]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_query_system/src/dep_graph/graph.rs
New upstream version 1.68.2+dfsg1
[rustc.git] / compiler / rustc_query_system / src / dep_graph / graph.rs
1 use parking_lot::Mutex;
2 use rustc_data_structures::fingerprint::Fingerprint;
3 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
4 use rustc_data_structures::profiling::{EventId, QueryInvocationId, SelfProfilerRef};
5 use rustc_data_structures::sharded::{self, Sharded};
6 use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
7 use rustc_data_structures::steal::Steal;
8 use rustc_data_structures::sync::{AtomicU32, AtomicU64, Lock, Lrc, Ordering};
9 use rustc_index::vec::IndexVec;
10 use rustc_serialize::opaque::{FileEncodeResult, FileEncoder};
11 use smallvec::{smallvec, SmallVec};
12 use std::assert_matches::assert_matches;
13 use std::collections::hash_map::Entry;
14 use std::fmt::Debug;
15 use std::hash::Hash;
16 use std::marker::PhantomData;
17 use std::sync::atomic::Ordering::Relaxed;
18
19 use super::query::DepGraphQuery;
20 use super::serialized::{GraphEncoder, SerializedDepGraph, SerializedDepNodeIndex};
21 use super::{DepContext, DepKind, DepNode, HasDepContext, WorkProductId};
22 use crate::ich::StableHashingContext;
23 use crate::query::{QueryContext, QuerySideEffects};
24
25 #[cfg(debug_assertions)]
26 use {super::debug::EdgeFilter, std::env};
27
28 #[derive(Clone)]
29 pub struct DepGraph<K: DepKind> {
30 data: Option<Lrc<DepGraphData<K>>>,
31
32 /// This field is used for assigning DepNodeIndices when running in
33 /// non-incremental mode. Even in non-incremental mode we make sure that
34 /// each task has a `DepNodeIndex` that uniquely identifies it. This unique
35 /// ID is used for self-profiling.
36 virtual_dep_node_index: Lrc<AtomicU32>,
37 }
38
39 rustc_index::newtype_index! {
40 pub struct DepNodeIndex {}
41 }
42
43 impl DepNodeIndex {
44 pub const INVALID: DepNodeIndex = DepNodeIndex::MAX;
45 pub const SINGLETON_DEPENDENCYLESS_ANON_NODE: DepNodeIndex = DepNodeIndex::from_u32(0);
46 pub const FOREVER_RED_NODE: DepNodeIndex = DepNodeIndex::from_u32(1);
47 }
48
49 impl From<DepNodeIndex> for QueryInvocationId {
50 #[inline]
51 fn from(dep_node_index: DepNodeIndex) -> Self {
52 QueryInvocationId(dep_node_index.as_u32())
53 }
54 }
55
56 #[derive(PartialEq)]
57 pub enum DepNodeColor {
58 Red,
59 Green(DepNodeIndex),
60 }
61
62 impl DepNodeColor {
63 #[inline]
64 pub fn is_green(self) -> bool {
65 match self {
66 DepNodeColor::Red => false,
67 DepNodeColor::Green(_) => true,
68 }
69 }
70 }
71
72 struct DepGraphData<K: DepKind> {
73 /// The new encoding of the dependency graph, optimized for red/green
74 /// tracking. The `current` field is the dependency graph of only the
75 /// current compilation session: We don't merge the previous dep-graph into
76 /// current one anymore, but we do reference shared data to save space.
77 current: CurrentDepGraph<K>,
78
79 /// The dep-graph from the previous compilation session. It contains all
80 /// nodes and edges as well as all fingerprints of nodes that have them.
81 previous: SerializedDepGraph<K>,
82
83 colors: DepNodeColorMap,
84
85 processed_side_effects: Mutex<FxHashSet<DepNodeIndex>>,
86
87 /// When we load, there may be `.o` files, cached MIR, or other such
88 /// things available to us. If we find that they are not dirty, we
89 /// load the path to the file storing those work-products here into
90 /// this map. We can later look for and extract that data.
91 previous_work_products: FxHashMap<WorkProductId, WorkProduct>,
92
93 dep_node_debug: Lock<FxHashMap<DepNode<K>, String>>,
94
95 /// Used by incremental compilation tests to assert that
96 /// a particular query result was decoded from disk
97 /// (not just marked green)
98 debug_loaded_from_disk: Lock<FxHashSet<DepNode<K>>>,
99 }
100
101 pub fn hash_result<R>(hcx: &mut StableHashingContext<'_>, result: &R) -> Fingerprint
102 where
103 R: for<'a> HashStable<StableHashingContext<'a>>,
104 {
105 let mut stable_hasher = StableHasher::new();
106 result.hash_stable(hcx, &mut stable_hasher);
107 stable_hasher.finish()
108 }
109
110 impl<K: DepKind> DepGraph<K> {
111 pub fn new(
112 profiler: &SelfProfilerRef,
113 prev_graph: SerializedDepGraph<K>,
114 prev_work_products: FxHashMap<WorkProductId, WorkProduct>,
115 encoder: FileEncoder,
116 record_graph: bool,
117 record_stats: bool,
118 ) -> DepGraph<K> {
119 let prev_graph_node_count = prev_graph.node_count();
120
121 let current = CurrentDepGraph::new(
122 profiler,
123 prev_graph_node_count,
124 encoder,
125 record_graph,
126 record_stats,
127 );
128
129 let colors = DepNodeColorMap::new(prev_graph_node_count);
130
131 // Instantiate a dependy-less node only once for anonymous queries.
132 let _green_node_index = current.intern_new_node(
133 profiler,
134 DepNode { kind: DepKind::NULL, hash: current.anon_id_seed.into() },
135 smallvec![],
136 Fingerprint::ZERO,
137 );
138 assert_eq!(_green_node_index, DepNodeIndex::SINGLETON_DEPENDENCYLESS_ANON_NODE);
139
140 // Instantiate a dependy-less red node only once for anonymous queries.
141 let (_red_node_index, _prev_and_index) = current.intern_node(
142 profiler,
143 &prev_graph,
144 DepNode { kind: DepKind::RED, hash: Fingerprint::ZERO.into() },
145 smallvec![],
146 None,
147 false,
148 );
149 assert_eq!(_red_node_index, DepNodeIndex::FOREVER_RED_NODE);
150 assert!(matches!(_prev_and_index, None | Some((_, DepNodeColor::Red))));
151
152 DepGraph {
153 data: Some(Lrc::new(DepGraphData {
154 previous_work_products: prev_work_products,
155 dep_node_debug: Default::default(),
156 current,
157 processed_side_effects: Default::default(),
158 previous: prev_graph,
159 colors,
160 debug_loaded_from_disk: Default::default(),
161 })),
162 virtual_dep_node_index: Lrc::new(AtomicU32::new(0)),
163 }
164 }
165
166 pub fn new_disabled() -> DepGraph<K> {
167 DepGraph { data: None, virtual_dep_node_index: Lrc::new(AtomicU32::new(0)) }
168 }
169
170 /// Returns `true` if we are actually building the full dep-graph, and `false` otherwise.
