir::ExprKind::Ret(..)
1417 | hir::ExprKind::Break(..)
1418 | hir::ExprKind::Continue(..)
1419 | hir::ExprKind::Lit(_)
1420 | hir::ExprKind::ConstBlock(..)
1421 | hir::ExprKind::Block(..)
1422 | hir::ExprKind::AddrOf(..)
1423 | hir::ExprKind::Struct(..)
1424 | hir::ExprKind::Repeat(..)
1425 | hir::ExprKind::Closure { .. }
1426 | hir::ExprKind::Path(_)
1427 | hir::ExprKind::Yield(..)
1428 | hir::ExprKind::Box(..)
1429 | hir::ExprKind::Type(..)
1430 | hir::ExprKind::Err => {}
1431 }
1432 }
1433
1434 impl<'tcx> Liveness<'_, 'tcx> {
1435 fn check_place(&mut self, expr: &'tcx Expr<'tcx>) {
1436 match expr.kind {
1437 hir::ExprKind::Path(hir::QPath::Resolved(_, ref path)) => {
1438 if let Res::Local(var_hid) = path.res {
1439 // Assignment to an immutable variable or argument: only legal
1440 // if there is no later assignment. If this local is actually
1441 // mutable, then check for a reassignment to flag the mutability
1442 // as being used.
1443 let ln = self.live_node(expr.hir_id, expr.span);
1444 let var = self.variable(var_hid, expr.span);
1445 self.warn_about_dead_assign(vec![expr.span], expr.hir_id, ln, var);
1446 }
1447 }
1448 _ => {
1449 // For other kinds of places, no checks are required,
1450 // and any embedded expressions are actually rvalues
1451 intravisit::walk_expr(self, expr);
1452 }
1453 }
1454 }
1455
1456 fn should_warn(&self, var: Variable) -> Option<String> {
1457 let name = self.ir.variable_name(var);
1458 if name == kw::Empty {
1459 return None;
1460 }
1461 let name = name.as_str();
1462 if name.as_bytes()[0] == b'_' {
1463 return None;
1464 }
1465 Some(name.to_owned())
1466 }
1467
1468 fn warn_about_unused_upvars(&self, entry_ln: LiveNode) {
1469 let Some(closure_min_captures) = self.closure_min_captures else {
1470 return;
1471 };
1472
1473 // If closure_min_captures is Some(), upvars must be Some() too.
1474 for (&var_hir_id, min_capture_list) in closure_min_captures {
1475 for captured_place in min_capture_list {
1476 match captured_place.info.capture_kind {
1477 ty::UpvarCapture::ByValue => {}
1478 ty::UpvarCapture::ByRef(..) => continue,
1479 };
1480 let span = captured_place.get_capture_kind_span(self.ir.tcx);
1481 let var = self.variable(var_hir_id, span);
1482 if self.used_on_entry(entry_ln, var) {
1483 if !self.live_on_entry(entry_ln, var) {
1484 if let Some(name) = self.should_warn(var) {
1485 self.ir.tcx.struct_span_lint_hir(
1486 lint::builtin::UNUSED_ASSIGNMENTS,
1487 var_hir_id,
1488 vec![span],
1489 format!("value captured by `{}` is never read", name),
1490 |lint| lint.help("did you mean to capture by reference instead?"),
1491 );
1492 }
1493 }
1494 } else {
1495 if let Some(name) = self.should_warn(var) {
1496 self.ir.tcx.struct_span_lint_hir(
1497 lint::builtin::UNUSED_VARIABLES,
1498 var_hir_id,
1499 vec![span],
1500 format!("unused variable: `{}`", name),
1501 |lint| lint.help("did you mean to capture by reference instead?"),
1502 );
1503 }
1504 }
1505 }
1506 }
1507 }
1508
1509 fn warn_about_unused_args(&self, body: &hir::Body<'_>, entry_ln: LiveNode) {
1510 for p in body.params {
1511 self.check_unused_vars_in_pat(
1512 &p.pat,
1513 Some(entry_ln),
1514 Some(body),
1515 |spans, hir_id, ln, var| {
1516 if !self.live_on_entry(ln, var) {
1517 self.report_unused_assign(hir_id, spans, var, |name| {
1518 format!("value passed to `{}` is never read", name)
1519 });
1520 }
1521 },
1522 );
1523 }
1524 }
1525
1526 fn check_unused_vars_in_pat(
1527 &self,
1528 pat: &hir::Pat<'_>,
1529 entry_ln: Option<LiveNode>,
1530 opt_body: Option<&hir::Body<'_>>,
1531 on_used_on_entry: impl Fn(Vec<Span>, HirId, LiveNode, Variable),
1532 ) {
1533 // In an or-pattern, only consider the variable; any later patterns must have the same
1534 // bindings, and we also consider the first pattern to be the "authoritative" set of ids.
