]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_resolve/src/lib.rs
New upstream version 1.48.0~beta.8+dfsg1
[rustc.git] / compiler / rustc_resolve / src / lib.rs
1 // ignore-tidy-filelength
2
3 //! This crate is responsible for the part of name resolution that doesn't require type checker.
4 //!
5 //! Module structure of the crate is built here.
6 //! Paths in macros, imports, expressions, types, patterns are resolved here.
7 //! Label and lifetime names are resolved here as well.
8 //!
9 //! Type-relative name resolution (methods, fields, associated items) happens in `librustc_typeck`.
10
11 #![doc(html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/")]
12 #![feature(bool_to_option)]
13 #![feature(crate_visibility_modifier)]
14 #![feature(nll)]
15 #![feature(or_patterns)]
16 #![recursion_limit = "256"]
17
18 pub use rustc_hir::def::{Namespace, PerNS};
19
20 use Determinacy::*;
21
22 use rustc_arena::TypedArena;
23 use rustc_ast::node_id::NodeMap;
24 use rustc_ast::unwrap_or;
25 use rustc_ast::visit::{self, Visitor};
26 use rustc_ast::{self as ast, FloatTy, IntTy, NodeId, UintTy};
27 use rustc_ast::{Crate, CRATE_NODE_ID};
28 use rustc_ast::{ItemKind, Path};
29 use rustc_ast_lowering::ResolverAstLowering;
30 use rustc_ast_pretty::pprust;
31 use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap};
32 use rustc_data_structures::ptr_key::PtrKey;
33 use rustc_data_structures::sync::Lrc;
34 use rustc_errors::{struct_span_err, Applicability, DiagnosticBuilder};
35 use rustc_expand::base::SyntaxExtension;
36 use rustc_hir::def::Namespace::*;
37 use rustc_hir::def::{self, CtorOf, DefKind, NonMacroAttrKind, PartialRes};
38 use rustc_hir::def_id::{CrateNum, DefId, DefIdMap, LocalDefId, CRATE_DEF_INDEX};
39 use rustc_hir::definitions::{DefKey, DefPathData, Definitions};
40 use rustc_hir::PrimTy::{self, Bool, Char, Float, Int, Str, Uint};
41 use rustc_hir::TraitCandidate;
42 use rustc_index::vec::IndexVec;
43 use rustc_metadata::creader::{CStore, CrateLoader};
44 use rustc_middle::hir::exports::ExportMap;
45 use rustc_middle::middle::cstore::{CrateStore, MetadataLoaderDyn};
46 use rustc_middle::ty::query::Providers;
47 use rustc_middle::ty::{self, DefIdTree, ResolverOutputs};
48 use rustc_middle::{bug, span_bug};
49 use rustc_session::lint;
50 use rustc_session::lint::{BuiltinLintDiagnostics, LintBuffer};
51 use rustc_session::Session;
52 use rustc_span::hygiene::{ExpnId, ExpnKind, MacroKind, SyntaxContext, Transparency};
53 use rustc_span::source_map::Spanned;
54 use rustc_span::symbol::{kw, sym, Ident, Symbol};
55 use rustc_span::{Span, DUMMY_SP};
56
57 use smallvec::{smallvec, SmallVec};
58 use std::cell::{Cell, RefCell};
59 use std::collections::BTreeSet;
60 use std::{cmp, fmt, iter, ptr};
61 use tracing::debug;
62
63 use diagnostics::{extend_span_to_previous_binding, find_span_of_binding_until_next_binding};
64 use diagnostics::{ImportSuggestion, LabelSuggestion, Suggestion};
65 use imports::{Import, ImportKind, ImportResolver, NameResolution};
66 use late::{HasGenericParams, PathSource, Rib, RibKind::*};
67 use macros::{MacroRulesBinding, MacroRulesScope};
68
69 type Res = def::Res<NodeId>;
70
71 mod build_reduced_graph;
72 mod check_unused;
73 mod def_collector;
74 mod diagnostics;
75 mod imports;
76 mod late;
77 mod macros;
78
79 enum Weak {
80 Yes,
81 No,
82 }
83
84 #[derive(Copy, Clone, PartialEq, Debug)]
85 pub enum Determinacy {
86 Determined,
87 Undetermined,
88 }
89
90 impl Determinacy {
91 fn determined(determined: bool) -> Determinacy {
92 if determined { Determinacy::Determined } else { Determinacy::Undetermined }
93 }
94 }
95
96 /// A specific scope in which a name can be looked up.
97 /// This enum is currently used only for early resolution (imports and macros),
98 /// but not for late resolution yet.
99 #[derive(Clone, Copy)]
100 enum Scope<'a> {
101 DeriveHelpers(ExpnId),
102 DeriveHelpersCompat,
103 MacroRules(MacroRulesScope<'a>),
104 CrateRoot,
105 Module(Module<'a>),
106 RegisteredAttrs,
107 MacroUsePrelude,
108 BuiltinAttrs,
109 ExternPrelude,
110 ToolPrelude,
111 StdLibPrelude,
112 BuiltinTypes,
113 }
114
115 /// Names from different contexts may want to visit different subsets of all specific scopes
116 /// with different restrictions when looking up the resolution.
117 /// This enum is currently used only for early resolution (imports and macros),
118 /// but not for late resolution yet.
119 enum ScopeSet {
120 /// All scopes with the given namespace.
121 All(Namespace, /*is_import*/ bool),
122 /// Crate root, then extern prelude (used for mixed 2015-2018 mode in macros).
123 AbsolutePath(Namespace),
124 /// All scopes with macro namespace and the given macro kind restriction.
125 Macro(MacroKind),
126 }
127
128 /// Everything you need to know about a name's location to resolve it.
129 /// Serves as a starting point for the scope visitor.
130 /// This struct is currently used only for early resolution (imports and macros),
131 /// but not for late resolution yet.
132 #[derive(Clone, Copy, Debug)]
133 pub struct ParentScope<'a> {
134 module: Module<'a>,
135 expansion: ExpnId,
136 macro_rules: MacroRulesScope<'a>,
137 derives: &'a [ast::Path],
138 }
139
140 impl<'a> ParentScope<'a> {
141 /// Creates a parent scope with the passed argument used as the module scope component,
142 /// and other scope components set to default empty values.
143 pub fn module(module: Module<'a>) -> ParentScope<'a> {
144 ParentScope {
145 module,
146 expansion: ExpnId::root(),
147 macro_rules: MacroRulesScope::Empty,
148 derives: &[],
149 }
150 }
151 }
152
153 #[derive(Eq)]
154 struct BindingError {
155 name: Symbol,
156 origin: BTreeSet<Span>,
157 target: BTreeSet<Span>,
158 could_be_path: bool,
159 }
160
161 impl PartialOrd for BindingError {
162 fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
163 Some(self.cmp(other))
164 }
165 }
166
167 impl PartialEq for BindingError {
168 fn eq(&self, other: &BindingError) -> bool {
169 self.name == other.name
170 }
171 }
172
173 impl Ord for BindingError {
174 fn cmp(&self, other: &BindingError) -> cmp::Ordering {
175 self.name.cmp(&other.name)
176 }
177 }
178
179 enum ResolutionError<'a> {
180 /// Error E0401: can't use type or const parameters from outer function.
181 GenericParamsFromOuterFunction(Res, HasGenericParams),
182 /// Error E0403: the name is already used for a type or const parameter in this generic
183 /// parameter list.
184 NameAlreadyUsedInParameterList(Symbol, Span),
185 /// Error E0407: method is not a member of trait.
186 MethodNotMemberOfTrait(Symbol, &'a str),
187 /// Error E0437: type is not a member of trait.
188 TypeNotMemberOfTrait(Symbol, &'a str),
189 /// Error E0438: const is not a member of trait.
190 ConstNotMemberOfTrait(Symbol, &'a str),
191 /// Error E0408: variable `{}` is not bound in all patterns.
192 VariableNotBoundInPattern(&'a BindingError),
193 /// Error E0409: variable `{}` is bound in inconsistent ways within the same match arm.
194 VariableBoundWithDifferentMode(Symbol, Span),
195 /// Error E0415: identifier is bound more than once in this parameter list.
196 IdentifierBoundMoreThanOnceInParameterList(Symbol),
197 /// Error E0416: identifier is bound more than once in the same pattern.
198 IdentifierBoundMoreThanOnceInSamePattern(Symbol),
199 /// Error E0426: use of undeclared label.
200 UndeclaredLabel { name: Symbol, suggestion: Option<LabelSuggestion> },
201 /// Error E0429: `self` imports are only allowed within a `{ }` list.
202 SelfImportsOnlyAllowedWithin { root: bool, span_with_rename: Span },
203 /// Error E0430: `self` import can only appear once in the list.
204 SelfImportCanOnlyAppearOnceInTheList,
205 /// Error E0431: `self` import can only appear in an import list with a non-empty prefix.
206 SelfImportOnlyInImportListWithNonEmptyPrefix,
207 /// Error E0433: failed to resolve.
208 FailedToResolve { label: String, suggestion: Option<Suggestion> },
209 /// Error E0434: can't capture dynamic environment in a fn item.
210 CannotCaptureDynamicEnvironmentInFnItem,
211 /// Error E0435: attempt to use a non-constant value in a constant.
212 AttemptToUseNonConstantValueInConstant,
213 /// Error E0530: `X` bindings cannot shadow `Y`s.
214 BindingShadowsSomethingUnacceptable(&'static str, Symbol, &'a NameBinding<'a>),
215 /// Error E0128: type parameters with a default cannot use forward-declared identifiers.
216 ForwardDeclaredTyParam, // FIXME(const_generics:defaults)
217 /// ERROR E0770: the type of const parameters must not depend on other generic parameters.
218 ParamInTyOfConstParam(Symbol),
219 /// constant values inside of type parameter defaults must not depend on generic parameters.
220 ParamInAnonConstInTyDefault(Symbol),
221 /// generic parameters must not be used inside of non trivial constant values.
222 ///
223 /// This error is only emitted when using `min_const_generics`.
224 ParamInNonTrivialAnonConst { name: Symbol, is_type: bool },
225 /// Error E0735: type parameters with a default cannot use `Self`
226 SelfInTyParamDefault,
227 /// Error E0767: use of unreachable label
228 UnreachableLabel { name: Symbol, definition_span: Span, suggestion: Option<LabelSuggestion> },
229 }
230
231 enum VisResolutionError<'a> {
232 Relative2018(Span, &'a ast::Path),
233 AncestorOnly(Span),
234 FailedToResolve(Span, String, Option<Suggestion>),
235 ExpectedFound(Span, String, Res),
236 Indeterminate(Span),
237 ModuleOnly(Span),
238 }
239
240 /// A minimal representation of a path segment. We use this in resolve because we synthesize 'path
241 /// segments' which don't have the rest of an AST or HIR `PathSegment`.
242 #[derive(Clone, Copy, Debug)]
243 pub struct Segment {
244 ident: Ident,
245 id: Option<NodeId>,
246 /// Signals whether this `PathSegment` has generic arguments. Used to avoid providing
247 /// nonsensical suggestions.
248 has_generic_args: bool,
249 }
250
251 impl Segment {
252 fn from_path(path: &Path) -> Vec<Segment> {
253 path.segments.iter().map(|s| s.into()).collect()
254 }
255
256 fn from_ident(ident: Ident) -> Segment {
257 Segment { ident, id: None, has_generic_args: false }
258 }
259
260 fn names_to_string(segments: &[Segment]) -> String {
261 names_to_string(&segments.iter().map(|seg| seg.ident.name).collect::<Vec<_>>())
262 }
263 }
264
265 impl<'a> From<&'a ast::PathSegment> for Segment {
266 fn from(seg: &'a ast::PathSegment) -> Segment {
267 Segment { ident: seg.ident, id: Some(seg.id), has_generic_args: seg.args.is_some() }
268 }
269 }
270
271 struct UsePlacementFinder {
272 target_module: NodeId,
273 span: Option<Span>,
274 found_use: bool,
275 }
276
277 impl UsePlacementFinder {
278 fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
279 let mut finder = UsePlacementFinder { target_module, span: None, found_use: false };
280 visit::walk_crate(&mut finder, krate);
281 (finder.span, finder.found_use)
282 }
283 }
284
285 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
286 fn visit_mod(
287 &mut self,
288 module: &'tcx ast::Mod,
289 _: Span,
290 _: &[ast::Attribute],
291 node_id: NodeId,
292 ) {
293 if self.span.is_some() {
294 return;
295 }
296 if node_id != self.target_module {
297 visit::walk_mod(self, module);
298 return;
299 }
300 // find a use statement
301 for item in &module.items {
302 match item.kind {
303 ItemKind::Use(..) => {
304 // don't suggest placing a use before the prelude
305 // import or other generated ones
306 if !item.span.from_expansion() {
307 self.span = Some(item.span.shrink_to_lo());
308 self.found_use = true;
309 return;
310 }
311 }
312 // don't place use before extern crate
313 ItemKind::ExternCrate(_) => {}
314 // but place them before the first other item
315 _ => {
316 if self.span.map_or(true, |span| item.span < span) {
317 if !item.span.from_expansion() {
318 // don't insert between attributes and an item
319 if item.attrs.is_empty() {
320 self.span = Some(item.span.shrink_to_lo());
321 } else {
322 // find the first attribute on the item
323 for attr in &item.attrs {
324 if self.span.map_or(true, |span| attr.span < span) {
325 self.span = Some(attr.span.shrink_to_lo());
326 }
327 }
328 }
329 }
330 }
331 }
332 }
333 }
334 }
335 }
336
337 /// An intermediate resolution result.
338 ///
339 /// This refers to the thing referred by a name. The difference between `Res` and `Item` is that
340 /// items are visible in their whole block, while `Res`es only from the place they are defined
341 /// forward.
342 #[derive(Debug)]
343 enum LexicalScopeBinding<'a> {
344 Item(&'a NameBinding<'a>),
345 Res(Res),
346 }
347
348 impl<'a> LexicalScopeBinding<'a> {
349 fn res(self) -> Res {
350 match self {
351 LexicalScopeBinding::Item(binding) => binding.res(),
352 LexicalScopeBinding::Res(res) => res,
353 }
354 }
355 }
356
357 #[derive(Copy, Clone, Debug)]
358 enum ModuleOrUniformRoot<'a> {
359 /// Regular module.
360 Module(Module<'a>),
361
362 /// Virtual module that denotes resolution in crate root with fallback to extern prelude.
363 CrateRootAndExternPrelude,
364
365 /// Virtual module that denotes resolution in extern prelude.
366 /// Used for paths starting with `::` on 2018 edition.
367 ExternPrelude,
368
369 /// Virtual module that denotes resolution in current scope.
370 /// Used only for resolving single-segment imports. The reason it exists is that import paths
371 /// are always split into two parts, the first of which should be some kind of module.
372 CurrentScope,
373 }
374
375 impl ModuleOrUniformRoot<'_> {
376 fn same_def(lhs: Self, rhs: Self) -> bool {
377 match (lhs, rhs) {
378 (ModuleOrUniformRoot::Module(lhs), ModuleOrUniformRoot::Module(rhs)) => {
379 lhs.def_id() == rhs.def_id()
380 }
381 (
382 ModuleOrUniformRoot::CrateRootAndExternPrelude,
383 ModuleOrUniformRoot::CrateRootAndExternPrelude,
384 )
385 | (ModuleOrUniformRoot::ExternPrelude, ModuleOrUniformRoot::ExternPrelude)
386 | (ModuleOrUniformRoot::CurrentScope, ModuleOrUniformRoot::CurrentScope) => true,
387 _ => false,
388 }
389 }
390 }
391
392 #[derive(Clone, Debug)]
393 enum PathResult<'a> {
394 Module(ModuleOrUniformRoot<'a>),
395 NonModule(PartialRes),
396 Indeterminate,
397 Failed {
398 span: Span,
399 label: String,
400 suggestion: Option<Suggestion>,
401 is_error_from_last_segment: bool,
402 },
403 }
404
405 enum ModuleKind {
406 /// An anonymous module; e.g., just a block.