171 #[inline]
172 pub fn is_fully_enabled(&self) -> bool {
173 self.data.is_some()
174 }
175
176 pub fn with_query(&self, f: impl Fn(&DepGraphQuery<K>)) {
177 if let Some(data) = &self.data {
178 data.current.encoder.borrow().with_query(f)
179 }
180 }
181
182 pub fn assert_ignored(&self) {
183 if let Some(..) = self.data {
184 K::read_deps(|task_deps| {
185 assert_matches!(
186 task_deps,
187 TaskDepsRef::Ignore,
188 "expected no task dependency tracking"
189 );
190 })
191 }
192 }
193
194 pub fn with_ignore<OP, R>(&self, op: OP) -> R
195 where
196 OP: FnOnce() -> R,
197 {
198 K::with_deps(TaskDepsRef::Ignore, op)
199 }
200
201 /// Used to wrap the deserialization of a query result from disk,
202 /// This method enforces that no new `DepNodes` are created during
203 /// query result deserialization.
204 ///
205 /// Enforcing this makes the query dep graph simpler - all nodes
206 /// must be created during the query execution, and should be
207 /// created from inside the 'body' of a query (the implementation
208 /// provided by a particular compiler crate).
209 ///
210 /// Consider the case of three queries `A`, `B`, and `C`, where
211 /// `A` invokes `B` and `B` invokes `C`:
212 ///
213 /// `A -> B -> C`
214 ///
215 /// Suppose that decoding the result of query `B` required re-computing
216 /// the query `C`. If we did not create a fresh `TaskDeps` when
217 /// decoding `B`, we would still be using the `TaskDeps` for query `A`
218 /// (if we needed to re-execute `A`). This would cause us to create
219 /// a new edge `A -> C`. If this edge did not previously
220 /// exist in the `DepGraph`, then we could end up with a different
221 /// `DepGraph` at the end of compilation, even if there were no
222 /// meaningful changes to the overall program (e.g. a newline was added).
223 /// In addition, this edge might cause a subsequent compilation run
224 /// to try to force `C` before marking other necessary nodes green. If
225 /// `C` did not exist in the new compilation session, then we could
226 /// get an ICE. Normally, we would have tried (and failed) to mark
227 /// some other query green (e.g. `item_children`) which was used
228 /// to obtain `C`, which would prevent us from ever trying to force
229 /// a non-existent `D`.
230 ///
231 /// It might be possible to enforce that all `DepNode`s read during
232 /// deserialization already exist in the previous `DepGraph`. In
233 /// the above example, we would invoke `D` during the deserialization
234 /// of `B`. Since we correctly create a new `TaskDeps` from the decoding
235 /// of `B`, this would result in an edge `B -> D`. If that edge already
236 /// existed (with the same `DepPathHash`es), then it should be correct
237 /// to allow the invocation of the query to proceed during deserialization
238 /// of a query result. We would merely assert that the dep-graph fragment
239 /// that would have been added by invoking `C` while decoding `B`
240 /// is equivalent to the dep-graph fragment that we already instantiated for B
241 /// (at the point where we successfully marked B as green).
242 ///
243 /// However, this would require additional complexity
244 /// in the query infrastructure, and is not currently needed by the
245 /// decoding of any query results. Should the need arise in the future,
246 /// we should consider extending the query system with this functionality.
247 pub fn with_query_deserialization<OP, R>(&self, op: OP) -> R
248 where
249 OP: FnOnce() -> R,
250 {
251 K::with_deps(TaskDepsRef::Forbid, op)
252 }
253
254 /// Starts a new dep-graph task. Dep-graph tasks are specified
255 /// using a free function (`task`) and **not** a closure -- this
256 /// is intentional because we want to exercise tight control over
257 /// what state they have access to. In particular, we want to
258 /// prevent implicit 'leaks' of tracked state into the task (which
259 /// could then be read without generating correct edges in the
260 /// dep-graph -- see the [rustc dev guide] for more details on
261 /// the dep-graph). To this end, the task function gets exactly two
262 /// pieces of state: the context `cx` and an argument `arg`. Both
263 /// of these bits of state must be of some type that implements
264 /// `DepGraphSafe` and hence does not leak.
265 ///
266 /// The choice of two arguments is not fundamental. One argument
267 /// would work just as well, since multiple values can be
268 /// collected using tuples. However, using two arguments works out
269 /// to be quite convenient, since it is common to need a context
270 /// (`cx`) and some argument (e.g., a `DefId` identifying what
271 /// item to process).
272 ///
273 /// For cases where you need some other number of arguments:
274 ///
275 /// - If you only need one argument, just use `()` for the `arg`
276 /// parameter.
277 /// - If you need 3+ arguments, use a tuple for the
278 /// `arg` parameter.
279 ///
280 /// [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/incremental-compilation.html
281 pub fn with_task<Ctxt: HasDepContext<DepKind = K>, A: Debug, R>(
282 &self,
283 key: DepNode<K>,
284 cx: Ctxt,
285 arg: A,
286 task: fn(Ctxt, A) -> R,
287 hash_result: Option<fn(&mut StableHashingContext<'_>, &R) -> Fingerprint>,
288 ) -> (R, DepNodeIndex) {
289 if self.is_fully_enabled() {
290 self.with_task_impl(key, cx, arg, task, hash_result)
291 } else {
292 // Incremental compilation is turned off. We just execute the task
293 // without tracking. We still provide a dep-node index that uniquely
294 // identifies the task so that we have a cheap way of referring to
295 // the query for self-profiling.
296 (task(cx, arg), self.next_virtual_depnode_index())
297 }
298 }
299
300 fn with_task_impl<Ctxt: HasDepContext<DepKind = K>, A: Debug, R>(
301 &self,
302 key: DepNode<K>,
303 cx: Ctxt,
304 arg: A,
305 task: fn(Ctxt, A) -> R,
306 hash_result: Option<fn(&mut StableHashingContext<'_>, &R) -> Fingerprint>,
307 ) -> (R, DepNodeIndex) {
308 // This function is only called when the graph is enabled.
309 let data = self.data.as_ref().unwrap();
310
311 // If the following assertion triggers, it can have two reasons:
312 // 1. Something is wrong with DepNode creation, either here or
313 // in `DepGraph::try_mark_green()`.
314 // 2. Two distinct query keys get mapped to the same `DepNode`
315 // (see for example #48923).
316 assert!(
317 !self.dep_node_exists(&key),
318 "forcing query with already existing `DepNode`\n\
319 - query-key: {arg:?}\n\
320 - dep-node: {key:?}"
321 );
322
323 let task_deps = if cx.dep_context().is_eval_always(key.kind) {
324 None
325 } else {
326 Some(Lock::new(TaskDeps {
327 #[cfg(debug_assertions)]
328 node: Some(key),
329 reads: SmallVec::new(),
330 read_set: Default::default(),
331 phantom_data: PhantomData,
332 }))
333 };
334
335 let task_deps_ref = match &task_deps {
336 Some(deps) => TaskDepsRef::Allow(deps),
337 None => TaskDepsRef::Ignore,
338 };
339
340 let result = K::with_deps(task_deps_ref, || task(cx, arg));
341 let edges = task_deps.map_or_else(|| smallvec![], |lock| lock.into_inner().reads);
342
343 let dcx = cx.dep_context();
344 let hashing_timer = dcx.profiler().incr_result_hashing();
345 let current_fingerprint =
346 hash_result.map(|f| dcx.with_stable_hashing_context(|mut hcx| f(&mut hcx, &result)));
347
348 let print_status = cfg!(debug_assertions) && dcx.sess().opts.unstable_opts.dep_tasks;
349
350 // Intern the new `DepNode`.
