]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_privacy/src/lib.rs
New upstream version 1.48.0~beta.8+dfsg1
[rustc.git] / compiler / rustc_privacy / src / lib.rs
1 #![doc(html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/")]
2 #![feature(in_band_lifetimes)]
3 #![feature(nll)]
4 #![recursion_limit = "256"]
5
6 use rustc_attr as attr;
7 use rustc_data_structures::fx::FxHashSet;
8 use rustc_errors::struct_span_err;
9 use rustc_hir as hir;
10 use rustc_hir::def::{DefKind, Res};
11 use rustc_hir::def_id::{CrateNum, DefId, LocalDefId, CRATE_DEF_INDEX, LOCAL_CRATE};
12 use rustc_hir::intravisit::{self, DeepVisitor, NestedVisitorMap, Visitor};
13 use rustc_hir::{AssocItemKind, HirIdSet, Node, PatKind};
14 use rustc_middle::bug;
15 use rustc_middle::hir::map::Map;
16 use rustc_middle::middle::privacy::{AccessLevel, AccessLevels};
17 use rustc_middle::ty::fold::TypeVisitor;
18 use rustc_middle::ty::query::Providers;
19 use rustc_middle::ty::subst::InternalSubsts;
20 use rustc_middle::ty::{self, GenericParamDefKind, TraitRef, Ty, TyCtxt, TypeFoldable};
21 use rustc_session::lint;
22 use rustc_span::hygiene::Transparency;
23 use rustc_span::symbol::{kw, sym, Ident};
24 use rustc_span::Span;
25
26 use std::marker::PhantomData;
27 use std::{cmp, fmt, mem};
28
29 ////////////////////////////////////////////////////////////////////////////////
30 /// Generic infrastructure used to implement specific visitors below.
31 ////////////////////////////////////////////////////////////////////////////////
32
33 /// Implemented to visit all `DefId`s in a type.
34 /// Visiting `DefId`s is useful because visibilities and reachabilities are attached to them.
35 /// The idea is to visit "all components of a type", as documented in
36 /// https://github.com/rust-lang/rfcs/blob/master/text/2145-type-privacy.md#how-to-determine-visibility-of-a-type.
37 /// The default type visitor (`TypeVisitor`) does most of the job, but it has some shortcomings.
38 /// First, it doesn't have overridable `fn visit_trait_ref`, so we have to catch trait `DefId`s
39 /// manually. Second, it doesn't visit some type components like signatures of fn types, or traits
40 /// in `impl Trait`, see individual comments in `DefIdVisitorSkeleton::visit_ty`.
41 trait DefIdVisitor<'tcx> {
42 fn tcx(&self) -> TyCtxt<'tcx>;
43 fn shallow(&self) -> bool {
44 false
45 }
46 fn skip_assoc_tys(&self) -> bool {
47 false
48 }
49 fn visit_def_id(&mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display) -> bool;
50
51 /// Not overridden, but used to actually visit types and traits.
52 fn skeleton(&mut self) -> DefIdVisitorSkeleton<'_, 'tcx, Self> {
53 DefIdVisitorSkeleton {
54 def_id_visitor: self,
55 visited_opaque_tys: Default::default(),
56 dummy: Default::default(),
57 }
58 }
59 fn visit(&mut self, ty_fragment: impl TypeFoldable<'tcx>) -> bool {
60 ty_fragment.visit_with(&mut self.skeleton())
61 }
62 fn visit_trait(&mut self, trait_ref: TraitRef<'tcx>) -> bool {
63 self.skeleton().visit_trait(trait_ref)
64 }
65 fn visit_predicates(&mut self, predicates: ty::GenericPredicates<'tcx>) -> bool {
66 self.skeleton().visit_predicates(predicates)
67 }
68 }
69
70 struct DefIdVisitorSkeleton<'v, 'tcx, V: ?Sized> {
71 def_id_visitor: &'v mut V,
72 visited_opaque_tys: FxHashSet<DefId>,
73 dummy: PhantomData<TyCtxt<'tcx>>,
74 }
75
76 impl<'tcx, V> DefIdVisitorSkeleton<'_, 'tcx, V>
77 where
78 V: DefIdVisitor<'tcx> + ?Sized,
79 {
80 fn visit_trait(&mut self, trait_ref: TraitRef<'tcx>) -> bool {
81 let TraitRef { def_id, substs } = trait_ref;
82 self.def_id_visitor.visit_def_id(def_id, "trait", &trait_ref.print_only_trait_path())
83 || (!self.def_id_visitor.shallow() && substs.visit_with(self))
84 }
85
86 fn visit_predicate(&mut self, predicate: ty::Predicate<'tcx>) -> bool {
87 match predicate.skip_binders() {
88 ty::PredicateAtom::Trait(ty::TraitPredicate { trait_ref }, _) => {
89 self.visit_trait(trait_ref)
90 }
91 ty::PredicateAtom::Projection(ty::ProjectionPredicate { projection_ty, ty }) => {
92 ty.visit_with(self)
93 || self.visit_trait(projection_ty.trait_ref(self.def_id_visitor.tcx()))
94 }
95 ty::PredicateAtom::TypeOutlives(ty::OutlivesPredicate(ty, _region)) => {
96 ty.visit_with(self)
97 }
98 ty::PredicateAtom::RegionOutlives(..) => false,
99 ty::PredicateAtom::ConstEvaluatable(..)
100 if self.def_id_visitor.tcx().features().const_evaluatable_checked =>
101 {
102 // FIXME(const_evaluatable_checked): If the constant used here depends on a
103 // private function we may have to do something here...
104 //
105 // For now, let's just pretend that everything is fine.
106 false
107 }
108 _ => bug!("unexpected predicate: {:?}", predicate),
109 }
110 }
111
112 fn visit_predicates(&mut self, predicates: ty::GenericPredicates<'tcx>) -> bool {
113 let ty::GenericPredicates { parent: _, predicates } = predicates;
114 for &(predicate, _span) in predicates {
115 if self.visit_predicate(predicate) {
116 return true;
117 }
118 }
119 false
120 }
121 }
122
123 impl<'tcx, V> TypeVisitor<'tcx> for DefIdVisitorSkeleton<'_, 'tcx, V>
124 where
125 V: DefIdVisitor<'tcx> + ?Sized,
126 {
127 fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
128 let tcx = self.def_id_visitor.tcx();
129 // InternalSubsts are not visited here because they are visited below in `super_visit_with`.
130 match *ty.kind() {
131 ty::Adt(&ty::AdtDef { did: def_id, .. }, ..)
132 | ty::Foreign(def_id)
133 | ty::FnDef(def_id, ..)
134 | ty::Closure(def_id, ..)
135 | ty::Generator(def_id, ..) => {
136 if self.def_id_visitor.visit_def_id(def_id, "type", &ty) {
137 return true;
138 }
139 if self.def_id_visitor.shallow() {
140 return false;
141 }
142 // Default type visitor doesn't visit signatures of fn types.
143 // Something like `fn() -> Priv {my_func}` is considered a private type even if
144 // `my_func` is public, so we need to visit signatures.
145 if let ty::FnDef(..) = ty.kind() {
146 if tcx.fn_sig(def_id).visit_with(self) {
147 return true;
148 }
149 }
150 // Inherent static methods don't have self type in substs.
151 // Something like `fn() {my_method}` type of the method
152 // `impl Pub<Priv> { pub fn my_method() {} }` is considered a private type,
153 // so we need to visit the self type additionally.
154 if let Some(assoc_item) = tcx.opt_associated_item(def_id) {
155 if let ty::ImplContainer(impl_def_id) = assoc_item.container {
156 if tcx.type_of(impl_def_id).visit_with(self) {
157 return true;
158 }
159 }
160 }
161 }
162 ty::Projection(proj) => {
163 if self.def_id_visitor.skip_assoc_tys() {
164 // Visitors searching for minimal visibility/reachability want to
165 // conservatively approximate associated types like `<Type as Trait>::Alias`
166 // as visible/reachable even if both `Type` and `Trait` are private.
167 // Ideally, associated types should be substituted in the same way as
168 // free type aliases, but this isn't done yet.
169 return false;
170 }
171 // This will also visit substs if necessary, so we don't need to recurse.
172 return self.visit_trait(proj.trait_ref(tcx));
173 }
174 ty::Dynamic(predicates, ..) => {
175 // All traits in the list are considered the "primary" part of the type
176 // and are visited by shallow visitors.
177 for predicate in predicates.skip_binder() {
178 let trait_ref = match predicate {
179 ty::ExistentialPredicate::Trait(trait_ref) => trait_ref,
180 ty::ExistentialPredicate::Projection(proj) => proj.trait_ref(tcx),
181 ty::ExistentialPredicate::AutoTrait(def_id) => {
182 ty::ExistentialTraitRef { def_id, substs: InternalSubsts::empty() }
183 }
184 };
185 let ty::ExistentialTraitRef { def_id, substs: _ } = trait_ref;
186 if self.def_id_visitor.visit_def_id(def_id, "trait", &trait_ref) {
187 return true;
188 }
189 }
190 }
191 ty::Opaque(def_id, ..) => {
192 // Skip repeated `Opaque`s to avoid infinite recursion.
193 if self.visited_opaque_tys.insert(def_id) {
194 // The intent is to treat `impl Trait1 + Trait2` identically to
195 // `dyn Trait1 + Trait2`. Therefore we ignore def-id of the opaque type itself
196 // (it either has no visibility, or its visibility is insignificant, like
197 // visibilities of type aliases) and recurse into predicates instead to go
198 // through the trait list (default type visitor doesn't visit those traits).
199 // All traits in the list are considered the "primary" part of the type
200 // and are visited by shallow visitors.
201 if self.visit_predicates(tcx.predicates_of(def_id)) {
202 return true;
203 }
204 }
205 }
206 // These types don't have their own def-ids (but may have subcomponents
207 // with def-ids that should be visited recursively).
208 ty::Bool
209 | ty::Char
210 | ty::Int(..)
211 | ty::Uint(..)
212 | ty::Float(..)
213 | ty::Str
214 | ty::Never
215 | ty::Array(..)
216 | ty::Slice(..)
217 | ty::Tuple(..)
218 | ty::RawPtr(..)
219 | ty::Ref(..)
220 | ty::FnPtr(..)
221 | ty::Param(..)