1535 // However, we should take the ids and spans of variables with the same name from the later
1536 // patterns so the suggestions to prefix with underscores will apply to those too.
1537 let mut vars: FxIndexMap<Symbol, (LiveNode, Variable, Vec<(HirId, Span, Span)>)> =
1538 <_>::default();
1539
1540 pat.each_binding(|_, hir_id, pat_sp, ident| {
1541 let ln = entry_ln.unwrap_or_else(|| self.live_node(hir_id, pat_sp));
1542 let var = self.variable(hir_id, ident.span);
1543 let id_and_sp = (hir_id, pat_sp, ident.span);
1544 vars.entry(self.ir.variable_name(var))
1545 .and_modify(|(.., hir_ids_and_spans)| hir_ids_and_spans.push(id_and_sp))
1546 .or_insert_with(|| (ln, var, vec![id_and_sp]));
1547 });
1548
1549 let can_remove = match pat.kind {
1550 hir::PatKind::Struct(_, fields, true) => {
1551 // if all fields are shorthand, remove the struct field, otherwise, mark with _ as prefix
1552 fields.iter().all(|f| f.is_shorthand)
1553 }
1554 _ => false,
1555 };
1556
1557 for (_, (ln, var, hir_ids_and_spans)) in vars {
1558 if self.used_on_entry(ln, var) {
1559 let id = hir_ids_and_spans[0].0;
1560 let spans =
1561 hir_ids_and_spans.into_iter().map(|(_, _, ident_span)| ident_span).collect();
1562 on_used_on_entry(spans, id, ln, var);
1563 } else {
1564 self.report_unused(hir_ids_and_spans, ln, var, can_remove, pat, opt_body);
1565 }
1566 }
1567 }
1568
1569 #[instrument(skip(self), level = "INFO")]
1570 fn report_unused(
1571 &self,
1572 hir_ids_and_spans: Vec<(HirId, Span, Span)>,
1573 ln: LiveNode,
1574 var: Variable,
1575 can_remove: bool,
1576 pat: &hir::Pat<'_>,
1577 opt_body: Option<&hir::Body<'_>>,
1578 ) {
1579 let first_hir_id = hir_ids_and_spans[0].0;
1580
1581 if let Some(name) = self.should_warn(var).filter(|name| name != "self") {
1582 // annoying: for parameters in funcs like `fn(x: i32)
1583 // {ret}`, there is only one node, so asking about
1584 // assigned_on_exit() is not meaningful.
1585 let is_assigned =
1586 if ln == self.exit_ln { false } else { self.assigned_on_exit(ln, var) };
1587
1588 if is_assigned {
1589 self.ir.tcx.struct_span_lint_hir(
1590 lint::builtin::UNUSED_VARIABLES,
1591 first_hir_id,
1592 hir_ids_and_spans
1593 .into_iter()
1594 .map(|(_, _, ident_span)| ident_span)
1595 .collect::<Vec<_>>(),
1596 format!("variable `{}` is assigned to, but never used", name),
1597 |lint| lint.note(&format!("consider using `_{}` instead", name)),
1598 )
1599 } else if can_remove {
1600 self.ir.tcx.struct_span_lint_hir(
1601 lint::builtin::UNUSED_VARIABLES,
1602 first_hir_id,
1603 hir_ids_and_spans.iter().map(|(_, pat_span, _)| *pat_span).collect::<Vec<_>>(),
1604 format!("unused variable: `{}`", name),
1605 |lint| {
1606 lint.multipart_suggestion(
1607 "try removing the field",
1608 hir_ids_and_spans
1609 .iter()
1610 .map(|(_, pat_span, _)| {
1611 let span = self
1612 .ir
1613 .tcx
1614 .sess
1615 .source_map()
1616 .span_extend_to_next_char(*pat_span, ',', true);
1617 (span.with_hi(BytePos(span.hi().0 + 1)), String::new())
1618 })
1619 .collect(),
1620 Applicability::MachineApplicable,
1621 )
1622 },
1623 );
1624 } else {
1625 let (shorthands, non_shorthands): (Vec<_>, Vec<_>) =
1626 hir_ids_and_spans.iter().copied().partition(|(hir_id, _, ident_span)| {
1627 let var = self.variable(*hir_id, *ident_span);
1628 self.ir.variable_is_shorthand(var)
1629 });
1630
1631 // If we have both shorthand and non-shorthand, prefer the "try ignoring
1632 // the field" message, and suggest `_` for the non-shorthands. If we only
1633 // have non-shorthand, then prefix with an underscore instead.