351 let (dep_node_index, prev_and_color) = data.current.intern_node(
352 dcx.profiler(),
353 &data.previous,
354 key,
355 edges,
356 current_fingerprint,
357 print_status,
358 );
359
360 hashing_timer.finish_with_query_invocation_id(dep_node_index.into());
361
362 if let Some((prev_index, color)) = prev_and_color {
363 debug_assert!(
364 data.colors.get(prev_index).is_none(),
365 "DepGraph::with_task() - Duplicate DepNodeColor \
366 insertion for {key:?}"
367 );
368
369 data.colors.insert(prev_index, color);
370 }
371
372 (result, dep_node_index)
373 }
374
375 /// Executes something within an "anonymous" task, that is, a task the
376 /// `DepNode` of which is determined by the list of inputs it read from.
377 pub fn with_anon_task<Tcx: DepContext<DepKind = K>, OP, R>(
378 &self,
379 cx: Tcx,
380 dep_kind: K,
381 op: OP,
382 ) -> (R, DepNodeIndex)
383 where
384 OP: FnOnce() -> R,
385 {
386 debug_assert!(!cx.is_eval_always(dep_kind));
387
388 if let Some(ref data) = self.data {
389 let task_deps = Lock::new(TaskDeps::default());
390 let result = K::with_deps(TaskDepsRef::Allow(&task_deps), op);
391 let task_deps = task_deps.into_inner();
392 let task_deps = task_deps.reads;
393
394 let dep_node_index = match task_deps.len() {
395 0 => {
396 // Because the dep-node id of anon nodes is computed from the sets of its
397 // dependencies we already know what the ID of this dependency-less node is
398 // going to be (i.e. equal to the precomputed
399 // `SINGLETON_DEPENDENCYLESS_ANON_NODE`). As a consequence we can skip creating
400 // a `StableHasher` and sending the node through interning.
401 DepNodeIndex::SINGLETON_DEPENDENCYLESS_ANON_NODE
402 }
403 1 => {
404 // When there is only one dependency, don't bother creating a node.
405 task_deps[0]
406 }
407 _ => {
408 // The dep node indices are hashed here instead of hashing the dep nodes of the
409 // dependencies. These indices may refer to different nodes per session, but this isn't
410 // a problem here because we that ensure the final dep node hash is per session only by
411 // combining it with the per session random number `anon_id_seed`. This hash only need
412 // to map the dependencies to a single value on a per session basis.
413 let mut hasher = StableHasher::new();
414 task_deps.hash(&mut hasher);
415
416 let target_dep_node = DepNode {
417 kind: dep_kind,
418 // Fingerprint::combine() is faster than sending Fingerprint
419 // through the StableHasher (at least as long as StableHasher
420 // is so slow).
421 hash: data.current.anon_id_seed.combine(hasher.finish()).into(),
422 };
423
424 data.current.intern_new_node(
425 cx.profiler(),
426 target_dep_node,
427 task_deps,
428 Fingerprint::ZERO,
429 )
430 }
431 };
432
433 (result, dep_node_index)
434 } else {
435 (op(), self.next_virtual_depnode_index())
436 }
437 }
438
439 #[inline]
440 pub fn read_index(&self, dep_node_index: DepNodeIndex) {
441 if let Some(ref data) = self.data {
442 K::read_deps(|task_deps| {
443 let mut task_deps = match task_deps {
444 TaskDepsRef::Allow(deps) => deps.lock(),
445 TaskDepsRef::Ignore => return,
446 TaskDepsRef::Forbid => {
447 panic!("Illegal read of: {dep_node_index:?}")
448 }
449 };
450 let task_deps = &mut *task_deps;
451
452 if cfg!(debug_assertions) {
453 data.current.total_read_count.fetch_add(1, Relaxed);
454 }
455
456 // As long as we only have a low number of reads we can avoid doing a hash
457 // insert and potentially allocating/reallocating the hashmap
458 let new_read = if task_deps.reads.len() < TASK_DEPS_READS_CAP {
459 task_deps.reads.iter().all(|other| *other != dep_node_index)
460 } else {
461 task_deps.read_set.insert(dep_node_index)
462 };
463 if new_read {
464 task_deps.reads.push(dep_node_index);
465 if task_deps.reads.len() == TASK_DEPS_READS_CAP {
466 // Fill `read_set` with what we have so far so we can use the hashset
467 // next time
468 task_deps.read_set.extend(task_deps.reads.iter().copied());
469 }
470
471 #[cfg(debug_assertions)]
472 {
473 if let Some(target) = task_deps.node {
474 if let Some(ref forbidden_edge) = data.current.forbidden_edge {
475 let src = forbidden_edge.index_to_node.lock()[&dep_node_index];
476 if forbidden_edge.test(&src, &target) {
477 panic!("forbidden edge {:?} -> {:?} created", src, target)
478 }
479 }
480 }
481 }
482 } else if cfg!(debug_assertions) {
483 data.current.total_duplicate_read_count.fetch_add(1, Relaxed);
484 }
485 })
486 }
487 }
488
489 /// Create a node when we force-feed a value into the query cache.
490 /// This is used to remove cycles during type-checking const generic parameters.
491 ///
492 /// As usual in the query system, we consider the current state of the calling query
493 /// only depends on the list of dependencies up to now. As a consequence, the value
494 /// that this query gives us can only depend on those dependencies too. Therefore,
495 /// it is sound to use the current dependency set for the created node.
496 ///
497 /// During replay, the order of the nodes is relevant in the dependency graph.
498 /// So the unchanged replay will mark the caller query before trying to mark this one.
499 /// If there is a change to report, the caller query will be re-executed before this one.
500 ///
501 /// FIXME: If the code is changed enough for this node to be marked before requiring the
502 /// caller's node, we suppose that those changes will be enough to mark this node red and
503 /// force a recomputation using the "normal" way.
504 pub fn with_feed_task<Ctxt: DepContext<DepKind = K>, A: Debug, R: Debug>(
505 &self,
506 node: DepNode<K>,
507 cx: Ctxt,
508 key: A,
509 result: &R,
510 hash_result: Option<fn(&mut StableHashingContext<'_>, &R) -> Fingerprint>,
511 ) -> DepNodeIndex {
512 if let Some(data) = self.data.as_ref() {
513 // The caller query has more dependencies than the node we are creating. We may
514 // encounter a case where this created node is marked as green, but the caller query is
515 // subsequently marked as red or recomputed. In this case, we will end up feeding a
516 // value to an existing node.
517 //
518 // For sanity, we still check that the loaded stable hash and the new one match.