407 ///
408 /// ```
409 /// fn main() {
410 /// fn f() {} // (1)
411 /// { // This is an anonymous module
412 /// f(); // This resolves to (2) as we are inside the block.
413 /// fn f() {} // (2)
414 /// }
415 /// f(); // Resolves to (1)
416 /// }
417 /// ```
418 Block(NodeId),
419 /// Any module with a name.
420 ///
421 /// This could be:
422 ///
423 /// * A normal module ‒ either `mod from_file;` or `mod from_block { }`.
424 /// * A trait or an enum (it implicitly contains associated types, methods and variant
425 /// constructors).
426 Def(DefKind, DefId, Symbol),
427 }
428
429 impl ModuleKind {
430 /// Get name of the module.
431 pub fn name(&self) -> Option<Symbol> {
432 match self {
433 ModuleKind::Block(..) => None,
434 ModuleKind::Def(.., name) => Some(*name),
435 }
436 }
437 }
438
439 /// A key that identifies a binding in a given `Module`.
440 ///
441 /// Multiple bindings in the same module can have the same key (in a valid
442 /// program) if all but one of them come from glob imports.
443 #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
444 struct BindingKey {
445 /// The identifier for the binding, aways the `normalize_to_macros_2_0` version of the
446 /// identifier.
447 ident: Ident,
448 ns: Namespace,
449 /// 0 if ident is not `_`, otherwise a value that's unique to the specific
450 /// `_` in the expanded AST that introduced this binding.
451 disambiguator: u32,
452 }
453
454 type Resolutions<'a> = RefCell<FxIndexMap<BindingKey, &'a RefCell<NameResolution<'a>>>>;
455
456 /// One node in the tree of modules.
457 pub struct ModuleData<'a> {
458 parent: Option<Module<'a>>,
459 kind: ModuleKind,
460
461 // The def id of the closest normal module (`mod`) ancestor (including this module).
462 normal_ancestor_id: DefId,
463
464 // Mapping between names and their (possibly in-progress) resolutions in this module.
465 // Resolutions in modules from other crates are not populated until accessed.
466 lazy_resolutions: Resolutions<'a>,
467 // True if this is a module from other crate that needs to be populated on access.
468 populate_on_access: Cell<bool>,
469
470 // Macro invocations that can expand into items in this module.
471 unexpanded_invocations: RefCell<FxHashSet<ExpnId>>,
472
473 no_implicit_prelude: bool,
474
475 glob_importers: RefCell<Vec<&'a Import<'a>>>,
476 globs: RefCell<Vec<&'a Import<'a>>>,
477
478 // Used to memoize the traits in this module for faster searches through all traits in scope.
479 traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
480
481 /// Span of the module itself. Used for error reporting.
482 span: Span,
483
484 expansion: ExpnId,
485 }
486
487 type Module<'a> = &'a ModuleData<'a>;
488
489 impl<'a> ModuleData<'a> {
490 fn new(
491 parent: Option<Module<'a>>,
492 kind: ModuleKind,
493 normal_ancestor_id: DefId,
494 expansion: ExpnId,
495 span: Span,
496 ) -> Self {
497 ModuleData {
498 parent,
499 kind,
500 normal_ancestor_id,
501 lazy_resolutions: Default::default(),
502 populate_on_access: Cell::new(!normal_ancestor_id.is_local()),
503 unexpanded_invocations: Default::default(),
504 no_implicit_prelude: false,
505 glob_importers: RefCell::new(Vec::new()),
506 globs: RefCell::new(Vec::new()),
507 traits: RefCell::new(None),
508 span,
509 expansion,
510 }
511 }
512
513 fn for_each_child<R, F>(&'a self, resolver: &mut R, mut f: F)
514 where
515 R: AsMut<Resolver<'a>>,
516 F: FnMut(&mut R, Ident, Namespace, &'a NameBinding<'a>),
517 {
518 for (key, name_resolution) in resolver.as_mut().resolutions(self).borrow().iter() {
519 if let Some(binding) = name_resolution.borrow().binding {
520 f(resolver, key.ident, key.ns, binding);
521 }
522 }
523 }
524
525 /// This modifies `self` in place. The traits will be stored in `self.traits`.
526 fn ensure_traits<R>(&'a self, resolver: &mut R)
527 where
528 R: AsMut<Resolver<'a>>,
529 {
530 let mut traits = self.traits.borrow_mut();
531 if traits.is_none() {
532 let mut collected_traits = Vec::new();
533 self.for_each_child(resolver, |_, name, ns, binding| {
534 if ns != TypeNS {
535 return;
536 }
537 if let Res::Def(DefKind::Trait | DefKind::TraitAlias, _) = binding.res() {
538 collected_traits.push((name, binding))
539 }
540 });
541 *traits = Some(collected_traits.into_boxed_slice());
542 }
543 }
544
545 fn res(&self) -> Option<Res> {
546 match self.kind {
547 ModuleKind::Def(kind, def_id, _) => Some(Res::Def(kind, def_id)),
548 _ => None,
549 }
550 }
551
552 fn def_id(&self) -> Option<DefId> {
553 match self.kind {
554 ModuleKind::Def(_, def_id, _) => Some(def_id),
555 _ => None,
556 }
557 }
558
559 // `self` resolves to the first module ancestor that `is_normal`.
560 fn is_normal(&self) -> bool {
561 match self.kind {
562 ModuleKind::Def(DefKind::Mod, _, _) => true,
563 _ => false,
564 }
565 }
566
567 fn is_trait(&self) -> bool {
568 match self.kind {
569 ModuleKind::Def(DefKind::Trait, _, _) => true,
570 _ => false,
571 }
572 }
573
574 fn nearest_item_scope(&'a self) -> Module<'a> {
575 match self.kind {
576 ModuleKind::Def(DefKind::Enum | DefKind::Trait, ..) => {
577 self.parent.expect("enum or trait module without a parent")
578 }
579 _ => self,
580 }
581 }
582
583 fn is_ancestor_of(&self, mut other: &Self) -> bool {
584 while !ptr::eq(self, other) {
585 if let Some(parent) = other.parent {
586 other = parent;
587 } else {
588 return false;
589 }
590 }
591 true
592 }
593 }
594
595 impl<'a> fmt::Debug for ModuleData<'a> {
596 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
597 write!(f, "{:?}", self.res())
598 }
599 }
600
601 /// Records a possibly-private value, type, or module definition.
602 #[derive(Clone, Debug)]
603 pub struct NameBinding<'a> {
604 kind: NameBindingKind<'a>,
605 ambiguity: Option<(&'a NameBinding<'a>, AmbiguityKind)>,
606 expansion: ExpnId,
607 span: Span,
608 vis: ty::Visibility,
609 }
610
611 pub trait ToNameBinding<'a> {
612 fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
613 }
614
615 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
616 fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
617 self
618 }
619 }
620
621 #[derive(Clone, Debug)]
622 enum NameBindingKind<'a> {
623 Res(Res, /* is_macro_export */ bool),
624 Module(Module<'a>),
625 Import { binding: &'a NameBinding<'a>, import: &'a Import<'a>, used: Cell<bool> },
626 }
627
628 impl<'a> NameBindingKind<'a> {
629 /// Is this a name binding of a import?
630 fn is_import(&self) -> bool {
631 match *self {
632 NameBindingKind::Import { .. } => true,
633 _ => false,
634 }
635 }
636 }
637
638 struct PrivacyError<'a> {
639 ident: Ident,
640 binding: &'a NameBinding<'a>,
641 dedup_span: Span,
642 }
643
644 struct UseError<'a> {
645 err: DiagnosticBuilder<'a>,
646 /// Candidates which user could `use` to access the missing type.
647 candidates: Vec<ImportSuggestion>,
648 /// The `DefId` of the module to place the use-statements in.
649 def_id: DefId,
650 /// Whether the diagnostic should say "instead" (as in `consider importing ... instead`).
651 instead: bool,
652 /// Extra free-form suggestion.
653 suggestion: Option<(Span, &'static str, String, Applicability)>,
654 }
655
656 #[derive(Clone, Copy, PartialEq, Debug)]
657 enum AmbiguityKind {
658 Import,
659 BuiltinAttr,
660 DeriveHelper,
661 MacroRulesVsModularized,
662 GlobVsOuter,
663 GlobVsGlob,
664 GlobVsExpanded,
665 MoreExpandedVsOuter,
666 }
667
668 impl AmbiguityKind {
669 fn descr(self) -> &'static str {
670 match self {
671 AmbiguityKind::Import => "name vs any other name during import resolution",
672 AmbiguityKind::BuiltinAttr => "built-in attribute vs any other name",
673 AmbiguityKind::DeriveHelper => "derive helper attribute vs any other name",
674 AmbiguityKind::MacroRulesVsModularized => {
675 "`macro_rules` vs non-`macro_rules` from other module"
676 }
677 AmbiguityKind::GlobVsOuter => {
678 "glob import vs any other name from outer scope during import/macro resolution"
679 }
680 AmbiguityKind::GlobVsGlob => "glob import vs glob import in the same module",
681 AmbiguityKind::GlobVsExpanded => {
682 "glob import vs macro-expanded name in the same \
683 module during import/macro resolution"
684 }
685 AmbiguityKind::MoreExpandedVsOuter => {
686 "macro-expanded name vs less macro-expanded name \
687 from outer scope during import/macro resolution"
688 }
689 }
690 }
691 }
692
693 /// Miscellaneous bits of metadata for better ambiguity error reporting.
694 #[derive(Clone, Copy, PartialEq)]
695 enum AmbiguityErrorMisc {
696 SuggestCrate,
697 SuggestSelf,
698 FromPrelude,
699 None,
700 }
701
702 struct AmbiguityError<'a> {
703 kind: AmbiguityKind,
704 ident: Ident,
705 b1: &'a NameBinding<'a>,
706 b2: &'a NameBinding<'a>,
707 misc1: AmbiguityErrorMisc,
708 misc2: AmbiguityErrorMisc,
709 }
710
711 impl<'a> NameBinding<'a> {
712 fn module(&self) -> Option<Module<'a>> {
713 match self.kind {
714 NameBindingKind::Module(module) => Some(module),
715 NameBindingKind::Import { binding, .. } => binding.module(),
716 _ => None,
717 }
718 }
719
720 fn res(&self) -> Res {
721 match self.kind {
722 NameBindingKind::Res(res, _) => res,
723 NameBindingKind::Module(module) => module.res().unwrap(),
724 NameBindingKind::Import { binding, .. } => binding.res(),
725 }
726 }
727
728 fn is_ambiguity(&self) -> bool {
729 self.ambiguity.is_some()
730 || match self.kind {
731 NameBindingKind::Import { binding, .. } => binding.is_ambiguity(),
732 _ => false,
733 }
734 }
735
736 fn is_possibly_imported_variant(&self) -> bool {
737 match self.kind {
738 NameBindingKind::Import { binding, .. } => binding.is_possibly_imported_variant(),
739 _ => self.is_variant(),
740 }
741 }
742
743 // We sometimes need to treat variants as `pub` for backwards compatibility.
744 fn pseudo_vis(&self) -> ty::Visibility {
745 if self.is_variant() && self.res().def_id().is_local() {
746 ty::Visibility::Public
747 } else {
748 self.vis
749 }
750 }
751
752 fn is_variant(&self) -> bool {
753 match self.kind {
754 NameBindingKind::Res(
755 Res::Def(DefKind::Variant | DefKind::Ctor(CtorOf::Variant, ..), _),
756 _,
757 ) => true,
758 _ => false,
759 }
760 }
761
762 fn is_extern_crate(&self) -> bool {
763 match self.kind {
764 NameBindingKind::Import {
765 import: &Import { kind: ImportKind::ExternCrate { .. }, .. },
766 ..
767 } => true,
768 NameBindingKind::Module(&ModuleData {
769 kind: ModuleKind::Def(DefKind::Mod, def_id, _),
770 ..
771 }) => def_id.index == CRATE_DEF_INDEX,
772 _ => false,
773 }
774 }
775
776 fn is_import(&self) -> bool {
777 match self.kind {
778 NameBindingKind::Import { .. } => true,
779 _ => false,
780 }
781 }
782
783 fn is_glob_import(&self) -> bool {
784 match self.kind {
785 NameBindingKind::Import { import, .. } => import.is_glob(),
786 _ => false,
787 }
788 }
789
790 fn is_importable(&self) -> bool {
791 match self.res() {
792 Res::Def(DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy, _) => false,
793 _ => true,
794 }
795 }
796
797 fn is_macro_def(&self) -> bool {
798 match self.kind {
799 NameBindingKind::Res(Res::Def(DefKind::Macro(..), _), _) => true,
800 _ => false,
801 }
802 }
803
804 fn macro_kind(&self) -> Option<MacroKind> {
805 self.res().macro_kind()
806 }
807
808 // Suppose that we resolved macro invocation with `invoc_parent_expansion` to binding `binding`
809 // at some expansion round `max(invoc, binding)` when they both emerged from macros.
810 // Then this function returns `true` if `self` may emerge from a macro *after* that
811 // in some later round and screw up our previously found resolution.
812 // See more detailed explanation in
813 // https://github.com/rust-lang/rust/pull/53778#issuecomment-419224049
814 fn may_appear_after(&self, invoc_parent_expansion: ExpnId, binding: &NameBinding<'_>) -> bool {
815 // self > max(invoc, binding) => !(self <= invoc || self <= binding)
816 // Expansions are partially ordered, so "may appear after" is an inversion of
817 // "certainly appears before or simultaneously" and includes unordered cases.
818 let self_parent_expansion = self.expansion;
819 let other_parent_expansion = binding.expansion;
820 let certainly_before_other_or_simultaneously =
821 other_parent_expansion.is_descendant_of(self_parent_expansion);
822 let certainly_before_invoc_or_simultaneously =
823 invoc_parent_expansion.is_descendant_of(self_parent_expansion);
824 !(certainly_before_other_or_simultaneously || certainly_before_invoc_or_simultaneously)
825 }
826 }
827
828 /// Interns the names of the primitive types.
829 ///
830 /// All other types are defined somewhere and possibly imported, but the primitive ones need
831 /// special handling, since they have no place of origin.
832 struct PrimitiveTypeTable {
833 primitive_types: FxHashMap<Symbol, PrimTy>,
834 }
835
836 impl PrimitiveTypeTable {
837 fn new() -> PrimitiveTypeTable {
838 let mut table = FxHashMap::default();
839
840 table.insert(sym::bool, Bool);
841 table.insert(sym::char, Char);
842 table.insert(sym::f32, Float(FloatTy::F32));
843 table.insert(sym::f64, Float(FloatTy::F64));
844 table.insert(sym::isize, Int(IntTy::Isize));
845 table.insert(sym::i8, Int(IntTy::I8));
846 table.insert(sym::i16, Int(IntTy::I16));
847 table.insert(sym::i32, Int(IntTy::I32));
848 table.insert(sym::i64, Int(IntTy::I64));
849 table.insert(sym::i128, Int(IntTy::I128));
850 table.insert(sym::str, Str);
851 table.insert(sym::usize, Uint(UintTy::Usize));
852 table.insert(sym::u8, Uint(UintTy::U8));
853 table.insert(sym::u16, Uint(UintTy::U16));
854 table.insert(sym::u32, Uint(UintTy::U32));
855 table.insert(sym::u64, Uint(UintTy::U64));
856 table.insert(sym::u128, Uint(UintTy::U128));
857 Self { primitive_types: table }
858 }
859 }
860
861 #[derive(Debug, Default, Clone)]
862 pub struct ExternPreludeEntry<'a> {
863 extern_crate_item: Option<&'a NameBinding<'a>>,
864 pub introduced_by_item: bool,
865 }
866
867 /// Used for better errors for E0773
868 enum BuiltinMacroState {
869 NotYetSeen(SyntaxExtension),
870 AlreadySeen(Span),
871 }
872
873 /// The main resolver class.