1634 if !shorthands.is_empty() {
1635 let shorthands = shorthands
1636 .into_iter()
1637 .map(|(_, pat_span, _)| (pat_span, format!("{}: _", name)))
1638 .chain(
1639 non_shorthands
1640 .into_iter()
1641 .map(|(_, pat_span, _)| (pat_span, "_".to_string())),
1642 )
1643 .collect::<Vec<_>>();
1644
1645 self.ir.tcx.struct_span_lint_hir(
1646 lint::builtin::UNUSED_VARIABLES,
1647 first_hir_id,
1648 hir_ids_and_spans
1649 .iter()
1650 .map(|(_, pat_span, _)| *pat_span)
1651 .collect::<Vec<_>>(),
1652 format!("unused variable: `{}`", name),
1653 |lint| {
1654 lint.multipart_suggestion(
1655 "try ignoring the field",
1656 shorthands,
1657 Applicability::MachineApplicable,
1658 )
1659 },
1660 );
1661 } else {
1662 let non_shorthands = non_shorthands
1663 .into_iter()
1664 .map(|(_, _, ident_span)| (ident_span, format!("_{}", name)))
1665 .collect::<Vec<_>>();
1666
1667 self.ir.tcx.struct_span_lint_hir(
1668 lint::builtin::UNUSED_VARIABLES,
1669 first_hir_id,
1670 hir_ids_and_spans
1671 .iter()
1672 .map(|(_, _, ident_span)| *ident_span)
1673 .collect::<Vec<_>>(),
1674 format!("unused variable: `{}`", name),
1675 |lint| {
1676 if self.has_added_lit_match_name_span(&name, opt_body, lint) {
1677 lint.span_label(pat.span, "unused variable");
1678 }
1679 lint.multipart_suggestion(
1680 "if this is intentional, prefix it with an underscore",
1681 non_shorthands,
1682 Applicability::MachineApplicable,
1683 )
1684 },
1685 );
1686 }
1687 }
1688 }
1689 }
1690
1691 fn has_added_lit_match_name_span(
1692 &self,
1693 name: &str,
1694 opt_body: Option<&hir::Body<'_>>,
1695 err: &mut Diagnostic,
1696 ) -> bool {
1697 let mut has_litstring = false;
1698 let Some(opt_body) = opt_body else {return false;};
1699 let mut visitor = CollectLitsVisitor { lit_exprs: vec![] };
1700 intravisit::walk_body(&mut visitor, opt_body);
1701 for lit_expr in visitor.lit_exprs {
1702 let hir::ExprKind::Lit(litx) = &lit_expr.kind else { continue };
1703 let rustc_ast::LitKind::Str(syb, _) = litx.node else{ continue; };
1704 let name_str: &str = syb.as_str();
1705 let mut name_pa = String::from("{");
1706 name_pa.push_str(&name);
1707 name_pa.push('}');
1708 if name_str.contains(&name_pa) {
1709 err.span_label(
1710 lit_expr.span,
1711 "you might have meant to use string interpolation in this string literal",
1712 );
1713 err.multipart_suggestion(
1714 "string interpolation only works in `format!` invocations",
1715 vec![
1716 (lit_expr.span.shrink_to_lo(), "format!(".to_string()),
1717 (lit_expr.span.shrink_to_hi(), ")".to_string()),
1718 ],
1719 Applicability::MachineApplicable,
1720 );
1721 has_litstring = true;
1722 }
1723 }
1724 has_litstring
1725 }
1726
1727 fn warn_about_dead_assign(&self, spans: Vec<Span>, hir_id: HirId, ln: LiveNode, var: Variable) {
1728 if !self.live_on_exit(ln, var) {
1729 self.report_unused_assign(hir_id, spans, var, |name| {
1730 format!("value assigned to `{}` is never read", name)
1731 });
1732 }
1733 }
1734
1735 fn report_unused_assign(
1736 &self,
1737 hir_id: HirId,
1738 spans: Vec<Span>,
1739 var: Variable,
1740 message: impl Fn(&str) -> String,
1741 ) {
1742 if let Some(name) = self.should_warn(var) {
1743 self.ir.tcx.struct_span_lint_hir(
1744 lint::builtin::UNUSED_ASSIGNMENTS,
1745 hir_id,
1746 spans,
1747 message(&name),
1748 |lint| lint.help("maybe it is overwritten before being read?"),
1749 )
1750 }
1751 }
1752 }