519 if let Some(dep_node_index) = self.dep_node_index_of_opt(&node) {
520 let _current_fingerprint =
521 crate::query::incremental_verify_ich(cx, result, &node, hash_result);
522
523 #[cfg(debug_assertions)]
524 if hash_result.is_some() {
525 data.current.record_edge(dep_node_index, node, _current_fingerprint);
526 }
527
528 return dep_node_index;
529 }
530
531 let mut edges = SmallVec::new();
532 K::read_deps(|task_deps| match task_deps {
533 TaskDepsRef::Allow(deps) => edges.extend(deps.lock().reads.iter().copied()),
534 TaskDepsRef::Ignore => {} // During HIR lowering, we have no dependencies.
535 TaskDepsRef::Forbid => {
536 panic!("Cannot summarize when dependencies are not recorded.")
537 }
538 });
539
540 let hashing_timer = cx.profiler().incr_result_hashing();
541 let current_fingerprint = hash_result.map(|hash_result| {
542 cx.with_stable_hashing_context(|mut hcx| hash_result(&mut hcx, result))
543 });
544
545 let print_status = cfg!(debug_assertions) && cx.sess().opts.unstable_opts.dep_tasks;
546
547 // Intern the new `DepNode` with the dependencies up-to-now.
548 let (dep_node_index, prev_and_color) = data.current.intern_node(
549 cx.profiler(),
550 &data.previous,
551 node,
552 edges,
553 current_fingerprint,
554 print_status,
555 );
556
557 hashing_timer.finish_with_query_invocation_id(dep_node_index.into());
558
559 if let Some((prev_index, color)) = prev_and_color {
560 debug_assert!(
561 data.colors.get(prev_index).is_none(),
562 "DepGraph::with_task() - Duplicate DepNodeColor insertion for {key:?}",
563 );
564
565 data.colors.insert(prev_index, color);
566 }
567
568 dep_node_index
569 } else {
570 // Incremental compilation is turned off. We just execute the task
571 // without tracking. We still provide a dep-node index that uniquely
572 // identifies the task so that we have a cheap way of referring to
573 // the query for self-profiling.
574 self.next_virtual_depnode_index()
575 }
576 }
577
578 #[inline]
579 pub fn dep_node_index_of(&self, dep_node: &DepNode<K>) -> DepNodeIndex {
580 self.dep_node_index_of_opt(dep_node).unwrap()
581 }
582
583 #[inline]
584 pub fn dep_node_index_of_opt(&self, dep_node: &DepNode<K>) -> Option<DepNodeIndex> {
585 let data = self.data.as_ref().unwrap();
586 let current = &data.current;
587
588 if let Some(prev_index) = data.previous.node_to_index_opt(dep_node) {
589 current.prev_index_to_index.lock()[prev_index]
590 } else {
591 current.new_node_to_index.get_shard_by_value(dep_node).lock().get(dep_node).copied()
592 }
593 }
594
595 #[inline]
596 pub fn dep_node_exists(&self, dep_node: &DepNode<K>) -> bool {
597 self.data.is_some() && self.dep_node_index_of_opt(dep_node).is_some()
598 }
599
600 pub fn prev_fingerprint_of(&self, dep_node: &DepNode<K>) -> Option<Fingerprint> {
601 self.data.as_ref().unwrap().previous.fingerprint_of(dep_node)
602 }
603
604 /// Checks whether a previous work product exists for `v` and, if
605 /// so, return the path that leads to it. Used to skip doing work.
606 pub fn previous_work_product(&self, v: &WorkProductId) -> Option<WorkProduct> {
607 self.data.as_ref().and_then(|data| data.previous_work_products.get(v).cloned())
608 }
609
610 /// Access the map of work-products created during the cached run. Only
611 /// used during saving of the dep-graph.
612 pub fn previous_work_products(&self) -> &FxHashMap<WorkProductId, WorkProduct> {
613 &self.data.as_ref().unwrap().previous_work_products
614 }
615
616 pub fn mark_debug_loaded_from_disk(&self, dep_node: DepNode<K>) {
617 self.data.as_ref().unwrap().debug_loaded_from_disk.lock().insert(dep_node);
618 }
619
620 pub fn debug_was_loaded_from_disk(&self, dep_node: DepNode<K>) -> bool {
621 self.data.as_ref().unwrap().debug_loaded_from_disk.lock().contains(&dep_node)
622 }
623
624 #[inline(always)]
625 pub fn register_dep_node_debug_str<F>(&self, dep_node: DepNode<K>, debug_str_gen: F)
626 where
627 F: FnOnce() -> String,
628 {
629 let dep_node_debug = &self.data.as_ref().unwrap().dep_node_debug;
630
631 if dep_node_debug.borrow().contains_key(&dep_node) {
632 return;
633 }
634 let debug_str = self.with_ignore(debug_str_gen);
635 dep_node_debug.borrow_mut().insert(dep_node, debug_str);
636 }
637
638 pub fn dep_node_debug_str(&self, dep_node: DepNode<K>) -> Option<String> {
639 self.data.as_ref()?.dep_node_debug.borrow().get(&dep_node).cloned()
640 }
641
642 fn node_color(&self, dep_node: &DepNode<K>) -> Option<DepNodeColor> {
643 if let Some(ref data) = self.data {
644 if let Some(prev_index) = data.previous.node_to_index_opt(dep_node) {
645 return data.colors.get(prev_index);
646 } else {
647 // This is a node that did not exist in the previous compilation session.
648 return None;
649 }
650 }
651
652 None
653 }
654
655 /// Try to mark a node index for the node dep_node.
656 ///
657 /// A node will have an index, when it's already been marked green, or when we can mark it
658 /// green. This function will mark the current task as a reader of the specified node, when
659 /// a node index can be found for that node.
660 pub fn try_mark_green<Qcx: QueryContext<DepKind = K>>(
661 &self,
662 qcx: Qcx,
663 dep_node: &DepNode<K>,
664 ) -> Option<(SerializedDepNodeIndex, DepNodeIndex)> {
665 debug_assert!(!qcx.dep_context().is_eval_always(dep_node.kind));
666
667 // Return None if the dep graph is disabled
668 let data = self.data.as_ref()?;
669
670 // Return None if the dep node didn't exist in the previous session
671 let prev_index = data.previous.node_to_index_opt(dep_node)?;
672
673 match data.colors.get(prev_index) {
674 Some(DepNodeColor::Green(dep_node_index)) => Some((prev_index, dep_node_index)),
675 Some(DepNodeColor::Red) => None,
676 None => {
677 // This DepNode and the corresponding query invocation existed
678 // in the previous compilation session too, so we can try to
679 // mark it as green by recursively marking all of its
680 // dependencies green.
681 self.try_mark_previous_green(qcx, data, prev_index, &dep_node)
682 .map(|dep_node_index| (prev_index, dep_node_index))
683 }
684 }
685 }
686
687 #[instrument(skip(self, qcx, data, parent_dep_node_index), level = "debug")]
688 fn try_mark_parent_green<Qcx: QueryContext<DepKind = K>>(
689 &self,
690 qcx: Qcx,
691 data: &DepGraphData<K>,
692 parent_dep_node_index: SerializedDepNodeIndex,
693 dep_node: &DepNode<K>,
694 ) -> Option<()> {
695 let dep_dep_node_color = data.colors.get(parent_dep_node_index);
696 let dep_dep_node = &data.previous.index_to_node(parent_dep_node_index);
697
698 match dep_dep_node_color {
699 Some(DepNodeColor::Green(_)) => {
700 // This dependency has been marked as green before, we are
701 // still fine and can continue with checking the other
702 // dependencies.