222 | ty::Error(_)
223 | ty::GeneratorWitness(..) => {}
224 ty::Bound(..) | ty::Placeholder(..) | ty::Infer(..) => {
225 bug!("unexpected type: {:?}", ty)
226 }
227 }
228
229 !self.def_id_visitor.shallow() && ty.super_visit_with(self)
230 }
231 }
232
233 fn def_id_visibility<'tcx>(
234 tcx: TyCtxt<'tcx>,
235 def_id: DefId,
236 ) -> (ty::Visibility, Span, &'static str) {
237 match def_id.as_local().map(|def_id| tcx.hir().local_def_id_to_hir_id(def_id)) {
238 Some(hir_id) => {
239 let vis = match tcx.hir().get(hir_id) {
240 Node::Item(item) => &item.vis,
241 Node::ForeignItem(foreign_item) => &foreign_item.vis,
242 Node::MacroDef(macro_def) => {
243 if tcx.sess.contains_name(&macro_def.attrs, sym::macro_export) {
244 return (ty::Visibility::Public, macro_def.span, "public");
245 } else {
246 &macro_def.vis
247 }
248 }
249 Node::TraitItem(..) | Node::Variant(..) => {
250 return def_id_visibility(tcx, tcx.hir().get_parent_did(hir_id).to_def_id());
251 }
252 Node::ImplItem(impl_item) => {
253 match tcx.hir().get(tcx.hir().get_parent_item(hir_id)) {
254 Node::Item(item) => match &item.kind {
255 hir::ItemKind::Impl { of_trait: None, .. } => &impl_item.vis,
256 hir::ItemKind::Impl { of_trait: Some(trait_ref), .. } => {
257 return def_id_visibility(tcx, trait_ref.path.res.def_id());
258 }
259 kind => bug!("unexpected item kind: {:?}", kind),
260 },
261 node => bug!("unexpected node kind: {:?}", node),
262 }
263 }
264 Node::Ctor(vdata) => {
265 let parent_hir_id = tcx.hir().get_parent_node(hir_id);
266 match tcx.hir().get(parent_hir_id) {
267 Node::Variant(..) => {
268 let parent_did = tcx.hir().local_def_id(parent_hir_id);
269 let (mut ctor_vis, mut span, mut descr) =
270 def_id_visibility(tcx, parent_did.to_def_id());
271
272 let adt_def = tcx.adt_def(tcx.hir().get_parent_did(hir_id).to_def_id());
273 let ctor_did = tcx.hir().local_def_id(vdata.ctor_hir_id().unwrap());
274 let variant = adt_def.variant_with_ctor_id(ctor_did.to_def_id());
275
276 if variant.is_field_list_non_exhaustive()
277 && ctor_vis == ty::Visibility::Public
278 {
279 ctor_vis =
280 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX));
281 let attrs = tcx.get_attrs(variant.def_id);
282 span = tcx
283 .sess
284 .find_by_name(&attrs, sym::non_exhaustive)
285 .unwrap()
286 .span;
287 descr = "crate-visible";
288 }
289
290 return (ctor_vis, span, descr);
291 }
292 Node::Item(..) => {
293 let item = match tcx.hir().get(parent_hir_id) {
294 Node::Item(item) => item,
295 node => bug!("unexpected node kind: {:?}", node),
296 };
297 let (mut ctor_vis, mut span, mut descr) = (
298 ty::Visibility::from_hir(&item.vis, parent_hir_id, tcx),
299 item.vis.span,
300 item.vis.node.descr(),
301 );
302 for field in vdata.fields() {
303 let field_vis = ty::Visibility::from_hir(&field.vis, hir_id, tcx);
304 if ctor_vis.is_at_least(field_vis, tcx) {
305 ctor_vis = field_vis;
306 span = field.vis.span;
307 descr = field.vis.node.descr();
308 }
309 }
310
311 // If the structure is marked as non_exhaustive then lower the
312 // visibility to within the crate.
313 if ctor_vis == ty::Visibility::Public {
314 let adt_def =
315 tcx.adt_def(tcx.hir().get_parent_did(hir_id).to_def_id());
316 if adt_def.non_enum_variant().is_field_list_non_exhaustive() {
317 ctor_vis =
318 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX));
319 span = tcx
320 .sess
321 .find_by_name(&item.attrs, sym::non_exhaustive)
322 .unwrap()
323 .span;
324 descr = "crate-visible";
325 }
326 }
327
328 return (ctor_vis, span, descr);
329 }
330 node => bug!("unexpected node kind: {:?}", node),
331 }
332 }
333 Node::Expr(expr) => {
334 return (
335 ty::Visibility::Restricted(tcx.parent_module(expr.hir_id).to_def_id()),
336 expr.span,
337 "private",
338 );
339 }
340 node => bug!("unexpected node kind: {:?}", node),
341 };
342 (ty::Visibility::from_hir(vis, hir_id, tcx), vis.span, vis.node.descr())
343 }
344 None => {
345 let vis = tcx.visibility(def_id);
346 let descr = if vis == ty::Visibility::Public { "public" } else { "private" };
347 (vis, tcx.def_span(def_id), descr)
348 }
349 }
350 }
351
352 fn min(vis1: ty::Visibility, vis2: ty::Visibility, tcx: TyCtxt<'_>) -> ty::Visibility {
353 if vis1.is_at_least(vis2, tcx) { vis2 } else { vis1 }
354 }
355
356 ////////////////////////////////////////////////////////////////////////////////
357 /// Visitor used to determine if pub(restricted) is used anywhere in the crate.
358 ///
359 /// This is done so that `private_in_public` warnings can be turned into hard errors
360 /// in crates that have been updated to use pub(restricted).
361 ////////////////////////////////////////////////////////////////////////////////
362 struct PubRestrictedVisitor<'tcx> {
363 tcx: TyCtxt<'tcx>,
364 has_pub_restricted: bool,
365 }
366
367 impl Visitor<'tcx> for PubRestrictedVisitor<'tcx> {
368 type Map = Map<'tcx>;
369
370 fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
371 NestedVisitorMap::All(self.tcx.hir())
372 }
373 fn visit_vis(&mut self, vis: &'tcx hir::Visibility<'tcx>) {
374 self.has_pub_restricted = self.has_pub_restricted || vis.node.is_pub_restricted();
375 }
376 }
377
378 ////////////////////////////////////////////////////////////////////////////////
379 /// Visitor used to determine impl visibility and reachability.
380 ////////////////////////////////////////////////////////////////////////////////
381
382 struct FindMin<'a, 'tcx, VL: VisibilityLike> {
383 tcx: TyCtxt<'tcx>,
384 access_levels: &'a AccessLevels,
385 min: VL,
386 }
387
388 impl<'a, 'tcx, VL: VisibilityLike> DefIdVisitor<'tcx> for FindMin<'a, 'tcx, VL> {
389 fn tcx(&self) -> TyCtxt<'tcx> {
390 self.tcx
391 }
392 fn shallow(&self) -> bool {
393 VL::SHALLOW
394 }
395 fn skip_assoc_tys(&self) -> bool {
396 true
397 }
398 fn visit_def_id(&mut self, def_id: DefId, _kind: &str, _descr: &dyn fmt::Display) -> bool {
399 self.min = VL::new_min(self, def_id);
400 false
401 }
402 }
403
404 trait VisibilityLike: Sized {
405 const MAX: Self;
406 const SHALLOW: bool = false;
407 fn new_min(find: &FindMin<'_, '_, Self>, def_id: DefId) -> Self;
408
409 // Returns an over-approximation (`skip_assoc_tys` = true) of visibility due to
410 // associated types for which we can't determine visibility precisely.
411 fn of_impl(hir_id: hir::HirId, tcx: TyCtxt<'_>, access_levels: &AccessLevels) -> Self {
412 let mut find = FindMin { tcx, access_levels, min: Self::MAX };
413 let def_id = tcx.hir().local_def_id(hir_id);
414 find.visit(tcx.type_of(def_id));
415 if let Some(trait_ref) = tcx.impl_trait_ref(def_id) {
416 find.visit_trait(trait_ref);
417 }
418 find.min
419 }
420 }
421 impl VisibilityLike for ty::Visibility {
422 const MAX: Self = ty::Visibility::Public;
423 fn new_min(find: &FindMin<'_, '_, Self>, def_id: DefId) -> Self {
424 min(def_id_visibility(find.tcx, def_id).0, find.min, find.tcx)
425 }
426 }
427 impl VisibilityLike for Option<AccessLevel> {
428 const MAX: Self = Some(AccessLevel::Public);
429 // Type inference is very smart sometimes.
430 // It can make an impl reachable even some components of its type or trait are unreachable.
431 // E.g. methods of `impl ReachableTrait<UnreachableTy> for ReachableTy<UnreachableTy> { ... }`
432 // can be usable from other crates (#57264). So we skip substs when calculating reachability
433 // and consider an impl reachable if its "shallow" type and trait are reachable.
434 //
435 // The assumption we make here is that type-inference won't let you use an impl without knowing
436 // both "shallow" version of its self type and "shallow" version of its trait if it exists
437 // (which require reaching the `DefId`s in them).
438 const SHALLOW: bool = true;
439 fn new_min(find: &FindMin<'_, '_, Self>, def_id: DefId) -> Self {
440 cmp::min(
441 if let Some(def_id) = def_id.as_local() {
442 let hir_id = find.tcx.hir().local_def_id_to_hir_id(def_id);
443 find.access_levels.map.get(&hir_id).cloned()
444 } else {
445 Self::MAX
446 },
447 find.min,
448 )
449 }
450 }
451
452 ////////////////////////////////////////////////////////////////////////////////
453 /// The embargo visitor, used to determine the exports of the AST.
454 ////////////////////////////////////////////////////////////////////////////////
455
456 struct EmbargoVisitor<'tcx> {
457 tcx: TyCtxt<'tcx>,
458
459 /// Accessibility levels for reachable nodes.
460 access_levels: AccessLevels,
461 /// A set of pairs corresponding to modules, where the first module is
462 /// reachable via a macro that's defined in the second module. This cannot
463 /// be represented as reachable because it can't handle the following case:
464 ///
465 /// pub mod n { // Should be `Public`
466 /// pub(crate) mod p { // Should *not* be accessible
467 /// pub fn f() -> i32 { 12 } // Must be `Reachable`
468 /// }
469 /// }
470 /// pub macro m() {
471 /// n::p::f()
472 /// }
473 macro_reachable: FxHashSet<(hir::HirId, DefId)>,
474 /// Previous accessibility level; `None` means unreachable.
475 prev_level: Option<AccessLevel>,
476 /// Has something changed in the level map?
477 changed: bool,
478 }
479
480 struct ReachEverythingInTheInterfaceVisitor<'a, 'tcx> {
481 access_level: Option<AccessLevel>,
482 item_def_id: DefId,
483 ev: &'a mut EmbargoVisitor<'tcx>,
484 }
485
486 impl EmbargoVisitor<'tcx> {
487 fn get(&self, id: hir::HirId) -> Option<AccessLevel> {
488 self.access_levels.map.get(&id).cloned()
489 }
490
491 /// Updates node level and returns the updated level.
492 fn update(&mut self, id: hir::HirId, level: Option<AccessLevel>) -> Option<AccessLevel> {
493 let old_level = self.get(id);
494 // Accessibility levels can only grow.
