]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_resolve/src/def_collector.rs
New upstream version 1.59.0+dfsg1
[rustc.git] / compiler / rustc_resolve / src / def_collector.rs
1 use crate::{ImplTraitContext, Resolver};
2 use rustc_ast::visit::{self, FnKind};
3 use rustc_ast::walk_list;
4 use rustc_ast::*;
5 use rustc_ast_lowering::ResolverAstLowering;
6 use rustc_expand::expand::AstFragment;
7 use rustc_hir::def_id::LocalDefId;
8 use rustc_hir::definitions::*;
9 use rustc_span::hygiene::LocalExpnId;
10 use rustc_span::symbol::sym;
11 use rustc_span::Span;
12 use tracing::debug;
13
14 crate fn collect_definitions(
15 resolver: &mut Resolver<'_>,
16 fragment: &AstFragment,
17 expansion: LocalExpnId,
18 ) {
19 let (parent_def, impl_trait_context) = resolver.invocation_parents[&expansion];
20 fragment.visit_with(&mut DefCollector { resolver, parent_def, expansion, impl_trait_context });
21 }
22
23 /// Creates `DefId`s for nodes in the AST.
24 struct DefCollector<'a, 'b> {
25 resolver: &'a mut Resolver<'b>,
26 parent_def: LocalDefId,
27 impl_trait_context: ImplTraitContext,
28 expansion: LocalExpnId,
29 }
30
31 impl<'a, 'b> DefCollector<'a, 'b> {
32 fn create_def(&mut self, node_id: NodeId, data: DefPathData, span: Span) -> LocalDefId {
33 let parent_def = self.parent_def;
34 debug!("create_def(node_id={:?}, data={:?}, parent_def={:?})", node_id, data, parent_def);
35 self.resolver.create_def(
36 parent_def,
37 node_id,
38 data,
39 self.expansion.to_expn_id(),
40 span.with_parent(None),
41 )
42 }
43
44 fn with_parent<F: FnOnce(&mut Self)>(&mut self, parent_def: LocalDefId, f: F) {
45 let orig_parent_def = std::mem::replace(&mut self.parent_def, parent_def);
46 f(self);
47 self.parent_def = orig_parent_def;
48 }
49
50 fn with_impl_trait<F: FnOnce(&mut Self)>(
51 &mut self,
52 impl_trait_context: ImplTraitContext,
53 f: F,
54 ) {
55 let orig_itc = std::mem::replace(&mut self.impl_trait_context, impl_trait_context);
56 f(self);
57 self.impl_trait_context = orig_itc;
58 }
59
60 fn collect_field(&mut self, field: &'a FieldDef, index: Option<usize>) {
61 let index = |this: &Self| {
62 index.unwrap_or_else(|| {
63 let node_id = NodeId::placeholder_from_expn_id(this.expansion);
64 this.resolver.placeholder_field_indices[&node_id]
65 })
66 };
67
68 if field.is_placeholder {
69 let old_index = self.resolver.placeholder_field_indices.insert(field.id, index(self));
70 assert!(old_index.is_none(), "placeholder field index is reset for a node ID");
71 self.visit_macro_invoc(field.id);
72 } else {
73 let name = field.ident.map_or_else(|| sym::integer(index(self)), |ident| ident.name);
74 let def = self.create_def(field.id, DefPathData::ValueNs(name), field.span);
75 self.with_parent(def, |this| visit::walk_field_def(this, field));
76 }
77 }
78
79 fn visit_macro_invoc(&mut self, id: NodeId) {
80 let id = id.placeholder_to_expn_id();
81 let old_parent =
82 self.resolver.invocation_parents.insert(id, (self.parent_def, self.impl_trait_context));
83 assert!(old_parent.is_none(), "parent `LocalDefId` is reset for an invocation");
84 }
85 }
86
87 impl<'a, 'b> visit::Visitor<'a> for DefCollector<'a, 'b> {
88 fn visit_item(&mut self, i: &'a Item) {
89 debug!("visit_item: {:?}", i);
90
91 // Pick the def data. This need not be unique, but the more
92 // information we encapsulate into, the better
93 let def_data = match &i.kind {
94 ItemKind::Impl { .. } => DefPathData::Impl,
95 ItemKind::ForeignMod(..) => DefPathData::ForeignMod,
96 ItemKind::Mod(..)
97 | ItemKind::Trait(..)
98 | ItemKind::TraitAlias(..)
99 | ItemKind::Enum(..)
100 | ItemKind::Struct(..)
101 | ItemKind::Union(..)
102 | ItemKind::ExternCrate(..)
