]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_span/src/source_map.rs
New upstream version 1.68.2+dfsg1
[rustc.git] / compiler / rustc_span / src / source_map.rs
1 //! Types for tracking pieces of source code within a crate.
2 //!
3 //! The [`SourceMap`] tracks all the source code used within a single crate, mapping
4 //! from integer byte positions to the original source code location. Each bit
5 //! of source parsed during crate parsing (typically files, in-memory strings,
6 //! or various bits of macro expansion) cover a continuous range of bytes in the
7 //! `SourceMap` and are represented by [`SourceFile`]s. Byte positions are stored in
8 //! [`Span`] and used pervasively in the compiler. They are absolute positions
9 //! within the `SourceMap`, which upon request can be converted to line and column
10 //! information, source code snippets, etc.
11
12 pub use crate::hygiene::{ExpnData, ExpnKind};
13 pub use crate::*;
14
15 use rustc_data_structures::fx::FxHashMap;
16 use rustc_data_structures::stable_hasher::StableHasher;
17 use rustc_data_structures::sync::{AtomicU32, Lrc, MappedReadGuard, ReadGuard, RwLock};
18 use std::cmp;
19 use std::hash::Hash;
20 use std::path::{self, Path, PathBuf};
21 use std::sync::atomic::Ordering;
22
23 use std::fs;
24 use std::io;
25
26 #[cfg(test)]
27 mod tests;
28
29 /// Returns the span itself if it doesn't come from a macro expansion,
30 /// otherwise return the call site span up to the `enclosing_sp` by
31 /// following the `expn_data` chain.
32 pub fn original_sp(sp: Span, enclosing_sp: Span) -> Span {
33 let expn_data1 = sp.ctxt().outer_expn_data();
34 let expn_data2 = enclosing_sp.ctxt().outer_expn_data();
35 if expn_data1.is_root() || !expn_data2.is_root() && expn_data1.call_site == expn_data2.call_site
36 {
37 sp
38 } else {
39 original_sp(expn_data1.call_site, enclosing_sp)
40 }
41 }
42
43 pub mod monotonic {
44 use std::ops::{Deref, DerefMut};
45
46 /// A `MonotonicVec` is a `Vec` which can only be grown.
47 /// Once inserted, an element can never be removed or swapped,
48 /// guaranteeing that any indices into a `MonotonicVec` are stable
49 // This is declared in its own module to ensure that the private
50 // field is inaccessible
51 pub struct MonotonicVec<T>(Vec<T>);
52 impl<T> MonotonicVec<T> {
53 pub fn new(val: Vec<T>) -> MonotonicVec<T> {
54 MonotonicVec(val)
55 }
56
57 pub fn push(&mut self, val: T) {
58 self.0.push(val);
59 }
60 }
61
62 impl<T> Default for MonotonicVec<T> {
63 fn default() -> Self {
64 MonotonicVec::new(vec![])
65 }
66 }
67
68 impl<T> Deref for MonotonicVec<T> {
69 type Target = Vec<T>;
70 fn deref(&self) -> &Self::Target {
71 &self.0
72 }
73 }
74
75 impl<T> !DerefMut for MonotonicVec<T> {}
76 }
77
78 #[derive(Clone, Encodable, Decodable, Debug, Copy, HashStable_Generic)]
79 pub struct Spanned<T> {
80 pub node: T,
81 pub span: Span,
82 }
83
84 pub fn respan<T>(sp: Span, t: T) -> Spanned<T> {
85 Spanned { node: t, span: sp }
86 }
87
88 pub fn dummy_spanned<T>(t: T) -> Spanned<T> {
89 respan(DUMMY_SP, t)
90 }
91
92 // _____________________________________________________________________________
93 // SourceFile, MultiByteChar, FileName, FileLines
94 //
95
96 /// An abstraction over the fs operations used by the Parser.
97 pub trait FileLoader {
98 /// Query the existence of a file.
99 fn file_exists(&self, path: &Path) -> bool;
100
101 /// Read the contents of a UTF-8 file into memory.
102 fn read_file(&self, path: &Path) -> io::Result<String>;
103 }
104
105 /// A FileLoader that uses std::fs to load real files.
106 pub struct RealFileLoader;
107
108 impl FileLoader for RealFileLoader {
109 fn file_exists(&self, path: &Path) -> bool {
110 path.exists()
111 }
112
113 fn read_file(&self, path: &Path) -> io::Result<String> {
114 fs::read_to_string(path)
115 }
116 }
117
118 /// This is a [SourceFile] identifier that is used to correlate source files between
119 /// subsequent compilation sessions (which is something we need to do during
120 /// incremental compilation).
121 ///
122 /// The [StableSourceFileId] also contains the CrateNum of the crate the source
123 /// file was originally parsed for. This way we get two separate entries in
124 /// the [SourceMap] if the same file is part of both the local and an upstream
125 /// crate. Trying to only have one entry for both cases is problematic because
126 /// at the point where we discover that there's a local use of the file in
127 /// addition to the upstream one, we might already have made decisions based on
128 /// the assumption that it's an upstream file. Treating the two files as
129 /// different has no real downsides.
130 #[derive(Copy, Clone, PartialEq, Eq, Hash, Encodable, Decodable, Debug)]
131 pub struct StableSourceFileId {
132 /// A hash of the source file's [`FileName`]. This is hash so that it's size
133 /// is more predictable than if we included the actual [`FileName`] value.
134 pub file_name_hash: u64,
135
136 /// The [`CrateNum`] of the crate this source file was originally parsed for.
137 /// We cannot include this information in the hash because at the time
138 /// of hashing we don't have the context to map from the [`CrateNum`]'s numeric
139 /// value to a `StableCrateId`.
140 pub cnum: CrateNum,
141 }
142
143 // FIXME: we need a more globally consistent approach to the problem solved by
144 // StableSourceFileId, perhaps built atop source_file.name_hash.
145 impl StableSourceFileId {
146 pub fn new(source_file: &SourceFile) -> StableSourceFileId {
147 StableSourceFileId::new_from_name(&source_file.name, source_file.cnum)
148 }
149
150 fn new_from_name(name: &FileName, cnum: CrateNum) -> StableSourceFileId {
151 let mut hasher = StableHasher::new();
152 name.hash(&mut hasher);
153 StableSourceFileId { file_name_hash: hasher.finish(), cnum }
154 }
155 }
156
157 // _____________________________________________________________________________
158 // SourceMap
159 //
160
161 #[derive(Default)]
162 pub(super) struct SourceMapFiles {
163 source_files: monotonic::MonotonicVec<Lrc<SourceFile>>,
164 stable_id_to_source_file: FxHashMap<StableSourceFileId, Lrc<SourceFile>>,
165 }
166
167 pub struct SourceMap {
168 /// The address space below this value is currently used by the files in the source map.