495 if level > old_level {
496 self.access_levels.map.insert(id, level.unwrap());
497 self.changed = true;
498 level
499 } else {
500 old_level
501 }
502 }
503
504 fn reach(
505 &mut self,
506 item_id: hir::HirId,
507 access_level: Option<AccessLevel>,
508 ) -> ReachEverythingInTheInterfaceVisitor<'_, 'tcx> {
509 ReachEverythingInTheInterfaceVisitor {
510 access_level: cmp::min(access_level, Some(AccessLevel::Reachable)),
511 item_def_id: self.tcx.hir().local_def_id(item_id).to_def_id(),
512 ev: self,
513 }
514 }
515
516 /// Updates the item as being reachable through a macro defined in the given
517 /// module. Returns `true` if the level has changed.
518 fn update_macro_reachable(&mut self, reachable_mod: hir::HirId, defining_mod: DefId) -> bool {
519 if self.macro_reachable.insert((reachable_mod, defining_mod)) {
520 self.update_macro_reachable_mod(reachable_mod, defining_mod);
521 true
522 } else {
523 false
524 }
525 }
526
527 fn update_macro_reachable_mod(&mut self, reachable_mod: hir::HirId, defining_mod: DefId) {
528 let module_def_id = self.tcx.hir().local_def_id(reachable_mod);
529 let module = self.tcx.hir().get_module(module_def_id).0;
530 for item_id in module.item_ids {
531 let hir_id = item_id.id;
532 let item_def_id = self.tcx.hir().local_def_id(hir_id);
533 let def_kind = self.tcx.def_kind(item_def_id);
534 let item = self.tcx.hir().expect_item(hir_id);
535 let vis = ty::Visibility::from_hir(&item.vis, hir_id, self.tcx);
536 self.update_macro_reachable_def(hir_id, def_kind, vis, defining_mod);
537 }
538 if let Some(exports) = self.tcx.module_exports(module_def_id) {
539 for export in exports {
540 if export.vis.is_accessible_from(defining_mod, self.tcx) {
541 if let Res::Def(def_kind, def_id) = export.res {
542 let vis = def_id_visibility(self.tcx, def_id).0;
543 if let Some(def_id) = def_id.as_local() {
544 let hir_id = self.tcx.hir().local_def_id_to_hir_id(def_id);
545 self.update_macro_reachable_def(hir_id, def_kind, vis, defining_mod);
546 }
547 }
548 }
549 }
550 }
551 }
552
553 fn update_macro_reachable_def(
554 &mut self,
555 hir_id: hir::HirId,
556 def_kind: DefKind,
557 vis: ty::Visibility,
558 module: DefId,
559 ) {
560 let level = Some(AccessLevel::Reachable);
561 if let ty::Visibility::Public = vis {
562 self.update(hir_id, level);
563 }
564 match def_kind {
565 // No type privacy, so can be directly marked as reachable.
566 DefKind::Const
567 | DefKind::Macro(_)
568 | DefKind::Static
569 | DefKind::TraitAlias
570 | DefKind::TyAlias => {
571 if vis.is_accessible_from(module, self.tcx) {
572 self.update(hir_id, level);
573 }
574 }
575
576 // We can't use a module name as the final segment of a path, except
577 // in use statements. Since re-export checking doesn't consider
578 // hygiene these don't need to be marked reachable. The contents of
579 // the module, however may be reachable.
580 DefKind::Mod => {
581 if vis.is_accessible_from(module, self.tcx) {
582 self.update_macro_reachable(hir_id, module);
583 }
584 }
585
586 DefKind::Struct | DefKind::Union => {
587 // While structs and unions have type privacy, their fields do
588 // not.
589 if let ty::Visibility::Public = vis {
590 let item = self.tcx.hir().expect_item(hir_id);
591 if let hir::ItemKind::Struct(ref struct_def, _)
592 | hir::ItemKind::Union(ref struct_def, _) = item.kind
593 {
594 for field in struct_def.fields() {
595 let field_vis =
596 ty::Visibility::from_hir(&field.vis, field.hir_id, self.tcx);
597 if field_vis.is_accessible_from(module, self.tcx) {
598 self.reach(field.hir_id, level).ty();
599 }
600 }
601 } else {
602 bug!("item {:?} with DefKind {:?}", item, def_kind);
603 }
604 }
605 }
606
607 // These have type privacy, so are not reachable unless they're
608 // public, or are not namespaced at all.
609 DefKind::AssocConst
610 | DefKind::AssocTy
611 | DefKind::ConstParam
612 | DefKind::Ctor(_, _)
613 | DefKind::Enum
614 | DefKind::ForeignTy
615 | DefKind::Fn
616 | DefKind::OpaqueTy
617 | DefKind::AssocFn
618 | DefKind::Trait
619 | DefKind::TyParam
620 | DefKind::Variant
621 | DefKind::LifetimeParam
622 | DefKind::ExternCrate
623 | DefKind::Use
624 | DefKind::ForeignMod
625 | DefKind::AnonConst
626 | DefKind::Field
627 | DefKind::GlobalAsm
628 | DefKind::Impl
629 | DefKind::Closure
630 | DefKind::Generator => (),
631 }
632 }
633
634 /// Given the path segments of a `ItemKind::Use`, then we need
635 /// to update the visibility of the intermediate use so that it isn't linted
636 /// by `unreachable_pub`.
637 ///
638 /// This isn't trivial as `path.res` has the `DefId` of the eventual target
639 /// of the use statement not of the next intermediate use statement.
640 ///
641 /// To do this, consider the last two segments of the path to our intermediate
642 /// use statement. We expect the penultimate segment to be a module and the
643 /// last segment to be the name of the item we are exporting. We can then
644 /// look at the items contained in the module for the use statement with that
645 /// name and update that item's visibility.
646 ///
647 /// FIXME: This solution won't work with glob imports and doesn't respect
648 /// namespaces. See <https://github.com/rust-lang/rust/pull/57922#discussion_r251234202>.
649 fn update_visibility_of_intermediate_use_statements(
650 &mut self,
651 segments: &[hir::PathSegment<'_>],
652 ) {
653 if let [.., module, segment] = segments {
654 if let Some(item) = module
655 .res
656 .and_then(|res| res.mod_def_id())
657 // If the module is `self`, i.e. the current crate,
658 // there will be no corresponding item.
659 .filter(|def_id| def_id.index != CRATE_DEF_INDEX || def_id.krate != LOCAL_CRATE)
660 .and_then(|def_id| {
661 def_id.as_local().map(|def_id| self.tcx.hir().local_def_id_to_hir_id(def_id))
662 })
663 .map(|module_hir_id| self.tcx.hir().expect_item(module_hir_id))
664 {
665 if let hir::ItemKind::Mod(m) = &item.kind {
666 for item_id in m.item_ids {
667 let item = self.tcx.hir().expect_item(item_id.id);
668 let def_id = self.tcx.hir().local_def_id(item_id.id);
669 if !self.tcx.hygienic_eq(segment.ident, item.ident, def_id.to_def_id()) {
670 continue;
671 }
672 if let hir::ItemKind::Use(..) = item.kind {
673 self.update(item.hir_id, Some(AccessLevel::Exported));
674 }
675 }
676 }
677 }
678 }
679 }
680 }
681
682 impl Visitor<'tcx> for EmbargoVisitor<'tcx> {
683 type Map = Map<'tcx>;
684
685 /// We want to visit items in the context of their containing
686 /// module and so forth, so supply a crate for doing a deep walk.
687 fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
688 NestedVisitorMap::All(self.tcx.hir())
689 }
690
691 fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
692 let inherited_item_level = match item.kind {
693 hir::ItemKind::Impl { .. } => {
694 Option::<AccessLevel>::of_impl(item.hir_id, self.tcx, &self.access_levels)
695 }
696 // Foreign modules inherit level from parents.
697 hir::ItemKind::ForeignMod(..) => self.prev_level,
698 // Other `pub` items inherit levels from parents.
699 hir::ItemKind::Const(..)
700 | hir::ItemKind::Enum(..)
701 | hir::ItemKind::ExternCrate(..)
702 | hir::ItemKind::GlobalAsm(..)
703 | hir::ItemKind::Fn(..)
704 | hir::ItemKind::Mod(..)
705 | hir::ItemKind::Static(..)
706 | hir::ItemKind::Struct(..)
707 | hir::ItemKind::Trait(..)
708 | hir::ItemKind::TraitAlias(..)
709 | hir::ItemKind::OpaqueTy(..)
710 | hir::ItemKind::TyAlias(..)
711 | hir::ItemKind::Union(..)
712 | hir::ItemKind::Use(..) => {
713 if item.vis.node.is_pub() {
714 self.prev_level
715 } else {
716 None
717 }
718 }
719 };
720
721 // Update level of the item itself.
722 let item_level = self.update(item.hir_id, inherited_item_level);
723
724 // Update levels of nested things.
725 match item.kind {
726 hir::ItemKind::Enum(ref def, _) => {
727 for variant in def.variants {
728 let variant_level = self.update(variant.id, item_level);
729 if let Some(ctor_hir_id) = variant.data.ctor_hir_id() {
730 self.update(ctor_hir_id, item_level);
731 }
732 for field in variant.data.fields() {
733 self.update(field.hir_id, variant_level);
734 }
735 }
736 }
737 hir::ItemKind::Impl { ref of_trait, items, .. } => {
738 for impl_item_ref in items {
739 if of_trait.is_some() || impl_item_ref.vis.node.is_pub() {
740 self.update(impl_item_ref.id.hir_id, item_level);
741 }
742 }
743 }
744 hir::ItemKind::Trait(.., trait_item_refs) => {
745 for trait_item_ref in trait_item_refs {
746 self.update(trait_item_ref.id.hir_id, item_level);
747 }
748 }
749 hir::ItemKind::Struct(ref def, _) | hir::ItemKind::Union(ref def, _) => {
750 if let Some(ctor_hir_id) = def.ctor_hir_id() {
751 self.update(ctor_hir_id, item_level);
752 }
753 for field in def.fields() {
754 if field.vis.node.is_pub() {
755 self.update(field.hir_id, item_level);
756 }
757 }
758 }
759 hir::ItemKind::ForeignMod(ref foreign_mod) => {
760 for foreign_item in foreign_mod.items {
761 if foreign_item.vis.node.is_pub() {
762 self.update(foreign_item.hir_id, item_level);
763 }
764 }
765 }
766 hir::ItemKind::OpaqueTy(..)
767 | hir::ItemKind::Use(..)
768 | hir::ItemKind::Static(..)
769 | hir::ItemKind::Const(..)
770 | hir::ItemKind::GlobalAsm(..)
771 | hir::ItemKind::TyAlias(..)
772 | hir::ItemKind::Mod(..)
773 | hir::ItemKind::TraitAlias(..)
