]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_serialize/src/opaque.rs
New upstream version 1.63.0+dfsg1
[rustc.git] / compiler / rustc_serialize / src / opaque.rs
1 use crate::leb128::{self, max_leb128_len};
2 use crate::serialize::{Decodable, Decoder, Encodable, Encoder};
3 use std::convert::TryInto;
4 use std::fs::File;
5 use std::io::{self, Write};
6 use std::mem::MaybeUninit;
7 use std::path::Path;
8 use std::ptr;
9
10 // -----------------------------------------------------------------------------
11 // Encoder
12 // -----------------------------------------------------------------------------
13
14 pub struct MemEncoder {
15 pub data: Vec<u8>,
16 }
17
18 impl MemEncoder {
19 pub fn new() -> MemEncoder {
20 MemEncoder { data: vec![] }
21 }
22
23 #[inline]
24 pub fn position(&self) -> usize {
25 self.data.len()
26 }
27
28 pub fn finish(self) -> Vec<u8> {
29 self.data
30 }
31 }
32
33 macro_rules! write_leb128 {
34 ($enc:expr, $value:expr, $int_ty:ty, $fun:ident) => {{
35 const MAX_ENCODED_LEN: usize = max_leb128_len!($int_ty);
36 let old_len = $enc.data.len();
37
38 if MAX_ENCODED_LEN > $enc.data.capacity() - old_len {
39 $enc.data.reserve(MAX_ENCODED_LEN);
40 }
41
42 // SAFETY: The above check and `reserve` ensures that there is enough
43 // room to write the encoded value to the vector's internal buffer.
44 unsafe {
45 let buf = &mut *($enc.data.as_mut_ptr().add(old_len)
46 as *mut [MaybeUninit<u8>; MAX_ENCODED_LEN]);
47 let encoded = leb128::$fun(buf, $value);
48 $enc.data.set_len(old_len + encoded.len());
49 }
50 }};
51 }
52
53 /// A byte that [cannot occur in UTF8 sequences][utf8]. Used to mark the end of a string.
54 /// This way we can skip validation and still be relatively sure that deserialization
55 /// did not desynchronize.
56 ///
57 /// [utf8]: https://en.wikipedia.org/w/index.php?title=UTF-8&oldid=1058865525#Codepage_layout
58 const STR_SENTINEL: u8 = 0xC1;
59
60 impl Encoder for MemEncoder {
61 #[inline]
62 fn emit_usize(&mut self, v: usize) {
63 write_leb128!(self, v, usize, write_usize_leb128)
64 }
65
66 #[inline]
67 fn emit_u128(&mut self, v: u128) {
68 write_leb128!(self, v, u128, write_u128_leb128);
69 }
70
71 #[inline]
72 fn emit_u64(&mut self, v: u64) {
73 write_leb128!(self, v, u64, write_u64_leb128);
74 }
75
76 #[inline]
77 fn emit_u32(&mut self, v: u32) {
78 write_leb128!(self, v, u32, write_u32_leb128);
79 }
80
81 #[inline]
82 fn emit_u16(&mut self, v: u16) {
83 self.data.extend_from_slice(&v.to_le_bytes());
84 }
85
86 #[inline]
87 fn emit_u8(&mut self, v: u8) {
88 self.data.push(v);
89 }
90
91 #[inline]
92 fn emit_isize(&mut self, v: isize) {
93 write_leb128!(self, v, isize, write_isize_leb128)
94 }
95
96 #[inline]
97 fn emit_i128(&mut self, v: i128) {
98 write_leb128!(self, v, i128, write_i128_leb128)
99 }
100
101 #[inline]
102 fn emit_i64(&mut self, v: i64) {
103 write_leb128!(self, v, i64, write_i64_leb128)
104 }
105
106 #[inline]
107 fn emit_i32(&mut self, v: i32) {
108 write_leb128!(self, v, i32, write_i32_leb128)
109 }
110
111 #[inline]
112 fn emit_i16(&mut self, v: i16) {
113 self.data.extend_from_slice(&v.to_le_bytes());
114 }
115
116 #[inline]
117 fn emit_i8(&mut self, v: i8) {
118 self.emit_u8(v as u8);
119 }
120
121 #[inline]
122 fn emit_bool(&mut self, v: bool) {
123 self.emit_u8(if v { 1 } else { 0 });
124 }
125
126 #[inline]
127 fn emit_f64(&mut self, v: f64) {
128 let as_u64: u64 = v.to_bits();
129 self.emit_u64(as_u64);
130 }
131
132 #[inline]
133 fn emit_f32(&mut self, v: f32) {
134 let as_u32: u32 = v.to_bits();
135 self.emit_u32(as_u32);
136 }
137
138 #[inline]
139 fn emit_char(&mut self, v: char) {
140 self.emit_u32(v as u32);
141 }
142
143 #[inline]
144 fn emit_str(&mut self, v: &str) {
145 self.emit_usize(v.len());
146 self.emit_raw_bytes(v.as_bytes());
147 self.emit_u8(STR_SENTINEL);
148 }
149
150 #[inline]
151 fn emit_raw_bytes(&mut self, s: &[u8]) {
152 self.data.extend_from_slice(s);
153 }
154 }
155
156 pub type FileEncodeResult = Result<usize, io::Error>;
157
158 // `FileEncoder` encodes data to file via fixed-size buffer.