103 | ItemKind::TyAlias(..) => DefPathData::TypeNs(i.ident.name),
104 ItemKind::Static(..) | ItemKind::Const(..) | ItemKind::Fn(..) => {
105 DefPathData::ValueNs(i.ident.name)
106 }
107 ItemKind::MacroDef(..) => DefPathData::MacroNs(i.ident.name),
108 ItemKind::MacCall(..) => {
109 visit::walk_item(self, i);
110 return self.visit_macro_invoc(i.id);
111 }
112 ItemKind::GlobalAsm(..) => DefPathData::Misc,
113 ItemKind::Use(..) => {
114 return visit::walk_item(self, i);
115 }
116 };
117 let def = self.create_def(i.id, def_data, i.span);
118
119 self.with_parent(def, |this| {
120 this.with_impl_trait(ImplTraitContext::Existential, |this| {
121 match i.kind {
122 ItemKind::Struct(ref struct_def, _) | ItemKind::Union(ref struct_def, _) => {
123 // If this is a unit or tuple-like struct, register the constructor.
124 if let Some(ctor_hir_id) = struct_def.ctor_id() {
125 this.create_def(ctor_hir_id, DefPathData::Ctor, i.span);
126 }
127 }
128 _ => {}
129 }
130 visit::walk_item(this, i);
131 })
132 });
133 }
134
135 fn visit_fn(&mut self, fn_kind: FnKind<'a>, span: Span, _: NodeId) {
136 if let FnKind::Fn(_, _, sig, _, body) = fn_kind {
137 if let Async::Yes { closure_id, return_impl_trait_id, .. } = sig.header.asyncness {
138 let return_impl_trait_id =
139 self.create_def(return_impl_trait_id, DefPathData::ImplTrait, span);
140
141 // For async functions, we need to create their inner defs inside of a
142 // closure to match their desugared representation. Besides that,
143 // we must mirror everything that `visit::walk_fn` below does.
144 self.visit_fn_header(&sig.header);
145 for param in &sig.decl.inputs {
146 self.visit_param(param);
147 }
148 self.with_parent(return_impl_trait_id, |this| {
149 this.visit_fn_ret_ty(&sig.decl.output)
150 });
151 let closure_def = self.create_def(closure_id, DefPathData::ClosureExpr, span);
152 self.with_parent(closure_def, |this| walk_list!(this, visit_block, body));
153 return;
154 }
155 }
156
157 visit::walk_fn(self, fn_kind, span);
158 }
159
160 fn visit_use_tree(&mut self, use_tree: &'a UseTree, id: NodeId, _nested: bool) {
161 self.create_def(id, DefPathData::Misc, use_tree.span);
162 match use_tree.kind {
163 UseTreeKind::Simple(_, id1, id2) => {
164 self.create_def(id1, DefPathData::Misc, use_tree.prefix.span);
165 self.create_def(id2, DefPathData::Misc, use_tree.prefix.span);
166 }
167 UseTreeKind::Glob => (),
168 UseTreeKind::Nested(..) => {}
169 }
170 visit::walk_use_tree(self, use_tree, id);
171 }
172
173 fn visit_foreign_item(&mut self, foreign_item: &'a ForeignItem) {
174 if let ForeignItemKind::MacCall(_) = foreign_item.kind {
175 return self.visit_macro_invoc(foreign_item.id);
176 }
177
178 let def = self.create_def(
179 foreign_item.id,
180 DefPathData::ValueNs(foreign_item.ident.name),
181 foreign_item.span,
182 );
183
184 self.with_parent(def, |this| {
185 visit::walk_foreign_item(this, foreign_item);
186 });
187 }
188
189 fn visit_variant(&mut self, v: &'a Variant) {
190 if v.is_placeholder {
191 return self.visit_macro_invoc(v.id);
192 }
193 let def = self.create_def(v.id, DefPathData::TypeNs(v.ident.name), v.span);
194 self.with_parent(def, |this| {
195 if let Some(ctor_hir_id) = v.data.ctor_id() {
196 this.create_def(ctor_hir_id, DefPathData::Ctor, v.span);
197 }
198 visit::walk_variant(this, v)
199 });
200 }
201
202 fn visit_variant_data(&mut self, data: &'a VariantData) {
203 // The assumption here is that non-`cfg` macro expansion cannot change field indices.
204 // It currently holds because only inert attributes are accepted on fields,
205 // and every such attribute expands into a single field after it's resolved.
206 for (index, field) in data.fields().iter().enumerate() {
207 self.collect_field(field, Some(index));
208 }
209 }
210
211 fn visit_generic_param(&mut self, param: &'a GenericParam) {
212 if param.is_placeholder {
213 self.visit_macro_invoc(param.id);
214 return;
215 }
216 let name = param.ident.name;
217 let def_path_data = match param.kind {
218 GenericParamKind::Lifetime { .. } => DefPathData::LifetimeNs(name),
219 GenericParamKind::Type { .. } => DefPathData::TypeNs(name),
220 GenericParamKind::Const { .. } => DefPathData::ValueNs(name),
221 };
222 self.create_def(param.id, def_path_data, param.ident.span);
223
224 // impl-Trait can happen inside generic parameters, like
225 // ```
226 // fn foo<U: Iterator<Item = impl Clone>>() {}
227 // ```
228 //
229 // In that case, the impl-trait is lowered as an additional generic parameter.