774 | hir::ItemKind::Fn(..)
775 | hir::ItemKind::ExternCrate(..) => {}
776 }
777
778 // Mark all items in interfaces of reachable items as reachable.
779 match item.kind {
780 // The interface is empty.
781 hir::ItemKind::ExternCrate(..) => {}
782 // All nested items are checked by `visit_item`.
783 hir::ItemKind::Mod(..) => {}
784 // Re-exports are handled in `visit_mod`. However, in order to avoid looping over
785 // all of the items of a mod in `visit_mod` looking for use statements, we handle
786 // making sure that intermediate use statements have their visibilities updated here.
787 hir::ItemKind::Use(ref path, _) => {
788 if item_level.is_some() {
789 self.update_visibility_of_intermediate_use_statements(path.segments.as_ref());
790 }
791 }
792 // The interface is empty.
793 hir::ItemKind::GlobalAsm(..) => {}
794 hir::ItemKind::OpaqueTy(..) => {
795 // HACK(jynelson): trying to infer the type of `impl trait` breaks `async-std` (and `pub async fn` in general)
796 // Since rustdoc never need to do codegen and doesn't care about link-time reachability,
797 // mark this as unreachable.
798 // See https://github.com/rust-lang/rust/issues/75100
799 if !self.tcx.sess.opts.actually_rustdoc {
800 // FIXME: This is some serious pessimization intended to workaround deficiencies
801 // in the reachability pass (`middle/reachable.rs`). Types are marked as link-time
802 // reachable if they are returned via `impl Trait`, even from private functions.
803 let exist_level =
804 cmp::max(item_level, Some(AccessLevel::ReachableFromImplTrait));
805 self.reach(item.hir_id, exist_level).generics().predicates().ty();
806 }
807 }
808 // Visit everything.
809 hir::ItemKind::Const(..)
810 | hir::ItemKind::Static(..)
811 | hir::ItemKind::Fn(..)
812 | hir::ItemKind::TyAlias(..) => {
813 if item_level.is_some() {
814 self.reach(item.hir_id, item_level).generics().predicates().ty();
815 }
816 }
817 hir::ItemKind::Trait(.., trait_item_refs) => {
818 if item_level.is_some() {
819 self.reach(item.hir_id, item_level).generics().predicates();
820
821 for trait_item_ref in trait_item_refs {
822 let mut reach = self.reach(trait_item_ref.id.hir_id, item_level);
823 reach.generics().predicates();
824
825 if trait_item_ref.kind == AssocItemKind::Type
826 && !trait_item_ref.defaultness.has_value()
827 {
828 // No type to visit.
829 } else {
830 reach.ty();
831 }
832 }
833 }
834 }
835 hir::ItemKind::TraitAlias(..) => {
836 if item_level.is_some() {
837 self.reach(item.hir_id, item_level).generics().predicates();
838 }
839 }
840 // Visit everything except for private impl items.
841 hir::ItemKind::Impl { items, .. } => {
842 if item_level.is_some() {
843 self.reach(item.hir_id, item_level).generics().predicates().ty().trait_ref();
844
845 for impl_item_ref in items {
846 let impl_item_level = self.get(impl_item_ref.id.hir_id);
847 if impl_item_level.is_some() {
848 self.reach(impl_item_ref.id.hir_id, impl_item_level)
849 .generics()
850 .predicates()
851 .ty();
852 }
853 }
854 }
855 }
856
857 // Visit everything, but enum variants have their own levels.
858 hir::ItemKind::Enum(ref def, _) => {
859 if item_level.is_some() {
860 self.reach(item.hir_id, item_level).generics().predicates();
861 }
862 for variant in def.variants {
863 let variant_level = self.get(variant.id);
864 if variant_level.is_some() {
865 for field in variant.data.fields() {
866 self.reach(field.hir_id, variant_level).ty();
867 }
868 // Corner case: if the variant is reachable, but its
869 // enum is not, make the enum reachable as well.
870 self.update(item.hir_id, variant_level);
871 }
872 }
873 }
874 // Visit everything, but foreign items have their own levels.
875 hir::ItemKind::ForeignMod(ref foreign_mod) => {
876 for foreign_item in foreign_mod.items {
877 let foreign_item_level = self.get(foreign_item.hir_id);
878 if foreign_item_level.is_some() {
879 self.reach(foreign_item.hir_id, foreign_item_level)
880 .generics()
881 .predicates()
882 .ty();
883 }
884 }
885 }
886 // Visit everything except for private fields.
887 hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
888 if item_level.is_some() {
889 self.reach(item.hir_id, item_level).generics().predicates();
890 for field in struct_def.fields() {
891 let field_level = self.get(field.hir_id);
892 if field_level.is_some() {
893 self.reach(field.hir_id, field_level).ty();
894 }
895 }
896 }
897 }
898 }
899
900 let orig_level = mem::replace(&mut self.prev_level, item_level);
901 intravisit::walk_item(self, item);
902 self.prev_level = orig_level;
903 }
904
905 fn visit_block(&mut self, b: &'tcx hir::Block<'tcx>) {
906 // Blocks can have public items, for example impls, but they always
907 // start as completely private regardless of publicity of a function,
908 // constant, type, field, etc., in which this block resides.
909 let orig_level = mem::replace(&mut self.prev_level, None);
910 intravisit::walk_block(self, b);
911 self.prev_level = orig_level;
912 }
913
914 fn visit_mod(&mut self, m: &'tcx hir::Mod<'tcx>, _sp: Span, id: hir::HirId) {
915 // This code is here instead of in visit_item so that the
916 // crate module gets processed as well.
917 if self.prev_level.is_some() {
918 let def_id = self.tcx.hir().local_def_id(id);
919 if let Some(exports) = self.tcx.module_exports(def_id) {
920 for export in exports.iter() {
921 if export.vis == ty::Visibility::Public {
922 if let Some(def_id) = export.res.opt_def_id() {
923 if let Some(def_id) = def_id.as_local() {
924 let hir_id = self.tcx.hir().local_def_id_to_hir_id(def_id);
925 self.update(hir_id, Some(AccessLevel::Exported));
926 }
927 }
928 }
929 }
930 }
931 }
932
933 intravisit::walk_mod(self, m, id);
934 }
935
936 fn visit_macro_def(&mut self, md: &'tcx hir::MacroDef<'tcx>) {
937 if attr::find_transparency(&self.tcx.sess, &md.attrs, md.ast.macro_rules).0
938 != Transparency::Opaque
939 {
940 self.update(md.hir_id, Some(AccessLevel::Public));
941 return;
942 }
943
944 let macro_module_def_id =
945 ty::DefIdTree::parent(self.tcx, self.tcx.hir().local_def_id(md.hir_id).to_def_id())
946 .unwrap();
947 // FIXME(#71104) Should really be using just `as_local_hir_id` but
948 // some `DefId` do not seem to have a corresponding HirId.
949 let hir_id = macro_module_def_id
950 .as_local()
951 .and_then(|def_id| self.tcx.hir().opt_local_def_id_to_hir_id(def_id));
952 let mut module_id = match hir_id {
953 Some(module_id) if self.tcx.hir().is_hir_id_module(module_id) => module_id,
954 // `module_id` doesn't correspond to a `mod`, return early (#63164, #65252).
955 _ => return,
956 };
957 let level = if md.vis.node.is_pub() { self.get(module_id) } else { None };
958 let new_level = self.update(md.hir_id, level);
959 if new_level.is_none() {
960 return;
961 }
962
963 loop {
964 let changed_reachability = self.update_macro_reachable(module_id, macro_module_def_id);
965 if changed_reachability || module_id == hir::CRATE_HIR_ID {
966 break;
967 }
968 module_id = self.tcx.hir().get_parent_node(module_id);
969 }
970 }
971 }
972
973 impl ReachEverythingInTheInterfaceVisitor<'_, 'tcx> {
974 fn generics(&mut self) -> &mut Self {
975 for param in &self.ev.tcx.generics_of(self.item_def_id).params {
976 match param.kind {
977 GenericParamDefKind::Lifetime => {}
978 GenericParamDefKind::Type { has_default, .. } => {
979 if has_default {
980 self.visit(self.ev.tcx.type_of(param.def_id));
981 }
982 }
983 GenericParamDefKind::Const => {
984 self.visit(self.ev.tcx.type_of(param.def_id));
985 }
986 }
987 }
988 self
989 }
990
991 fn predicates(&mut self) -> &mut Self {
992 self.visit_predicates(self.ev.tcx.predicates_of(self.item_def_id));
993 self
994 }
995
996 fn ty(&mut self) -> &mut Self {
997 self.visit(self.ev.tcx.type_of(self.item_def_id));
998 self
999 }
1000
1001 fn trait_ref(&mut self) -> &mut Self {
1002 if let Some(trait_ref) = self.ev.tcx.impl_trait_ref(self.item_def_id) {
1003 self.visit_trait(trait_ref);
1004 }
1005 self
1006 }
1007 }
1008
1009 impl DefIdVisitor<'tcx> for ReachEverythingInTheInterfaceVisitor<'_, 'tcx> {
1010 fn tcx(&self) -> TyCtxt<'tcx> {
1011 self.ev.tcx
1012 }
1013 fn visit_def_id(&mut self, def_id: DefId, _kind: &str, _descr: &dyn fmt::Display) -> bool {
1014 if let Some(def_id) = def_id.as_local() {
1015 let hir_id = self.ev.tcx.hir().local_def_id_to_hir_id(def_id);
1016 if let ((ty::Visibility::Public, ..), _)
1017 | (_, Some(AccessLevel::ReachableFromImplTrait)) =
1018 (def_id_visibility(self.tcx(), def_id.to_def_id()), self.access_level)
1019 {
1020 self.ev.update(hir_id, self.access_level);
1021 }
1022 }
1023 false
1024 }
1025 }
1026
1027 //////////////////////////////////////////////////////////////////////////////////////
1028 /// Name privacy visitor, checks privacy and reports violations.
1029 /// Most of name privacy checks are performed during the main resolution phase,
1030 /// or later in type checking when field accesses and associated items are resolved.
1031 /// This pass performs remaining checks for fields in struct expressions and patterns.
1032 //////////////////////////////////////////////////////////////////////////////////////
1033
1034 struct NamePrivacyVisitor<'tcx> {
1035 tcx: TyCtxt<'tcx>,
1036 maybe_typeck_results: Option<&'tcx ty::TypeckResults<'tcx>>,
1037 current_item: Option<hir::HirId>,
1038 }
1039
1040 impl<'tcx> NamePrivacyVisitor<'tcx> {
1041 /// Gets the type-checking results for the current body.
1042 /// As this will ICE if called outside bodies, only call when working with
1043 /// `Expr` or `Pat` nodes (they are guaranteed to be found only in bodies).