159 //
160 // When encoding large amounts of data to a file, using `FileEncoder` may be
161 // preferred over using `MemEncoder` to encode to a `Vec`, and then writing the
162 // `Vec` to file, as the latter uses as much memory as there is encoded data,
163 // while the former uses the fixed amount of memory allocated to the buffer.
164 // `FileEncoder` also has the advantage of not needing to reallocate as data
165 // is appended to it, but the disadvantage of requiring more error handling,
166 // which has some runtime overhead.
167 pub struct FileEncoder {
168 // The input buffer. For adequate performance, we need more control over
169 // buffering than `BufWriter` offers. If `BufWriter` ever offers a raw
170 // buffer access API, we can use it, and remove `buf` and `buffered`.
171 buf: Box<[MaybeUninit<u8>]>,
172 buffered: usize,
173 flushed: usize,
174 file: File,
175 // This is used to implement delayed error handling, as described in the
176 // comment on `trait Encoder`.
177 res: Result<(), io::Error>,
178 }
179
180 impl FileEncoder {
181 pub fn new<P: AsRef<Path>>(path: P) -> io::Result<Self> {
182 const DEFAULT_BUF_SIZE: usize = 8192;
183 FileEncoder::with_capacity(path, DEFAULT_BUF_SIZE)
184 }
185
186 pub fn with_capacity<P: AsRef<Path>>(path: P, capacity: usize) -> io::Result<Self> {
187 // Require capacity at least as large as the largest LEB128 encoding
188 // here, so that we don't have to check or handle this on every write.
189 assert!(capacity >= max_leb128_len());
190
191 // Require capacity small enough such that some capacity checks can be
192 // done using guaranteed non-overflowing add rather than sub, which
193 // shaves an instruction off those code paths (on x86 at least).
194 assert!(capacity <= usize::MAX - max_leb128_len());
195
196 let file = File::create(path)?;
197
198 Ok(FileEncoder {
199 buf: Box::new_uninit_slice(capacity),
200 buffered: 0,
201 flushed: 0,
202 file,
203 res: Ok(()),
204 })
205 }
206
207 #[inline]
208 pub fn position(&self) -> usize {
209 // Tracking position this way instead of having a `self.position` field
210 // means that we don't have to update the position on every write call.
211 self.flushed + self.buffered
212 }
213
214 pub fn flush(&mut self) {
215 // This is basically a copy of `BufWriter::flush`. If `BufWriter` ever
216 // offers a raw buffer access API, we can use it, and remove this.
217
218 /// Helper struct to ensure the buffer is updated after all the writes
219 /// are complete. It tracks the number of written bytes and drains them
220 /// all from the front of the buffer when dropped.