703 debug!("dependency {dep_dep_node:?} was immediately green");
704 return Some(());
705 }
706 Some(DepNodeColor::Red) => {
707 // We found a dependency the value of which has changed
708 // compared to the previous compilation session. We cannot
709 // mark the DepNode as green and also don't need to bother
710 // with checking any of the other dependencies.
711 debug!("dependency {dep_dep_node:?} was immediately red");
712 return None;
713 }
714 None => {}
715 }
716
717 // We don't know the state of this dependency. If it isn't
718 // an eval_always node, let's try to mark it green recursively.
719 if !qcx.dep_context().is_eval_always(dep_dep_node.kind) {
720 debug!(
721 "state of dependency {:?} ({}) is unknown, trying to mark it green",
722 dep_dep_node, dep_dep_node.hash,
723 );
724
725 let node_index =
726 self.try_mark_previous_green(qcx, data, parent_dep_node_index, dep_dep_node);
727
728 if node_index.is_some() {
729 debug!("managed to MARK dependency {dep_dep_node:?} as green",);
730 return Some(());
731 }
732 }
733
734 // We failed to mark it green, so we try to force the query.
735 debug!("trying to force dependency {dep_dep_node:?}");
736 if !qcx.dep_context().try_force_from_dep_node(*dep_dep_node) {
737 // The DepNode could not be forced.
738 debug!("dependency {dep_dep_node:?} could not be forced");
739 return None;
740 }
741
742 let dep_dep_node_color = data.colors.get(parent_dep_node_index);
743
744 match dep_dep_node_color {
745 Some(DepNodeColor::Green(_)) => {
746 debug!("managed to FORCE dependency {dep_dep_node:?} to green");
747 return Some(());
748 }
749 Some(DepNodeColor::Red) => {
750 debug!("dependency {dep_dep_node:?} was red after forcing",);
751 return None;
752 }
753 None => {}
754 }
755
756 if let None = qcx.dep_context().sess().has_errors_or_delayed_span_bugs() {
757 panic!("try_mark_previous_green() - Forcing the DepNode should have set its color")
758 }
759
760 // If the query we just forced has resulted in
761 // some kind of compilation error, we cannot rely on
762 // the dep-node color having been properly updated.
763 // This means that the query system has reached an
764 // invalid state. We let the compiler continue (by
765 // returning `None`) so it can emit error messages
766 // and wind down, but rely on the fact that this
767 // invalid state will not be persisted to the
768 // incremental compilation cache because of
769 // compilation errors being present.
770 debug!("dependency {dep_dep_node:?} resulted in compilation error",);
771 return None;
772 }
773
774 /// Try to mark a dep-node which existed in the previous compilation session as green.
775 #[instrument(skip(self, qcx, data, prev_dep_node_index), level = "debug")]
776 fn try_mark_previous_green<Qcx: QueryContext<DepKind = K>>(
777 &self,
778 qcx: Qcx,
779 data: &DepGraphData<K>,
780 prev_dep_node_index: SerializedDepNodeIndex,
781 dep_node: &DepNode<K>,
782 ) -> Option<DepNodeIndex> {
783 #[cfg(not(parallel_compiler))]
784 {
785 debug_assert!(!self.dep_node_exists(dep_node));
786 debug_assert!(data.colors.get(prev_dep_node_index).is_none());
787 }
788
789 // We never try to mark eval_always nodes as green
790 debug_assert!(!qcx.dep_context().is_eval_always(dep_node.kind));
791
792 debug_assert_eq!(data.previous.index_to_node(prev_dep_node_index), *dep_node);
793
794 let prev_deps = data.previous.edge_targets_from(prev_dep_node_index);
795
796 for &dep_dep_node_index in prev_deps {
797 self.try_mark_parent_green(qcx, data, dep_dep_node_index, dep_node)?
798 }
799
800 // If we got here without hitting a `return` that means that all
801 // dependencies of this DepNode could be marked as green. Therefore we
802 // can also mark this DepNode as green.
803
804 // There may be multiple threads trying to mark the same dep node green concurrently
805
806 // We allocating an entry for the node in the current dependency graph and
807 // adding all the appropriate edges imported from the previous graph
808 let dep_node_index = data.current.promote_node_and_deps_to_current(
809 qcx.dep_context().profiler(),
810 &data.previous,
811 prev_dep_node_index,
812 );
813
814 // ... emitting any stored diagnostic ...
815
816 // FIXME: Store the fact that a node has diagnostics in a bit in the dep graph somewhere
817 // Maybe store a list on disk and encode this fact in the DepNodeState
818 let side_effects = qcx.load_side_effects(prev_dep_node_index);
819
820 #[cfg(not(parallel_compiler))]
821 debug_assert!(
822 data.colors.get(prev_dep_node_index).is_none(),
823 "DepGraph::try_mark_previous_green() - Duplicate DepNodeColor \
824 insertion for {dep_node:?}"
825 );
826
827 if !side_effects.is_empty() {
828 self.with_query_deserialization(|| {
829 self.emit_side_effects(qcx, data, dep_node_index, side_effects)
830 });
831 }
832
833 // ... and finally storing a "Green" entry in the color map.
834 // Multiple threads can all write the same color here
835 data.colors.insert(prev_dep_node_index, DepNodeColor::Green(dep_node_index));
836
837 debug!("successfully marked {dep_node:?} as green");
838 Some(dep_node_index)
839 }
840
841 /// Atomically emits some loaded diagnostics.
842 /// This may be called concurrently on multiple threads for the same dep node.
843 #[cold]
844 #[inline(never)]
845 fn emit_side_effects<Qcx: QueryContext<DepKind = K>>(
846 &self,
847 qcx: Qcx,
848 data: &DepGraphData<K>,
849 dep_node_index: DepNodeIndex,
850 side_effects: QuerySideEffects,
851 ) {
852 let mut processed = data.processed_side_effects.lock();
853
854 if processed.insert(dep_node_index) {
855 // We were the first to insert the node in the set so this thread
856 // must process side effects
857
858 // Promote the previous diagnostics to the current session.
859 qcx.store_side_effects(dep_node_index, side_effects.clone());
860
861 let handle = qcx.dep_context().sess().diagnostic();
862
863 for mut diagnostic in side_effects.diagnostics {
864 handle.emit_diagnostic(&mut diagnostic);
865 }
866 }
867 }
868
869 /// Returns true if the given node has been marked as red during the
870 /// current compilation session. Used in various assertions
871 pub fn is_red(&self, dep_node: &DepNode<K>) -> bool {
872 self.node_color(dep_node) == Some(DepNodeColor::Red)
873 }
874
875 /// Returns true if the given node has been marked as green during the
876 /// current compilation session. Used in various assertions
877 pub fn is_green(&self, dep_node: &DepNode<K>) -> bool {
878 self.node_color(dep_node).map_or(false, |c| c.is_green())
879 }
880
881 /// This method loads all on-disk cacheable query results into memory, so
882 /// they can be written out to the new cache file again. Most query results
883 /// will already be in memory but in the case where we marked something as
884 /// green but then did not need the value, that value will never have been
885 /// loaded from disk.
