]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_resolve/src/def_collector.rs
New upstream version 1.55.0+dfsg1
[rustc.git] / compiler / rustc_resolve / src / def_collector.rs
1 use crate::{ImplTraitContext, Resolver};
2 use rustc_ast::visit::{self, FnKind};
3 use rustc_ast::walk_list;
4 use rustc_ast::*;
5 use rustc_ast_lowering::ResolverAstLowering;
6 use rustc_expand::expand::AstFragment;
7 use rustc_hir::def_id::LocalDefId;
8 use rustc_hir::definitions::*;
9 use rustc_span::hygiene::LocalExpnId;
10 use rustc_span::symbol::{kw, sym};
11 use rustc_span::Span;
12 use tracing::debug;
13
14 crate fn collect_definitions(
15 resolver: &mut Resolver<'_>,
16 fragment: &AstFragment,
17 expansion: LocalExpnId,
18 ) {
19 let (parent_def, impl_trait_context) = resolver.invocation_parents[&expansion];
20 fragment.visit_with(&mut DefCollector { resolver, parent_def, expansion, impl_trait_context });
21 }
22
23 /// Creates `DefId`s for nodes in the AST.
24 struct DefCollector<'a, 'b> {
25 resolver: &'a mut Resolver<'b>,
26 parent_def: LocalDefId,
27 impl_trait_context: ImplTraitContext,
28 expansion: LocalExpnId,
29 }
30
31 impl<'a, 'b> DefCollector<'a, 'b> {
32 fn create_def(&mut self, node_id: NodeId, data: DefPathData, span: Span) -> LocalDefId {
33 let parent_def = self.parent_def;
34 debug!("create_def(node_id={:?}, data={:?}, parent_def={:?})", node_id, data, parent_def);
35 self.resolver.create_def(parent_def, node_id, data, self.expansion.to_expn_id(), span)
36 }
37
38 fn with_parent<F: FnOnce(&mut Self)>(&mut self, parent_def: LocalDefId, f: F) {
39 let orig_parent_def = std::mem::replace(&mut self.parent_def, parent_def);
40 f(self);
41 self.parent_def = orig_parent_def;
42 }
43
44 fn with_impl_trait<F: FnOnce(&mut Self)>(
45 &mut self,
46 impl_trait_context: ImplTraitContext,
47 f: F,
48 ) {
49 let orig_itc = std::mem::replace(&mut self.impl_trait_context, impl_trait_context);
50 f(self);
51 self.impl_trait_context = orig_itc;
52 }
53
54 fn collect_field(&mut self, field: &'a FieldDef, index: Option<usize>) {
55 let index = |this: &Self| {
56 index.unwrap_or_else(|| {
57 let node_id = NodeId::placeholder_from_expn_id(this.expansion);
58 this.resolver.placeholder_field_indices[&node_id]
59 })
60 };
61
62 if field.is_placeholder {
63 let old_index = self.resolver.placeholder_field_indices.insert(field.id, index(self));
64 assert!(old_index.is_none(), "placeholder field index is reset for a node ID");
65 self.visit_macro_invoc(field.id);
66 } else {
67 let name = field.ident.map_or_else(|| sym::integer(index(self)), |ident| ident.name);
68 let def = self.create_def(field.id, DefPathData::ValueNs(name), field.span);
69 self.with_parent(def, |this| visit::walk_field_def(this, field));
70 }
71 }
72
73 fn visit_macro_invoc(&mut self, id: NodeId) {
74 let id = id.placeholder_to_expn_id();
75 let old_parent =
76 self.resolver.invocation_parents.insert(id, (self.parent_def, self.impl_trait_context));
77 assert!(old_parent.is_none(), "parent `LocalDefId` is reset for an invocation");
78 }
79 }
80
81 impl<'a, 'b> visit::Visitor<'a> for DefCollector<'a, 'b> {
82 fn visit_item(&mut self, i: &'a Item) {
83 debug!("visit_item: {:?}", i);
84
85 // Pick the def data. This need not be unique, but the more
86 // information we encapsulate into, the better
87 let def_data = match &i.kind {
88 ItemKind::Impl { .. } => DefPathData::Impl,
89 ItemKind::Mod(..) if i.ident.name == kw::Empty => {
90 // Fake crate root item from expand.
91 return visit::walk_item(self, i);
92 }
93 ItemKind::Mod(..)
94 | ItemKind::Trait(..)
95 | ItemKind::TraitAlias(..)
96 | ItemKind::Enum(..)
97 | ItemKind::Struct(..)
98 | ItemKind::Union(..)
99 | ItemKind::ExternCrate(..)
100 | ItemKind::ForeignMod(..)