221 struct BufGuard<'a> {
222 buffer: &'a mut [u8],
223 encoder_buffered: &'a mut usize,
224 encoder_flushed: &'a mut usize,
225 flushed: usize,
226 }
227
228 impl<'a> BufGuard<'a> {
229 fn new(
230 buffer: &'a mut [u8],
231 encoder_buffered: &'a mut usize,
232 encoder_flushed: &'a mut usize,
233 ) -> Self {
234 assert_eq!(buffer.len(), *encoder_buffered);
235 Self { buffer, encoder_buffered, encoder_flushed, flushed: 0 }
236 }
237
238 /// The unwritten part of the buffer
239 fn remaining(&self) -> &[u8] {
240 &self.buffer[self.flushed..]
241 }
242
243 /// Flag some bytes as removed from the front of the buffer
244 fn consume(&mut self, amt: usize) {
245 self.flushed += amt;
246 }
247
248 /// true if all of the bytes have been written
249 fn done(&self) -> bool {
250 self.flushed >= *self.encoder_buffered
251 }
252 }
253
254 impl Drop for BufGuard<'_> {
255 fn drop(&mut self) {
256 if self.flushed > 0 {
257 if self.done() {
258 *self.encoder_flushed += *self.encoder_buffered;
259 *self.encoder_buffered = 0;
260 } else {
261 self.buffer.copy_within(self.flushed.., 0);
262 *self.encoder_flushed += self.flushed;
263 *self.encoder_buffered -= self.flushed;
264 }
265 }
266 }
267 }
268
269 // If we've already had an error, do nothing. It'll get reported after
270 // `finish` is called.
271 if self.res.is_err() {
272 return;
273 }
274
275 let mut guard = BufGuard::new(
276 unsafe { MaybeUninit::slice_assume_init_mut(&mut self.buf[..self.buffered]) },
277 &mut self.buffered,
278 &mut self.flushed,
279 );
280
281 while !guard.done() {
282 match self.file.write(guard.remaining()) {
283 Ok(0) => {
284 self.res = Err(io::Error::new(
285 io::ErrorKind::WriteZero,
286 "failed to write the buffered data",
287 ));
288 return;
289 }
290 Ok(n) => guard.consume(n),
291 Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}
292 Err(e) => {
293 self.res = Err(e);
294 return;
295 }
296 }
297 }
298 }
299
300 #[inline]
301 fn capacity(&self) -> usize {
302 self.buf.len()
303 }
304
305 #[inline]
306 fn write_one(&mut self, value: u8) {
307 // We ensure this during `FileEncoder` construction.
308 debug_assert!(self.capacity() >= 1);
309
310 let mut buffered = self.buffered;
311
312 if std::intrinsics::unlikely(buffered >= self.capacity()) {
313 self.flush();
314 buffered = 0;
315 }
316
317 // SAFETY: The above check and `flush` ensures that there is enough
318 // room to write the input to the buffer.
319 unsafe {
320 *MaybeUninit::slice_as_mut_ptr(&mut self.buf).add(buffered) = value;
321 }
322
323 self.buffered = buffered + 1;
324 }
325
326 #[inline]
327 fn write_all(&mut self, buf: &[u8]) {
328 let capacity = self.capacity();
329 let buf_len = buf.len();
330
331 if std::intrinsics::likely(buf_len <= capacity) {
332 let mut buffered = self.buffered;
333
334 if std::intrinsics::unlikely(buf_len > capacity - buffered) {
335 self.flush();
336 buffered = 0;
337 }
338
339 // SAFETY: The above check and `flush` ensures that there is enough
340 // room to write the input to the buffer.
341 unsafe {
342 let src = buf.as_ptr();
343 let dst = MaybeUninit::slice_as_mut_ptr(&mut self.buf).add(buffered);
344 ptr::copy_nonoverlapping(src, dst, buf_len);
345 }
346
347 self.buffered = buffered + buf_len;
348 } else {
349 self.write_all_unbuffered(buf);
350 }
351 }
352
353 fn write_all_unbuffered(&mut self, mut buf: &[u8]) {
354 // If we've already had an error, do nothing. It'll get reported after
355 // `finish` is called.
356 if self.res.is_err() {
357 return;
358 }
359
360 if self.buffered > 0 {
361 self.flush();
362 }
363
364 // This is basically a copy of `Write::write_all` but also updates our
365 // `self.flushed`. It's necessary because `Write::write_all` does not
366 // return the number of bytes written when an error is encountered, and
367 // without that, we cannot accurately update `self.flushed` on error.