169 used_address_space: AtomicU32,
170
171 files: RwLock<SourceMapFiles>,
172 file_loader: Box<dyn FileLoader + Sync + Send>,
173 // This is used to apply the file path remapping as specified via
174 // `--remap-path-prefix` to all `SourceFile`s allocated within this `SourceMap`.
175 path_mapping: FilePathMapping,
176
177 /// The algorithm used for hashing the contents of each source file.
178 hash_kind: SourceFileHashAlgorithm,
179 }
180
181 impl SourceMap {
182 pub fn new(path_mapping: FilePathMapping) -> SourceMap {
183 Self::with_file_loader_and_hash_kind(
184 Box::new(RealFileLoader),
185 path_mapping,
186 SourceFileHashAlgorithm::Md5,
187 )
188 }
189
190 pub fn with_file_loader_and_hash_kind(
191 file_loader: Box<dyn FileLoader + Sync + Send>,
192 path_mapping: FilePathMapping,
193 hash_kind: SourceFileHashAlgorithm,
194 ) -> SourceMap {
195 SourceMap {
196 used_address_space: AtomicU32::new(0),
197 files: Default::default(),
198 file_loader,
199 path_mapping,
200 hash_kind,
201 }
202 }
203
204 pub fn path_mapping(&self) -> &FilePathMapping {
205 &self.path_mapping
206 }
207
208 pub fn file_exists(&self, path: &Path) -> bool {
209 self.file_loader.file_exists(path)
210 }
211
212 pub fn load_file(&self, path: &Path) -> io::Result<Lrc<SourceFile>> {
213 let src = self.file_loader.read_file(path)?;
214 let filename = path.to_owned().into();
215 Ok(self.new_source_file(filename, src))
216 }
217
218 /// Loads source file as a binary blob.
219 ///
220 /// Unlike `load_file`, guarantees that no normalization like BOM-removal
221 /// takes place.
222 pub fn load_binary_file(&self, path: &Path) -> io::Result<Vec<u8>> {
223 // Ideally, this should use `self.file_loader`, but it can't
224 // deal with binary files yet.
225 let bytes = fs::read(path)?;
226
227 // We need to add file to the `SourceMap`, so that it is present
228 // in dep-info. There's also an edge case that file might be both
229 // loaded as a binary via `include_bytes!` and as proper `SourceFile`
230 // via `mod`, so we try to use real file contents and not just an
231 // empty string.
232 let text = std::str::from_utf8(&bytes).unwrap_or("").to_string();
233 self.new_source_file(path.to_owned().into(), text);
234 Ok(bytes)
235 }
236
237 // By returning a `MonotonicVec`, we ensure that consumers cannot invalidate
238 // any existing indices pointing into `files`.
239 pub fn files(&self) -> MappedReadGuard<'_, monotonic::MonotonicVec<Lrc<SourceFile>>> {
240 ReadGuard::map(self.files.borrow(), |files| &files.source_files)
241 }
242
243 pub fn source_file_by_stable_id(
244 &self,
245 stable_id: StableSourceFileId,
246 ) -> Option<Lrc<SourceFile>> {
247 self.files.borrow().stable_id_to_source_file.get(&stable_id).cloned()
248 }
249
250 fn allocate_address_space(&self, size: usize) -> Result<usize, OffsetOverflowError> {
251 let size = u32::try_from(size).map_err(|_| OffsetOverflowError)?;
252
253 loop {
254 let current = self.used_address_space.load(Ordering::Relaxed);
255 let next = current
256 .checked_add(size)
257 // Add one so there is some space between files. This lets us distinguish
258 // positions in the `SourceMap`, even in the presence of zero-length files.
259 .and_then(|next| next.checked_add(1))
260 .ok_or(OffsetOverflowError)?;
261
262 if self
263 .used_address_space
264 .compare_exchange(current, next, Ordering::Relaxed, Ordering::Relaxed)
265 .is_ok()
266 {
267 return Ok(usize::try_from(current).unwrap());
268 }
269 }
270 }
271
272 /// Creates a new `SourceFile`.
273 /// If a file already exists in the `SourceMap` with the same ID, that file is returned
274 /// unmodified.
275 pub fn new_source_file(&self, filename: FileName, src: String) -> Lrc<SourceFile> {
276 self.try_new_source_file(filename, src).unwrap_or_else(|OffsetOverflowError| {
277 eprintln!("fatal error: rustc does not support files larger than 4GB");
278 crate::fatal_error::FatalError.raise()
279 })
280 }
281
282 fn try_new_source_file(
283 &self,
284 filename: FileName,
285 src: String,
286 ) -> Result<Lrc<SourceFile>, OffsetOverflowError> {
287 // Note that filename may not be a valid path, eg it may be `<anon>` etc,
288 // but this is okay because the directory determined by `path.pop()` will
289 // be empty, so the working directory will be used.
290 let (filename, _) = self.path_mapping.map_filename_prefix(&filename);
291
292 let file_id = StableSourceFileId::new_from_name(&filename, LOCAL_CRATE);
293
294 let lrc_sf = match self.source_file_by_stable_id(file_id) {
295 Some(lrc_sf) => lrc_sf,
296 None => {
297 let start_pos = self.allocate_address_space(src.len())?;
298
299 let source_file = Lrc::new(SourceFile::new(
300 filename,
301 src,
302 Pos::from_usize(start_pos),
303 self.hash_kind,
304 ));
305
306 // Let's make sure the file_id we generated above actually matches
307 // the ID we generate for the SourceFile we just created.
308 debug_assert_eq!(StableSourceFileId::new(&source_file), file_id);
309
310 let mut files = self.files.borrow_mut();
311
312 files.source_files.push(source_file.clone());
313 files.stable_id_to_source_file.insert(file_id, source_file.clone());
314
315 source_file
316 }
317 };
318 Ok(lrc_sf)
319 }
320
321 /// Allocates a new `SourceFile` representing a source file from an external
322 /// crate. The source code of such an "imported `SourceFile`" is not available,
323 /// but we still know enough to generate accurate debuginfo location
324 /// information for things inlined from other crates.
325 pub fn new_imported_source_file(
326 &self,
327 filename: FileName,
328 src_hash: SourceFileHash,
329 name_hash: u128,
330 source_len: usize,
331 cnum: CrateNum,
332 file_local_lines: Lock<SourceFileLines>,
333 mut file_local_multibyte_chars: Vec<MultiByteChar>,
334 mut file_local_non_narrow_chars: Vec<NonNarrowChar>,
335 mut file_local_normalized_pos: Vec<NormalizedPos>,
336 original_start_pos: BytePos,
337 metadata_index: u32,
338 ) -> Lrc<SourceFile> {
339 let start_pos = self
340 .allocate_address_space(source_len)
341 .expect("not enough address space for imported source file");
342
343 let end_pos = Pos::from_usize(start_pos + source_len);
344 let start_pos = Pos::from_usize(start_pos);
345
346 // Translate these positions into the new global frame of reference,
347 // now that the offset of the SourceFile is known.