1044 #[track_caller]
1045 fn typeck_results(&self) -> &'tcx ty::TypeckResults<'tcx> {
1046 self.maybe_typeck_results
1047 .expect("`NamePrivacyVisitor::typeck_results` called outside of body")
1048 }
1049
1050 // Checks that a field in a struct constructor (expression or pattern) is accessible.
1051 fn check_field(
1052 &mut self,
1053 use_ctxt: Span, // syntax context of the field name at the use site
1054 span: Span, // span of the field pattern, e.g., `x: 0`
1055 def: &'tcx ty::AdtDef, // definition of the struct or enum
1056 field: &'tcx ty::FieldDef,
1057 in_update_syntax: bool,
1058 ) {
1059 // definition of the field
1060 let ident = Ident::new(kw::Invalid, use_ctxt);
1061 let current_hir = self.current_item.unwrap();
1062 let def_id = self.tcx.adjust_ident_and_get_scope(ident, def.did, current_hir).1;
1063 if !def.is_enum() && !field.vis.is_accessible_from(def_id, self.tcx) {
1064 let label = if in_update_syntax {
1065 format!("field `{}` is private", field.ident)
1066 } else {
1067 "private field".to_string()
1068 };
1069
1070 struct_span_err!(
1071 self.tcx.sess,
1072 span,
1073 E0451,
1074 "field `{}` of {} `{}` is private",
1075 field.ident,
1076 def.variant_descr(),
1077 self.tcx.def_path_str(def.did)
1078 )
1079 .span_label(span, label)
1080 .emit();
1081 }
1082 }
1083 }
1084
1085 impl<'tcx> Visitor<'tcx> for NamePrivacyVisitor<'tcx> {
1086 type Map = Map<'tcx>;
1087
1088 /// We want to visit items in the context of their containing
1089 /// module and so forth, so supply a crate for doing a deep walk.
1090 fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
1091 NestedVisitorMap::All(self.tcx.hir())
1092 }
1093
1094 fn visit_mod(&mut self, _m: &'tcx hir::Mod<'tcx>, _s: Span, _n: hir::HirId) {
1095 // Don't visit nested modules, since we run a separate visitor walk
1096 // for each module in `privacy_access_levels`
1097 }
1098
1099 fn visit_nested_body(&mut self, body: hir::BodyId) {
1100 let old_maybe_typeck_results =
1101 self.maybe_typeck_results.replace(self.tcx.typeck_body(body));
1102 let body = self.tcx.hir().body(body);
1103 self.visit_body(body);
1104 self.maybe_typeck_results = old_maybe_typeck_results;
1105 }
1106
1107 fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
1108 let orig_current_item = self.current_item.replace(item.hir_id);
1109 intravisit::walk_item(self, item);
1110 self.current_item = orig_current_item;
1111 }
1112
1113 fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
1114 if let hir::ExprKind::Struct(ref qpath, fields, ref base) = expr.kind {
1115 let res = self.typeck_results().qpath_res(qpath, expr.hir_id);
1116 let adt = self.typeck_results().expr_ty(expr).ty_adt_def().unwrap();
1117 let variant = adt.variant_of_res(res);
1118 if let Some(ref base) = *base {
1119 // If the expression uses FRU we need to make sure all the unmentioned fields
1120 // are checked for privacy (RFC 736). Rather than computing the set of
1121 // unmentioned fields, just check them all.
1122 for (vf_index, variant_field) in variant.fields.iter().enumerate() {
1123 let field = fields.iter().find(|f| {
1124 self.tcx.field_index(f.hir_id, self.typeck_results()) == vf_index
1125 });
1126 let (use_ctxt, span) = match field {
1127 Some(field) => (field.ident.span, field.span),
1128 None => (base.span, base.span),
1129 };
1130 self.check_field(use_ctxt, span, adt, variant_field, true);
1131 }
1132 } else {
1133 for field in fields {
1134 let use_ctxt = field.ident.span;
1135 let index = self.tcx.field_index(field.hir_id, self.typeck_results());
1136 self.check_field(use_ctxt, field.span, adt, &variant.fields[index], false);
1137 }
1138 }
1139 }
1140
1141 intravisit::walk_expr(self, expr);
1142 }
1143
1144 fn visit_pat(&mut self, pat: &'tcx hir::Pat<'tcx>) {
1145 if let PatKind::Struct(ref qpath, fields, _) = pat.kind {
1146 let res = self.typeck_results().qpath_res(qpath, pat.hir_id);
1147 let adt = self.typeck_results().pat_ty(pat).ty_adt_def().unwrap();
1148 let variant = adt.variant_of_res(res);
1149 for field in fields {
1150 let use_ctxt = field.ident.span;
1151 let index = self.tcx.field_index(field.hir_id, self.typeck_results());
1152 self.check_field(use_ctxt, field.span, adt, &variant.fields[index], false);
1153 }
1154 }
1155
1156 intravisit::walk_pat(self, pat);
1157 }
1158 }
1159
1160 ////////////////////////////////////////////////////////////////////////////////////////////
1161 /// Type privacy visitor, checks types for privacy and reports violations.
1162 /// Both explicitly written types and inferred types of expressions and patters are checked.
1163 /// Checks are performed on "semantic" types regardless of names and their hygiene.
1164 ////////////////////////////////////////////////////////////////////////////////////////////
1165
1166 struct TypePrivacyVisitor<'tcx> {
1167 tcx: TyCtxt<'tcx>,
1168 maybe_typeck_results: Option<&'tcx ty::TypeckResults<'tcx>>,
1169 current_item: LocalDefId,
1170 span: Span,
1171 }
1172
1173 impl<'tcx> TypePrivacyVisitor<'tcx> {
1174 /// Gets the type-checking results for the current body.
1175 /// As this will ICE if called outside bodies, only call when working with
1176 /// `Expr` or `Pat` nodes (they are guaranteed to be found only in bodies).
1177 #[track_caller]
1178 fn typeck_results(&self) -> &'tcx ty::TypeckResults<'tcx> {
1179 self.maybe_typeck_results
1180 .expect("`TypePrivacyVisitor::typeck_results` called outside of body")
1181 }
1182
1183 fn item_is_accessible(&self, did: DefId) -> bool {
1184 def_id_visibility(self.tcx, did)
1185 .0
1186 .is_accessible_from(self.current_item.to_def_id(), self.tcx)
1187 }
1188
1189 // Take node-id of an expression or pattern and check its type for privacy.
1190 fn check_expr_pat_type(&mut self, id: hir::HirId, span: Span) -> bool {
1191 self.span = span;
1192 let typeck_results = self.typeck_results();
1193 if self.visit(typeck_results.node_type(id)) || self.visit(typeck_results.node_substs(id)) {
1194 return true;
1195 }
1196 if let Some(adjustments) = typeck_results.adjustments().get(id) {
1197 for adjustment in adjustments {
1198 if self.visit(adjustment.target) {
1199 return true;
1200 }
1201 }
1202 }
1203 false
1204 }
1205
1206 fn check_def_id(&mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display) -> bool {
1207 let is_error = !self.item_is_accessible(def_id);
1208 if is_error {
1209 self.tcx
1210 .sess
1211 .struct_span_err(self.span, &format!("{} `{}` is private", kind, descr))
1212 .span_label(self.span, &format!("private {}", kind))
1213 .emit();
1214 }
1215 is_error
1216 }
1217 }
1218
1219 impl<'tcx> Visitor<'tcx> for TypePrivacyVisitor<'tcx> {
1220 type Map = Map<'tcx>;
1221
1222 /// We want to visit items in the context of their containing
1223 /// module and so forth, so supply a crate for doing a deep walk.
1224 fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
1225 NestedVisitorMap::All(self.tcx.hir())
1226 }
1227
1228 fn visit_mod(&mut self, _m: &'tcx hir::Mod<'tcx>, _s: Span, _n: hir::HirId) {
1229 // Don't visit nested modules, since we run a separate visitor walk
1230 // for each module in `privacy_access_levels`
1231 }
1232
1233 fn visit_nested_body(&mut self, body: hir::BodyId) {
1234 let old_maybe_typeck_results =
1235 self.maybe_typeck_results.replace(self.tcx.typeck_body(body));
1236 let body = self.tcx.hir().body(body);
1237 self.visit_body(body);
1238 self.maybe_typeck_results = old_maybe_typeck_results;
1239 }
1240
1241 fn visit_ty(&mut self, hir_ty: &'tcx hir::Ty<'tcx>) {
1242 self.span = hir_ty.span;
1243 if let Some(typeck_results) = self.maybe_typeck_results {
1244 // Types in bodies.
1245 if self.visit(typeck_results.node_type(hir_ty.hir_id)) {
1246 return;
1247 }
1248 } else {
1249 // Types in signatures.
1250 // FIXME: This is very ineffective. Ideally each HIR type should be converted
1251 // into a semantic type only once and the result should be cached somehow.
1252 if self.visit(rustc_typeck::hir_ty_to_ty(self.tcx, hir_ty)) {
1253 return;
1254 }
1255 }
1256
1257 intravisit::walk_ty(self, hir_ty);
1258 }
1259
1260 fn visit_trait_ref(&mut self, trait_ref: &'tcx hir::TraitRef<'tcx>) {
1261 self.span = trait_ref.path.span;
1262 if self.maybe_typeck_results.is_none() {
1263 // Avoid calling `hir_trait_to_predicates` in bodies, it will ICE.
1264 // The traits' privacy in bodies is already checked as a part of trait object types.
1265 let bounds = rustc_typeck::hir_trait_to_predicates(
1266 self.tcx,
1267 trait_ref,
1268 // NOTE: This isn't really right, but the actual type doesn't matter here. It's
1269 // just required by `ty::TraitRef`.
1270 self.tcx.types.never,
1271 );
1272
1273 for (trait_predicate, _, _) in bounds.trait_bounds {
1274 if self.visit_trait(trait_predicate.skip_binder()) {
1275 return;
1276 }
1277 }
1278
1279 for (poly_predicate, _) in bounds.projection_bounds {
1280 let tcx = self.tcx;
1281 if self.visit(poly_predicate.skip_binder().ty)
1282 || self.visit_trait(poly_predicate.skip_binder().projection_ty.trait_ref(tcx))
1283 {
1284 return;
1285 }
1286 }
1287 }
1288
1289 intravisit::walk_trait_ref(self, trait_ref);
1290 }
1291
1292 // Check types of expressions
1293 fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
1294 if self.check_expr_pat_type(expr.hir_id, expr.span) {
1295 // Do not check nested expressions if the error already happened.
1296 return;
1297 }
1298 match expr.kind {
1299 hir::ExprKind::Assign(_, ref rhs, _) | hir::ExprKind::Match(ref rhs, ..) => {
1300 // Do not report duplicate errors for `x = y` and `match x { ... }`.