368 while !buf.is_empty() {
369 match self.file.write(buf) {
370 Ok(0) => {
371 self.res = Err(io::Error::new(
372 io::ErrorKind::WriteZero,
373 "failed to write whole buffer",
374 ));
375 return;
376 }
377 Ok(n) => {
378 buf = &buf[n..];
379 self.flushed += n;
380 }
381 Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}
382 Err(e) => {
383 self.res = Err(e);
384 return;
385 }
386 }
387 }
388 }
389
390 pub fn finish(mut self) -> Result<usize, io::Error> {
391 self.flush();
392
393 let res = std::mem::replace(&mut self.res, Ok(()));
394 res.map(|()| self.position())
395 }
396 }
397
398 impl Drop for FileEncoder {
399 fn drop(&mut self) {
400 // Likely to be a no-op, because `finish` should have been called and
401 // it also flushes. But do it just in case.
402 let _result = self.flush();
403 }
404 }
405
406 macro_rules! file_encoder_write_leb128 {
407 ($enc:expr, $value:expr, $int_ty:ty, $fun:ident) => {{
408 const MAX_ENCODED_LEN: usize = max_leb128_len!($int_ty);
409
410 // We ensure this during `FileEncoder` construction.
411 debug_assert!($enc.capacity() >= MAX_ENCODED_LEN);
412
413 let mut buffered = $enc.buffered;
414
415 // This can't overflow. See assertion in `FileEncoder::with_capacity`.
416 if std::intrinsics::unlikely(buffered + MAX_ENCODED_LEN > $enc.capacity()) {
417 $enc.flush();
418 buffered = 0;
419 }
420
421 // SAFETY: The above check and flush ensures that there is enough
422 // room to write the encoded value to the buffer.
423 let buf = unsafe {
424 &mut *($enc.buf.as_mut_ptr().add(buffered) as *mut [MaybeUninit<u8>; MAX_ENCODED_LEN])
425 };
426
427 let encoded = leb128::$fun(buf, $value);
428 $enc.buffered = buffered + encoded.len();
429 }};
430 }
431
432 impl Encoder for FileEncoder {
433 #[inline]
434 fn emit_usize(&mut self, v: usize) {
435 file_encoder_write_leb128!(self, v, usize, write_usize_leb128)
436 }
437
438 #[inline]
439 fn emit_u128(&mut self, v: u128) {
440 file_encoder_write_leb128!(self, v, u128, write_u128_leb128)
441 }
442
443 #[inline]
444 fn emit_u64(&mut self, v: u64) {
445 file_encoder_write_leb128!(self, v, u64, write_u64_leb128)
446 }
447
448 #[inline]
449 fn emit_u32(&mut self, v: u32) {
450 file_encoder_write_leb128!(self, v, u32, write_u32_leb128)
451 }
452
453 #[inline]
454 fn emit_u16(&mut self, v: u16) {
455 self.write_all(&v.to_le_bytes());
456 }
457
458 #[inline]
459 fn emit_u8(&mut self, v: u8) {
460 self.write_one(v);
461 }
462
463 #[inline]
464 fn emit_isize(&mut self, v: isize) {
465 file_encoder_write_leb128!(self, v, isize, write_isize_leb128)
466 }
467
468 #[inline]
469 fn emit_i128(&mut self, v: i128) {
470 file_encoder_write_leb128!(self, v, i128, write_i128_leb128)
471 }
472
473 #[inline]
474 fn emit_i64(&mut self, v: i64) {
475 file_encoder_write_leb128!(self, v, i64, write_i64_leb128)
476 }
477
478 #[inline]
479 fn emit_i32(&mut self, v: i32) {
480 file_encoder_write_leb128!(self, v, i32, write_i32_leb128)
481 }
482
483 #[inline]
484 fn emit_i16(&mut self, v: i16) {
485 self.write_all(&v.to_le_bytes());
486 }
487
488 #[inline]
489 fn emit_i8(&mut self, v: i8) {
490 self.emit_u8(v as u8);
491 }
492
493 #[inline]
494 fn emit_bool(&mut self, v: bool) {
495 self.emit_u8(if v { 1 } else { 0 });
496 }
497
498 #[inline]
499 fn emit_f64(&mut self, v: f64) {
500 let as_u64: u64 = v.to_bits();
501 self.emit_u64(as_u64);
502 }
503
504 #[inline]
505 fn emit_f32(&mut self, v: f32) {
506 let as_u32: u32 = v.to_bits();
507 self.emit_u32(as_u32);
508 }
509
510 #[inline]
511 fn emit_char(&mut self, v: char) {
512 self.emit_u32(v as u32);
513 }
514
515 #[inline]
516 fn emit_str(&mut self, v: &str) {
517 self.emit_usize(v.len());
518 self.emit_raw_bytes(v.as_bytes());
519 self.emit_u8(STR_SENTINEL);
520 }
521
522 #[inline]