348 //
349 // These are all unsigned values. `original_start_pos` may be larger or
350 // smaller than `start_pos`, but `pos` is always larger than both.
351 // Therefore, `(pos - original_start_pos) + start_pos` won't overflow
352 // but `start_pos - original_start_pos` might. So we use the former
353 // form rather than pre-computing the offset into a local variable. The
354 // compiler backend can optimize away the repeated computations in a
355 // way that won't trigger overflow checks.
356 match &mut *file_local_lines.borrow_mut() {
357 SourceFileLines::Lines(lines) => {
358 for pos in lines {
359 *pos = (*pos - original_start_pos) + start_pos;
360 }
361 }
362 SourceFileLines::Diffs(SourceFileDiffs { line_start, .. }) => {
363 *line_start = (*line_start - original_start_pos) + start_pos;
364 }
365 }
366 for mbc in &mut file_local_multibyte_chars {
367 mbc.pos = (mbc.pos - original_start_pos) + start_pos;
368 }
369 for swc in &mut file_local_non_narrow_chars {
370 *swc = (*swc - original_start_pos) + start_pos;
371 }
372 for nc in &mut file_local_normalized_pos {
373 nc.pos = (nc.pos - original_start_pos) + start_pos;
374 }
375
376 let source_file = Lrc::new(SourceFile {
377 name: filename,
378 src: None,
379 src_hash,
380 external_src: Lock::new(ExternalSource::Foreign {
381 kind: ExternalSourceKind::AbsentOk,
382 metadata_index,
383 }),
384 start_pos,
385 end_pos,
386 lines: file_local_lines,
387 multibyte_chars: file_local_multibyte_chars,
388 non_narrow_chars: file_local_non_narrow_chars,
389 normalized_pos: file_local_normalized_pos,
390 name_hash,
391 cnum,
392 });
393
394 let mut files = self.files.borrow_mut();
395
396 files.source_files.push(source_file.clone());
397 files
398 .stable_id_to_source_file
399 .insert(StableSourceFileId::new(&source_file), source_file.clone());
400
401 source_file
402 }
403
404 /// If there is a doctest offset, applies it to the line.
405 pub fn doctest_offset_line(&self, file: &FileName, orig: usize) -> usize {
406 match file {
407 FileName::DocTest(_, offset) => {
408 if *offset < 0 {
409 orig - (-(*offset)) as usize
410 } else {
411 orig + *offset as usize
412 }
413 }
414 _ => orig,
415 }
416 }
417
418 /// Return the SourceFile that contains the given `BytePos`
419 pub fn lookup_source_file(&self, pos: BytePos) -> Lrc<SourceFile> {
420 let idx = self.lookup_source_file_idx(pos);
421 (*self.files.borrow().source_files)[idx].clone()
422 }
423
424 /// Looks up source information about a `BytePos`.
425 pub fn lookup_char_pos(&self, pos: BytePos) -> Loc {
426 let sf = self.lookup_source_file(pos);
427 let (line, col, col_display) = sf.lookup_file_pos_with_col_display(pos);
428 Loc { file: sf, line, col, col_display }
429 }
430
431 /// If the corresponding `SourceFile` is empty, does not return a line number.
432 pub fn lookup_line(&self, pos: BytePos) -> Result<SourceFileAndLine, Lrc<SourceFile>> {
433 let f = self.lookup_source_file(pos);
434
435 match f.lookup_line(pos) {
436 Some(line) => Ok(SourceFileAndLine { sf: f, line }),
437 None => Err(f),
438 }
439 }
440
441 pub fn span_to_string(
442 &self,
443 sp: Span,
444 filename_display_pref: FileNameDisplayPreference,
445 ) -> String {
446 if self.files.borrow().source_files.is_empty() || sp.is_dummy() {
447 return "no-location".to_string();
448 }
449
450 let lo = self.lookup_char_pos(sp.lo());
451 let hi = self.lookup_char_pos(sp.hi());
452 format!(
453 "{}:{}:{}{}",
454 lo.file.name.display(filename_display_pref),
455 lo.line,
456 lo.col.to_usize() + 1,
457 if let FileNameDisplayPreference::Short = filename_display_pref {
458 String::new()
459 } else {
460 format!(": {}:{}", hi.line, hi.col.to_usize() + 1)
461 }
462 )
463 }
464
465 /// Format the span location suitable for embedding in build artifacts
466 pub fn span_to_embeddable_string(&self, sp: Span) -> String {
467 self.span_to_string(sp, FileNameDisplayPreference::Remapped)
468 }
469
470 /// Format the span location suitable for pretty printing anotations with relative line numbers
471 pub fn span_to_relative_line_string(&self, sp: Span, relative_to: Span) -> String {
472 if self.files.borrow().source_files.is_empty() || sp.is_dummy() || relative_to.is_dummy() {
473 return "no-location".to_string();
474 }
475
476 let lo = self.lookup_char_pos(sp.lo());
477 let hi = self.lookup_char_pos(sp.hi());
478 let offset = self.lookup_char_pos(relative_to.lo());
479
480 if lo.file.name != offset.file.name || !relative_to.contains(sp) {
481 return self.span_to_embeddable_string(sp);
482 }
483
484 let lo_line = lo.line.saturating_sub(offset.line);
485 let hi_line = hi.line.saturating_sub(offset.line);
486
487 format!(
488 "{}:+{}:{}: +{}:{}",
489 lo.file.name.display(FileNameDisplayPreference::Remapped),
490 lo_line,
491 lo.col.to_usize() + 1,
492 hi_line,
493 hi.col.to_usize() + 1,
494 )
495 }
496
497 /// Format the span location to be printed in diagnostics. Must not be emitted
498 /// to build artifacts as this may leak local file paths. Use span_to_embeddable_string
499 /// for string suitable for embedding.