1301 if self.check_expr_pat_type(rhs.hir_id, rhs.span) {
1302 return;
1303 }
1304 }
1305 hir::ExprKind::MethodCall(_, span, _, _) => {
1306 // Method calls have to be checked specially.
1307 self.span = span;
1308 if let Some(def_id) = self.typeck_results().type_dependent_def_id(expr.hir_id) {
1309 if self.visit(self.tcx.type_of(def_id)) {
1310 return;
1311 }
1312 } else {
1313 self.tcx
1314 .sess
1315 .delay_span_bug(expr.span, "no type-dependent def for method call");
1316 }
1317 }
1318 _ => {}
1319 }
1320
1321 intravisit::walk_expr(self, expr);
1322 }
1323
1324 // Prohibit access to associated items with insufficient nominal visibility.
1325 //
1326 // Additionally, until better reachability analysis for macros 2.0 is available,
1327 // we prohibit access to private statics from other crates, this allows to give
1328 // more code internal visibility at link time. (Access to private functions
1329 // is already prohibited by type privacy for function types.)
1330 fn visit_qpath(&mut self, qpath: &'tcx hir::QPath<'tcx>, id: hir::HirId, span: Span) {
1331 let def = match qpath {
1332 hir::QPath::Resolved(_, path) => match path.res {
1333 Res::Def(kind, def_id) => Some((kind, def_id)),
1334 _ => None,
1335 },
1336 hir::QPath::TypeRelative(..) | hir::QPath::LangItem(..) => self
1337 .maybe_typeck_results
1338 .and_then(|typeck_results| typeck_results.type_dependent_def(id)),
1339 };
1340 let def = def.filter(|(kind, _)| match kind {
1341 DefKind::AssocFn | DefKind::AssocConst | DefKind::AssocTy | DefKind::Static => true,
1342 _ => false,
1343 });
1344 if let Some((kind, def_id)) = def {
1345 let is_local_static =
1346 if let DefKind::Static = kind { def_id.is_local() } else { false };
1347 if !self.item_is_accessible(def_id) && !is_local_static {
1348 let sess = self.tcx.sess;
1349 let sm = sess.source_map();
1350 let name = match qpath {
1351 hir::QPath::Resolved(..) | hir::QPath::LangItem(..) => {
1352 sm.span_to_snippet(qpath.span()).ok()
1353 }
1354 hir::QPath::TypeRelative(_, segment) => Some(segment.ident.to_string()),
1355 };
1356 let kind = kind.descr(def_id);
1357 let msg = match name {
1358 Some(name) => format!("{} `{}` is private", kind, name),
1359 None => format!("{} is private", kind),
1360 };
1361 sess.struct_span_err(span, &msg)
1362 .span_label(span, &format!("private {}", kind))
1363 .emit();
1364 return;
1365 }
1366 }
1367
1368 intravisit::walk_qpath(self, qpath, id, span);
1369 }
1370
1371 // Check types of patterns.
1372 fn visit_pat(&mut self, pattern: &'tcx hir::Pat<'tcx>) {
1373 if self.check_expr_pat_type(pattern.hir_id, pattern.span) {
1374 // Do not check nested patterns if the error already happened.
1375 return;
1376 }
1377
1378 intravisit::walk_pat(self, pattern);
1379 }
1380
1381 fn visit_local(&mut self, local: &'tcx hir::Local<'tcx>) {
1382 if let Some(ref init) = local.init {
1383 if self.check_expr_pat_type(init.hir_id, init.span) {
1384 // Do not report duplicate errors for `let x = y`.
1385 return;
1386 }
1387 }
1388
1389 intravisit::walk_local(self, local);
1390 }
1391
1392 // Check types in item interfaces.
1393 fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
1394 let orig_current_item =
1395 mem::replace(&mut self.current_item, self.tcx.hir().local_def_id(item.hir_id));
1396 let old_maybe_typeck_results = self.maybe_typeck_results.take();
1397 intravisit::walk_item(self, item);
1398 self.maybe_typeck_results = old_maybe_typeck_results;
1399 self.current_item = orig_current_item;
1400 }
1401 }
1402
1403 impl DefIdVisitor<'tcx> for TypePrivacyVisitor<'tcx> {
1404 fn tcx(&self) -> TyCtxt<'tcx> {
1405 self.tcx
1406 }
1407 fn visit_def_id(&mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display) -> bool {
1408 self.check_def_id(def_id, kind, descr)
1409 }
1410 }
1411
1412 ///////////////////////////////////////////////////////////////////////////////
1413 /// Obsolete visitors for checking for private items in public interfaces.
1414 /// These visitors are supposed to be kept in frozen state and produce an
1415 /// "old error node set". For backward compatibility the new visitor reports
1416 /// warnings instead of hard errors when the erroneous node is not in this old set.
1417 ///////////////////////////////////////////////////////////////////////////////
1418
1419 struct ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> {
1420 tcx: TyCtxt<'tcx>,
1421 access_levels: &'a AccessLevels,
1422 in_variant: bool,
1423 // Set of errors produced by this obsolete visitor.
1424 old_error_set: HirIdSet,
1425 }
1426
1427 struct ObsoleteCheckTypeForPrivatenessVisitor<'a, 'b, 'tcx> {
1428 inner: &'a ObsoleteVisiblePrivateTypesVisitor<'b, 'tcx>,
1429 /// Whether the type refers to private types.
1430 contains_private: bool,
1431 /// Whether we've recurred at all (i.e., if we're pointing at the
1432 /// first type on which `visit_ty` was called).
1433 at_outer_type: bool,
1434 /// Whether that first type is a public path.
1435 outer_type_is_public_path: bool,
1436 }
1437
1438 impl<'a, 'tcx> ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> {
1439 fn path_is_private_type(&self, path: &hir::Path<'_>) -> bool {
1440 let did = match path.res {
1441 Res::PrimTy(..) | Res::SelfTy(..) | Res::Err => return false,
1442 res => res.def_id(),
1443 };
1444
1445 // A path can only be private if:
1446 // it's in this crate...
1447 if let Some(did) = did.as_local() {
1448 // .. and it corresponds to a private type in the AST (this returns
1449 // `None` for type parameters).
1450 match self.tcx.hir().find(self.tcx.hir().local_def_id_to_hir_id(did)) {
1451 Some(Node::Item(ref item)) => !item.vis.node.is_pub(),
1452 Some(_) | None => false,
1453 }
1454 } else {
1455 false
1456 }
1457 }
1458
1459 fn trait_is_public(&self, trait_id: hir::HirId) -> bool {
1460 // FIXME: this would preferably be using `exported_items`, but all
1461 // traits are exported currently (see `EmbargoVisitor.exported_trait`).
1462 self.access_levels.is_public(trait_id)
1463 }
1464
1465 fn check_generic_bound(&mut self, bound: &hir::GenericBound<'_>) {
1466 if let hir::GenericBound::Trait(ref trait_ref, _) = *bound {
1467 if self.path_is_private_type(&trait_ref.trait_ref.path) {
1468 self.old_error_set.insert(trait_ref.trait_ref.hir_ref_id);
1469 }
1470 }
1471 }
1472
1473 fn item_is_public(&self, id: &hir::HirId, vis: &hir::Visibility<'_>) -> bool {
1474 self.access_levels.is_reachable(*id) || vis.node.is_pub()
1475 }
1476 }
1477
1478 impl<'a, 'b, 'tcx, 'v> Visitor<'v> for ObsoleteCheckTypeForPrivatenessVisitor<'a, 'b, 'tcx> {
1479 type Map = intravisit::ErasedMap<'v>;
1480
1481 fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
1482 NestedVisitorMap::None
1483 }
1484
1485 fn visit_ty(&mut self, ty: &hir::Ty<'_>) {
1486 if let hir::TyKind::Path(hir::QPath::Resolved(_, ref path)) = ty.kind {
1487 if self.inner.path_is_private_type(path) {
1488 self.contains_private = true;
1489 // Found what we're looking for, so let's stop working.
1490 return;
1491 }
1492 }
1493 if let hir::TyKind::Path(_) = ty.kind {
1494 if self.at_outer_type {
1495 self.outer_type_is_public_path = true;
1496 }
1497 }
1498 self.at_outer_type = false;
1499 intravisit::walk_ty(self, ty)
1500 }
1501
1502 // Don't want to recurse into `[, .. expr]`.
1503 fn visit_expr(&mut self, _: &hir::Expr<'_>) {}
1504 }
1505
1506 impl<'a, 'tcx> Visitor<'tcx> for ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> {
1507 type Map = Map<'tcx>;
1508
1509 /// We want to visit items in the context of their containing
1510 /// module and so forth, so supply a crate for doing a deep walk.
1511 fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
1512 NestedVisitorMap::All(self.tcx.hir())
1513 }
1514
1515 fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
1516 match item.kind {
1517 // Contents of a private mod can be re-exported, so we need
1518 // to check internals.
1519 hir::ItemKind::Mod(_) => {}
1520
1521 // An `extern {}` doesn't introduce a new privacy
1522 // namespace (the contents have their own privacies).
1523 hir::ItemKind::ForeignMod(_) => {}
1524
1525 hir::ItemKind::Trait(.., ref bounds, _) => {
1526 if !self.trait_is_public(item.hir_id) {
1527 return;
1528 }
1529
1530 for bound in bounds.iter() {
1531 self.check_generic_bound(bound)
1532 }
1533 }
1534
1535 // Impls need some special handling to try to offer useful
1536 // error messages without (too many) false positives
1537 // (i.e., we could just return here to not check them at
1538 // all, or some worse estimation of whether an impl is
1539 // publicly visible).
1540 hir::ItemKind::Impl { generics: ref g, ref of_trait, ref self_ty, items, .. } => {
1541 // `impl [... for] Private` is never visible.
1542 let self_contains_private;
1543 // `impl [... for] Public<...>`, but not `impl [... for]
1544 // Vec<Public>` or `(Public,)`, etc.
1545 let self_is_public_path;
1546
1547 // Check the properties of the `Self` type:
1548 {
1549 let mut visitor = ObsoleteCheckTypeForPrivatenessVisitor {
1550 inner: self,
1551 contains_private: false,
1552 at_outer_type: true,
1553 outer_type_is_public_path: false,
1554 };
1555 visitor.visit_ty(&self_ty);
1556 self_contains_private = visitor.contains_private;
1557 self_is_public_path = visitor.outer_type_is_public_path;
1558 }
1559
1560 // Miscellaneous info about the impl:
1561
1562 // `true` iff this is `impl Private for ...`.
1563 let not_private_trait = of_trait.as_ref().map_or(
1564 true, // no trait counts as public trait
1565 |tr| {
1566 let did = tr.path.res.def_id();
1567
1568 if let Some(did) = did.as_local() {
1569 self.trait_is_public(self.tcx.hir().local_def_id_to_hir_id(did))
1570 } else {
1571 true // external traits must be public
1572 }
1573 },
1574 );
1575
1576 // `true` iff this is a trait impl or at least one method is public.