523 fn emit_raw_bytes(&mut self, s: &[u8]) {
524 self.write_all(s);
525 }
526 }
527
528 // -----------------------------------------------------------------------------
529 // Decoder
530 // -----------------------------------------------------------------------------
531
532 pub struct MemDecoder<'a> {
533 pub data: &'a [u8],
534 position: usize,
535 }
536
537 impl<'a> MemDecoder<'a> {
538 #[inline]
539 pub fn new(data: &'a [u8], position: usize) -> MemDecoder<'a> {
540 MemDecoder { data, position }
541 }
542
543 #[inline]
544 pub fn position(&self) -> usize {
545 self.position
546 }
547
548 #[inline]
549 pub fn set_position(&mut self, pos: usize) {
550 self.position = pos
551 }
552
553 #[inline]
554 pub fn advance(&mut self, bytes: usize) {
555 self.position += bytes;
556 }
557 }
558
559 macro_rules! read_leb128 {
560 ($dec:expr, $fun:ident) => {{ leb128::$fun($dec.data, &mut $dec.position) }};
561 }
562
563 impl<'a> Decoder for MemDecoder<'a> {
564 #[inline]
565 fn read_u128(&mut self) -> u128 {
566 read_leb128!(self, read_u128_leb128)
567 }
568
569 #[inline]
570 fn read_u64(&mut self) -> u64 {
571 read_leb128!(self, read_u64_leb128)
572 }
573
574 #[inline]
575 fn read_u32(&mut self) -> u32 {
576 read_leb128!(self, read_u32_leb128)
577 }
578
579 #[inline]
580 fn read_u16(&mut self) -> u16 {
581 let bytes = [self.data[self.position], self.data[self.position + 1]];
582 let value = u16::from_le_bytes(bytes);
583 self.position += 2;
584 value
585 }
586
587 #[inline]
588 fn read_u8(&mut self) -> u8 {
589 let value = self.data[self.position];
590 self.position += 1;
591 value
592 }
593
594 #[inline]
595 fn read_usize(&mut self) -> usize {
596 read_leb128!(self, read_usize_leb128)
597 }
598
599 #[inline]
600 fn read_i128(&mut self) -> i128 {
601 read_leb128!(self, read_i128_leb128)
602 }
603
604 #[inline]
605 fn read_i64(&mut self) -> i64 {
606 read_leb128!(self, read_i64_leb128)
607 }
608
609 #[inline]
610 fn read_i32(&mut self) -> i32 {
611 read_leb128!(self, read_i32_leb128)
612 }
613
614 #[inline]
615 fn read_i16(&mut self) -> i16 {
616 let bytes = [self.data[self.position], self.data[self.position + 1]];
617 let value = i16::from_le_bytes(bytes);
618 self.position += 2;
619 value
620 }
621
622 #[inline]
623 fn read_i8(&mut self) -> i8 {
624 let value = self.data[self.position];
625 self.position += 1;
626 value as i8
627 }
628
629 #[inline]
630 fn read_isize(&mut self) -> isize {
631 read_leb128!(self, read_isize_leb128)
632 }
633
634 #[inline]
635 fn read_bool(&mut self) -> bool {
636 let value = self.read_u8();
637 value != 0
638 }
639
640 #[inline]
641 fn read_f64(&mut self) -> f64 {
642 let bits = self.read_u64();
643 f64::from_bits(bits)
644 }
645
646 #[inline]
647 fn read_f32(&mut self) -> f32 {
648 let bits = self.read_u32();
649 f32::from_bits(bits)
650 }
651
652 #[inline]
653 fn read_char(&mut self) -> char {
654 let bits = self.read_u32();
655 std::char::from_u32(bits).unwrap()
656 }
657
658 #[inline]
659 fn read_str(&mut self) -> &'a str {
660 let len = self.read_usize();
661 let sentinel = self.data[self.position + len];
662 assert!(sentinel == STR_SENTINEL);
663 let s = unsafe {
664 std::str::from_utf8_unchecked(&self.data[self.position..self.position + len])
665 };
666 self.position += len + 1;
667 s
668 }
669
670 #[inline]
671 fn read_raw_bytes(&mut self, bytes: usize) -> &'a [u8] {
672 let start = self.position;
673 self.position += bytes;
674 &self.data[start..self.position]
675 }
676 }
677
678 // Specializations for contiguous byte sequences follow. The default implementations for slices
679 // encode and decode each element individually. This isn't necessary for `u8` slices when using
680 // opaque encoders and decoders, because each `u8` is unchanged by encoding and decoding.