874 ///
875 /// This is the visitor that walks the whole crate.
876 pub struct Resolver<'a> {
877 session: &'a Session,
878
879 definitions: Definitions,
880
881 graph_root: Module<'a>,
882
883 prelude: Option<Module<'a>>,
884 extern_prelude: FxHashMap<Ident, ExternPreludeEntry<'a>>,
885
886 /// N.B., this is used only for better diagnostics, not name resolution itself.
887 has_self: FxHashSet<DefId>,
888
889 /// Names of fields of an item `DefId` accessible with dot syntax.
890 /// Used for hints during error reporting.
891 field_names: FxHashMap<DefId, Vec<Spanned<Symbol>>>,
892
893 /// All imports known to succeed or fail.
894 determined_imports: Vec<&'a Import<'a>>,
895
896 /// All non-determined imports.
897 indeterminate_imports: Vec<&'a Import<'a>>,
898
899 /// FIXME: Refactor things so that these fields are passed through arguments and not resolver.
900 /// We are resolving a last import segment during import validation.
901 last_import_segment: bool,
902 /// This binding should be ignored during in-module resolution, so that we don't get
903 /// "self-confirming" import resolutions during import validation.
904 unusable_binding: Option<&'a NameBinding<'a>>,
905
906 /// The idents for the primitive types.
907 primitive_type_table: PrimitiveTypeTable,
908
909 /// Resolutions for nodes that have a single resolution.
910 partial_res_map: NodeMap<PartialRes>,
911 /// Resolutions for import nodes, which have multiple resolutions in different namespaces.
912 import_res_map: NodeMap<PerNS<Option<Res>>>,
913 /// Resolutions for labels (node IDs of their corresponding blocks or loops).
914 label_res_map: NodeMap<NodeId>,
915
916 /// `CrateNum` resolutions of `extern crate` items.
917 extern_crate_map: FxHashMap<LocalDefId, CrateNum>,
918 export_map: ExportMap<LocalDefId>,
919 trait_map: NodeMap<Vec<TraitCandidate>>,
920
921 /// A map from nodes to anonymous modules.
922 /// Anonymous modules are pseudo-modules that are implicitly created around items
923 /// contained within blocks.
924 ///
925 /// For example, if we have this:
926 ///
927 /// fn f() {
928 /// fn g() {
929 /// ...
930 /// }
931 /// }
932 ///
933 /// There will be an anonymous module created around `g` with the ID of the
934 /// entry block for `f`.
935 block_map: NodeMap<Module<'a>>,
936 /// A fake module that contains no definition and no prelude. Used so that
937 /// some AST passes can generate identifiers that only resolve to local or
938 /// language items.
939 empty_module: Module<'a>,
940 module_map: FxHashMap<LocalDefId, Module<'a>>,
941 extern_module_map: FxHashMap<DefId, Module<'a>>,
942 binding_parent_modules: FxHashMap<PtrKey<'a, NameBinding<'a>>, Module<'a>>,
943 underscore_disambiguator: u32,
944
945 /// Maps glob imports to the names of items actually imported.
946 glob_map: FxHashMap<LocalDefId, FxHashSet<Symbol>>,
947
948 used_imports: FxHashSet<(NodeId, Namespace)>,
949 maybe_unused_trait_imports: FxHashSet<LocalDefId>,
950 maybe_unused_extern_crates: Vec<(LocalDefId, Span)>,
951
952 /// Privacy errors are delayed until the end in order to deduplicate them.
953 privacy_errors: Vec<PrivacyError<'a>>,
954 /// Ambiguity errors are delayed for deduplication.
955 ambiguity_errors: Vec<AmbiguityError<'a>>,
956 /// `use` injections are delayed for better placement and deduplication.
957 use_injections: Vec<UseError<'a>>,
958 /// Crate-local macro expanded `macro_export` referred to by a module-relative path.
959 macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>,
960
961 arenas: &'a ResolverArenas<'a>,
962 dummy_binding: &'a NameBinding<'a>,
963
964 crate_loader: CrateLoader<'a>,
965 macro_names: FxHashSet<Ident>,
966 builtin_macros: FxHashMap<Symbol, BuiltinMacroState>,
967 registered_attrs: FxHashSet<Ident>,
968 registered_tools: FxHashSet<Ident>,
969 macro_use_prelude: FxHashMap<Symbol, &'a NameBinding<'a>>,
970 all_macros: FxHashMap<Symbol, Res>,
971 macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
972 dummy_ext_bang: Lrc<SyntaxExtension>,
973 dummy_ext_derive: Lrc<SyntaxExtension>,
974 non_macro_attrs: [Lrc<SyntaxExtension>; 2],
975 local_macro_def_scopes: FxHashMap<LocalDefId, Module<'a>>,
976 ast_transform_scopes: FxHashMap<ExpnId, Module<'a>>,
977 unused_macros: FxHashMap<LocalDefId, (NodeId, Span)>,
978 proc_macro_stubs: FxHashSet<LocalDefId>,
979 /// Traces collected during macro resolution and validated when it's complete.
980 single_segment_macro_resolutions:
981 Vec<(Ident, MacroKind, ParentScope<'a>, Option<&'a NameBinding<'a>>)>,
982 multi_segment_macro_resolutions:
983 Vec<(Vec<Segment>, Span, MacroKind, ParentScope<'a>, Option<Res>)>,
984 builtin_attrs: Vec<(Ident, ParentScope<'a>)>,
985 /// `derive(Copy)` marks items they are applied to so they are treated specially later.
986 /// Derive macros cannot modify the item themselves and have to store the markers in the global
987 /// context, so they attach the markers to derive container IDs using this resolver table.
988 containers_deriving_copy: FxHashSet<ExpnId>,
989 /// Parent scopes in which the macros were invoked.
990 /// FIXME: `derives` are missing in these parent scopes and need to be taken from elsewhere.
991 invocation_parent_scopes: FxHashMap<ExpnId, ParentScope<'a>>,
992 /// `macro_rules` scopes *produced* by expanding the macro invocations,
993 /// include all the `macro_rules` items and other invocations generated by them.
994 output_macro_rules_scopes: FxHashMap<ExpnId, MacroRulesScope<'a>>,
995 /// Helper attributes that are in scope for the given expansion.
996 helper_attrs: FxHashMap<ExpnId, Vec<Ident>>,
997
998 /// Avoid duplicated errors for "name already defined".
999 name_already_seen: FxHashMap<Symbol, Span>,
1000
1001 potentially_unused_imports: Vec<&'a Import<'a>>,
1002
1003 /// Table for mapping struct IDs into struct constructor IDs,
1004 /// it's not used during normal resolution, only for better error reporting.
1005 /// Also includes of list of each fields visibility
1006 struct_constructors: DefIdMap<(Res, ty::Visibility, Vec<ty::Visibility>)>,
1007
1008 /// Features enabled for this crate.
1009 active_features: FxHashSet<Symbol>,
1010
1011 /// Stores enum visibilities to properly build a reduced graph
1012 /// when visiting the correspondent variants.
1013 variant_vis: DefIdMap<ty::Visibility>,
1014
1015 lint_buffer: LintBuffer,
1016
1017 next_node_id: NodeId,
1018
1019 def_id_to_span: IndexVec<LocalDefId, Span>,
1020
1021 node_id_to_def_id: FxHashMap<ast::NodeId, LocalDefId>,
1022 def_id_to_node_id: IndexVec<LocalDefId, ast::NodeId>,
1023
1024 /// Indices of unnamed struct or variant fields with unresolved attributes.
1025 placeholder_field_indices: FxHashMap<NodeId, usize>,
1026 /// When collecting definitions from an AST fragment produced by a macro invocation `ExpnId`
1027 /// we know what parent node that fragment should be attached to thanks to this table.
1028 invocation_parents: FxHashMap<ExpnId, LocalDefId>,
1029
1030 next_disambiguator: FxHashMap<(LocalDefId, DefPathData), u32>,
1031 }
1032
1033 /// Nothing really interesting here; it just provides memory for the rest of the crate.
1034 #[derive(Default)]
1035 pub struct ResolverArenas<'a> {
1036 modules: TypedArena<ModuleData<'a>>,
1037 local_modules: RefCell<Vec<Module<'a>>>,
1038 name_bindings: TypedArena<NameBinding<'a>>,
1039 imports: TypedArena<Import<'a>>,
1040 name_resolutions: TypedArena<RefCell<NameResolution<'a>>>,
1041 macro_rules_bindings: TypedArena<MacroRulesBinding<'a>>,
1042 ast_paths: TypedArena<ast::Path>,
1043 pattern_spans: TypedArena<Span>,
1044 }
1045
1046 impl<'a> ResolverArenas<'a> {
1047 fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1048 let module = self.modules.alloc(module);
1049 if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1050 self.local_modules.borrow_mut().push(module);
1051 }
1052 module
1053 }
1054 fn local_modules(&'a self) -> std::cell::Ref<'a, Vec<Module<'a>>> {
1055 self.local_modules.borrow()
1056 }
1057 fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1058 self.name_bindings.alloc(name_binding)
1059 }
1060 fn alloc_import(&'a self, import: Import<'a>) -> &'a Import<'_> {
1061 self.imports.alloc(import)
1062 }
1063 fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1064 self.name_resolutions.alloc(Default::default())
1065 }
1066 fn alloc_macro_rules_binding(
1067 &'a self,
1068 binding: MacroRulesBinding<'a>,
1069 ) -> &'a MacroRulesBinding<'a> {
1070 self.macro_rules_bindings.alloc(binding)
1071 }
1072 fn alloc_ast_paths(&'a self, paths: &[ast::Path]) -> &'a [ast::Path] {
1073 self.ast_paths.alloc_from_iter(paths.iter().cloned())
1074 }
1075 fn alloc_pattern_spans(&'a self, spans: impl Iterator<Item = Span>) -> &'a [Span] {
1076 self.pattern_spans.alloc_from_iter(spans)
1077 }
1078 }
1079
1080 impl<'a> AsMut<Resolver<'a>> for Resolver<'a> {
1081 fn as_mut(&mut self) -> &mut Resolver<'a> {
1082 self
1083 }
1084 }
1085
1086 impl<'a, 'b> DefIdTree for &'a Resolver<'b> {
1087 fn parent(self, id: DefId) -> Option<DefId> {
1088 match id.as_local() {
1089 Some(id) => self.definitions.def_key(id).parent,
1090 None => self.cstore().def_key(id).parent,
1091 }
1092 .map(|index| DefId { index, ..id })
1093 }
1094 }
1095
1096 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1097 /// the resolver is no longer needed as all the relevant information is inline.
1098 impl ResolverAstLowering for Resolver<'_> {
1099 fn def_key(&mut self, id: DefId) -> DefKey {
1100 if let Some(id) = id.as_local() {
1101 self.definitions().def_key(id)
1102 } else {
1103 self.cstore().def_key(id)
1104 }
1105 }
1106
1107 fn item_generics_num_lifetimes(&self, def_id: DefId, sess: &Session) -> usize {
1108 self.cstore().item_generics_num_lifetimes(def_id, sess)
1109 }
1110
1111 fn get_partial_res(&mut self, id: NodeId) -> Option<PartialRes> {
1112 self.partial_res_map.get(&id).cloned()
1113 }
1114
1115 fn get_import_res(&mut self, id: NodeId) -> PerNS<Option<Res>> {
1116 self.import_res_map.get(&id).cloned().unwrap_or_default()
1117 }
1118
1119 fn get_label_res(&mut self, id: NodeId) -> Option<NodeId> {
1120 self.label_res_map.get(&id).cloned()
1121 }
1122
1123 fn definitions(&mut self) -> &mut Definitions {
1124 &mut self.definitions
1125 }
1126
1127 fn lint_buffer(&mut self) -> &mut LintBuffer {
1128 &mut self.lint_buffer
1129 }
1130
1131 fn next_node_id(&mut self) -> NodeId {
1132 self.next_node_id()
1133 }
1134
1135 fn trait_map(&self) -> &NodeMap<Vec<TraitCandidate>> {
1136 &self.trait_map
1137 }
1138
1139 fn opt_local_def_id(&self, node: NodeId) -> Option<LocalDefId> {
1140 self.node_id_to_def_id.get(&node).copied()
1141 }
1142
1143 fn local_def_id(&self, node: NodeId) -> LocalDefId {
1144 self.opt_local_def_id(node).unwrap_or_else(|| panic!("no entry for node id: `{:?}`", node))
1145 }
1146
1147 /// Adds a definition with a parent definition.
1148 fn create_def(
1149 &mut self,
1150 parent: LocalDefId,
1151 node_id: ast::NodeId,
1152 data: DefPathData,
1153 expn_id: ExpnId,
1154 span: Span,
1155 ) -> LocalDefId {
1156 assert!(
1157 !self.node_id_to_def_id.contains_key(&node_id),
1158 "adding a def'n for node-id {:?} and data {:?} but a previous def'n exists: {:?}",
1159 node_id,
1160 data,
1161 self.definitions.def_key(self.node_id_to_def_id[&node_id]),
1162 );
1163
1164 // Find the next free disambiguator for this key.
1165 let next_disambiguator = &mut self.next_disambiguator;
1166 let next_disambiguator = |parent, data| {
1167 let next_disamb = next_disambiguator.entry((parent, data)).or_insert(0);
1168 let disambiguator = *next_disamb;
1169 *next_disamb = next_disamb.checked_add(1).expect("disambiguator overflow");
1170 disambiguator
1171 };
1172
1173 let def_id = self.definitions.create_def(parent, data, expn_id, next_disambiguator);
1174
1175 assert_eq!(self.def_id_to_span.push(span), def_id);
1176
1177 // Some things for which we allocate `LocalDefId`s don't correspond to
1178 // anything in the AST, so they don't have a `NodeId`. For these cases
1179 // we don't need a mapping from `NodeId` to `LocalDefId`.
1180 if node_id != ast::DUMMY_NODE_ID {
1181 debug!("create_def: def_id_to_node_id[{:?}] <-> {:?}", def_id, node_id);
1182 self.node_id_to_def_id.insert(node_id, def_id);
1183 }
1184 assert_eq!(self.def_id_to_node_id.push(node_id), def_id);
1185
1186 def_id
1187 }
1188 }
1189
1190 impl<'a> Resolver<'a> {
1191 pub fn new(
1192 session: &'a Session,
1193 krate: &Crate,
1194 crate_name: &str,
1195 metadata_loader: &'a MetadataLoaderDyn,
1196 arenas: &'a ResolverArenas<'a>,
1197 ) -> Resolver<'a> {
1198 let root_def_id = DefId::local(CRATE_DEF_INDEX);
1199 let root_module_kind = ModuleKind::Def(DefKind::Mod, root_def_id, kw::Invalid);
1200 let graph_root = arenas.alloc_module(ModuleData {
1201 no_implicit_prelude: session.contains_name(&krate.attrs, sym::no_implicit_prelude),
1202 ..ModuleData::new(None, root_module_kind, root_def_id, ExpnId::root(), krate.span)
1203 });
1204 let empty_module_kind = ModuleKind::Def(DefKind::Mod, root_def_id, kw::Invalid);
1205 let empty_module = arenas.alloc_module(ModuleData {
1206 no_implicit_prelude: true,
1207 ..ModuleData::new(
1208 Some(graph_root),
1209 empty_module_kind,
1210 root_def_id,
1211 ExpnId::root(),
1212 DUMMY_SP,
1213 )
1214 });
1215 let mut module_map = FxHashMap::default();
1216 module_map.insert(LocalDefId { local_def_index: CRATE_DEF_INDEX }, graph_root);
1217
1218 let definitions = Definitions::new(crate_name, session.local_crate_disambiguator());
1219 let root = definitions.get_root_def();
1220
1221 let mut def_id_to_span = IndexVec::default();
1222 assert_eq!(def_id_to_span.push(rustc_span::DUMMY_SP), root);
1223 let mut def_id_to_node_id = IndexVec::default();
1224 assert_eq!(def_id_to_node_id.push(CRATE_NODE_ID), root);
1225 let mut node_id_to_def_id = FxHashMap::default();
1226 node_id_to_def_id.insert(CRATE_NODE_ID, root);
1227
1228 let mut invocation_parents = FxHashMap::default();
1229 invocation_parents.insert(ExpnId::root(), root);
1230
1231 let mut extern_prelude: FxHashMap<Ident, ExternPreludeEntry<'_>> = session
1232 .opts
1233 .externs
1234 .iter()
1235 .filter(|(_, entry)| entry.add_prelude)
1236 .map(|(name, _)| (Ident::from_str(name), Default::default()))
1237 .collect();
1238
1239 if !session.contains_name(&krate.attrs, sym::no_core) {
1240 extern_prelude.insert(Ident::with_dummy_span(sym::core), Default::default());
1241 if !session.contains_name(&krate.attrs, sym::no_std) {
1242 extern_prelude.insert(Ident::with_dummy_span(sym::std), Default::default());
1243 if session.rust_2018() {
1244 extern_prelude.insert(Ident::with_dummy_span(sym::meta), Default::default());
1245 }
1246 }
1247 }
1248
1249 let (registered_attrs, registered_tools) =
1250 macros::registered_attrs_and_tools(session, &krate.attrs);
1251
1252 let mut invocation_parent_scopes = FxHashMap::default();
1253 invocation_parent_scopes.insert(ExpnId::root(), ParentScope::module(graph_root));
1254
1255 let features = session.features_untracked();
1256 let non_macro_attr =
1257 |mark_used| Lrc::new(SyntaxExtension::non_macro_attr(mark_used, session.edition()));
1258
1259 Resolver {
1260 session,
1261
1262 definitions,
1263
1264 // The outermost module has def ID 0; this is not reflected in the
1265 // AST.