500 pub fn span_to_diagnostic_string(&self, sp: Span) -> String {
501 self.span_to_string(sp, self.path_mapping.filename_display_for_diagnostics)
502 }
503
504 pub fn span_to_filename(&self, sp: Span) -> FileName {
505 self.lookup_char_pos(sp.lo()).file.name.clone()
506 }
507
508 pub fn filename_for_diagnostics<'a>(&self, filename: &'a FileName) -> FileNameDisplay<'a> {
509 filename.display(self.path_mapping.filename_display_for_diagnostics)
510 }
511
512 pub fn is_multiline(&self, sp: Span) -> bool {
513 let lo = self.lookup_source_file_idx(sp.lo());
514 let hi = self.lookup_source_file_idx(sp.hi());
515 if lo != hi {
516 return true;
517 }
518 let f = (*self.files.borrow().source_files)[lo].clone();
519 f.lookup_line(sp.lo()) != f.lookup_line(sp.hi())
520 }
521
522 #[instrument(skip(self), level = "trace")]
523 pub fn is_valid_span(&self, sp: Span) -> Result<(Loc, Loc), SpanLinesError> {
524 let lo = self.lookup_char_pos(sp.lo());
525 trace!(?lo);
526 let hi = self.lookup_char_pos(sp.hi());
527 trace!(?hi);
528 if lo.file.start_pos != hi.file.start_pos {
529 return Err(SpanLinesError::DistinctSources(DistinctSources {
530 begin: (lo.file.name.clone(), lo.file.start_pos),
531 end: (hi.file.name.clone(), hi.file.start_pos),
532 }));
533 }
534 Ok((lo, hi))
535 }
536
537 pub fn is_line_before_span_empty(&self, sp: Span) -> bool {
538 match self.span_to_prev_source(sp) {
539 Ok(s) => s.rsplit_once('\n').unwrap_or(("", &s)).1.trim_start().is_empty(),
540 Err(_) => false,
541 }
542 }
543
544 pub fn span_to_lines(&self, sp: Span) -> FileLinesResult {
545 debug!("span_to_lines(sp={:?})", sp);
546 let (lo, hi) = self.is_valid_span(sp)?;
547 assert!(hi.line >= lo.line);
548
549 if sp.is_dummy() {
550 return Ok(FileLines { file: lo.file, lines: Vec::new() });
551 }
552
553 let mut lines = Vec::with_capacity(hi.line - lo.line + 1);
554
555 // The span starts partway through the first line,
556 // but after that it starts from offset 0.
557 let mut start_col = lo.col;
558
559 // For every line but the last, it extends from `start_col`
560 // and to the end of the line. Be careful because the line
561 // numbers in Loc are 1-based, so we subtract 1 to get 0-based
562 // lines.
563 //
564 // FIXME: now that we handle DUMMY_SP up above, we should consider
565 // asserting that the line numbers here are all indeed 1-based.
566 let hi_line = hi.line.saturating_sub(1);
567 for line_index in lo.line.saturating_sub(1)..hi_line {
568 let line_len = lo.file.get_line(line_index).map_or(0, |s| s.chars().count());
569 lines.push(LineInfo { line_index, start_col, end_col: CharPos::from_usize(line_len) });
570 start_col = CharPos::from_usize(0);
571 }
572
573 // For the last line, it extends from `start_col` to `hi.col`:
574 lines.push(LineInfo { line_index: hi_line, start_col, end_col: hi.col });
575
576 Ok(FileLines { file: lo.file, lines })
577 }
578
579 /// Extracts the source surrounding the given `Span` using the `extract_source` function. The
580 /// extract function takes three arguments: a string slice containing the source, an index in
581 /// the slice for the beginning of the span and an index in the slice for the end of the span.
582 fn span_to_source<F, T>(&self, sp: Span, extract_source: F) -> Result<T, SpanSnippetError>
583 where
584 F: Fn(&str, usize, usize) -> Result<T, SpanSnippetError>,
585 {
586 let local_begin = self.lookup_byte_offset(sp.lo());
587 let local_end = self.lookup_byte_offset(sp.hi());
588
589 if local_begin.sf.start_pos != local_end.sf.start_pos {
590 Err(SpanSnippetError::DistinctSources(DistinctSources {
591 begin: (local_begin.sf.name.clone(), local_begin.sf.start_pos),
592 end: (local_end.sf.name.clone(), local_end.sf.start_pos),
593 }))
594 } else {
595 self.ensure_source_file_source_present(local_begin.sf.clone());
596
597 let start_index = local_begin.pos.to_usize();
598 let end_index = local_end.pos.to_usize();
599 let source_len = (local_begin.sf.end_pos - local_begin.sf.start_pos).to_usize();
600
601 if start_index > end_index || end_index > source_len {
602 return Err(SpanSnippetError::MalformedForSourcemap(MalformedSourceMapPositions {
603 name: local_begin.sf.name.clone(),
604 source_len,
605 begin_pos: local_begin.pos,
606 end_pos: local_end.pos,
607 }));
608 }
609
610 if let Some(ref src) = local_begin.sf.src {
611 extract_source(src, start_index, end_index)
612 } else if let Some(src) = local_begin.sf.external_src.borrow().get_source() {
613 extract_source(src, start_index, end_index)
614 } else {
615 Err(SpanSnippetError::SourceNotAvailable { filename: local_begin.sf.name.clone() })
616 }
617 }
618 }
619
620 pub fn is_span_accessible(&self, sp: Span) -> bool {
621 self.span_to_source(sp, |src, start_index, end_index| {
622 Ok(src.get(start_index..end_index).is_some())
623 })
624 .map_or(false, |is_accessible| is_accessible)
625 }
626
627 /// Returns the source snippet as `String` corresponding to the given `Span`.
628 pub fn span_to_snippet(&self, sp: Span) -> Result<String, SpanSnippetError> {
629 self.span_to_source(sp, |src, start_index, end_index| {
630 src.get(start_index..end_index)
631 .map(|s| s.to_string())
632 .ok_or(SpanSnippetError::IllFormedSpan(sp))
633 })
634 }
635
636 pub fn span_to_margin(&self, sp: Span) -> Option<usize> {
637 Some(self.indentation_before(sp)?.len())
638 }
639
640 pub fn indentation_before(&self, sp: Span) -> Option<String> {
641 self.span_to_source(sp, |src, start_index, _| {
642 let before = &src[..start_index];
643 let last_line = before.rsplit_once('\n').map_or(before, |(_, last)| last);
644 Ok(last_line
645 .split_once(|c: char| !c.is_whitespace())
646 .map_or(last_line, |(indent, _)| indent)
647 .to_string())
648 })
649 .ok()
650 }
651
652 /// Returns the source snippet as `String` before the given `Span`.
653 pub fn span_to_prev_source(&self, sp: Span) -> Result<String, SpanSnippetError> {
654 self.span_to_source(sp, |src, start_index, _| {
655 src.get(..start_index).map(|s| s.to_string()).ok_or(SpanSnippetError::IllFormedSpan(sp))
656 })
657 }
658
659 /// Extends the given `Span` to just after the previous occurrence of `c`. Return the same span
660 /// if no character could be found or if an error occurred while retrieving the code snippet.