681 // Therefore, we can use more efficient implementations that process the entire sequence at once.
682
683 // Specialize encoding byte slices. This specialization also applies to encoding `Vec<u8>`s, etc.,
684 // since the default implementations call `encode` on their slices internally.
685 impl Encodable<MemEncoder> for [u8] {
686 fn encode(&self, e: &mut MemEncoder) {
687 Encoder::emit_usize(e, self.len());
688 e.emit_raw_bytes(self);
689 }
690 }
691
692 impl Encodable<FileEncoder> for [u8] {
693 fn encode(&self, e: &mut FileEncoder) {
694 Encoder::emit_usize(e, self.len());
695 e.emit_raw_bytes(self);
696 }
697 }
698
699 // Specialize decoding `Vec<u8>`. This specialization also applies to decoding `Box<[u8]>`s, etc.,
700 // since the default implementations call `decode` to produce a `Vec<u8>` internally.
701 impl<'a> Decodable<MemDecoder<'a>> for Vec<u8> {
702 fn decode(d: &mut MemDecoder<'a>) -> Self {
703 let len = Decoder::read_usize(d);
704 d.read_raw_bytes(len).to_owned()
705 }
706 }
707
708 // An integer that will always encode to 8 bytes.
709 pub struct IntEncodedWithFixedSize(pub u64);
710
711 impl IntEncodedWithFixedSize {
712 pub const ENCODED_SIZE: usize = 8;
713 }
714
715 impl Encodable<MemEncoder> for IntEncodedWithFixedSize {
716 #[inline]
717 fn encode(&self, e: &mut MemEncoder) {
718 let _start_pos = e.position();
719 e.emit_raw_bytes(&self.0.to_le_bytes());
720 let _end_pos = e.position();
721 debug_assert_eq!((_end_pos - _start_pos), IntEncodedWithFixedSize::ENCODED_SIZE);
722 }
723 }
724
725 impl Encodable<FileEncoder> for IntEncodedWithFixedSize {
726 #[inline]
727 fn encode(&self, e: &mut FileEncoder) {
728 let _start_pos = e.position();
729 e.emit_raw_bytes(&self.0.to_le_bytes());
730 let _end_pos = e.position();
731 debug_assert_eq!((_end_pos - _start_pos), IntEncodedWithFixedSize::ENCODED_SIZE);
732 }
733 }
734
735 impl<'a> Decodable<MemDecoder<'a>> for IntEncodedWithFixedSize {
736 #[inline]
737 fn decode(decoder: &mut MemDecoder<'a>) -> IntEncodedWithFixedSize {
738 let _start_pos = decoder.position();
739 let bytes = decoder.read_raw_bytes(IntEncodedWithFixedSize::ENCODED_SIZE);
740 let value = u64::from_le_bytes(bytes.try_into().unwrap());
741 let _end_pos = decoder.position();
742 debug_assert_eq!((_end_pos - _start_pos), IntEncodedWithFixedSize::ENCODED_SIZE);
743
744 IntEncodedWithFixedSize(value)
745 }
746 }