886 ///
887 /// This method will only load queries that will end up in the disk cache.
888 /// Other queries will not be executed.
889 pub fn exec_cache_promotions<Tcx: DepContext<DepKind = K>>(&self, tcx: Tcx) {
890 let _prof_timer = tcx.profiler().generic_activity("incr_comp_query_cache_promotion");
891
892 let data = self.data.as_ref().unwrap();
893 for prev_index in data.colors.values.indices() {
894 match data.colors.get(prev_index) {
895 Some(DepNodeColor::Green(_)) => {
896 let dep_node = data.previous.index_to_node(prev_index);
897 tcx.try_load_from_on_disk_cache(dep_node);
898 }
899 None | Some(DepNodeColor::Red) => {
900 // We can skip red nodes because a node can only be marked
901 // as red if the query result was recomputed and thus is
902 // already in memory.
903 }
904 }
905 }
906 }
907
908 pub fn print_incremental_info(&self) {
909 if let Some(data) = &self.data {
910 data.current.encoder.borrow().print_incremental_info(
911 data.current.total_read_count.load(Relaxed),
912 data.current.total_duplicate_read_count.load(Relaxed),
913 )
914 }
915 }
916
917 pub fn encode(&self, profiler: &SelfProfilerRef) -> FileEncodeResult {
918 if let Some(data) = &self.data {
919 data.current.encoder.steal().finish(profiler)
920 } else {
921 Ok(0)
922 }
923 }
924
925 pub(crate) fn next_virtual_depnode_index(&self) -> DepNodeIndex {
926 let index = self.virtual_dep_node_index.fetch_add(1, Relaxed);
927 DepNodeIndex::from_u32(index)
928 }
929 }
930
931 /// A "work product" is an intermediate result that we save into the
932 /// incremental directory for later re-use. The primary example are
933 /// the object files that we save for each partition at code
934 /// generation time.
935 ///
936 /// Each work product is associated with a dep-node, representing the
937 /// process that produced the work-product. If that dep-node is found
938 /// to be dirty when we load up, then we will delete the work-product
939 /// at load time. If the work-product is found to be clean, then we
940 /// will keep a record in the `previous_work_products` list.
941 ///
942 /// In addition, work products have an associated hash. This hash is
943 /// an extra hash that can be used to decide if the work-product from
944 /// a previous compilation can be re-used (in addition to the dirty
945 /// edges check).
946 ///
947 /// As the primary example, consider the object files we generate for
948 /// each partition. In the first run, we create partitions based on
949 /// the symbols that need to be compiled. For each partition P, we
950 /// hash the symbols in P and create a `WorkProduct` record associated
951 /// with `DepNode::CodegenUnit(P)`; the hash is the set of symbols
952 /// in P.
953 ///
954 /// The next time we compile, if the `DepNode::CodegenUnit(P)` is
955 /// judged to be clean (which means none of the things we read to
956 /// generate the partition were found to be dirty), it will be loaded
957 /// into previous work products. We will then regenerate the set of
958 /// symbols in the partition P and hash them (note that new symbols
959 /// may be added -- for example, new monomorphizations -- even if
960 /// nothing in P changed!). We will compare that hash against the
961 /// previous hash. If it matches up, we can reuse the object file.
962 #[derive(Clone, Debug, Encodable, Decodable)]
963 pub struct WorkProduct {
964 pub cgu_name: String,
965 /// Saved files associated with this CGU. In each key/value pair, the value is the path to the
966 /// saved file and the key is some identifier for the type of file being saved.
967 ///
968 /// By convention, file extensions are currently used as identifiers, i.e. the key "o" maps to
969 /// the object file's path, and "dwo" to the dwarf object file's path.
970 pub saved_files: FxHashMap<String, String>,
971 }
972
973 // Index type for `DepNodeData`'s edges.
974 rustc_index::newtype_index! {
975 struct EdgeIndex {}
976 }
977
978 /// `CurrentDepGraph` stores the dependency graph for the current session. It
979 /// will be populated as we run queries or tasks. We never remove nodes from the
980 /// graph: they are only added.
981 ///
982 /// The nodes in it are identified by a `DepNodeIndex`. We avoid keeping the nodes
983 /// in memory. This is important, because these graph structures are some of the
984 /// largest in the compiler.
985 ///
986 /// For this reason, we avoid storing `DepNode`s more than once as map
987 /// keys. The `new_node_to_index` map only contains nodes not in the previous
988 /// graph, and we map nodes in the previous graph to indices via a two-step
989 /// mapping. `SerializedDepGraph` maps from `DepNode` to `SerializedDepNodeIndex`,
990 /// and the `prev_index_to_index` vector (which is more compact and faster than
991 /// using a map) maps from `SerializedDepNodeIndex` to `DepNodeIndex`.
992 ///
993 /// This struct uses three locks internally. The `data`, `new_node_to_index`,
994 /// and `prev_index_to_index` fields are locked separately. Operations that take
995 /// a `DepNodeIndex` typically just access the `data` field.
996 ///
997 /// We only need to manipulate at most two locks simultaneously:
998 /// `new_node_to_index` and `data`, or `prev_index_to_index` and `data`. When
999 /// manipulating both, we acquire `new_node_to_index` or `prev_index_to_index`
1000 /// first, and `data` second.
1001 pub(super) struct CurrentDepGraph<K: DepKind> {
1002 encoder: Steal<GraphEncoder<K>>,
1003 new_node_to_index: Sharded<FxHashMap<DepNode<K>, DepNodeIndex>>,
1004 prev_index_to_index: Lock<IndexVec<SerializedDepNodeIndex, Option<DepNodeIndex>>>,
1005
1006 /// This is used to verify that fingerprints do not change between the creation of a node
1007 /// and its recomputation.
1008 #[cfg(debug_assertions)]
1009 fingerprints: Lock<FxHashMap<DepNode<K>, Fingerprint>>,
1010
1011 /// Used to trap when a specific edge is added to the graph.
1012 /// This is used for debug purposes and is only active with `debug_assertions`.
1013 #[cfg(debug_assertions)]
1014 forbidden_edge: Option<EdgeFilter<K>>,
1015
1016 /// Anonymous `DepNode`s are nodes whose IDs we compute from the list of
1017 /// their edges. This has the beneficial side-effect that multiple anonymous
1018 /// nodes can be coalesced into one without changing the semantics of the
1019 /// dependency graph. However, the merging of nodes can lead to a subtle
1020 /// problem during red-green marking: The color of an anonymous node from
1021 /// the current session might "shadow" the color of the node with the same
1022 /// ID from the previous session. In order to side-step this problem, we make
1023 /// sure that anonymous `NodeId`s allocated in different sessions don't overlap.
1024 /// This is implemented by mixing a session-key into the ID fingerprint of
1025 /// each anon node. The session-key is just a random number generated when
1026 /// the `DepGraph` is created.