661 pub fn span_extend_to_prev_char(&self, sp: Span, c: char, accept_newlines: bool) -> Span {
662 if let Ok(prev_source) = self.span_to_prev_source(sp) {
663 let prev_source = prev_source.rsplit(c).next().unwrap_or("");
664 if !prev_source.is_empty() && (accept_newlines || !prev_source.contains('\n')) {
665 return sp.with_lo(BytePos(sp.lo().0 - prev_source.len() as u32));
666 }
667 }
668
669 sp
670 }
671
672 /// Extends the given `Span` to just after the previous occurrence of `pat` when surrounded by
673 /// whitespace. Returns None if the pattern could not be found or if an error occurred while
674 /// retrieving the code snippet.
675 pub fn span_extend_to_prev_str(
676 &self,
677 sp: Span,
678 pat: &str,
679 accept_newlines: bool,
680 include_whitespace: bool,
681 ) -> Option<Span> {
682 // assure that the pattern is delimited, to avoid the following
683 // fn my_fn()
684 // ^^^^ returned span without the check
685 // ---------- correct span
686 let prev_source = self.span_to_prev_source(sp).ok()?;
687 for ws in &[" ", "\t", "\n"] {
688 let pat = pat.to_owned() + ws;
689 if let Some(pat_pos) = prev_source.rfind(&pat) {
690 let just_after_pat_pos = pat_pos + pat.len() - 1;
691 let just_after_pat_plus_ws = if include_whitespace {
692 just_after_pat_pos
693 + prev_source[just_after_pat_pos..]
694 .find(|c: char| !c.is_whitespace())
695 .unwrap_or(0)
696 } else {
697 just_after_pat_pos
698 };
699 let len = prev_source.len() - just_after_pat_plus_ws;
700 let prev_source = &prev_source[just_after_pat_plus_ws..];
701 if accept_newlines || !prev_source.trim_start().contains('\n') {
702 return Some(sp.with_lo(BytePos(sp.lo().0 - len as u32)));
703 }
704 }
705 }
706
707 None
708 }
709
710 /// Returns the source snippet as `String` after the given `Span`.
711 pub fn span_to_next_source(&self, sp: Span) -> Result<String, SpanSnippetError> {
712 self.span_to_source(sp, |src, _, end_index| {
713 src.get(end_index..).map(|s| s.to_string()).ok_or(SpanSnippetError::IllFormedSpan(sp))
714 })
715 }
716
717 /// Extends the given `Span` while the next character matches the predicate
718 pub fn span_extend_while(
719 &self,
720 span: Span,
721 f: impl Fn(char) -> bool,
722 ) -> Result<Span, SpanSnippetError> {
723 self.span_to_source(span, |s, _start, end| {
724 let n = s[end..].char_indices().find(|&(_, c)| !f(c)).map_or(s.len() - end, |(i, _)| i);
725 Ok(span.with_hi(span.hi() + BytePos(n as u32)))
726 })
727 }
728
729 /// Extends the given `Span` to just before the next occurrence of `c`.
730 pub fn span_extend_to_next_char(&self, sp: Span, c: char, accept_newlines: bool) -> Span {
731 if let Ok(next_source) = self.span_to_next_source(sp) {
732 let next_source = next_source.split(c).next().unwrap_or("");
733 if !next_source.is_empty() && (accept_newlines || !next_source.contains('\n')) {
734 return sp.with_hi(BytePos(sp.hi().0 + next_source.len() as u32));
735 }
736 }
737
738 sp
739 }
740
741 /// Extends the given `Span` to contain the entire line it is on.
742 pub fn span_extend_to_line(&self, sp: Span) -> Span {
743 self.span_extend_to_prev_char(self.span_extend_to_next_char(sp, '\n', true), '\n', true)
744 }
745
746 /// Given a `Span`, tries to get a shorter span ending before the first occurrence of `char`
747 /// `c`.
748 pub fn span_until_char(&self, sp: Span, c: char) -> Span {
749 match self.span_to_snippet(sp) {
750 Ok(snippet) => {
751 let snippet = snippet.split(c).next().unwrap_or("").trim_end();
752 if !snippet.is_empty() && !snippet.contains('\n') {
753 sp.with_hi(BytePos(sp.lo().0 + snippet.len() as u32))
754 } else {
755 sp
756 }
757 }
758 _ => sp,
759 }
760 }
761
762 /// Given a 'Span', tries to tell if it's wrapped by "<>" or "()"
763 /// the algorithm searches if the next character is '>' or ')' after skipping white space
764 /// then searches the previous charactoer to match '<' or '(' after skipping white space
765 /// return true if wrapped by '<>' or '()'
766 pub fn span_wrapped_by_angle_or_parentheses(&self, span: Span) -> bool {
767 self.span_to_source(span, |src, start_index, end_index| {
768 if src.get(start_index..end_index).is_none() {
769 return Ok(false);
770 }
771 // test the right side to match '>' after skipping white space
772 let end_src = &src[end_index..];
773 let mut i = 0;
774 let mut found_right_parentheses = false;
775 let mut found_right_angle = false;
776 while let Some(cc) = end_src.chars().nth(i) {
777 if cc == ' ' {
778 i = i + 1;
779 } else if cc == '>' {
780 // found > in the right;
781 found_right_angle = true;
782 break;
783 } else if cc == ')' {
784 found_right_parentheses = true;
785 break;
786 } else {
787 // failed to find '>' return false immediately
788 return Ok(false);
789 }
790 }
791 // test the left side to match '<' after skipping white space
792 i = start_index;
793 let start_src = &src[0..start_index];
794 while let Some(cc) = start_src.chars().nth(i) {
795 if cc == ' ' {
796 if i == 0 {
797 return Ok(false);
798 }
799 i = i - 1;
800 } else if cc == '<' {
801 // found < in the left
802 if !found_right_angle {
803 // skip something like "(< )>"
804 return Ok(false);
805 }
806 break;
807 } else if cc == '(' {
808 if !found_right_parentheses {
809 // skip something like "<(>)"
810 return Ok(false);
811 }
812 break;
813 } else {
814 // failed to find '<' return false immediately
815 return Ok(false);
816 }
817 }
818 return Ok(true);
819 })
820 .map_or(false, |is_accessible| is_accessible)
821 }
822
823 /// Given a `Span`, tries to get a shorter span ending just after the first occurrence of `char`
824 /// `c`.
825 pub fn span_through_char(&self, sp: Span, c: char) -> Span {
826 if let Ok(snippet) = self.span_to_snippet(sp) {
827 if let Some(offset) = snippet.find(c) {
828 return sp.with_hi(BytePos(sp.lo().0 + (offset + c.len_utf8()) as u32));
829 }
830 }
831 sp
832 }
833
834 /// Given a `Span`, gets a new `Span` covering the first token and all its trailing whitespace
835 /// or the original `Span`.