101 | ItemKind::TyAlias(..) => DefPathData::TypeNs(i.ident.name),
102 ItemKind::Static(..) | ItemKind::Const(..) | ItemKind::Fn(..) => {
103 DefPathData::ValueNs(i.ident.name)
104 }
105 ItemKind::MacroDef(..) => DefPathData::MacroNs(i.ident.name),
106 ItemKind::MacCall(..) => {
107 visit::walk_item(self, i);
108 return self.visit_macro_invoc(i.id);
109 }
110 ItemKind::GlobalAsm(..) => DefPathData::Misc,
111 ItemKind::Use(..) => {
112 return visit::walk_item(self, i);
113 }
114 };
115 let def = self.create_def(i.id, def_data, i.span);
116
117 self.with_parent(def, |this| {
118 this.with_impl_trait(ImplTraitContext::Existential, |this| {
119 match i.kind {
120 ItemKind::Struct(ref struct_def, _) | ItemKind::Union(ref struct_def, _) => {
121 // If this is a unit or tuple-like struct, register the constructor.
122 if let Some(ctor_hir_id) = struct_def.ctor_id() {
123 this.create_def(ctor_hir_id, DefPathData::Ctor, i.span);
124 }
125 }
126 _ => {}
127 }
128 visit::walk_item(this, i);
129 })
130 });
131 }
132
133 fn visit_fn(&mut self, fn_kind: FnKind<'a>, span: Span, _: NodeId) {
134 if let FnKind::Fn(_, _, sig, _, body) = fn_kind {
135 if let Async::Yes { closure_id, return_impl_trait_id, .. } = sig.header.asyncness {
136 let return_impl_trait_id =
137 self.create_def(return_impl_trait_id, DefPathData::ImplTrait, span);
138
139 // For async functions, we need to create their inner defs inside of a
140 // closure to match their desugared representation. Besides that,
141 // we must mirror everything that `visit::walk_fn` below does.
142 self.visit_fn_header(&sig.header);
143 for param in &sig.decl.inputs {
144 self.visit_param(param);
145 }
146 self.with_parent(return_impl_trait_id, |this| {
147 this.visit_fn_ret_ty(&sig.decl.output)
148 });
149 let closure_def = self.create_def(closure_id, DefPathData::ClosureExpr, span);
150 self.with_parent(closure_def, |this| walk_list!(this, visit_block, body));
151 return;
152 }
153 }
154
155 visit::walk_fn(self, fn_kind, span);
156 }
157
158 fn visit_use_tree(&mut self, use_tree: &'a UseTree, id: NodeId, _nested: bool) {
159 self.create_def(id, DefPathData::Misc, use_tree.span);
160 match use_tree.kind {
161 UseTreeKind::Simple(_, id1, id2) => {
162 self.create_def(id1, DefPathData::Misc, use_tree.prefix.span);
163 self.create_def(id2, DefPathData::Misc, use_tree.prefix.span);
164 }
165 UseTreeKind::Glob => (),
166 UseTreeKind::Nested(..) => {}
167 }
168 visit::walk_use_tree(self, use_tree, id);
169 }
170
171 fn visit_foreign_item(&mut self, foreign_item: &'a ForeignItem) {
172 if let ForeignItemKind::MacCall(_) = foreign_item.kind {
173 return self.visit_macro_invoc(foreign_item.id);
174 }
175
176 let def = self.create_def(
177 foreign_item.id,
178 DefPathData::ValueNs(foreign_item.ident.name),
179 foreign_item.span,
180 );
181
182 self.with_parent(def, |this| {
183 visit::walk_foreign_item(this, foreign_item);
184 });
185 }
186
187 fn visit_variant(&mut self, v: &'a Variant) {
188 if v.is_placeholder {
189 return self.visit_macro_invoc(v.id);
190 }
191 let def = self.create_def(v.id, DefPathData::TypeNs(v.ident.name), v.span);
192 self.with_parent(def, |this| {
193 if let Some(ctor_hir_id) = v.data.ctor_id() {
194 this.create_def(ctor_hir_id, DefPathData::Ctor, v.span);
195 }
196 visit::walk_variant(this, v)
197 });
198 }
199
200 fn visit_variant_data(&mut self, data: &'a VariantData) {
201 // The assumption here is that non-`cfg` macro expansion cannot change field indices.
202 // It currently holds because only inert attributes are accepted on fields,
203 // and every such attribute expands into a single field after it's resolved.
204 for (index, field) in data.fields().iter().enumerate() {
205 self.collect_field(field, Some(index));
206 }
207 }
208
209 fn visit_generic_param(&mut self, param: &'a GenericParam) {
210 if param.is_placeholder {
211 self.visit_macro_invoc(param.id);
212 return;
213 }
214 let name = param.ident.name;
215 let def_path_data = match param.kind {
216 GenericParamKind::Lifetime { .. } => DefPathData::LifetimeNs(name),
217 GenericParamKind::Type { .. } => DefPathData::TypeNs(name),
218 GenericParamKind::Const { .. } => DefPathData::ValueNs(name),
219 };
220 self.create_def(param.id, def_path_data, param.ident.span);
221
222 // impl-Trait can happen inside generic parameters, like
223 // ```
224 // fn foo<U: Iterator<Item = impl Clone>>() {}
225 // ```
226 //
227 // In that case, the impl-trait is lowered as an additional generic parameter.