1266 graph_root,
1267 prelude: None,
1268 extern_prelude,
1269
1270 has_self: FxHashSet::default(),
1271 field_names: FxHashMap::default(),
1272
1273 determined_imports: Vec::new(),
1274 indeterminate_imports: Vec::new(),
1275
1276 last_import_segment: false,
1277 unusable_binding: None,
1278
1279 primitive_type_table: PrimitiveTypeTable::new(),
1280
1281 partial_res_map: Default::default(),
1282 import_res_map: Default::default(),
1283 label_res_map: Default::default(),
1284 extern_crate_map: Default::default(),
1285 export_map: FxHashMap::default(),
1286 trait_map: Default::default(),
1287 underscore_disambiguator: 0,
1288 empty_module,
1289 module_map,
1290 block_map: Default::default(),
1291 extern_module_map: FxHashMap::default(),
1292 binding_parent_modules: FxHashMap::default(),
1293 ast_transform_scopes: FxHashMap::default(),
1294
1295 glob_map: Default::default(),
1296
1297 used_imports: FxHashSet::default(),
1298 maybe_unused_trait_imports: Default::default(),
1299 maybe_unused_extern_crates: Vec::new(),
1300
1301 privacy_errors: Vec::new(),
1302 ambiguity_errors: Vec::new(),
1303 use_injections: Vec::new(),
1304 macro_expanded_macro_export_errors: BTreeSet::new(),
1305
1306 arenas,
1307 dummy_binding: arenas.alloc_name_binding(NameBinding {
1308 kind: NameBindingKind::Res(Res::Err, false),
1309 ambiguity: None,
1310 expansion: ExpnId::root(),
1311 span: DUMMY_SP,
1312 vis: ty::Visibility::Public,
1313 }),
1314
1315 crate_loader: CrateLoader::new(session, metadata_loader, crate_name),
1316 macro_names: FxHashSet::default(),
1317 builtin_macros: Default::default(),
1318 registered_attrs,
1319 registered_tools,
1320 macro_use_prelude: FxHashMap::default(),
1321 all_macros: FxHashMap::default(),
1322 macro_map: FxHashMap::default(),
1323 dummy_ext_bang: Lrc::new(SyntaxExtension::dummy_bang(session.edition())),
1324 dummy_ext_derive: Lrc::new(SyntaxExtension::dummy_derive(session.edition())),
1325 non_macro_attrs: [non_macro_attr(false), non_macro_attr(true)],
1326 invocation_parent_scopes,
1327 output_macro_rules_scopes: Default::default(),
1328 helper_attrs: Default::default(),
1329 local_macro_def_scopes: FxHashMap::default(),
1330 name_already_seen: FxHashMap::default(),
1331 potentially_unused_imports: Vec::new(),
1332 struct_constructors: Default::default(),
1333 unused_macros: Default::default(),
1334 proc_macro_stubs: Default::default(),
1335 single_segment_macro_resolutions: Default::default(),
1336 multi_segment_macro_resolutions: Default::default(),
1337 builtin_attrs: Default::default(),
1338 containers_deriving_copy: Default::default(),
1339 active_features: features
1340 .declared_lib_features
1341 .iter()
1342 .map(|(feat, ..)| *feat)
1343 .chain(features.declared_lang_features.iter().map(|(feat, ..)| *feat))
1344 .collect(),
1345 variant_vis: Default::default(),
1346 lint_buffer: LintBuffer::default(),
1347 next_node_id: NodeId::from_u32(1),
1348 def_id_to_span,
1349 node_id_to_def_id,
1350 def_id_to_node_id,
1351 placeholder_field_indices: Default::default(),
1352 invocation_parents,
1353 next_disambiguator: Default::default(),
1354 }
1355 }
1356
1357 pub fn next_node_id(&mut self) -> NodeId {
1358 let next = self
1359 .next_node_id
1360 .as_usize()
1361 .checked_add(1)
1362 .expect("input too large; ran out of NodeIds");
1363 self.next_node_id = ast::NodeId::from_usize(next);
1364 self.next_node_id
1365 }
1366
1367 pub fn lint_buffer(&mut self) -> &mut LintBuffer {
1368 &mut self.lint_buffer
1369 }
1370
1371 pub fn arenas() -> ResolverArenas<'a> {
1372 Default::default()
1373 }
1374
1375 pub fn into_outputs(self) -> ResolverOutputs {
1376 let definitions = self.definitions;
1377 let extern_crate_map = self.extern_crate_map;
1378 let export_map = self.export_map;
1379 let maybe_unused_trait_imports = self.maybe_unused_trait_imports;
1380 let maybe_unused_extern_crates = self.maybe_unused_extern_crates;
1381 let glob_map = self.glob_map;
1382 ResolverOutputs {
1383 definitions: definitions,
1384 cstore: Box::new(self.crate_loader.into_cstore()),
1385 extern_crate_map,
1386 export_map,
1387 glob_map,
1388 maybe_unused_trait_imports,
1389 maybe_unused_extern_crates,
1390 extern_prelude: self
1391 .extern_prelude
1392 .iter()
1393 .map(|(ident, entry)| (ident.name, entry.introduced_by_item))
1394 .collect(),
1395 }
1396 }
1397
1398 pub fn clone_outputs(&self) -> ResolverOutputs {
1399 ResolverOutputs {
1400 definitions: self.definitions.clone(),
1401 cstore: Box::new(self.cstore().clone()),
1402 extern_crate_map: self.extern_crate_map.clone(),
1403 export_map: self.export_map.clone(),
1404 glob_map: self.glob_map.clone(),
1405 maybe_unused_trait_imports: self.maybe_unused_trait_imports.clone(),
1406 maybe_unused_extern_crates: self.maybe_unused_extern_crates.clone(),
1407 extern_prelude: self
1408 .extern_prelude
1409 .iter()
1410 .map(|(ident, entry)| (ident.name, entry.introduced_by_item))
1411 .collect(),
1412 }
1413 }
1414
1415 pub fn cstore(&self) -> &CStore {
1416 self.crate_loader.cstore()
1417 }
1418
1419 fn non_macro_attr(&self, mark_used: bool) -> Lrc<SyntaxExtension> {
1420 self.non_macro_attrs[mark_used as usize].clone()
1421 }
1422
1423 fn dummy_ext(&self, macro_kind: MacroKind) -> Lrc<SyntaxExtension> {
1424 match macro_kind {
1425 MacroKind::Bang => self.dummy_ext_bang.clone(),
1426 MacroKind::Derive => self.dummy_ext_derive.clone(),
1427 MacroKind::Attr => self.non_macro_attr(true),
1428 }
1429 }
1430
1431 /// Runs the function on each namespace.
1432 fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1433 f(self, TypeNS);
1434 f(self, ValueNS);
1435 f(self, MacroNS);
1436 }
1437
1438 fn is_builtin_macro(&mut self, res: Res) -> bool {
1439 self.get_macro(res).map_or(false, |ext| ext.is_builtin)
1440 }
1441
1442 fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1443 loop {
1444 match ctxt.outer_expn().expn_data().macro_def_id {
1445 Some(def_id) => return def_id,
1446 None => ctxt.remove_mark(),
1447 };
1448 }
1449 }
1450
1451 /// Entry point to crate resolution.
1452 pub fn resolve_crate(&mut self, krate: &Crate) {
1453 let _prof_timer = self.session.prof.generic_activity("resolve_crate");
1454
1455 ImportResolver { r: self }.finalize_imports();
1456 self.finalize_macro_resolutions();
1457
1458 self.late_resolve_crate(krate);
1459
1460 self.check_unused(krate);
1461 self.report_errors(krate);
1462 self.crate_loader.postprocess(krate);
1463 }
1464
1465 fn get_traits_in_module_containing_item(
1466 &mut self,
1467 ident: Ident,
1468 ns: Namespace,
1469 module: Module<'a>,
1470 found_traits: &mut Vec<TraitCandidate>,
1471 parent_scope: &ParentScope<'a>,
1472 ) {
1473 assert!(ns == TypeNS || ns == ValueNS);
1474 module.ensure_traits(self);
1475 let traits = module.traits.borrow();
1476
1477 for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
1478 // Traits have pseudo-modules that can be used to search for the given ident.
1479 if let Some(module) = binding.module() {
1480 let mut ident = ident;
1481 if ident.span.glob_adjust(module.expansion, binding.span).is_none() {
1482 continue;
1483 }
1484 if self
1485 .resolve_ident_in_module_unadjusted(
1486 ModuleOrUniformRoot::Module(module),
1487 ident,
1488 ns,
1489 parent_scope,
1490 false,
1491 module.span,
1492 )
1493 .is_ok()
1494 {
1495 let import_ids = self.find_transitive_imports(&binding.kind, trait_name);
1496 let trait_def_id = module.def_id().unwrap();
1497 found_traits.push(TraitCandidate { def_id: trait_def_id, import_ids });
1498 }
1499 } else if let Res::Def(DefKind::TraitAlias, _) = binding.res() {
1500 // For now, just treat all trait aliases as possible candidates, since we don't
1501 // know if the ident is somewhere in the transitive bounds.
1502 let import_ids = self.find_transitive_imports(&binding.kind, trait_name);
1503 let trait_def_id = binding.res().def_id();
1504 found_traits.push(TraitCandidate { def_id: trait_def_id, import_ids });
1505 } else {
1506 bug!("candidate is not trait or trait alias?")
1507 }
1508 }
1509 }
1510
1511 fn find_transitive_imports(
1512 &mut self,
1513 mut kind: &NameBindingKind<'_>,
1514 trait_name: Ident,
1515 ) -> SmallVec<[LocalDefId; 1]> {
1516 let mut import_ids = smallvec![];
1517 while let NameBindingKind::Import { import, binding, .. } = kind {
1518 let id = self.local_def_id(import.id);
1519 self.maybe_unused_trait_imports.insert(id);
1520 self.add_to_glob_map(&import, trait_name);
1521 import_ids.push(id);
1522 kind = &binding.kind;
1523 }
1524 import_ids
1525 }
1526
1527 fn new_module(
1528 &self,
1529 parent: Module<'a>,
1530 kind: ModuleKind,
1531 normal_ancestor_id: DefId,
1532 expn_id: ExpnId,
1533 span: Span,
1534 ) -> Module<'a> {
1535 let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expn_id, span);
1536 self.arenas.alloc_module(module)
1537 }
1538
1539 fn new_key(&mut self, ident: Ident, ns: Namespace) -> BindingKey {
1540 let ident = ident.normalize_to_macros_2_0();
1541 let disambiguator = if ident.name == kw::Underscore {
1542 self.underscore_disambiguator += 1;
1543 self.underscore_disambiguator
1544 } else {
1545 0
1546 };
1547 BindingKey { ident, ns, disambiguator }
1548 }
1549
1550 fn resolutions(&mut self, module: Module<'a>) -> &'a Resolutions<'a> {
1551 if module.populate_on_access.get() {
1552 module.populate_on_access.set(false);
1553 self.build_reduced_graph_external(module);
1554 }
1555 &module.lazy_resolutions
1556 }
1557
1558 fn resolution(
1559 &mut self,
1560 module: Module<'a>,
1561 key: BindingKey,
1562 ) -> &'a RefCell<NameResolution<'a>> {
1563 *self
1564 .resolutions(module)
1565 .borrow_mut()
1566 .entry(key)
1567 .or_insert_with(|| self.arenas.alloc_name_resolution())
1568 }
1569
1570 fn record_use(
1571 &mut self,
1572 ident: Ident,
1573 ns: Namespace,
1574 used_binding: &'a NameBinding<'a>,
1575 is_lexical_scope: bool,
1576 ) {
1577 if let Some((b2, kind)) = used_binding.ambiguity {
1578 self.ambiguity_errors.push(AmbiguityError {
1579 kind,
1580 ident,
1581 b1: used_binding,
1582 b2,
1583 misc1: AmbiguityErrorMisc::None,
1584 misc2: AmbiguityErrorMisc::None,
1585 });
1586 }
1587 if let NameBindingKind::Import { import, binding, ref used } = used_binding.kind {
1588 // Avoid marking `extern crate` items that refer to a name from extern prelude,
1589 // but not introduce it, as used if they are accessed from lexical scope.
1590 if is_lexical_scope {
1591 if let Some(entry) = self.extern_prelude.get(&ident.normalize_to_macros_2_0()) {
1592 if let Some(crate_item) = entry.extern_crate_item {
1593 if ptr::eq(used_binding, crate_item) && !entry.introduced_by_item {
1594 return;
1595 }
1596 }
1597 }
1598 }
1599 used.set(true);
1600 import.used.set(true);
1601 self.used_imports.insert((import.id, ns));
1602 self.add_to_glob_map(&import, ident);
1603 self.record_use(ident, ns, binding, false);
1604 }
1605 }
1606
1607 #[inline]
1608 fn add_to_glob_map(&mut self, import: &Import<'_>, ident: Ident) {
1609 if import.is_glob() {
1610 let def_id = self.local_def_id(import.id);
1611 self.glob_map.entry(def_id).or_default().insert(ident.name);
1612 }
1613 }
1614
1615 /// A generic scope visitor.
1616 /// Visits scopes in order to resolve some identifier in them or perform other actions.
1617 /// If the callback returns `Some` result, we stop visiting scopes and return it.
1618 fn visit_scopes<T>(
1619 &mut self,
1620 scope_set: ScopeSet,
1621 parent_scope: &ParentScope<'a>,
1622 ident: Ident,
1623 mut visitor: impl FnMut(&mut Self, Scope<'a>, /*use_prelude*/ bool, Ident) -> Option<T>,
1624 ) -> Option<T> {
1625 // General principles:
1626 // 1. Not controlled (user-defined) names should have higher priority than controlled names
1627 // built into the language or standard library. This way we can add new names into the
1628 // language or standard library without breaking user code.
1629 // 2. "Closed set" below means new names cannot appear after the current resolution attempt.