836 ///
837 /// If `sp` points to `"let mut x"`, then a span pointing at `"let "` will be returned.
838 pub fn span_until_non_whitespace(&self, sp: Span) -> Span {
839 let mut whitespace_found = false;
840
841 self.span_take_while(sp, |c| {
842 if !whitespace_found && c.is_whitespace() {
843 whitespace_found = true;
844 }
845
846 !whitespace_found || c.is_whitespace()
847 })
848 }
849
850 /// Given a `Span`, gets a new `Span` covering the first token without its trailing whitespace
851 /// or the original `Span` in case of error.
852 ///
853 /// If `sp` points to `"let mut x"`, then a span pointing at `"let"` will be returned.
854 pub fn span_until_whitespace(&self, sp: Span) -> Span {
855 self.span_take_while(sp, |c| !c.is_whitespace())
856 }
857
858 /// Given a `Span`, gets a shorter one until `predicate` yields `false`.
859 pub fn span_take_while<P>(&self, sp: Span, predicate: P) -> Span
860 where
861 P: for<'r> FnMut(&'r char) -> bool,
862 {
863 if let Ok(snippet) = self.span_to_snippet(sp) {
864 let offset = snippet.chars().take_while(predicate).map(|c| c.len_utf8()).sum::<usize>();
865
866 sp.with_hi(BytePos(sp.lo().0 + (offset as u32)))
867 } else {
868 sp
869 }
870 }
871
872 /// Given a `Span`, return a span ending in the closest `{`. This is useful when you have a
873 /// `Span` enclosing a whole item but we need to point at only the head (usually the first
874 /// line) of that item.
875 ///
876 /// *Only suitable for diagnostics.*
877 pub fn guess_head_span(&self, sp: Span) -> Span {
878 // FIXME: extend the AST items to have a head span, or replace callers with pointing at
879 // the item's ident when appropriate.
880 self.span_until_char(sp, '{')
881 }
882
883 /// Returns a new span representing just the first character of the given span.
884 pub fn start_point(&self, sp: Span) -> Span {
885 let width = {
886 let sp = sp.data();
887 let local_begin = self.lookup_byte_offset(sp.lo);
888 let start_index = local_begin.pos.to_usize();
889 let src = local_begin.sf.external_src.borrow();
890
891 let snippet = if let Some(ref src) = local_begin.sf.src {
892 Some(&src[start_index..])
893 } else if let Some(src) = src.get_source() {
894 Some(&src[start_index..])
895 } else {
896 None
897 };
898
899 match snippet {
900 None => 1,
901 Some(snippet) => match snippet.chars().next() {
902 None => 1,
903 Some(c) => c.len_utf8(),
904 },
905 }
906 };
907
908 sp.with_hi(BytePos(sp.lo().0 + width as u32))
909 }
910
911 /// Returns a new span representing just the last character of this span.
912 pub fn end_point(&self, sp: Span) -> Span {
913 let pos = sp.hi().0;
914
915 let width = self.find_width_of_character_at_span(sp, false);
916 let corrected_end_position = pos.checked_sub(width).unwrap_or(pos);
917
918 let end_point = BytePos(cmp::max(corrected_end_position, sp.lo().0));
919 sp.with_lo(end_point)
920 }
921
922 /// Returns a new span representing the next character after the end-point of this span.
923 /// Special cases:
924 /// - if span is a dummy one, returns the same span
925 /// - if next_point reached the end of source, return a span exceeding the end of source,
926 /// which means sm.span_to_snippet(next_point) will get `Err`
927 /// - respect multi-byte characters
928 pub fn next_point(&self, sp: Span) -> Span {
929 if sp.is_dummy() {
930 return sp;
931 }
932 let start_of_next_point = sp.hi().0;
933
934 let width = self.find_width_of_character_at_span(sp, true);
935 // If the width is 1, then the next span should only contain the next char besides current ending.
936 // However, in the case of a multibyte character, where the width != 1, the next span should
937 // span multiple bytes to include the whole character.
938 let end_of_next_point =
939 start_of_next_point.checked_add(width).unwrap_or(start_of_next_point);
940
941 let end_of_next_point = BytePos(cmp::max(start_of_next_point + 1, end_of_next_point));
942 Span::new(BytePos(start_of_next_point), end_of_next_point, sp.ctxt(), None)
943 }
944
945 /// Returns a new span to check next none-whitespace character or some specified expected character
946 /// If `expect` is none, the first span of non-whitespace character is returned.
947 /// If `expect` presented, the first span of the character `expect` is returned
948 /// Otherwise, the span reached to limit is returned.
949 pub fn span_look_ahead(&self, span: Span, expect: Option<&str>, limit: Option<usize>) -> Span {
950 let mut sp = span;
951 for _ in 0..limit.unwrap_or(100_usize) {
952 sp = self.next_point(sp);
953 if let Ok(ref snippet) = self.span_to_snippet(sp) {
954 if expect.map_or(false, |es| snippet == es) {
955 break;
956 }
957 if expect.is_none() && snippet.chars().any(|c| !c.is_whitespace()) {
958 break;
959 }
960 }
961 }
962 sp
963 }
964
965 /// Finds the width of the character, either before or after the end of provided span,
966 /// depending on the `forwards` parameter.
967 #[instrument(skip(self, sp))]
968 fn find_width_of_character_at_span(&self, sp: Span, forwards: bool) -> u32 {
969 let sp = sp.data();
970
971 if sp.lo == sp.hi && !forwards {
972 debug!("early return empty span");
973 return 1;
974 }
975
976 let local_begin = self.lookup_byte_offset(sp.lo);
977 let local_end = self.lookup_byte_offset(sp.hi);
978 debug!("local_begin=`{:?}`, local_end=`{:?}`", local_begin, local_end);
979
980 if local_begin.sf.start_pos != local_end.sf.start_pos {
981 debug!("begin and end are in different files");
982 return 1;
983 }
984
985 let start_index = local_begin.pos.to_usize();
986 let end_index = local_end.pos.to_usize();
987 debug!("start_index=`{:?}`, end_index=`{:?}`", start_index, end_index);
988
989 // Disregard indexes that are at the start or end of their spans, they can't fit bigger
990 // characters.
991 if (!forwards && end_index == usize::MIN) || (forwards && start_index == usize::MAX) {
992 debug!("start or end of span, cannot be multibyte");
993 return 1;
994 }
995
996 let source_len = (local_begin.sf.end_pos - local_begin.sf.start_pos).to_usize();
997 debug!("source_len=`{:?}`", source_len);
998 // Ensure indexes are also not malformed.