1577 //
1578 // `impl Public { $( fn ...() {} )* }` is not visible.
1579 //
1580 // This is required over just using the methods' privacy
1581 // directly because we might have `impl<T: Foo<Private>> ...`,
1582 // and we shouldn't warn about the generics if all the methods
1583 // are private (because `T` won't be visible externally).
1584 let trait_or_some_public_method = of_trait.is_some()
1585 || items.iter().any(|impl_item_ref| {
1586 let impl_item = self.tcx.hir().impl_item(impl_item_ref.id);
1587 match impl_item.kind {
1588 hir::ImplItemKind::Const(..) | hir::ImplItemKind::Fn(..) => {
1589 self.access_levels.is_reachable(impl_item_ref.id.hir_id)
1590 }
1591 hir::ImplItemKind::TyAlias(_) => false,
1592 }
1593 });
1594
1595 if !self_contains_private && not_private_trait && trait_or_some_public_method {
1596 intravisit::walk_generics(self, g);
1597
1598 match of_trait {
1599 None => {
1600 for impl_item_ref in items {
1601 // This is where we choose whether to walk down
1602 // further into the impl to check its items. We
1603 // should only walk into public items so that we
1604 // don't erroneously report errors for private
1605 // types in private items.
1606 let impl_item = self.tcx.hir().impl_item(impl_item_ref.id);
1607 match impl_item.kind {
1608 hir::ImplItemKind::Const(..) | hir::ImplItemKind::Fn(..)
1609 if self
1610 .item_is_public(&impl_item.hir_id, &impl_item.vis) =>
1611 {
1612 intravisit::walk_impl_item(self, impl_item)
1613 }
1614 hir::ImplItemKind::TyAlias(..) => {
1615 intravisit::walk_impl_item(self, impl_item)
1616 }
1617 _ => {}
1618 }
1619 }
1620 }
1621 Some(tr) => {
1622 // Any private types in a trait impl fall into three
1623 // categories.
1624 // 1. mentioned in the trait definition
1625 // 2. mentioned in the type params/generics
1626 // 3. mentioned in the associated types of the impl
1627 //
1628 // Those in 1. can only occur if the trait is in
1629 // this crate and will've been warned about on the
1630 // trait definition (there's no need to warn twice
1631 // so we don't check the methods).
1632 //
1633 // Those in 2. are warned via walk_generics and this
1634 // call here.
1635 intravisit::walk_path(self, &tr.path);
1636
1637 // Those in 3. are warned with this call.
1638 for impl_item_ref in items {
1639 let impl_item = self.tcx.hir().impl_item(impl_item_ref.id);
1640 if let hir::ImplItemKind::TyAlias(ref ty) = impl_item.kind {
1641 self.visit_ty(ty);
1642 }
1643 }
1644 }
1645 }
1646 } else if of_trait.is_none() && self_is_public_path {
1647 // `impl Public<Private> { ... }`. Any public static
1648 // methods will be visible as `Public::foo`.
1649 let mut found_pub_static = false;
1650 for impl_item_ref in items {
1651 if self.item_is_public(&impl_item_ref.id.hir_id, &impl_item_ref.vis) {
1652 let impl_item = self.tcx.hir().impl_item(impl_item_ref.id);
1653 match impl_item_ref.kind {
1654 AssocItemKind::Const => {
1655 found_pub_static = true;
1656 intravisit::walk_impl_item(self, impl_item);
1657 }
1658 AssocItemKind::Fn { has_self: false } => {
1659 found_pub_static = true;
1660 intravisit::walk_impl_item(self, impl_item);
1661 }
1662 _ => {}
1663 }
1664 }
1665 }
1666 if found_pub_static {
1667 intravisit::walk_generics(self, g)
1668 }
1669 }
1670 return;
1671 }
1672
1673 // `type ... = ...;` can contain private types, because
1674 // we're introducing a new name.
1675 hir::ItemKind::TyAlias(..) => return,
1676
1677 // Not at all public, so we don't care.
1678 _ if !self.item_is_public(&item.hir_id, &item.vis) => {
1679 return;
1680 }
1681
1682 _ => {}
1683 }
1684
1685 // We've carefully constructed it so that if we're here, then
1686 // any `visit_ty`'s will be called on things that are in
1687 // public signatures, i.e., things that we're interested in for
1688 // this visitor.
1689 intravisit::walk_item(self, item);
1690 }
1691
1692 fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
1693 for param in generics.params {
1694 for bound in param.bounds {
1695 self.check_generic_bound(bound);
1696 }
1697 }
1698 for predicate in generics.where_clause.predicates {
1699 match predicate {
1700 hir::WherePredicate::BoundPredicate(bound_pred) => {
1701 for bound in bound_pred.bounds.iter() {
1702 self.check_generic_bound(bound)
1703 }
1704 }
1705 hir::WherePredicate::RegionPredicate(_) => {}
1706 hir::WherePredicate::EqPredicate(eq_pred) => {
1707 self.visit_ty(&eq_pred.rhs_ty);
1708 }
1709 }
1710 }
1711 }
1712
1713 fn visit_foreign_item(&mut self, item: &'tcx hir::ForeignItem<'tcx>) {
1714 if self.access_levels.is_reachable(item.hir_id) {
1715 intravisit::walk_foreign_item(self, item)
1716 }
1717 }
1718
1719 fn visit_ty(&mut self, t: &'tcx hir::Ty<'tcx>) {
1720 if let hir::TyKind::Path(hir::QPath::Resolved(_, ref path)) = t.kind {
1721 if self.path_is_private_type(path) {
1722 self.old_error_set.insert(t.hir_id);
1723 }
1724 }
1725 intravisit::walk_ty(self, t)
1726 }
1727
1728 fn visit_variant(
1729 &mut self,
1730 v: &'tcx hir::Variant<'tcx>,
1731 g: &'tcx hir::Generics<'tcx>,
1732 item_id: hir::HirId,
1733 ) {
1734 if self.access_levels.is_reachable(v.id) {
1735 self.in_variant = true;
1736 intravisit::walk_variant(self, v, g, item_id);
1737 self.in_variant = false;
1738 }
1739 }
1740
1741 fn visit_struct_field(&mut self, s: &'tcx hir::StructField<'tcx>) {
1742 if s.vis.node.is_pub() || self.in_variant {
1743 intravisit::walk_struct_field(self, s);
1744 }
1745 }
1746
1747 // We don't need to introspect into these at all: an
1748 // expression/block context can't possibly contain exported things.
1749 // (Making them no-ops stops us from traversing the whole AST without
1750 // having to be super careful about our `walk_...` calls above.)
1751 fn visit_block(&mut self, _: &'tcx hir::Block<'tcx>) {}
1752 fn visit_expr(&mut self, _: &'tcx hir::Expr<'tcx>) {}
1753 }
1754
1755 ///////////////////////////////////////////////////////////////////////////////
1756 /// SearchInterfaceForPrivateItemsVisitor traverses an item's interface and
1757 /// finds any private components in it.
1758 /// PrivateItemsInPublicInterfacesVisitor ensures there are no private types
1759 /// and traits in public interfaces.
1760 ///////////////////////////////////////////////////////////////////////////////
1761
1762 struct SearchInterfaceForPrivateItemsVisitor<'tcx> {
1763 tcx: TyCtxt<'tcx>,
1764 item_id: hir::HirId,
1765 item_def_id: DefId,
1766 span: Span,
1767 /// The visitor checks that each component type is at least this visible.
1768 required_visibility: ty::Visibility,
1769 has_pub_restricted: bool,
1770 has_old_errors: bool,
1771 in_assoc_ty: bool,
1772 }
1773
1774 impl SearchInterfaceForPrivateItemsVisitor<'tcx> {
1775 fn generics(&mut self) -> &mut Self {
1776 for param in &self.tcx.generics_of(self.item_def_id).params {
1777 match param.kind {
1778 GenericParamDefKind::Lifetime => {}
1779 GenericParamDefKind::Type { has_default, .. } => {
1780 if has_default {
1781 self.visit(self.tcx.type_of(param.def_id));
1782 }
1783 }
1784 GenericParamDefKind::Const => {
1785 self.visit(self.tcx.type_of(param.def_id));
1786 }
1787 }
1788 }
1789 self
1790 }
1791
1792 fn predicates(&mut self) -> &mut Self {
1793 // N.B., we use `explicit_predicates_of` and not `predicates_of`
1794 // because we don't want to report privacy errors due to where
1795 // clauses that the compiler inferred. We only want to
1796 // consider the ones that the user wrote. This is important
1797 // for the inferred outlives rules; see
1798 // `src/test/ui/rfc-2093-infer-outlives/privacy.rs`.
1799 self.visit_predicates(self.tcx.explicit_predicates_of(self.item_def_id));
1800 self
1801 }
1802
1803 fn ty(&mut self) -> &mut Self {
1804 self.visit(self.tcx.type_of(self.item_def_id));
1805 self
1806 }
1807
1808 fn check_def_id(&mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display) -> bool {
1809 if self.leaks_private_dep(def_id) {
1810 self.tcx.struct_span_lint_hir(
1811 lint::builtin::EXPORTED_PRIVATE_DEPENDENCIES,
1812 self.item_id,
1813 self.span,
1814 |lint| {
1815 lint.build(&format!(
1816 "{} `{}` from private dependency '{}' in public \
1817 interface",
1818 kind,
1819 descr,
1820 self.tcx.crate_name(def_id.krate)
1821 ))
1822 .emit()
1823 },
1824 );
1825 }
1826
1827 let hir_id = match def_id.as_local() {
1828 Some(def_id) => self.tcx.hir().local_def_id_to_hir_id(def_id),
1829 None => return false,
1830 };
1831
1832 let (vis, vis_span, vis_descr) = def_id_visibility(self.tcx, def_id);
1833 if !vis.is_at_least(self.required_visibility, self.tcx) {
1834 let make_msg = || format!("{} {} `{}` in public interface", vis_descr, kind, descr);
1835 if self.has_pub_restricted || self.has_old_errors || self.in_assoc_ty {
1836 let mut err = if kind == "trait" {
1837 struct_span_err!(self.tcx.sess, self.span, E0445, "{}", make_msg())
1838 } else {
1839 struct_span_err!(self.tcx.sess, self.span, E0446, "{}", make_msg())
1840 };
1841 err.span_label(self.span, format!("can't leak {} {}", vis_descr, kind));
1842 err.span_label(vis_span, format!("`{}` declared as {}", descr, vis_descr));
1843 err.emit();
1844 } else {
1845 let err_code = if kind == "trait" { "E0445" } else { "E0446" };
1846 self.tcx.struct_span_lint_hir(
1847 lint::builtin::PRIVATE_IN_PUBLIC,
1848 hir_id,
1849 self.span,
1850 |lint| lint.build(&format!("{} (error {})", make_msg(), err_code)).emit(),
1851 );
1852 }
1853 }
1854
1855 false
1856 }
1857
1858 /// An item is 'leaked' from a private dependency if all
1859 /// of the following are true:
1860 /// 1. It's contained within a public type
1861 /// 2. It comes from a private crate
1862 fn leaks_private_dep(&self, item_id: DefId) -> bool {
1863 let ret = self.required_visibility == ty::Visibility::Public
1864 && self.tcx.is_private_dep(item_id.krate);
1865
1866 tracing::debug!("leaks_private_dep(item_id={:?})={}", item_id, ret);
1867 ret
1868 }
1869 }
1870
1871 impl DefIdVisitor<'tcx> for SearchInterfaceForPrivateItemsVisitor<'tcx> {
1872 fn tcx(&self) -> TyCtxt<'tcx> {
1873 self.tcx
1874 }
1875 fn visit_def_id(&mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display) -> bool {
1876 self.check_def_id(def_id, kind, descr)
1877 }
1878 }
1879
1880 struct PrivateItemsInPublicInterfacesVisitor<'a, 'tcx> {
1881 tcx: TyCtxt<'tcx>,
1882 has_pub_restricted: bool,
1883 old_error_set: &'a HirIdSet,
1884 }
1885
1886 impl<'a, 'tcx> PrivateItemsInPublicInterfacesVisitor<'a, 'tcx> {
1887 fn check(
1888 &self,
1889 item_id: hir::HirId,
1890 required_visibility: ty::Visibility,
1891 ) -> SearchInterfaceForPrivateItemsVisitor<'tcx> {
1892 let mut has_old_errors = false;
1893
1894 // Slow path taken only if there any errors in the crate.