1630 // Places to search (in order of decreasing priority):
1631 // (Type NS)
1632 // 1. FIXME: Ribs (type parameters), there's no necessary infrastructure yet
1633 // (open set, not controlled).
1634 // 2. Names in modules (both normal `mod`ules and blocks), loop through hygienic parents
1635 // (open, not controlled).
1636 // 3. Extern prelude (open, the open part is from macro expansions, not controlled).
1637 // 4. Tool modules (closed, controlled right now, but not in the future).
1638 // 5. Standard library prelude (de-facto closed, controlled).
1639 // 6. Language prelude (closed, controlled).
1640 // (Value NS)
1641 // 1. FIXME: Ribs (local variables), there's no necessary infrastructure yet
1642 // (open set, not controlled).
1643 // 2. Names in modules (both normal `mod`ules and blocks), loop through hygienic parents
1644 // (open, not controlled).
1645 // 3. Standard library prelude (de-facto closed, controlled).
1646 // (Macro NS)
1647 // 1-3. Derive helpers (open, not controlled). All ambiguities with other names
1648 // are currently reported as errors. They should be higher in priority than preludes
1649 // and probably even names in modules according to the "general principles" above. They
1650 // also should be subject to restricted shadowing because are effectively produced by
1651 // derives (you need to resolve the derive first to add helpers into scope), but they
1652 // should be available before the derive is expanded for compatibility.
1653 // It's mess in general, so we are being conservative for now.
1654 // 1-3. `macro_rules` (open, not controlled), loop through `macro_rules` scopes. Have higher
1655 // priority than prelude macros, but create ambiguities with macros in modules.
1656 // 1-3. Names in modules (both normal `mod`ules and blocks), loop through hygienic parents
1657 // (open, not controlled). Have higher priority than prelude macros, but create
1658 // ambiguities with `macro_rules`.
1659 // 4. `macro_use` prelude (open, the open part is from macro expansions, not controlled).
1660 // 4a. User-defined prelude from macro-use
1661 // (open, the open part is from macro expansions, not controlled).
1662 // 4b. "Standard library prelude" part implemented through `macro-use` (closed, controlled).
1663 // 4c. Standard library prelude (de-facto closed, controlled).
1664 // 6. Language prelude: builtin attributes (closed, controlled).
1665
1666 let rust_2015 = ident.span.rust_2015();
1667 let (ns, macro_kind, is_absolute_path) = match scope_set {
1668 ScopeSet::All(ns, _) => (ns, None, false),
1669 ScopeSet::AbsolutePath(ns) => (ns, None, true),
1670 ScopeSet::Macro(macro_kind) => (MacroNS, Some(macro_kind), false),
1671 };
1672 // Jump out of trait or enum modules, they do not act as scopes.
1673 let module = parent_scope.module.nearest_item_scope();
1674 let mut scope = match ns {
1675 _ if is_absolute_path => Scope::CrateRoot,
1676 TypeNS | ValueNS => Scope::Module(module),
1677 MacroNS => Scope::DeriveHelpers(parent_scope.expansion),
1678 };
1679 let mut ident = ident.normalize_to_macros_2_0();
1680 let mut use_prelude = !module.no_implicit_prelude;
1681
1682 loop {
1683 let visit = match scope {
1684 // Derive helpers are not in scope when resolving derives in the same container.
1685 Scope::DeriveHelpers(expn_id) => {
1686 !(expn_id == parent_scope.expansion && macro_kind == Some(MacroKind::Derive))
1687 }
1688 Scope::DeriveHelpersCompat => true,
1689 Scope::MacroRules(..) => true,
1690 Scope::CrateRoot => true,
1691 Scope::Module(..) => true,
1692 Scope::RegisteredAttrs => use_prelude,
1693 Scope::MacroUsePrelude => use_prelude || rust_2015,
1694 Scope::BuiltinAttrs => true,
1695 Scope::ExternPrelude => use_prelude || is_absolute_path,
1696 Scope::ToolPrelude => use_prelude,
1697 Scope::StdLibPrelude => use_prelude || ns == MacroNS,
1698 Scope::BuiltinTypes => true,
1699 };
1700
1701 if visit {
1702 if let break_result @ Some(..) = visitor(self, scope, use_prelude, ident) {
1703 return break_result;
1704 }
1705 }
1706
1707 scope = match scope {
1708 Scope::DeriveHelpers(expn_id) if expn_id != ExpnId::root() => {
1709 // Derive helpers are not visible to code generated by bang or derive macros.
1710 let expn_data = expn_id.expn_data();
1711 match expn_data.kind {
1712 ExpnKind::Root
1713 | ExpnKind::Macro(MacroKind::Bang | MacroKind::Derive, _) => {
1714 Scope::DeriveHelpersCompat
1715 }
1716 _ => Scope::DeriveHelpers(expn_data.parent),
1717 }
1718 }
1719 Scope::DeriveHelpers(..) => Scope::DeriveHelpersCompat,
1720 Scope::DeriveHelpersCompat => Scope::MacroRules(parent_scope.macro_rules),
1721 Scope::MacroRules(macro_rules_scope) => match macro_rules_scope {
1722 MacroRulesScope::Binding(binding) => {
1723 Scope::MacroRules(binding.parent_macro_rules_scope)
1724 }
1725 MacroRulesScope::Invocation(invoc_id) => Scope::MacroRules(
1726 self.output_macro_rules_scopes
1727 .get(&invoc_id)
1728 .cloned()
1729 .unwrap_or(self.invocation_parent_scopes[&invoc_id].macro_rules),
1730 ),
1731 MacroRulesScope::Empty => Scope::Module(module),
1732 },
1733 Scope::CrateRoot => match ns {
1734 TypeNS => {
1735 ident.span.adjust(ExpnId::root());
1736 Scope::ExternPrelude
1737 }
1738 ValueNS | MacroNS => break,
1739 },
1740 Scope::Module(module) => {
1741 use_prelude = !module.no_implicit_prelude;
1742 match self.hygienic_lexical_parent(module, &mut ident.span) {
1743 Some(parent_module) => Scope::Module(parent_module),
1744 None => {
1745 ident.span.adjust(ExpnId::root());
1746 match ns {
1747 TypeNS => Scope::ExternPrelude,
1748 ValueNS => Scope::StdLibPrelude,
1749 MacroNS => Scope::RegisteredAttrs,
1750 }
1751 }
1752 }
1753 }
1754 Scope::RegisteredAttrs => Scope::MacroUsePrelude,
1755 Scope::MacroUsePrelude => Scope::StdLibPrelude,
1756 Scope::BuiltinAttrs => break, // nowhere else to search
1757 Scope::ExternPrelude if is_absolute_path => break,
1758 Scope::ExternPrelude => Scope::ToolPrelude,
1759 Scope::ToolPrelude => Scope::StdLibPrelude,
1760 Scope::StdLibPrelude => match ns {
1761 TypeNS => Scope::BuiltinTypes,
1762 ValueNS => break, // nowhere else to search
1763 MacroNS => Scope::BuiltinAttrs,
1764 },
1765 Scope::BuiltinTypes => break, // nowhere else to search
1766 };
1767 }
1768
1769 None
1770 }
1771
1772 /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1773 /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1774 /// `ident` in the first scope that defines it (or None if no scopes define it).
1775 ///
1776 /// A block's items are above its local variables in the scope hierarchy, regardless of where
1777 /// the items are defined in the block. For example,
1778 /// ```rust
1779 /// fn f() {
1780 /// g(); // Since there are no local variables in scope yet, this resolves to the item.
1781 /// let g = || {};
1782 /// fn g() {}
1783 /// g(); // This resolves to the local variable `g` since it shadows the item.
1784 /// }
1785 /// ```
1786 ///
1787 /// Invariant: This must only be called during main resolution, not during
1788 /// import resolution.
1789 fn resolve_ident_in_lexical_scope(
1790 &mut self,
1791 mut ident: Ident,
1792 ns: Namespace,
1793 parent_scope: &ParentScope<'a>,
1794 record_used_id: Option<NodeId>,
1795 path_span: Span,
1796 ribs: &[Rib<'a>],
1797 ) -> Option<LexicalScopeBinding<'a>> {
1798 assert!(ns == TypeNS || ns == ValueNS);
1799 if ident.name == kw::Invalid {
1800 return Some(LexicalScopeBinding::Res(Res::Err));
1801 }
1802 let (general_span, normalized_span) = if ident.name == kw::SelfUpper {
1803 // FIXME(jseyfried) improve `Self` hygiene
1804 let empty_span = ident.span.with_ctxt(SyntaxContext::root());
1805 (empty_span, empty_span)
1806 } else if ns == TypeNS {
1807 let normalized_span = ident.span.normalize_to_macros_2_0();
1808 (normalized_span, normalized_span)
1809 } else {
1810 (ident.span.normalize_to_macro_rules(), ident.span.normalize_to_macros_2_0())
1811 };
1812 ident.span = general_span;
1813 let normalized_ident = Ident { span: normalized_span, ..ident };
1814
1815 // Walk backwards up the ribs in scope.
1816 let record_used = record_used_id.is_some();
1817 let mut module = self.graph_root;
1818 for i in (0..ribs.len()).rev() {
1819 debug!("walk rib\n{:?}", ribs[i].bindings);
1820 // Use the rib kind to determine whether we are resolving parameters
1821 // (macro 2.0 hygiene) or local variables (`macro_rules` hygiene).
1822 let rib_ident = if ribs[i].kind.contains_params() { normalized_ident } else { ident };
1823 if let Some(res) = ribs[i].bindings.get(&rib_ident).cloned() {
1824 // The ident resolves to a type parameter or local variable.
1825 return Some(LexicalScopeBinding::Res(self.validate_res_from_ribs(
1826 i,
1827 rib_ident,
1828 res,
1829 record_used,
1830 path_span,
1831 ribs,
1832 )));
1833 }
1834
1835 module = match ribs[i].kind {
1836 ModuleRibKind(module) => module,
1837 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
1838 // If an invocation of this macro created `ident`, give up on `ident`
1839 // and switch to `ident`'s source from the macro definition.
1840 ident.span.remove_mark();
1841 continue;
1842 }
1843 _ => continue,
1844 };
1845
1846 let item = self.resolve_ident_in_module_unadjusted(
1847 ModuleOrUniformRoot::Module(module),
1848 ident,
1849 ns,
1850 parent_scope,
1851 record_used,
1852 path_span,
1853 );
1854 if let Ok(binding) = item {
1855 // The ident resolves to an item.
1856 return Some(LexicalScopeBinding::Item(binding));
1857 }
1858
1859 match module.kind {
1860 ModuleKind::Block(..) => {} // We can see through blocks
1861 _ => break,
1862 }
1863 }
1864
1865 ident = normalized_ident;
1866 let mut poisoned = None;
1867 loop {
1868 let opt_module = if let Some(node_id) = record_used_id {
1869 self.hygienic_lexical_parent_with_compatibility_fallback(
1870 module,
1871 &mut ident.span,
1872 node_id,
1873 &mut poisoned,
1874 )
1875 } else {
1876 self.hygienic_lexical_parent(module, &mut ident.span)
1877 };
1878 module = unwrap_or!(opt_module, break);
1879 let adjusted_parent_scope = &ParentScope { module, ..*parent_scope };
1880 let result = self.resolve_ident_in_module_unadjusted(
1881 ModuleOrUniformRoot::Module(module),
1882 ident,
1883 ns,
1884 adjusted_parent_scope,
1885 record_used,
1886 path_span,
1887 );
1888
1889 match result {
1890 Ok(binding) => {
1891 if let Some(node_id) = poisoned {
1892 self.lint_buffer.buffer_lint_with_diagnostic(
1893 lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
1894 node_id,
1895 ident.span,
1896 &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
1897 BuiltinLintDiagnostics::ProcMacroDeriveResolutionFallback(ident.span),
1898 );
1899 }
1900 return Some(LexicalScopeBinding::Item(binding));
1901 }
1902 Err(Determined) => continue,
1903 Err(Undetermined) => {
1904 span_bug!(ident.span, "undetermined resolution during main resolution pass")
1905 }
1906 }
1907 }
1908
1909 if !module.no_implicit_prelude {
1910 ident.span.adjust(ExpnId::root());
1911 if ns == TypeNS {
1912 if let Some(binding) = self.extern_prelude_get(ident, !record_used) {
1913 return Some(LexicalScopeBinding::Item(binding));
1914 }
1915 if let Some(ident) = self.registered_tools.get(&ident) {
1916 let binding =
1917 (Res::ToolMod, ty::Visibility::Public, ident.span, ExpnId::root())
1918 .to_name_binding(self.arenas);
1919 return Some(LexicalScopeBinding::Item(binding));
1920 }
1921 }
1922 if let Some(prelude) = self.prelude {
1923 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(
1924 ModuleOrUniformRoot::Module(prelude),
1925 ident,
1926 ns,
1927 parent_scope,
1928 false,
1929 path_span,
1930 ) {
1931 return Some(LexicalScopeBinding::Item(binding));
1932 }
1933 }
1934 }
1935
1936 if ns == TypeNS {
1937 if let Some(prim_ty) = self.primitive_type_table.primitive_types.get(&ident.name) {
1938 let binding =
1939 (Res::PrimTy(*prim_ty), ty::Visibility::Public, DUMMY_SP, ExpnId::root())
1940 .to_name_binding(self.arenas);
1941 return Some(LexicalScopeBinding::Item(binding));
1942 }
1943 }
1944
1945 None
1946 }
1947
1948 fn hygienic_lexical_parent(
1949 &mut self,
1950 module: Module<'a>,
1951 span: &mut Span,
1952 ) -> Option<Module<'a>> {
1953 if !module.expansion.outer_expn_is_descendant_of(span.ctxt()) {
1954 return Some(self.macro_def_scope(span.remove_mark()));
1955 }
1956
1957 if let ModuleKind::Block(..) = module.kind {
1958 return Some(module.parent.unwrap().nearest_item_scope());
1959 }
1960
1961 None
1962 }
1963
1964 fn hygienic_lexical_parent_with_compatibility_fallback(
1965 &mut self,
1966 module: Module<'a>,
1967 span: &mut Span,
1968 node_id: NodeId,
1969 poisoned: &mut Option<NodeId>,
1970 ) -> Option<Module<'a>> {
1971 if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
1972 return module;
1973 }
1974
1975 // We need to support the next case under a deprecation warning
1976 // ```
1977 // struct MyStruct;
1978 // ---- begin: this comes from a proc macro derive
1979 // mod implementation_details {
1980 // // Note that `MyStruct` is not in scope here.
1981 // impl SomeTrait for MyStruct { ... }
1982 // }
1983 // ---- end
1984 // ```
1985 // So we have to fall back to the module's parent during lexical resolution in this case.
1986 if let Some(parent) = module.parent {
1987 // Inner module is inside the macro, parent module is outside of the macro.