999 if start_index > end_index || end_index > source_len - 1 {
1000 debug!("source indexes are malformed");
1001 return 1;
1002 }
1003
1004 let src = local_begin.sf.external_src.borrow();
1005
1006 // We need to extend the snippet to the end of the src rather than to end_index so when
1007 // searching forwards for boundaries we've got somewhere to search.
1008 let snippet = if let Some(ref src) = local_begin.sf.src {
1009 &src[start_index..]
1010 } else if let Some(src) = src.get_source() {
1011 &src[start_index..]
1012 } else {
1013 return 1;
1014 };
1015 debug!("snippet=`{:?}`", snippet);
1016
1017 let mut target = if forwards { end_index + 1 } else { end_index - 1 };
1018 debug!("initial target=`{:?}`", target);
1019
1020 while !snippet.is_char_boundary(target - start_index) && target < source_len {
1021 target = if forwards {
1022 target + 1
1023 } else {
1024 match target.checked_sub(1) {
1025 Some(target) => target,
1026 None => {
1027 break;
1028 }
1029 }
1030 };
1031 debug!("target=`{:?}`", target);
1032 }
1033 debug!("final target=`{:?}`", target);
1034
1035 if forwards { (target - end_index) as u32 } else { (end_index - target) as u32 }
1036 }
1037
1038 pub fn get_source_file(&self, filename: &FileName) -> Option<Lrc<SourceFile>> {
1039 // Remap filename before lookup
1040 let filename = self.path_mapping().map_filename_prefix(filename).0;
1041 for sf in self.files.borrow().source_files.iter() {
1042 if filename == sf.name {
1043 return Some(sf.clone());
1044 }
1045 }
1046 None
1047 }
1048
1049 /// For a global `BytePos`, computes the local offset within the containing `SourceFile`.
1050 pub fn lookup_byte_offset(&self, bpos: BytePos) -> SourceFileAndBytePos {
1051 let idx = self.lookup_source_file_idx(bpos);
1052 let sf = (*self.files.borrow().source_files)[idx].clone();
1053 let offset = bpos - sf.start_pos;
1054 SourceFileAndBytePos { sf, pos: offset }
1055 }
1056
1057 /// Returns the index of the [`SourceFile`] (in `self.files`) that contains `pos`.
1058 /// This index is guaranteed to be valid for the lifetime of this `SourceMap`,
1059 /// since `source_files` is a `MonotonicVec`
1060 pub fn lookup_source_file_idx(&self, pos: BytePos) -> usize {
1061 self.files
1062 .borrow()
1063 .source_files
1064 .binary_search_by_key(&pos, |key| key.start_pos)
1065 .unwrap_or_else(|p| p - 1)
1066 }
1067
1068 pub fn count_lines(&self) -> usize {
1069 self.files().iter().fold(0, |a, f| a + f.count_lines())
1070 }
1071
1072 pub fn ensure_source_file_source_present(&self, source_file: Lrc<SourceFile>) -> bool {
1073 source_file.add_external_src(|| {
1074 let FileName::Real(ref name) = source_file.name else {
1075 return None;
1076 };
1077
1078 let local_path: Cow<'_, Path> = match name {
1079 RealFileName::LocalPath(local_path) => local_path.into(),
1080 RealFileName::Remapped { local_path: Some(local_path), .. } => local_path.into(),
1081 RealFileName::Remapped { local_path: None, virtual_name } => {
1082 // The compiler produces better error messages if the sources of dependencies
1083 // are available. Attempt to undo any path mapping so we can find remapped
1084 // dependencies.
1085 // We can only use the heuristic because `add_external_src` checks the file
1086 // content hash.
1087 self.path_mapping.reverse_map_prefix_heuristically(virtual_name)?.into()
1088 }
1089 };
1090
1091 self.file_loader.read_file(&local_path).ok()
1092 })
1093 }
1094
1095 pub fn is_imported(&self, sp: Span) -> bool {
1096 let source_file_index = self.lookup_source_file_idx(sp.lo());
1097 let source_file = &self.files()[source_file_index];
1098 source_file.is_imported()
1099 }
1100
1101 /// Gets the span of a statement. If the statement is a macro expansion, the
1102 /// span in the context of the block span is found. The trailing semicolon is included
1103 /// on a best-effort basis.
1104 pub fn stmt_span(&self, stmt_span: Span, block_span: Span) -> Span {
1105 if !stmt_span.from_expansion() {
1106 return stmt_span;
1107 }
1108 let mac_call = original_sp(stmt_span, block_span);
1109 self.mac_call_stmt_semi_span(mac_call).map_or(mac_call, |s| mac_call.with_hi(s.hi()))
1110 }
1111
1112 /// Tries to find the span of the semicolon of a macro call statement.
1113 /// The input must be the *call site* span of a statement from macro expansion.
1114 /// ```ignore (illustrative)
1115 /// // v output
1116 /// mac!();
1117 /// // ^^^^^^ input
1118 /// ```
1119 pub fn mac_call_stmt_semi_span(&self, mac_call: Span) -> Option<Span> {
1120 let span = self.span_extend_while(mac_call, char::is_whitespace).ok()?;
1121 let span = span.shrink_to_hi().with_hi(BytePos(span.hi().0.checked_add(1)?));
1122 if self.span_to_snippet(span).as_deref() != Ok(";") {
1123 return None;
1124 }
1125 Some(span)
1126 }
1127 }
1128
1129 #[derive(Clone)]
1130 pub struct FilePathMapping {
1131 mapping: Vec<(PathBuf, PathBuf)>,
1132 filename_display_for_diagnostics: FileNameDisplayPreference,
1133 }
1134
1135 impl FilePathMapping {
1136 pub fn empty() -> FilePathMapping {
1137 FilePathMapping::new(Vec::new())
1138 }
1139
1140 pub fn new(mapping: Vec<(PathBuf, PathBuf)>) -> FilePathMapping {
1141 let filename_display_for_diagnostics = if mapping.is_empty() {
1142 FileNameDisplayPreference::Local
1143 } else {
1144 FileNameDisplayPreference::Remapped
1145 };
1146
1147 FilePathMapping { mapping, filename_display_for_diagnostics }
1148 }
1149
1150 /// Applies any path prefix substitution as defined by the mapping.
1151 /// The return value is the remapped path and a boolean indicating whether
1152 /// the path was affected by the mapping.
1153 pub fn map_prefix<'a>(&'a self, path: impl Into<Cow<'a, Path>>) -> (Cow<'a, Path>, bool) {
1154 let path = path.into();
1155 if path.as_os_str().is_empty() {
1156 // Exit early if the path is empty and therefore there's nothing to remap.
1157 // This is mostly to reduce spam for `RUSTC_LOG=[remap_path_prefix]`.