230 self.with_impl_trait(ImplTraitContext::Universal(self.parent_def), |this| {
231 visit::walk_generic_param(this, param)
232 });
233 }
234
235 fn visit_assoc_item(&mut self, i: &'a AssocItem, ctxt: visit::AssocCtxt) {
236 let def_data = match &i.kind {
237 AssocItemKind::Fn(..) | AssocItemKind::Const(..) => DefPathData::ValueNs(i.ident.name),
238 AssocItemKind::TyAlias(..) => DefPathData::TypeNs(i.ident.name),
239 AssocItemKind::MacCall(..) => return self.visit_macro_invoc(i.id),
240 };
241
242 let def = self.create_def(i.id, def_data, i.span);
243 self.with_parent(def, |this| visit::walk_assoc_item(this, i, ctxt));
244 }
245
246 fn visit_pat(&mut self, pat: &'a Pat) {
247 match pat.kind {
248 PatKind::MacCall(..) => self.visit_macro_invoc(pat.id),
249 _ => visit::walk_pat(self, pat),
250 }
251 }
252
253 fn visit_anon_const(&mut self, constant: &'a AnonConst) {
254 let def = self.create_def(constant.id, DefPathData::AnonConst, constant.value.span);
255 self.with_parent(def, |this| visit::walk_anon_const(this, constant));
256 }
257
258 fn visit_expr(&mut self, expr: &'a Expr) {
259 let parent_def = match expr.kind {
260 ExprKind::MacCall(..) => return self.visit_macro_invoc(expr.id),
261 ExprKind::Closure(_, asyncness, ..) => {
262 // Async closures desugar to closures inside of closures, so
263 // we must create two defs.
264 let closure_def = self.create_def(expr.id, DefPathData::ClosureExpr, expr.span);
265 match asyncness {
266 Async::Yes { closure_id, .. } => {
267 self.create_def(closure_id, DefPathData::ClosureExpr, expr.span)
268 }
269 Async::No => closure_def,
270 }
271 }
272 ExprKind::Async(_, async_id, _) => {
273 self.create_def(async_id, DefPathData::ClosureExpr, expr.span)
274 }
275 _ => self.parent_def,
276 };
277
278 self.with_parent(parent_def, |this| visit::walk_expr(this, expr));
279 }
280
281 fn visit_ty(&mut self, ty: &'a Ty) {
282 match ty.kind {
283 TyKind::MacCall(..) => self.visit_macro_invoc(ty.id),
284 TyKind::ImplTrait(node_id, _) => {
285 let parent_def = match self.impl_trait_context {
286 ImplTraitContext::Universal(item_def) => self.resolver.create_def(
287 item_def,
288 node_id,
289 DefPathData::ImplTrait,
290 self.expansion.to_expn_id(),
291 ty.span,
292 ),
293 ImplTraitContext::Existential => {
294 self.create_def(node_id, DefPathData::ImplTrait, ty.span)
295 }
296 };
297 self.with_parent(parent_def, |this| visit::walk_ty(this, ty))
298 }
299 _ => visit::walk_ty(self, ty),
300 }
301 }
302
303 fn visit_stmt(&mut self, stmt: &'a Stmt) {
304 match stmt.kind {
305 StmtKind::MacCall(..) => self.visit_macro_invoc(stmt.id),
306 _ => visit::walk_stmt(self, stmt),
307 }
308 }
309
310 fn visit_arm(&mut self, arm: &'a Arm) {
311 if arm.is_placeholder { self.visit_macro_invoc(arm.id) } else { visit::walk_arm(self, arm) }
312 }
313
314 fn visit_expr_field(&mut self, f: &'a ExprField) {
315 if f.is_placeholder {
316 self.visit_macro_invoc(f.id)
317 } else {
318 visit::walk_expr_field(self, f)
319 }
320 }
321
322 fn visit_pat_field(&mut self, fp: &'a PatField) {
323 if fp.is_placeholder {
324 self.visit_macro_invoc(fp.id)
325 } else {
326 visit::walk_pat_field(self, fp)
327 }
328 }
329
330 fn visit_param(&mut self, p: &'a Param) {
331 if p.is_placeholder {
332 self.visit_macro_invoc(p.id)
333 } else {
334 self.with_impl_trait(ImplTraitContext::Universal(self.parent_def), |this| {
335 visit::walk_param(this, p)
336 })
337 }
338 }
339
340 // This method is called only when we are visiting an individual field
341 // after expanding an attribute on it.
342 fn visit_field_def(&mut self, field: &'a FieldDef) {
343 self.collect_field(field, None);
344 }
345
346 fn visit_crate(&mut self, krate: &'a Crate) {
347 if krate.is_placeholder {
348 self.visit_macro_invoc(krate.id)
349 } else {
350 visit::walk_crate(self, krate)
351 }
352 }
353 }