1988 if module.expansion != parent.expansion
1989 && module.expansion.is_descendant_of(parent.expansion)
1990 {
1991 // The macro is a proc macro derive
1992 if let Some(def_id) = module.expansion.expn_data().macro_def_id {
1993 if let Some(ext) = self.get_macro_by_def_id(def_id) {
1994 if !ext.is_builtin && ext.macro_kind() == MacroKind::Derive {
1995 if parent.expansion.outer_expn_is_descendant_of(span.ctxt()) {
1996 *poisoned = Some(node_id);
1997 return module.parent;
1998 }
1999 }
2000 }
2001 }
2002 }
2003 }
2004
2005 None
2006 }
2007
2008 fn resolve_ident_in_module(
2009 &mut self,
2010 module: ModuleOrUniformRoot<'a>,
2011 ident: Ident,
2012 ns: Namespace,
2013 parent_scope: &ParentScope<'a>,
2014 record_used: bool,
2015 path_span: Span,
2016 ) -> Result<&'a NameBinding<'a>, Determinacy> {
2017 self.resolve_ident_in_module_ext(module, ident, ns, parent_scope, record_used, path_span)
2018 .map_err(|(determinacy, _)| determinacy)
2019 }
2020
2021 fn resolve_ident_in_module_ext(
2022 &mut self,
2023 module: ModuleOrUniformRoot<'a>,
2024 mut ident: Ident,
2025 ns: Namespace,
2026 parent_scope: &ParentScope<'a>,
2027 record_used: bool,
2028 path_span: Span,
2029 ) -> Result<&'a NameBinding<'a>, (Determinacy, Weak)> {
2030 let tmp_parent_scope;
2031 let mut adjusted_parent_scope = parent_scope;
2032 match module {
2033 ModuleOrUniformRoot::Module(m) => {
2034 if let Some(def) = ident.span.normalize_to_macros_2_0_and_adjust(m.expansion) {
2035 tmp_parent_scope =
2036 ParentScope { module: self.macro_def_scope(def), ..*parent_scope };
2037 adjusted_parent_scope = &tmp_parent_scope;
2038 }
2039 }
2040 ModuleOrUniformRoot::ExternPrelude => {
2041 ident.span.normalize_to_macros_2_0_and_adjust(ExpnId::root());
2042 }
2043 ModuleOrUniformRoot::CrateRootAndExternPrelude | ModuleOrUniformRoot::CurrentScope => {
2044 // No adjustments
2045 }
2046 }
2047 self.resolve_ident_in_module_unadjusted_ext(
2048 module,
2049 ident,
2050 ns,
2051 adjusted_parent_scope,
2052 false,
2053 record_used,
2054 path_span,
2055 )
2056 }
2057
2058 fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2059 debug!("resolve_crate_root({:?})", ident);
2060 let mut ctxt = ident.span.ctxt();
2061 let mark = if ident.name == kw::DollarCrate {
2062 // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2063 // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2064 // as described in `SyntaxContext::apply_mark`, so we ignore prepended opaque marks.
2065 // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2066 // definitions actually produced by `macro` and `macro` definitions produced by
2067 // `macro_rules!`, but at least such configurations are not stable yet.
2068 ctxt = ctxt.normalize_to_macro_rules();
2069 debug!(
2070 "resolve_crate_root: marks={:?}",
2071 ctxt.marks().into_iter().map(|(i, t)| (i.expn_data(), t)).collect::<Vec<_>>()
2072 );
2073 let mut iter = ctxt.marks().into_iter().rev().peekable();
2074 let mut result = None;
2075 // Find the last opaque mark from the end if it exists.
2076 while let Some(&(mark, transparency)) = iter.peek() {
2077 if transparency == Transparency::Opaque {
2078 result = Some(mark);
2079 iter.next();
2080 } else {
2081 break;
2082 }
2083 }
2084 debug!(
2085 "resolve_crate_root: found opaque mark {:?} {:?}",
2086 result,
2087 result.map(|r| r.expn_data())
2088 );
2089 // Then find the last semi-transparent mark from the end if it exists.
2090 for (mark, transparency) in iter {
2091 if transparency == Transparency::SemiTransparent {
2092 result = Some(mark);
2093 } else {
2094 break;
2095 }
2096 }
2097 debug!(
2098 "resolve_crate_root: found semi-transparent mark {:?} {:?}",
2099 result,
2100 result.map(|r| r.expn_data())
2101 );
2102 result
2103 } else {
2104 debug!("resolve_crate_root: not DollarCrate");
2105 ctxt = ctxt.normalize_to_macros_2_0();
2106 ctxt.adjust(ExpnId::root())
2107 };
2108 let module = match mark {
2109 Some(def) => self.macro_def_scope(def),
2110 None => {
2111 debug!(
2112 "resolve_crate_root({:?}): found no mark (ident.span = {:?})",
2113 ident, ident.span
2114 );
2115 return self.graph_root;
2116 }
2117 };
2118 let module = self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id });
2119 debug!(
2120 "resolve_crate_root({:?}): got module {:?} ({:?}) (ident.span = {:?})",
2121 ident,
2122 module,
2123 module.kind.name(),
2124 ident.span
2125 );
2126 module
2127 }
2128
2129 fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2130 let mut module = self.get_module(module.normal_ancestor_id);
2131 while module.span.ctxt().normalize_to_macros_2_0() != *ctxt {
2132 let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2133 module = self.get_module(parent.normal_ancestor_id);
2134 }
2135 module
2136 }
2137
2138 fn resolve_path(
2139 &mut self,
2140 path: &[Segment],
2141 opt_ns: Option<Namespace>, // `None` indicates a module path in import
2142 parent_scope: &ParentScope<'a>,
2143 record_used: bool,
2144 path_span: Span,
2145 crate_lint: CrateLint,
2146 ) -> PathResult<'a> {
2147 self.resolve_path_with_ribs(
2148 path,
2149 opt_ns,
2150 parent_scope,
2151 record_used,
2152 path_span,
2153 crate_lint,
2154 None,
2155 )
2156 }
2157
2158 fn resolve_path_with_ribs(
2159 &mut self,
2160 path: &[Segment],
2161 opt_ns: Option<Namespace>, // `None` indicates a module path in import
2162 parent_scope: &ParentScope<'a>,
2163 record_used: bool,
2164 path_span: Span,
2165 crate_lint: CrateLint,
2166 ribs: Option<&PerNS<Vec<Rib<'a>>>>,
2167 ) -> PathResult<'a> {
2168 let mut module = None;
2169 let mut allow_super = true;
2170 let mut second_binding = None;
2171
2172 debug!(
2173 "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
2174 path_span={:?}, crate_lint={:?})",
2175 path, opt_ns, record_used, path_span, crate_lint,
2176 );
2177
2178 for (i, &Segment { ident, id, has_generic_args: _ }) in path.iter().enumerate() {
2179 debug!("resolve_path ident {} {:?} {:?}", i, ident, id);
2180 let record_segment_res = |this: &mut Self, res| {
2181 if record_used {
2182 if let Some(id) = id {
2183 if !this.partial_res_map.contains_key(&id) {
2184 assert!(id != ast::DUMMY_NODE_ID, "Trying to resolve dummy id");
2185 this.record_partial_res(id, PartialRes::new(res));
2186 }
2187 }
2188 }
2189 };
2190
2191 let is_last = i == path.len() - 1;
2192 let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
2193 let name = ident.name;
2194
2195 allow_super &= ns == TypeNS && (name == kw::SelfLower || name == kw::Super);
2196
2197 if ns == TypeNS {
2198 if allow_super && name == kw::Super {
2199 let mut ctxt = ident.span.ctxt().normalize_to_macros_2_0();
2200 let self_module = match i {
2201 0 => Some(self.resolve_self(&mut ctxt, parent_scope.module)),
2202 _ => match module {
2203 Some(ModuleOrUniformRoot::Module(module)) => Some(module),
2204 _ => None,
2205 },
2206 };
2207 if let Some(self_module) = self_module {
2208 if let Some(parent) = self_module.parent {
2209 module = Some(ModuleOrUniformRoot::Module(
2210 self.resolve_self(&mut ctxt, parent),
2211 ));
2212 continue;
2213 }
2214 }
2215 let msg = "there are too many leading `super` keywords".to_string();
2216 return PathResult::Failed {
2217 span: ident.span,
2218 label: msg,
2219 suggestion: None,
2220 is_error_from_last_segment: false,
2221 };
2222 }
2223 if i == 0 {
2224 if name == kw::SelfLower {
2225 let mut ctxt = ident.span.ctxt().normalize_to_macros_2_0();
2226 module = Some(ModuleOrUniformRoot::Module(
2227 self.resolve_self(&mut ctxt, parent_scope.module),
2228 ));
2229 continue;
2230 }
2231 if name == kw::PathRoot && ident.span.rust_2018() {
2232 module = Some(ModuleOrUniformRoot::ExternPrelude);
2233 continue;
2234 }
2235 if name == kw::PathRoot && ident.span.rust_2015() && self.session.rust_2018() {
2236 // `::a::b` from 2015 macro on 2018 global edition
2237 module = Some(ModuleOrUniformRoot::CrateRootAndExternPrelude);
2238 continue;
2239 }
2240 if name == kw::PathRoot || name == kw::Crate || name == kw::DollarCrate {
2241 // `::a::b`, `crate::a::b` or `$crate::a::b`
2242 module = Some(ModuleOrUniformRoot::Module(self.resolve_crate_root(ident)));
2243 continue;
2244 }
2245 }
2246 }
2247
2248 // Report special messages for path segment keywords in wrong positions.
2249 if ident.is_path_segment_keyword() && i != 0 {
2250 let name_str = if name == kw::PathRoot {
2251 "crate root".to_string()
2252 } else {
2253 format!("`{}`", name)
2254 };
2255 let label = if i == 1 && path[0].ident.name == kw::PathRoot {
2256 format!("global paths cannot start with {}", name_str)
2257 } else {
2258 format!("{} in paths can only be used in start position", name_str)
2259 };
2260 return PathResult::Failed {
2261 span: ident.span,
2262 label,
2263 suggestion: None,
2264 is_error_from_last_segment: false,
2265 };
2266 }
2267
2268 enum FindBindingResult<'a> {
2269 Binding(Result<&'a NameBinding<'a>, Determinacy>),
2270 PathResult(PathResult<'a>),
2271 }
2272 let find_binding_in_ns = |this: &mut Self, ns| {
2273 let binding = if let Some(module) = module {
2274 this.resolve_ident_in_module(
2275 module,
2276 ident,
2277 ns,
2278 parent_scope,
2279 record_used,
2280 path_span,
2281 )
2282 } else if ribs.is_none() || opt_ns.is_none() || opt_ns == Some(MacroNS) {
2283 let scopes = ScopeSet::All(ns, opt_ns.is_none());
2284 this.early_resolve_ident_in_lexical_scope(
2285 ident,
2286 scopes,
2287 parent_scope,
2288 record_used,
2289 record_used,
2290 path_span,
2291 )
2292 } else {
2293 let record_used_id = if record_used {
2294 crate_lint.node_id().or(Some(CRATE_NODE_ID))
2295 } else {
2296 None
2297 };
2298 match this.resolve_ident_in_lexical_scope(
2299 ident,
2300 ns,
2301 parent_scope,
2302 record_used_id,
2303 path_span,
2304 &ribs.unwrap()[ns],
2305 ) {
2306 // we found a locally-imported or available item/module
2307 Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
2308 // we found a local variable or type param
2309 Some(LexicalScopeBinding::Res(res))
2310 if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) =>
2311 {
2312 record_segment_res(this, res);
2313 return FindBindingResult::PathResult(PathResult::NonModule(
2314 PartialRes::with_unresolved_segments(res, path.len() - 1),
2315 ));
2316 }
2317 _ => Err(Determinacy::determined(record_used)),
2318 }
2319 };
2320 FindBindingResult::Binding(binding)
2321 };
2322 let binding = match find_binding_in_ns(self, ns) {
2323 FindBindingResult::PathResult(x) => return x,
2324 FindBindingResult::Binding(binding) => binding,
2325 };
2326 match binding {
2327 Ok(binding) => {
2328 if i == 1 {
2329 second_binding = Some(binding);
2330 }
2331 let res = binding.res();
2332 let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(res);
2333 if let Some(next_module) = binding.module() {
2334 module = Some(ModuleOrUniformRoot::Module(next_module));
2335 record_segment_res(self, res);
2336 } else if res == Res::ToolMod && i + 1 != path.len() {
2337 if binding.is_import() {
2338 self.session
2339 .struct_span_err(
2340 ident.span,
2341 "cannot use a tool module through an import",
2342 )
2343 .span_note(binding.span, "the tool module imported here")
2344 .emit();
2345 }
2346 let res = Res::NonMacroAttr(NonMacroAttrKind::Tool);
2347 return PathResult::NonModule(PartialRes::new(res));
2348 } else if res == Res::Err {
2349 return PathResult::NonModule(PartialRes::new(Res::Err));
2350 } else if opt_ns.is_some() && (is_last || maybe_assoc) {
2351 self.lint_if_path_starts_with_module(
2352 crate_lint,
2353 path,
2354 path_span,
2355 second_binding,
2356 );
2357 return PathResult::NonModule(PartialRes::with_unresolved_segments(
2358 res,
2359 path.len() - i - 1,
2360 ));
2361 } else {
2362 let label = format!(
2363 "`{}` is {} {}, not a module",
2364 ident,
2365 res.article(),
2366 res.descr(),
2367 );
2368
2369 return PathResult::Failed {
2370 span: ident.span,
2371 label,
2372 suggestion: None,
2373 is_error_from_last_segment: is_last,
2374 };
2375 }
2376 }
2377 Err(Undetermined) => return PathResult::Indeterminate,
2378 Err(Determined) => {
2379 if let Some(ModuleOrUniformRoot::Module(module)) = module {
2380 if opt_ns.is_some() && !module.is_normal() {
2381 return PathResult::NonModule(PartialRes::with_unresolved_segments(
2382 module.res().unwrap(),
2383 path.len() - i,
2384 ));
2385 }
2386 }
2387 let module_res = match module {
2388 Some(ModuleOrUniformRoot::Module(module)) => module.res(),
2389 _ => None,
2390 };
2391 let (label, suggestion) = if module_res == self.graph_root.res() {
2392 let is_mod = |res| match res {
2393 Res::Def(DefKind::Mod, _) => true,
2394 _ => false,
2395 };
2396 // Don't look up import candidates if this is a speculative resolve
2397 let mut candidates = if record_used {
2398 self.lookup_import_candidates(ident, TypeNS, parent_scope, is_mod)
2399 } else {
2400 Vec::new()
2401 };
2402 candidates.sort_by_cached_key(|c| {
2403 (c.path.segments.len(), pprust::path_to_string(&c.path))
2404 });
2405 if let Some(candidate) = candidates.get(0) {
2406 (
2407 String::from("unresolved import"),
2408 Some((
2409 vec![(ident.span, pprust::path_to_string(&candidate.path))],
2410 String::from("a similar path exists"),
2411 Applicability::MaybeIncorrect,
2412 )),
2413 )
2414 } else {
2415 (format!("maybe a missing crate `{}`?", ident), None)
2416 }
2417 } else if i == 0 {
2418 if ident
2419 .name
2420 .with(|n| n.chars().next().map_or(false, |c| c.is_ascii_uppercase()))
2421 {
2422 (format!("use of undeclared type `{}`", ident), None)
2423 } else {
2424 (format!("use of undeclared crate or module `{}`", ident), None)
2425 }
2426 } else {
2427 let mut msg =
2428 format!("could not find `{}` in `{}`", ident, path[i - 1].ident);
2429 if ns == TypeNS || ns == ValueNS {
2430 let ns_to_try = if ns == TypeNS { ValueNS } else { TypeNS };
2431 if let FindBindingResult::Binding(Ok(binding)) =
2432 find_binding_in_ns(self, ns_to_try)
2433 {
2434 let mut found = |what| {
2435 msg = format!(
2436 "expected {}, found {} `{}` in `{}`",
2437 ns.descr(),
2438 what,
2439 ident,
2440 path[i - 1].ident
2441 )
2442 };
2443 if binding.module().is_some() {
2444 found("module")
2445 } else {
2446 match binding.res() {
2447 def::Res::<NodeId>::Def(kind, id) => found(kind.descr(id)),
2448 _ => found(ns_to_try.descr()),
2449 }
2450 }
2451 };
2452 }
2453 (msg, None)
2454 };
2455 return PathResult::Failed {
2456 span: ident.span,
2457 label,
2458 suggestion,
2459 is_error_from_last_segment: is_last,
2460 };
2461 }
2462 }
2463 }
2464
2465 self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
2466
2467 PathResult::Module(match module {
2468 Some(module) => module,
2469 None if path.is_empty() => ModuleOrUniformRoot::CurrentScope,
2470 _ => span_bug!(path_span, "resolve_path: non-empty path `{:?}` has no module", path),
2471 })
2472 }
2473
2474 fn lint_if_path_starts_with_module(
2475 &mut self,
2476 crate_lint: CrateLint,
2477 path: &[Segment],
2478 path_span: Span,
2479 second_binding: Option<&NameBinding<'_>>,
2480 ) {
2481 let (diag_id, diag_span) = match crate_lint {
2482 CrateLint::No => return,
2483 CrateLint::SimplePath(id) => (id, path_span),
2484 CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
2485 CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
2486 };
2487
2488 let first_name = match path.get(0) {
2489 // In the 2018 edition this lint is a hard error, so nothing to do
2490 Some(seg) if seg.ident.span.rust_2015() && self.session.rust_2015() => seg.ident.name,
2491 _ => return,
2492 };
2493
2494 // We're only interested in `use` paths which should start with
2495 // `{{root}}` currently.