1158 return (path, false);
1159 }
1160
1161 return remap_path_prefix(&self.mapping, path);
1162
1163 #[instrument(level = "debug", skip(mapping), ret)]
1164 fn remap_path_prefix<'a>(
1165 mapping: &'a [(PathBuf, PathBuf)],
1166 path: Cow<'a, Path>,
1167 ) -> (Cow<'a, Path>, bool) {
1168 // NOTE: We are iterating over the mapping entries from last to first
1169 // because entries specified later on the command line should
1170 // take precedence.
1171 for (from, to) in mapping.iter().rev() {
1172 debug!("Trying to apply {from:?} => {to:?}");
1173
1174 if let Ok(rest) = path.strip_prefix(from) {
1175 let remapped = if rest.as_os_str().is_empty() {
1176 // This is subtle, joining an empty path onto e.g. `foo/bar` will
1177 // result in `foo/bar/`, that is, there'll be an additional directory
1178 // separator at the end. This can lead to duplicated directory separators
1179 // in remapped paths down the line.
1180 // So, if we have an exact match, we just return that without a call
1181 // to `Path::join()`.
1182 to.into()
1183 } else {
1184 to.join(rest).into()
1185 };
1186 debug!("Match - remapped");
1187
1188 return (remapped, true);
1189 } else {
1190 debug!("No match - prefix {from:?} does not match");
1191 }
1192 }
1193
1194 debug!("not remapped");
1195 (path, false)
1196 }
1197 }
1198
1199 fn map_filename_prefix(&self, file: &FileName) -> (FileName, bool) {
1200 match file {
1201 FileName::Real(realfile) if let RealFileName::LocalPath(local_path) = realfile => {
1202 let (mapped_path, mapped) = self.map_prefix(local_path);
1203 let realfile = if mapped {
1204 RealFileName::Remapped {
1205 local_path: Some(local_path.clone()),
1206 virtual_name: mapped_path.into_owned(),
1207 }
1208 } else {
1209 realfile.clone()
1210 };
1211 (FileName::Real(realfile), mapped)
1212 }
1213 FileName::Real(_) => unreachable!("attempted to remap an already remapped filename"),
1214 other => (other.clone(), false),
1215 }
1216 }
1217
1218 /// Expand a relative path to an absolute path with remapping taken into account.
1219 /// Use this when absolute paths are required (e.g. debuginfo or crate metadata).
1220 ///
1221 /// The resulting `RealFileName` will have its `local_path` portion erased if
1222 /// possible (i.e. if there's also a remapped path).
1223 pub fn to_embeddable_absolute_path(
1224 &self,
1225 file_path: RealFileName,
1226 working_directory: &RealFileName,
1227 ) -> RealFileName {
1228 match file_path {
1229 // Anything that's already remapped we don't modify, except for erasing
1230 // the `local_path` portion.
1231 RealFileName::Remapped { local_path: _, virtual_name } => {
1232 RealFileName::Remapped {
1233 // We do not want any local path to be exported into metadata
1234 local_path: None,
1235 // We use the remapped name verbatim, even if it looks like a relative
1236 // path. The assumption is that the user doesn't want us to further
1237 // process paths that have gone through remapping.
1238 virtual_name,
1239 }
1240 }
1241
1242 RealFileName::LocalPath(unmapped_file_path) => {
1243 // If no remapping has been applied yet, try to do so
1244 let (new_path, was_remapped) = self.map_prefix(unmapped_file_path);
1245 if was_remapped {
1246 // It was remapped, so don't modify further
1247 return RealFileName::Remapped {
1248 local_path: None,
1249 virtual_name: new_path.into_owned(),
1250 };
1251 }
1252
1253 if new_path.is_absolute() {
1254 // No remapping has applied to this path and it is absolute,
1255 // so the working directory cannot influence it either, so
1256 // we are done.
1257 return RealFileName::LocalPath(new_path.into_owned());
1258 }
1259
1260 debug_assert!(new_path.is_relative());
1261 let unmapped_file_path_rel = new_path;
1262
1263 match working_directory {
1264 RealFileName::LocalPath(unmapped_working_dir_abs) => {
1265 let file_path_abs = unmapped_working_dir_abs.join(unmapped_file_path_rel);
1266
1267 // Although neither `working_directory` nor the file name were subject
1268 // to path remapping, the concatenation between the two may be. Hence
1269 // we need to do a remapping here.
1270 let (file_path_abs, was_remapped) = self.map_prefix(file_path_abs);
1271 if was_remapped {
1272 RealFileName::Remapped {
1273 // Erase the actual path
1274 local_path: None,
1275 virtual_name: file_path_abs.into_owned(),
1276 }
1277 } else {
1278 // No kind of remapping applied to this path, so
1279 // we leave it as it is.
1280 RealFileName::LocalPath(file_path_abs.into_owned())
1281 }
1282 }
1283 RealFileName::Remapped {
1284 local_path: _,
1285 virtual_name: remapped_working_dir_abs,
1286 } => {
1287 // If working_directory has been remapped, then we emit
1288 // Remapped variant as the expanded path won't be valid
1289 RealFileName::Remapped {
1290 local_path: None,
1291 virtual_name: Path::new(remapped_working_dir_abs)
1292 .join(unmapped_file_path_rel),
1293 }
1294 }
1295 }
1296 }
1297 }
1298 }
1299
1300 /// Attempts to (heuristically) reverse a prefix mapping.
1301 ///
1302 /// Returns [`Some`] if there is exactly one mapping where the "to" part is
1303 /// a prefix of `path` and has at least one non-empty
1304 /// [`Normal`](path::Component::Normal) component. The component
1305 /// restriction exists to avoid reverse mapping overly generic paths like
1306 /// `/` or `.`).
1307 ///
1308 /// This is a heuristic and not guaranteed to return the actual original
1309 /// path! Do not rely on the result unless you have other means to verify
1310 /// that the mapping is correct (e.g. by checking the file content hash).
1311 #[instrument(level = "debug", skip(self), ret)]
1312 fn reverse_map_prefix_heuristically(&self, path: &Path) -> Option<PathBuf> {
1313 let mut found = None;
1314
1315 for (from, to) in self.mapping.iter() {
1316 let has_normal_component = to.components().any(|c| match c {
1317 path::Component::Normal(s) => !s.is_empty(),
1318 _ => false,
1319 });
1320
1321 if !has_normal_component {
1322 continue;
1323 }
1324
1325 let Ok(rest) = path.strip_prefix(to) else {
1326 continue;
1327 };
1328
1329 if found.is_some() {
1330 return None;
1331 }
1332
1333 found = Some(from.join(rest));
1334 }
1335
1336 found
1337 }
1338 }