1027 anon_id_seed: Fingerprint,
1028
1029 /// These are simple counters that are for profiling and
1030 /// debugging and only active with `debug_assertions`.
1031 total_read_count: AtomicU64,
1032 total_duplicate_read_count: AtomicU64,
1033
1034 /// The cached event id for profiling node interning. This saves us
1035 /// from having to look up the event id every time we intern a node
1036 /// which may incur too much overhead.
1037 /// This will be None if self-profiling is disabled.
1038 node_intern_event_id: Option<EventId>,
1039 }
1040
1041 impl<K: DepKind> CurrentDepGraph<K> {
1042 fn new(
1043 profiler: &SelfProfilerRef,
1044 prev_graph_node_count: usize,
1045 encoder: FileEncoder,
1046 record_graph: bool,
1047 record_stats: bool,
1048 ) -> CurrentDepGraph<K> {
1049 use std::time::{SystemTime, UNIX_EPOCH};
1050
1051 let duration = SystemTime::now().duration_since(UNIX_EPOCH).unwrap();
1052 let nanos = duration.as_secs() * 1_000_000_000 + duration.subsec_nanos() as u64;
1053 let mut stable_hasher = StableHasher::new();
1054 nanos.hash(&mut stable_hasher);
1055 let anon_id_seed = stable_hasher.finish();
1056
1057 #[cfg(debug_assertions)]
1058 let forbidden_edge = match env::var("RUST_FORBID_DEP_GRAPH_EDGE") {
1059 Ok(s) => match EdgeFilter::new(&s) {
1060 Ok(f) => Some(f),
1061 Err(err) => panic!("RUST_FORBID_DEP_GRAPH_EDGE invalid: {}", err),
1062 },
1063 Err(_) => None,
1064 };
1065
1066 // We store a large collection of these in `prev_index_to_index` during
1067 // non-full incremental builds, and want to ensure that the element size
1068 // doesn't inadvertently increase.
1069 static_assert_size!(Option<DepNodeIndex>, 4);
1070
1071 let new_node_count_estimate = 102 * prev_graph_node_count / 100 + 200;
1072
1073 let node_intern_event_id = profiler
1074 .get_or_alloc_cached_string("incr_comp_intern_dep_graph_node")
1075 .map(EventId::from_label);
1076
1077 CurrentDepGraph {
1078 encoder: Steal::new(GraphEncoder::new(
1079 encoder,
1080 prev_graph_node_count,
1081 record_graph,
1082 record_stats,
1083 )),
1084 new_node_to_index: Sharded::new(|| {
1085 FxHashMap::with_capacity_and_hasher(
1086 new_node_count_estimate / sharded::SHARDS,
1087 Default::default(),
1088 )
1089 }),
1090 prev_index_to_index: Lock::new(IndexVec::from_elem_n(None, prev_graph_node_count)),
1091 anon_id_seed,
1092 #[cfg(debug_assertions)]
1093 forbidden_edge,
1094 #[cfg(debug_assertions)]
1095 fingerprints: Lock::new(Default::default()),
1096 total_read_count: AtomicU64::new(0),
1097 total_duplicate_read_count: AtomicU64::new(0),
1098 node_intern_event_id,
1099 }
1100 }
1101
1102 #[cfg(debug_assertions)]
1103 fn record_edge(&self, dep_node_index: DepNodeIndex, key: DepNode<K>, fingerprint: Fingerprint) {
1104 if let Some(forbidden_edge) = &self.forbidden_edge {
1105 forbidden_edge.index_to_node.lock().insert(dep_node_index, key);
1106 }
1107 match self.fingerprints.lock().entry(key) {
1108 Entry::Vacant(v) => {
1109 v.insert(fingerprint);
1110 }
1111 Entry::Occupied(o) => {
1112 assert_eq!(*o.get(), fingerprint, "Unstable fingerprints for {:?}", key);
1113 }
1114 }
1115 }
1116
1117 /// Writes the node to the current dep-graph and allocates a `DepNodeIndex` for it.
1118 /// Assumes that this is a node that has no equivalent in the previous dep-graph.
1119 fn intern_new_node(
1120 &self,
1121 profiler: &SelfProfilerRef,
1122 key: DepNode<K>,
1123 edges: EdgesVec,
1124 current_fingerprint: Fingerprint,
1125 ) -> DepNodeIndex {
1126 let dep_node_index = match self.new_node_to_index.get_shard_by_value(&key).lock().entry(key)
1127 {
1128 Entry::Occupied(entry) => *entry.get(),
1129 Entry::Vacant(entry) => {
1130 let dep_node_index =
1131 self.encoder.borrow().send(profiler, key, current_fingerprint, edges);
1132 entry.insert(dep_node_index);
1133 dep_node_index
1134 }
1135 };
1136
1137 #[cfg(debug_assertions)]
1138 self.record_edge(dep_node_index, key, current_fingerprint);
1139
1140 dep_node_index
1141 }
1142
1143 fn intern_node(
1144 &self,
1145 profiler: &SelfProfilerRef,
1146 prev_graph: &SerializedDepGraph<K>,
1147 key: DepNode<K>,
1148 edges: EdgesVec,
1149 fingerprint: Option<Fingerprint>,
1150 print_status: bool,
1151 ) -> (DepNodeIndex, Option<(SerializedDepNodeIndex, DepNodeColor)>) {
1152 let print_status = cfg!(debug_assertions) && print_status;
1153
1154 // Get timer for profiling `DepNode` interning
1155 let _node_intern_timer =
1156 self.node_intern_event_id.map(|eid| profiler.generic_activity_with_event_id(eid));
1157
1158 if let Some(prev_index) = prev_graph.node_to_index_opt(&key) {
1159 // Determine the color and index of the new `DepNode`.
1160 if let Some(fingerprint) = fingerprint {
1161 if fingerprint == prev_graph.fingerprint_by_index(prev_index) {
1162 if print_status {
1163 eprintln!("[task::green] {key:?}");
1164 }
1165
1166 // This is a green node: it existed in the previous compilation,
1167 // its query was re-executed, and it has the same result as before.
1168 let mut prev_index_to_index = self.prev_index_to_index.lock();
1169
1170 let dep_node_index = match prev_index_to_index[prev_index] {
1171 Some(dep_node_index) => dep_node_index,
1172 None => {
1173 let dep_node_index =
1174 self.encoder.borrow().send(profiler, key, fingerprint, edges);
1175 prev_index_to_index[prev_index] = Some(dep_node_index);
1176 dep_node_index
1177 }
1178 };
1179
1180 #[cfg(debug_assertions)]
1181 self.record_edge(dep_node_index, key, fingerprint);
1182 (dep_node_index, Some((prev_index, DepNodeColor::Green(dep_node_index))))
1183 } else {
1184 if print_status {
1185 eprintln!("[task::red] {key:?}");
1186 }
1187
1188 // This is a red node: it existed in the previous compilation, its query
1189 // was re-executed, but it has a different result from before.