2496 if first_name != kw::PathRoot {
2497 return;
2498 }
2499
2500 match path.get(1) {
2501 // If this import looks like `crate::...` it's already good
2502 Some(Segment { ident, .. }) if ident.name == kw::Crate => return,
2503 // Otherwise go below to see if it's an extern crate
2504 Some(_) => {}
2505 // If the path has length one (and it's `PathRoot` most likely)
2506 // then we don't know whether we're gonna be importing a crate or an
2507 // item in our crate. Defer this lint to elsewhere
2508 None => return,
2509 }
2510
2511 // If the first element of our path was actually resolved to an
2512 // `ExternCrate` (also used for `crate::...`) then no need to issue a
2513 // warning, this looks all good!
2514 if let Some(binding) = second_binding {
2515 if let NameBindingKind::Import { import, .. } = binding.kind {
2516 // Careful: we still want to rewrite paths from renamed extern crates.
2517 if let ImportKind::ExternCrate { source: None, .. } = import.kind {
2518 return;
2519 }
2520 }
2521 }
2522
2523 let diag = BuiltinLintDiagnostics::AbsPathWithModule(diag_span);
2524 self.lint_buffer.buffer_lint_with_diagnostic(
2525 lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
2526 diag_id,
2527 diag_span,
2528 "absolute paths must start with `self`, `super`, \
2529 `crate`, or an external crate name in the 2018 edition",
2530 diag,
2531 );
2532 }
2533
2534 // Validate a local resolution (from ribs).
2535 fn validate_res_from_ribs(
2536 &mut self,
2537 rib_index: usize,
2538 rib_ident: Ident,
2539 mut res: Res,
2540 record_used: bool,
2541 span: Span,
2542 all_ribs: &[Rib<'a>],
2543 ) -> Res {
2544 debug!("validate_res_from_ribs({:?})", res);
2545 let ribs = &all_ribs[rib_index + 1..];
2546
2547 // An invalid forward use of a type parameter from a previous default.
2548 if let ForwardTyParamBanRibKind = all_ribs[rib_index].kind {
2549 if record_used {
2550 let res_error = if rib_ident.name == kw::SelfUpper {
2551 ResolutionError::SelfInTyParamDefault
2552 } else {
2553 ResolutionError::ForwardDeclaredTyParam
2554 };
2555 self.report_error(span, res_error);
2556 }
2557 assert_eq!(res, Res::Err);
2558 return Res::Err;
2559 }
2560
2561 match res {
2562 Res::Local(_) => {
2563 use ResolutionError::*;
2564 let mut res_err = None;
2565
2566 for rib in ribs {
2567 match rib.kind {
2568 NormalRibKind
2569 | ClosureOrAsyncRibKind
2570 | ModuleRibKind(..)
2571 | MacroDefinition(..)
2572 | ForwardTyParamBanRibKind => {
2573 // Nothing to do. Continue.
2574 }
2575 ItemRibKind(_) | FnItemRibKind | AssocItemRibKind => {
2576 // This was an attempt to access an upvar inside a
2577 // named function item. This is not allowed, so we
2578 // report an error.
2579 if record_used {
2580 // We don't immediately trigger a resolve error, because
2581 // we want certain other resolution errors (namely those
2582 // emitted for `ConstantItemRibKind` below) to take
2583 // precedence.
2584 res_err = Some(CannotCaptureDynamicEnvironmentInFnItem);
2585 }
2586 }
2587 ConstantItemRibKind(_) => {
2588 // Still doesn't deal with upvars
2589 if record_used {
2590 self.report_error(span, AttemptToUseNonConstantValueInConstant);
2591 }
2592 return Res::Err;
2593 }
2594 ConstParamTyRibKind => {
2595 if record_used {
2596 self.report_error(span, ParamInTyOfConstParam(rib_ident.name));
2597 }
2598 return Res::Err;
2599 }
2600 }
2601 }
2602 if let Some(res_err) = res_err {
2603 self.report_error(span, res_err);
2604 return Res::Err;
2605 }
2606 }
2607 Res::Def(DefKind::TyParam, _) | Res::SelfTy(..) => {
2608 let mut in_ty_param_default = false;
2609 for rib in ribs {
2610 let has_generic_params = match rib.kind {
2611 NormalRibKind
2612 | ClosureOrAsyncRibKind
2613 | AssocItemRibKind
2614 | ModuleRibKind(..)
2615 | MacroDefinition(..) => {
2616 // Nothing to do. Continue.
2617 continue;
2618 }
2619
2620 // We only forbid constant items if we are inside of type defaults,
2621 // for example `struct Foo<T, U = [u8; std::mem::size_of::<T>()]>`
2622 ForwardTyParamBanRibKind => {
2623 in_ty_param_default = true;
2624 continue;
2625 }
2626 ConstantItemRibKind(trivial) => {
2627 // HACK(min_const_generics): We currently only allow `N` or `{ N }`.
2628 if !trivial && self.session.features_untracked().min_const_generics {
2629 // HACK(min_const_generics): If we encounter `Self` in an anonymous constant
2630 // we can't easily tell if it's generic at this stage, so we instead remember
2631 // this and then enforce the self type to be concrete later on.
2632 if let Res::SelfTy(trait_def, Some((impl_def, _))) = res {
2633 res = Res::SelfTy(trait_def, Some((impl_def, true)));
2634 } else {
2635 if record_used {
2636 self.report_error(
2637 span,
2638 ResolutionError::ParamInNonTrivialAnonConst {
2639 name: rib_ident.name,
2640 is_type: true,
2641 },
2642 );
2643 }
2644 return Res::Err;
2645 }
2646 }
2647
2648 if in_ty_param_default {
2649 if record_used {
2650 self.report_error(
2651 span,
2652 ResolutionError::ParamInAnonConstInTyDefault(
2653 rib_ident.name,
2654 ),
2655 );
2656 }
2657 return Res::Err;
2658 } else {
2659 continue;
2660 }
2661 }
2662
2663 // This was an attempt to use a type parameter outside its scope.
2664 ItemRibKind(has_generic_params) => has_generic_params,
2665 FnItemRibKind => HasGenericParams::Yes,
2666 ConstParamTyRibKind => {
2667 if record_used {
2668 self.report_error(
2669 span,
2670 ResolutionError::ParamInTyOfConstParam(rib_ident.name),
2671 );
2672 }
2673 return Res::Err;
2674 }
2675 };
2676
2677 if record_used {
2678 self.report_error(
2679 span,
2680 ResolutionError::GenericParamsFromOuterFunction(
2681 res,
2682 has_generic_params,
2683 ),
2684 );
2685 }
2686 return Res::Err;
2687 }
2688 }
2689 Res::Def(DefKind::ConstParam, _) => {
2690 let mut ribs = ribs.iter().peekable();
2691 if let Some(Rib { kind: FnItemRibKind, .. }) = ribs.peek() {
2692 // When declaring const parameters inside function signatures, the first rib
2693 // is always a `FnItemRibKind`. In this case, we can skip it, to avoid it
2694 // (spuriously) conflicting with the const param.
2695 ribs.next();
2696 }
2697
2698 let mut in_ty_param_default = false;
2699 for rib in ribs {
2700 let has_generic_params = match rib.kind {
2701 NormalRibKind
2702 | ClosureOrAsyncRibKind
2703 | AssocItemRibKind
2704 | ModuleRibKind(..)
2705 | MacroDefinition(..) => continue,
2706
2707 // We only forbid constant items if we are inside of type defaults,
2708 // for example `struct Foo<T, U = [u8; std::mem::size_of::<T>()]>`
2709 ForwardTyParamBanRibKind => {
2710 in_ty_param_default = true;
2711 continue;
2712 }
2713 ConstantItemRibKind(trivial) => {
2714 // HACK(min_const_generics): We currently only allow `N` or `{ N }`.
2715 if !trivial && self.session.features_untracked().min_const_generics {
2716 if record_used {
2717 self.report_error(
2718 span,
2719 ResolutionError::ParamInNonTrivialAnonConst {
2720 name: rib_ident.name,
2721 is_type: false,
2722 },
2723 );
2724 }
2725 return Res::Err;
2726 }
2727
2728 if in_ty_param_default {
2729 if record_used {
2730 self.report_error(
2731 span,
2732 ResolutionError::ParamInAnonConstInTyDefault(
2733 rib_ident.name,
2734 ),
2735 );
2736 }
2737 return Res::Err;
2738 } else {
2739 continue;
2740 }
2741 }
2742
2743 ItemRibKind(has_generic_params) => has_generic_params,
2744 FnItemRibKind => HasGenericParams::Yes,
2745 ConstParamTyRibKind => {
2746 if record_used {
2747 self.report_error(
2748 span,
2749 ResolutionError::ParamInTyOfConstParam(rib_ident.name),
2750 );
2751 }
2752 return Res::Err;
2753 }
2754 };
2755
2756 // This was an attempt to use a const parameter outside its scope.
2757 if record_used {
2758 self.report_error(
2759 span,
2760 ResolutionError::GenericParamsFromOuterFunction(
2761 res,
2762 has_generic_params,
2763 ),
2764 );
2765 }
2766 return Res::Err;
2767 }
2768 }
2769 _ => {}
2770 }
2771 res
2772 }
2773
2774 fn record_partial_res(&mut self, node_id: NodeId, resolution: PartialRes) {
2775 debug!("(recording res) recording {:?} for {}", resolution, node_id);
2776 if let Some(prev_res) = self.partial_res_map.insert(node_id, resolution) {
2777 panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
2778 }
2779 }
2780
2781 fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
2782 vis.is_accessible_from(module.normal_ancestor_id, self)
2783 }
2784
2785 fn set_binding_parent_module(&mut self, binding: &'a NameBinding<'a>, module: Module<'a>) {
2786 if let Some(old_module) = self.binding_parent_modules.insert(PtrKey(binding), module) {
2787 if !ptr::eq(module, old_module) {
2788 span_bug!(binding.span, "parent module is reset for binding");
2789 }
2790 }
2791 }
2792
2793 fn disambiguate_macro_rules_vs_modularized(
2794 &self,
2795 macro_rules: &'a NameBinding<'a>,
2796 modularized: &'a NameBinding<'a>,
2797 ) -> bool {
2798 // Some non-controversial subset of ambiguities "modularized macro name" vs "macro_rules"
2799 // is disambiguated to mitigate regressions from macro modularization.
2800 // Scoping for `macro_rules` behaves like scoping for `let` at module level, in general.
2801 match (
2802 self.binding_parent_modules.get(&PtrKey(macro_rules)),
2803 self.binding_parent_modules.get(&PtrKey(modularized)),
2804 ) {
2805 (Some(macro_rules), Some(modularized)) => {
2806 macro_rules.normal_ancestor_id == modularized.normal_ancestor_id
2807 && modularized.is_ancestor_of(macro_rules)
2808 }
2809 _ => false,
2810 }
2811 }
2812
2813 fn report_errors(&mut self, krate: &Crate) {
2814 self.report_with_use_injections(krate);
2815
2816 for &(span_use, span_def) in &self.macro_expanded_macro_export_errors {
2817 let msg = "macro-expanded `macro_export` macros from the current crate \
2818 cannot be referred to by absolute paths";
2819 self.lint_buffer.buffer_lint_with_diagnostic(
2820 lint::builtin::MACRO_EXPANDED_MACRO_EXPORTS_ACCESSED_BY_ABSOLUTE_PATHS,
2821 CRATE_NODE_ID,
2822 span_use,
2823 msg,
2824 BuiltinLintDiagnostics::MacroExpandedMacroExportsAccessedByAbsolutePaths(span_def),
2825 );
2826 }
2827
2828 for ambiguity_error in &self.ambiguity_errors {
2829 self.report_ambiguity_error(ambiguity_error);
2830 }
2831
2832 let mut reported_spans = FxHashSet::default();
2833 for error in &self.privacy_errors {
2834 if reported_spans.insert(error.dedup_span) {
2835 self.report_privacy_error(error);
2836 }
2837 }
2838 }
2839
2840 fn report_with_use_injections(&mut self, krate: &Crate) {
2841 for UseError { mut err, candidates, def_id, instead, suggestion } in
2842 self.use_injections.drain(..)
2843 {
2844 let (span, found_use) = if let Some(def_id) = def_id.as_local() {
2845 UsePlacementFinder::check(krate, self.def_id_to_node_id[def_id])
2846 } else {
2847 (None, false)
2848 };
2849 if !candidates.is_empty() {
2850 diagnostics::show_candidates(&mut err, span, &candidates, instead, found_use);
2851 } else if let Some((span, msg, sugg, appl)) = suggestion {
2852 err.span_suggestion(span, msg, sugg, appl);
2853 }
2854 err.emit();
2855 }
2856 }
2857
2858 fn report_conflict<'b>(
2859 &mut self,
2860 parent: Module<'_>,
2861 ident: Ident,
2862 ns: Namespace,
2863 new_binding: &NameBinding<'b>,
2864 old_binding: &NameBinding<'b>,
2865 ) {
2866 // Error on the second of two conflicting names
2867 if old_binding.span.lo() > new_binding.span.lo() {
2868 return self.report_conflict(parent, ident, ns, old_binding, new_binding);
2869 }
2870
2871 let container = match parent.kind {
2872 ModuleKind::Def(kind, _, _) => kind.descr(parent.def_id().unwrap()),
2873 ModuleKind::Block(..) => "block",
2874 };
2875
2876 let old_noun = match old_binding.is_import() {
2877 true => "import",
2878 false => "definition",
2879 };
2880
2881 let new_participle = match new_binding.is_import() {
2882 true => "imported",
2883 false => "defined",
2884 };
2885
2886 let (name, span) =
2887 (ident.name, self.session.source_map().guess_head_span(new_binding.span));
2888
2889 if let Some(s) = self.name_already_seen.get(&name) {
2890 if s == &span {
2891 return;
2892 }
2893 }
2894
2895 let old_kind = match (ns, old_binding.module()) {
2896 (ValueNS, _) => "value",
2897 (MacroNS, _) => "macro",
2898 (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
2899 (TypeNS, Some(module)) if module.is_normal() => "module",
2900 (TypeNS, Some(module)) if module.is_trait() => "trait",
2901 (TypeNS, _) => "type",
2902 };
2903
2904 let msg = format!("the name `{}` is defined multiple times", name);
2905
2906 let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
2907 (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
2908 (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
2909 true => struct_span_err!(self.session, span, E0254, "{}", msg),
2910 false => struct_span_err!(self.session, span, E0260, "{}", msg),
2911 },
2912 _ => match (old_binding.is_import(), new_binding.is_import()) {
2913 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
2914 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
2915 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
2916 },
2917 };
2918
2919 err.note(&format!(
2920 "`{}` must be defined only once in the {} namespace of this {}",
2921 name,
2922 ns.descr(),
2923 container
2924 ));
2925
2926 err.span_label(span, format!("`{}` re{} here", name, new_participle));
2927 err.span_label(
2928 self.session.source_map().guess_head_span(old_binding.span),
2929 format!("previous {} of the {} `{}` here", old_noun, old_kind, name),
2930 );
2931
2932 // See https://github.com/rust-lang/rust/issues/32354
2933 use NameBindingKind::Import;
2934 let import = match (&new_binding.kind, &old_binding.kind) {
2935 // If there are two imports where one or both have attributes then prefer removing the
2936 // import without attributes.