1895 for &id in self.old_error_set {
1896 // Walk up the nodes until we find `item_id` (or we hit a root).
1897 let mut id = id;
1898 loop {
1899 if id == item_id {
1900 has_old_errors = true;
1901 break;
1902 }
1903 let parent = self.tcx.hir().get_parent_node(id);
1904 if parent == id {
1905 break;
1906 }
1907 id = parent;
1908 }
1909
1910 if has_old_errors {
1911 break;
1912 }
1913 }
1914
1915 SearchInterfaceForPrivateItemsVisitor {
1916 tcx: self.tcx,
1917 item_id,
1918 item_def_id: self.tcx.hir().local_def_id(item_id).to_def_id(),
1919 span: self.tcx.hir().span(item_id),
1920 required_visibility,
1921 has_pub_restricted: self.has_pub_restricted,
1922 has_old_errors,
1923 in_assoc_ty: false,
1924 }
1925 }
1926
1927 fn check_assoc_item(
1928 &self,
1929 hir_id: hir::HirId,
1930 assoc_item_kind: AssocItemKind,
1931 defaultness: hir::Defaultness,
1932 vis: ty::Visibility,
1933 ) {
1934 let mut check = self.check(hir_id, vis);
1935
1936 let (check_ty, is_assoc_ty) = match assoc_item_kind {
1937 AssocItemKind::Const | AssocItemKind::Fn { .. } => (true, false),
1938 AssocItemKind::Type => (defaultness.has_value(), true),
1939 };
1940 check.in_assoc_ty = is_assoc_ty;
1941 check.generics().predicates();
1942 if check_ty {
1943 check.ty();
1944 }
1945 }
1946 }
1947
1948 impl<'a, 'tcx> Visitor<'tcx> for PrivateItemsInPublicInterfacesVisitor<'a, 'tcx> {
1949 type Map = Map<'tcx>;
1950
1951 fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
1952 NestedVisitorMap::OnlyBodies(self.tcx.hir())
1953 }
1954
1955 fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
1956 let tcx = self.tcx;
1957 let item_visibility = ty::Visibility::from_hir(&item.vis, item.hir_id, tcx);
1958
1959 match item.kind {
1960 // Crates are always public.
1961 hir::ItemKind::ExternCrate(..) => {}
1962 // All nested items are checked by `visit_item`.
1963 hir::ItemKind::Mod(..) => {}
1964 // Checked in resolve.
1965 hir::ItemKind::Use(..) => {}
1966 // No subitems.
1967 hir::ItemKind::GlobalAsm(..) => {}
1968 // Subitems of these items have inherited publicity.
1969 hir::ItemKind::Const(..)
1970 | hir::ItemKind::Static(..)
1971 | hir::ItemKind::Fn(..)
1972 | hir::ItemKind::TyAlias(..) => {
1973 self.check(item.hir_id, item_visibility).generics().predicates().ty();
1974 }
1975 hir::ItemKind::OpaqueTy(..) => {
1976 // `ty()` for opaque types is the underlying type,
1977 // it's not a part of interface, so we skip it.
1978 self.check(item.hir_id, item_visibility).generics().predicates();
1979 }
1980 hir::ItemKind::Trait(.., trait_item_refs) => {
1981 self.check(item.hir_id, item_visibility).generics().predicates();
1982
1983 for trait_item_ref in trait_item_refs {
1984 self.check_assoc_item(
1985 trait_item_ref.id.hir_id,
1986 trait_item_ref.kind,
1987 trait_item_ref.defaultness,
1988 item_visibility,
1989 );
1990 }
1991 }
1992 hir::ItemKind::TraitAlias(..) => {
1993 self.check(item.hir_id, item_visibility).generics().predicates();
1994 }
1995 hir::ItemKind::Enum(ref def, _) => {
1996 self.check(item.hir_id, item_visibility).generics().predicates();
1997
1998 for variant in def.variants {
1999 for field in variant.data.fields() {
2000 self.check(field.hir_id, item_visibility).ty();
2001 }
2002 }
2003 }
2004 // Subitems of foreign modules have their own publicity.
2005 hir::ItemKind::ForeignMod(ref foreign_mod) => {
2006 for foreign_item in foreign_mod.items {
2007 let vis = ty::Visibility::from_hir(&foreign_item.vis, item.hir_id, tcx);
2008 self.check(foreign_item.hir_id, vis).generics().predicates().ty();
2009 }
2010 }
2011 // Subitems of structs and unions have their own publicity.
2012 hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
2013 self.check(item.hir_id, item_visibility).generics().predicates();
2014
2015 for field in struct_def.fields() {
2016 let field_visibility = ty::Visibility::from_hir(&field.vis, item.hir_id, tcx);
2017 self.check(field.hir_id, min(item_visibility, field_visibility, tcx)).ty();
2018 }
2019 }
2020 // An inherent impl is public when its type is public
2021 // Subitems of inherent impls have their own publicity.
2022 // A trait impl is public when both its type and its trait are public
2023 // Subitems of trait impls have inherited publicity.
2024 hir::ItemKind::Impl { ref of_trait, items, .. } => {
2025 let impl_vis = ty::Visibility::of_impl(item.hir_id, tcx, &Default::default());
2026 self.check(item.hir_id, impl_vis).generics().predicates();
2027 for impl_item_ref in items {
2028 let impl_item = tcx.hir().impl_item(impl_item_ref.id);
2029 let impl_item_vis = if of_trait.is_none() {
2030 min(
2031 ty::Visibility::from_hir(&impl_item.vis, item.hir_id, tcx),
2032 impl_vis,
2033 tcx,
2034 )
2035 } else {
2036 impl_vis
2037 };
2038 self.check_assoc_item(
2039 impl_item_ref.id.hir_id,
2040 impl_item_ref.kind,
2041 impl_item_ref.defaultness,
2042 impl_item_vis,
2043 );
2044 }
2045 }
2046 }
2047 }
2048 }
2049
2050 pub fn provide(providers: &mut Providers) {
2051 *providers = Providers {
2052 privacy_access_levels,
2053 check_private_in_public,
2054 check_mod_privacy,
2055 ..*providers
2056 };
2057 }
2058
2059 fn check_mod_privacy(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
2060 // Check privacy of names not checked in previous compilation stages.
2061 let mut visitor = NamePrivacyVisitor { tcx, maybe_typeck_results: None, current_item: None };
2062 let (module, span, hir_id) = tcx.hir().get_module(module_def_id);
2063
2064 intravisit::walk_mod(&mut visitor, module, hir_id);
2065
2066 // Check privacy of explicitly written types and traits as well as
2067 // inferred types of expressions and patterns.
2068 let mut visitor =
2069 TypePrivacyVisitor { tcx, maybe_typeck_results: None, current_item: module_def_id, span };
2070 intravisit::walk_mod(&mut visitor, module, hir_id);
2071 }
2072
2073 fn privacy_access_levels(tcx: TyCtxt<'_>, krate: CrateNum) -> &AccessLevels {
2074 assert_eq!(krate, LOCAL_CRATE);
2075
2076 // Build up a set of all exported items in the AST. This is a set of all
2077 // items which are reachable from external crates based on visibility.
2078 let mut visitor = EmbargoVisitor {
2079 tcx,
2080 access_levels: Default::default(),
2081 macro_reachable: Default::default(),
2082 prev_level: Some(AccessLevel::Public),
2083 changed: false,
2084 };
2085 loop {
2086 intravisit::walk_crate(&mut visitor, tcx.hir().krate());
2087 if visitor.changed {
2088 visitor.changed = false;
2089 } else {
2090 break;
2091 }
2092 }
2093 visitor.update(hir::CRATE_HIR_ID, Some(AccessLevel::Public));
2094
2095 tcx.arena.alloc(visitor.access_levels)
2096 }
2097
2098 fn check_private_in_public(tcx: TyCtxt<'_>, krate: CrateNum) {
2099 assert_eq!(krate, LOCAL_CRATE);
2100
2101 let access_levels = tcx.privacy_access_levels(LOCAL_CRATE);
2102
2103 let krate = tcx.hir().krate();
2104
2105 let mut visitor = ObsoleteVisiblePrivateTypesVisitor {
2106 tcx,
2107 access_levels: &access_levels,
2108 in_variant: false,
2109 old_error_set: Default::default(),
2110 };
2111 intravisit::walk_crate(&mut visitor, krate);
2112
2113 let has_pub_restricted = {
2114 let mut pub_restricted_visitor = PubRestrictedVisitor { tcx, has_pub_restricted: false };
2115 intravisit::walk_crate(&mut pub_restricted_visitor, krate);
2116 pub_restricted_visitor.has_pub_restricted
2117 };
2118
2119 // Check for private types and traits in public interfaces.
2120 let mut visitor = PrivateItemsInPublicInterfacesVisitor {
2121 tcx,
2122 has_pub_restricted,
2123 old_error_set: &visitor.old_error_set,
2124 };
2125 krate.visit_all_item_likes(&mut DeepVisitor::new(&mut visitor));
2126 }