228 self.with_impl_trait(ImplTraitContext::Universal(self.parent_def), |this| {
229 visit::walk_generic_param(this, param)
230 });
231 }
232
233 fn visit_assoc_item(&mut self, i: &'a AssocItem, ctxt: visit::AssocCtxt) {
234 let def_data = match &i.kind {
235 AssocItemKind::Fn(..) | AssocItemKind::Const(..) => DefPathData::ValueNs(i.ident.name),
236 AssocItemKind::TyAlias(..) => DefPathData::TypeNs(i.ident.name),
237 AssocItemKind::MacCall(..) => return self.visit_macro_invoc(i.id),
238 };
239
240 let def = self.create_def(i.id, def_data, i.span);
241 self.with_parent(def, |this| visit::walk_assoc_item(this, i, ctxt));
242 }
243
244 fn visit_pat(&mut self, pat: &'a Pat) {
245 match pat.kind {
246 PatKind::MacCall(..) => self.visit_macro_invoc(pat.id),
247 _ => visit::walk_pat(self, pat),
248 }
249 }
250
251 fn visit_anon_const(&mut self, constant: &'a AnonConst) {
252 let def = self.create_def(constant.id, DefPathData::AnonConst, constant.value.span);
253 self.with_parent(def, |this| visit::walk_anon_const(this, constant));
254 }
255
256 fn visit_expr(&mut self, expr: &'a Expr) {
257 let parent_def = match expr.kind {
258 ExprKind::MacCall(..) => return self.visit_macro_invoc(expr.id),
259 ExprKind::Closure(_, asyncness, ..) => {
260 // Async closures desugar to closures inside of closures, so
261 // we must create two defs.
262 let closure_def = self.create_def(expr.id, DefPathData::ClosureExpr, expr.span);
263 match asyncness {
264 Async::Yes { closure_id, .. } => {
265 self.create_def(closure_id, DefPathData::ClosureExpr, expr.span)
266 }
267 Async::No => closure_def,
268 }
269 }
270 ExprKind::Async(_, async_id, _) => {
271 self.create_def(async_id, DefPathData::ClosureExpr, expr.span)
272 }
273 _ => self.parent_def,
274 };
275
276 self.with_parent(parent_def, |this| visit::walk_expr(this, expr));
277 }
278
279 fn visit_ty(&mut self, ty: &'a Ty) {
280 match ty.kind {
281 TyKind::MacCall(..) => self.visit_macro_invoc(ty.id),
282 TyKind::ImplTrait(node_id, _) => {
283 let parent_def = match self.impl_trait_context {
284 ImplTraitContext::Universal(item_def) => self.resolver.create_def(
285 item_def,
286 node_id,
287 DefPathData::ImplTrait,
288 self.expansion.to_expn_id(),
289 ty.span,
290 ),
291 ImplTraitContext::Existential => {
292 self.create_def(node_id, DefPathData::ImplTrait, ty.span)
293 }
294 };
295 self.with_parent(parent_def, |this| visit::walk_ty(this, ty))
296 }
297 _ => visit::walk_ty(self, ty),
298 }
299 }
300
301 fn visit_stmt(&mut self, stmt: &'a Stmt) {
302 match stmt.kind {
303 StmtKind::MacCall(..) => self.visit_macro_invoc(stmt.id),
304 _ => visit::walk_stmt(self, stmt),
305 }
306 }
307
308 fn visit_arm(&mut self, arm: &'a Arm) {
309 if arm.is_placeholder { self.visit_macro_invoc(arm.id) } else { visit::walk_arm(self, arm) }
310 }
311
312 fn visit_expr_field(&mut self, f: &'a ExprField) {
313 if f.is_placeholder {
314 self.visit_macro_invoc(f.id)
315 } else {
316 visit::walk_expr_field(self, f)
317 }
318 }
319
320 fn visit_pat_field(&mut self, fp: &'a PatField) {
321 if fp.is_placeholder {
322 self.visit_macro_invoc(fp.id)
323 } else {
324 visit::walk_pat_field(self, fp)
325 }
326 }
327
328 fn visit_param(&mut self, p: &'a Param) {
329 if p.is_placeholder {
330 self.visit_macro_invoc(p.id)
331 } else {
332 self.with_impl_trait(ImplTraitContext::Universal(self.parent_def), |this| {
333 visit::walk_param(this, p)
334 })
335 }
336 }
337
338 // This method is called only when we are visiting an individual field
339 // after expanding an attribute on it.
340 fn visit_field_def(&mut self, field: &'a FieldDef) {
341 self.collect_field(field, None);
342 }
343 }