2937 (Import { import: new, .. }, Import { import: old, .. })
2938 if {
2939 !new_binding.span.is_dummy()
2940 && !old_binding.span.is_dummy()
2941 && (new.has_attributes || old.has_attributes)
2942 } =>
2943 {
2944 if old.has_attributes {
2945 Some((new, new_binding.span, true))
2946 } else {
2947 Some((old, old_binding.span, true))
2948 }
2949 }
2950 // Otherwise prioritize the new binding.
2951 (Import { import, .. }, other) if !new_binding.span.is_dummy() => {
2952 Some((import, new_binding.span, other.is_import()))
2953 }
2954 (other, Import { import, .. }) if !old_binding.span.is_dummy() => {
2955 Some((import, old_binding.span, other.is_import()))
2956 }
2957 _ => None,
2958 };
2959
2960 // Check if the target of the use for both bindings is the same.
2961 let duplicate = new_binding.res().opt_def_id() == old_binding.res().opt_def_id();
2962 let has_dummy_span = new_binding.span.is_dummy() || old_binding.span.is_dummy();
2963 let from_item =
2964 self.extern_prelude.get(&ident).map(|entry| entry.introduced_by_item).unwrap_or(true);
2965 // Only suggest removing an import if both bindings are to the same def, if both spans
2966 // aren't dummy spans. Further, if both bindings are imports, then the ident must have
2967 // been introduced by a item.
2968 let should_remove_import = duplicate
2969 && !has_dummy_span
2970 && ((new_binding.is_extern_crate() || old_binding.is_extern_crate()) || from_item);
2971
2972 match import {
2973 Some((import, span, true)) if should_remove_import && import.is_nested() => {
2974 self.add_suggestion_for_duplicate_nested_use(&mut err, import, span)
2975 }
2976 Some((import, _, true)) if should_remove_import && !import.is_glob() => {
2977 // Simple case - remove the entire import. Due to the above match arm, this can
2978 // only be a single use so just remove it entirely.
2979 err.tool_only_span_suggestion(
2980 import.use_span_with_attributes,
2981 "remove unnecessary import",
2982 String::new(),
2983 Applicability::MaybeIncorrect,
2984 );
2985 }
2986 Some((import, span, _)) => {
2987 self.add_suggestion_for_rename_of_use(&mut err, name, import, span)
2988 }
2989 _ => {}
2990 }
2991
2992 err.emit();
2993 self.name_already_seen.insert(name, span);
2994 }
2995
2996 /// This function adds a suggestion to change the binding name of a new import that conflicts
2997 /// with an existing import.
2998 ///
2999 /// ```text,ignore (diagnostic)
3000 /// help: you can use `as` to change the binding name of the import
3001 /// |
3002 /// LL | use foo::bar as other_bar;
3003 /// | ^^^^^^^^^^^^^^^^^^^^^
3004 /// ```
3005 fn add_suggestion_for_rename_of_use(
3006 &self,
3007 err: &mut DiagnosticBuilder<'_>,
3008 name: Symbol,
3009 import: &Import<'_>,
3010 binding_span: Span,
3011 ) {
3012 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
3013 format!("Other{}", name)
3014 } else {
3015 format!("other_{}", name)
3016 };
3017
3018 let mut suggestion = None;
3019 match import.kind {
3020 ImportKind::Single { type_ns_only: true, .. } => {
3021 suggestion = Some(format!("self as {}", suggested_name))
3022 }
3023 ImportKind::Single { source, .. } => {
3024 if let Some(pos) =
3025 source.span.hi().0.checked_sub(binding_span.lo().0).map(|pos| pos as usize)
3026 {
3027 if let Ok(snippet) = self.session.source_map().span_to_snippet(binding_span) {
3028 if pos <= snippet.len() {
3029 suggestion = Some(format!(
3030 "{} as {}{}",
3031 &snippet[..pos],
3032 suggested_name,
3033 if snippet.ends_with(';') { ";" } else { "" }
3034 ))
3035 }
3036 }
3037 }
3038 }
3039 ImportKind::ExternCrate { source, target, .. } => {
3040 suggestion = Some(format!(
3041 "extern crate {} as {};",
3042 source.unwrap_or(target.name),
3043 suggested_name,
3044 ))
3045 }
3046 _ => unreachable!(),
3047 }
3048
3049 let rename_msg = "you can use `as` to change the binding name of the import";
3050 if let Some(suggestion) = suggestion {
3051 err.span_suggestion(
3052 binding_span,
3053 rename_msg,
3054 suggestion,
3055 Applicability::MaybeIncorrect,
3056 );
3057 } else {
3058 err.span_label(binding_span, rename_msg);
3059 }
3060 }
3061
3062 /// This function adds a suggestion to remove a unnecessary binding from an import that is
3063 /// nested. In the following example, this function will be invoked to remove the `a` binding
3064 /// in the second use statement:
3065 ///
3066 /// ```ignore (diagnostic)
3067 /// use issue_52891::a;
3068 /// use issue_52891::{d, a, e};
3069 /// ```
3070 ///
3071 /// The following suggestion will be added:
3072 ///
3073 /// ```ignore (diagnostic)
3074 /// use issue_52891::{d, a, e};
3075 /// ^-- help: remove unnecessary import
3076 /// ```
3077 ///
3078 /// If the nested use contains only one import then the suggestion will remove the entire
3079 /// line.
3080 ///
3081 /// It is expected that the provided import is nested - this isn't checked by the
3082 /// function. If this invariant is not upheld, this function's behaviour will be unexpected
3083 /// as characters expected by span manipulations won't be present.
3084 fn add_suggestion_for_duplicate_nested_use(
3085 &self,
3086 err: &mut DiagnosticBuilder<'_>,
3087 import: &Import<'_>,
3088 binding_span: Span,
3089 ) {
3090 assert!(import.is_nested());
3091 let message = "remove unnecessary import";
3092
3093 // Two examples will be used to illustrate the span manipulations we're doing:
3094 //
3095 // - Given `use issue_52891::{d, a, e};` where `a` is a duplicate then `binding_span` is
3096 // `a` and `import.use_span` is `issue_52891::{d, a, e};`.
3097 // - Given `use issue_52891::{d, e, a};` where `a` is a duplicate then `binding_span` is
3098 // `a` and `import.use_span` is `issue_52891::{d, e, a};`.
3099
3100 let (found_closing_brace, span) =
3101 find_span_of_binding_until_next_binding(self.session, binding_span, import.use_span);
3102
3103 // If there was a closing brace then identify the span to remove any trailing commas from
3104 // previous imports.
3105 if found_closing_brace {
3106 if let Some(span) = extend_span_to_previous_binding(self.session, span) {
3107 err.tool_only_span_suggestion(
3108 span,
3109 message,
3110 String::new(),
3111 Applicability::MaybeIncorrect,
3112 );
3113 } else {
3114 // Remove the entire line if we cannot extend the span back, this indicates a
3115 // `issue_52891::{self}` case.
3116 err.span_suggestion(
3117 import.use_span_with_attributes,
3118 message,
3119 String::new(),
3120 Applicability::MaybeIncorrect,
3121 );
3122 }
3123
3124 return;
3125 }
3126
3127 err.span_suggestion(span, message, String::new(), Applicability::MachineApplicable);
3128 }
3129
3130 fn extern_prelude_get(
3131 &mut self,
3132 ident: Ident,
3133 speculative: bool,
3134 ) -> Option<&'a NameBinding<'a>> {
3135 if ident.is_path_segment_keyword() {
3136 // Make sure `self`, `super` etc produce an error when passed to here.
3137 return None;
3138 }
3139 self.extern_prelude.get(&ident.normalize_to_macros_2_0()).cloned().and_then(|entry| {
3140 if let Some(binding) = entry.extern_crate_item {
3141 if !speculative && entry.introduced_by_item {
3142 self.record_use(ident, TypeNS, binding, false);
3143 }
3144 Some(binding)
3145 } else {
3146 let crate_id = if !speculative {
3147 self.crate_loader.process_path_extern(ident.name, ident.span)
3148 } else {
3149 self.crate_loader.maybe_process_path_extern(ident.name)?
3150 };
3151 let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
3152 Some(
3153 (crate_root, ty::Visibility::Public, DUMMY_SP, ExpnId::root())
3154 .to_name_binding(self.arenas),
3155 )
3156 }
3157 })
3158 }
3159
3160 /// This is equivalent to `get_traits_in_module_containing_item`, but without filtering by the associated item.
3161 ///
3162 /// This is used by rustdoc for intra-doc links.
3163 pub fn traits_in_scope(&mut self, module_id: DefId) -> Vec<TraitCandidate> {
3164 let module = self.get_module(module_id);
3165 module.ensure_traits(self);
3166 let traits = module.traits.borrow();
3167 let to_candidate =
3168 |this: &mut Self, &(trait_name, binding): &(Ident, &NameBinding<'_>)| TraitCandidate {
3169 def_id: binding.res().def_id(),
3170 import_ids: this.find_transitive_imports(&binding.kind, trait_name),
3171 };
3172
3173 let mut candidates: Vec<_> =
3174 traits.as_ref().unwrap().iter().map(|x| to_candidate(self, x)).collect();
3175
3176 if let Some(prelude) = self.prelude {
3177 if !module.no_implicit_prelude {
3178 prelude.ensure_traits(self);
3179 candidates.extend(
3180 prelude.traits.borrow().as_ref().unwrap().iter().map(|x| to_candidate(self, x)),
3181 );
3182 }
3183 }
3184
3185 candidates
3186 }
3187
3188 /// Rustdoc uses this to resolve things in a recoverable way. `ResolutionError<'a>`
3189 /// isn't something that can be returned because it can't be made to live that long,
3190 /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
3191 /// just that an error occurred.
3192 // FIXME(Manishearth): intra-doc links won't get warned of epoch changes.
3193 pub fn resolve_str_path_error(
3194 &mut self,
3195 span: Span,
3196 path_str: &str,
3197 ns: Namespace,
3198 module_id: DefId,
3199 ) -> Result<(ast::Path, Res), ()> {
3200 let path = if path_str.starts_with("::") {
3201 ast::Path {
3202 span,
3203 segments: iter::once(Ident::with_dummy_span(kw::PathRoot))
3204 .chain(path_str.split("::").skip(1).map(Ident::from_str))
3205 .map(|i| self.new_ast_path_segment(i))
3206 .collect(),
3207 tokens: None,
3208 }
3209 } else {
3210 ast::Path {
3211 span,
3212 segments: path_str
3213 .split("::")
3214 .map(Ident::from_str)
3215 .map(|i| self.new_ast_path_segment(i))
3216 .collect(),
3217 tokens: None,
3218 }
3219 };
3220 let module = self.get_module(module_id);
3221 let parent_scope = &ParentScope::module(module);
3222 let res = self.resolve_ast_path(&path, ns, parent_scope).map_err(|_| ())?;
3223 Ok((path, res))
3224 }
3225
3226 // Resolve a path passed from rustdoc or HIR lowering.
3227 fn resolve_ast_path(
3228 &mut self,
3229 path: &ast::Path,
3230 ns: Namespace,
3231 parent_scope: &ParentScope<'a>,
3232 ) -> Result<Res, (Span, ResolutionError<'a>)> {
3233 match self.resolve_path(
3234 &Segment::from_path(path),
3235 Some(ns),
3236 parent_scope,
3237 false,
3238 path.span,
3239 CrateLint::No,
3240 ) {
3241 PathResult::Module(ModuleOrUniformRoot::Module(module)) => Ok(module.res().unwrap()),
3242 PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 => {
3243 Ok(path_res.base_res())
3244 }
3245 PathResult::NonModule(..) => Err((
3246 path.span,
3247 ResolutionError::FailedToResolve {
3248 label: String::from("type-relative paths are not supported in this context"),
3249 suggestion: None,
3250 },
3251 )),
3252 PathResult::Module(..) | PathResult::Indeterminate => unreachable!(),
3253 PathResult::Failed { span, label, suggestion, .. } => {
3254 Err((span, ResolutionError::FailedToResolve { label, suggestion }))
3255 }
3256 }
3257 }
3258
3259 fn new_ast_path_segment(&mut self, ident: Ident) -> ast::PathSegment {
3260 let mut seg = ast::PathSegment::from_ident(ident);
3261 seg.id = self.next_node_id();
3262 seg
3263 }
3264
3265 // For rustdoc.
3266 pub fn graph_root(&self) -> Module<'a> {
3267 self.graph_root
3268 }
3269
3270 // For rustdoc.
3271 pub fn all_macros(&self) -> &FxHashMap<Symbol, Res> {
3272 &self.all_macros
3273 }
3274
3275 /// Retrieves the span of the given `DefId` if `DefId` is in the local crate.
3276 #[inline]
3277 pub fn opt_span(&self, def_id: DefId) -> Option<Span> {
3278 if let Some(def_id) = def_id.as_local() { Some(self.def_id_to_span[def_id]) } else { None }
3279 }
3280 }
3281
3282 fn names_to_string(names: &[Symbol]) -> String {
3283 let mut result = String::new();
3284 for (i, name) in names.iter().filter(|name| **name != kw::PathRoot).enumerate() {
3285 if i > 0 {
3286 result.push_str("::");
3287 }
3288 if Ident::with_dummy_span(*name).is_raw_guess() {
3289 result.push_str("r#");
3290 }
3291 result.push_str(&name.as_str());
3292 }
3293 result
3294 }
3295
3296 fn path_names_to_string(path: &Path) -> String {
3297 names_to_string(&path.segments.iter().map(|seg| seg.ident.name).collect::<Vec<_>>())
3298 }
3299
3300 /// A somewhat inefficient routine to obtain the name of a module.
3301 fn module_to_string(module: Module<'_>) -> Option<String> {
3302 let mut names = Vec::new();
3303
3304 fn collect_mod(names: &mut Vec<Symbol>, module: Module<'_>) {
3305 if let ModuleKind::Def(.., name) = module.kind {
3306 if let Some(parent) = module.parent {
3307 names.push(name);
3308 collect_mod(names, parent);
3309 }
3310 } else {
3311 names.push(Symbol::intern("<opaque>"));
3312 collect_mod(names, module.parent.unwrap());
3313 }
3314 }
3315 collect_mod(&mut names, module);
3316
3317 if names.is_empty() {
3318 return None;
3319 }
3320 names.reverse();
3321 Some(names_to_string(&names))
3322 }
3323
3324 #[derive(Copy, Clone, Debug)]
3325 enum CrateLint {
3326 /// Do not issue the lint.
3327 No,
3328
3329 /// This lint applies to some arbitrary path; e.g., `impl ::foo::Bar`.
3330 /// In this case, we can take the span of that path.
3331 SimplePath(NodeId),
3332
3333 /// This lint comes from a `use` statement. In this case, what we
3334 /// care about really is the *root* `use` statement; e.g., if we
3335 /// have nested things like `use a::{b, c}`, we care about the
3336 /// `use a` part.
3337 UsePath { root_id: NodeId, root_span: Span },
3338
3339 /// This is the "trait item" from a fully qualified path. For example,
3340 /// we might be resolving `X::Y::Z` from a path like `<T as X::Y>::Z`.
3341 /// The `path_span` is the span of the to the trait itself (`X::Y`).
3342 QPathTrait { qpath_id: NodeId, qpath_span: Span },
3343 }
3344
3345 impl CrateLint {
3346 fn node_id(&self) -> Option<NodeId> {
3347 match *self {
3348 CrateLint::No => None,
3349 CrateLint::SimplePath(id)
3350 | CrateLint::UsePath { root_id: id, .. }
3351 | CrateLint::QPathTrait { qpath_id: id, .. } => Some(id),
3352 }
3353 }
3354 }
3355
3356 pub fn provide(providers: &mut Providers) {
3357 late::lifetimes::provide(providers);
3358 }