1190 let mut prev_index_to_index = self.prev_index_to_index.lock();
1191
1192 let dep_node_index = match prev_index_to_index[prev_index] {
1193 Some(dep_node_index) => dep_node_index,
1194 None => {
1195 let dep_node_index =
1196 self.encoder.borrow().send(profiler, key, fingerprint, edges);
1197 prev_index_to_index[prev_index] = Some(dep_node_index);
1198 dep_node_index
1199 }
1200 };
1201
1202 #[cfg(debug_assertions)]
1203 self.record_edge(dep_node_index, key, fingerprint);
1204 (dep_node_index, Some((prev_index, DepNodeColor::Red)))
1205 }
1206 } else {
1207 if print_status {
1208 eprintln!("[task::unknown] {key:?}");
1209 }
1210
1211 // This is a red node, effectively: it existed in the previous compilation
1212 // session, its query was re-executed, but it doesn't compute a result hash
1213 // (i.e. it represents a `no_hash` query), so we have no way of determining
1214 // whether or not the result was the same as before.
1215 let mut prev_index_to_index = self.prev_index_to_index.lock();
1216
1217 let dep_node_index = match prev_index_to_index[prev_index] {
1218 Some(dep_node_index) => dep_node_index,
1219 None => {
1220 let dep_node_index =
1221 self.encoder.borrow().send(profiler, key, Fingerprint::ZERO, edges);
1222 prev_index_to_index[prev_index] = Some(dep_node_index);
1223 dep_node_index
1224 }
1225 };
1226
1227 #[cfg(debug_assertions)]
1228 self.record_edge(dep_node_index, key, Fingerprint::ZERO);
1229 (dep_node_index, Some((prev_index, DepNodeColor::Red)))
1230 }
1231 } else {
1232 if print_status {
1233 eprintln!("[task::new] {key:?}");
1234 }
1235
1236 let fingerprint = fingerprint.unwrap_or(Fingerprint::ZERO);
1237
1238 // This is a new node: it didn't exist in the previous compilation session.
1239 let dep_node_index = self.intern_new_node(profiler, key, edges, fingerprint);
1240
1241 (dep_node_index, None)
1242 }
1243 }
1244
1245 fn promote_node_and_deps_to_current(
1246 &self,
1247 profiler: &SelfProfilerRef,
1248 prev_graph: &SerializedDepGraph<K>,
1249 prev_index: SerializedDepNodeIndex,
1250 ) -> DepNodeIndex {
1251 self.debug_assert_not_in_new_nodes(prev_graph, prev_index);
1252
1253 let mut prev_index_to_index = self.prev_index_to_index.lock();
1254
1255 match prev_index_to_index[prev_index] {
1256 Some(dep_node_index) => dep_node_index,
1257 None => {
1258 let key = prev_graph.index_to_node(prev_index);
1259 let edges = prev_graph
1260 .edge_targets_from(prev_index)
1261 .iter()
1262 .map(|i| prev_index_to_index[*i].unwrap())
1263 .collect();
1264 let fingerprint = prev_graph.fingerprint_by_index(prev_index);
1265 let dep_node_index = self.encoder.borrow().send(profiler, key, fingerprint, edges);
1266 prev_index_to_index[prev_index] = Some(dep_node_index);
1267 #[cfg(debug_assertions)]
1268 self.record_edge(dep_node_index, key, fingerprint);
1269 dep_node_index
1270 }
1271 }
1272 }
1273
1274 #[inline]
1275 fn debug_assert_not_in_new_nodes(
1276 &self,
1277 prev_graph: &SerializedDepGraph<K>,
1278 prev_index: SerializedDepNodeIndex,
1279 ) {
1280 let node = &prev_graph.index_to_node(prev_index);
1281 debug_assert!(
1282 !self.new_node_to_index.get_shard_by_value(node).lock().contains_key(node),
1283 "node from previous graph present in new node collection"
1284 );
1285 }
1286 }
1287
1288 /// The capacity of the `reads` field `SmallVec`
1289 const TASK_DEPS_READS_CAP: usize = 8;
1290 type EdgesVec = SmallVec<[DepNodeIndex; TASK_DEPS_READS_CAP]>;
1291
1292 #[derive(Debug, Clone, Copy)]
1293 pub enum TaskDepsRef<'a, K: DepKind> {
1294 /// New dependencies can be added to the
1295 /// `TaskDeps`. This is used when executing a 'normal' query
1296 /// (no `eval_always` modifier)
1297 Allow(&'a Lock<TaskDeps<K>>),
1298 /// New dependencies are ignored. This is used when
1299 /// executing an `eval_always` query, since there's no
1300 /// need to track dependencies for a query that's always
1301 /// re-executed. This is also used for `dep_graph.with_ignore`
1302 Ignore,
1303 /// Any attempt to add new dependencies will cause a panic.
1304 /// This is used when decoding a query result from disk,
1305 /// to ensure that the decoding process doesn't itself
1306 /// require the execution of any queries.
1307 Forbid,
1308 }
1309
1310 #[derive(Debug)]
1311 pub struct TaskDeps<K: DepKind> {
1312 #[cfg(debug_assertions)]
1313 node: Option<DepNode<K>>,
1314 reads: EdgesVec,
1315 read_set: FxHashSet<DepNodeIndex>,
1316 phantom_data: PhantomData<DepNode<K>>,
1317 }
1318
1319 impl<K: DepKind> Default for TaskDeps<K> {
1320 fn default() -> Self {
1321 Self {
1322 #[cfg(debug_assertions)]
1323 node: None,
1324 reads: EdgesVec::new(),
1325 read_set: FxHashSet::default(),
1326 phantom_data: PhantomData,
1327 }
1328 }
1329 }
1330
1331 // A data structure that stores Option<DepNodeColor> values as a contiguous
1332 // array, using one u32 per entry.
1333 struct DepNodeColorMap {
1334 values: IndexVec<SerializedDepNodeIndex, AtomicU32>,
1335 }
1336
1337 const COMPRESSED_NONE: u32 = 0;
1338 const COMPRESSED_RED: u32 = 1;
1339 const COMPRESSED_FIRST_GREEN: u32 = 2;
1340
1341 impl DepNodeColorMap {
1342 fn new(size: usize) -> DepNodeColorMap {
1343 DepNodeColorMap { values: (0..size).map(|_| AtomicU32::new(COMPRESSED_NONE)).collect() }
1344 }
1345
1346 #[inline]
1347 fn get(&self, index: SerializedDepNodeIndex) -> Option<DepNodeColor> {
1348 match self.values[index].load(Ordering::Acquire) {
1349 COMPRESSED_NONE => None,
1350 COMPRESSED_RED => Some(DepNodeColor::Red),
1351 value => {
1352 Some(DepNodeColor::Green(DepNodeIndex::from_u32(value - COMPRESSED_FIRST_GREEN)))
1353 }
1354 }
1355 }
1356
1357 fn insert(&self, index: SerializedDepNodeIndex, color: DepNodeColor) {
1358 self.values[index].store(
1359 match color {
1360 DepNodeColor::Red => COMPRESSED_RED,
1361 DepNodeColor::Green(index) => index.as_u32() + COMPRESSED_FIRST_GREEN,
1362 },
1363 Ordering::Release,
1364 )
1365 }
1366 }